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Abstract: Background: Cognitive for patients with neurocognitive disorders are mostly measured by Montreal 

Cognitive Assessment (MoCA) and Visual Cognitive Assessment Test (VCAT) as screening tools. These 

cognitive scores are usually left skewed and the results of association analysis might not be robust. This study 

aims to study the distribution of the cognitive outcomes and to discuss potential solutions. Materials and 

Methods: The inverse transformed cognitive outcomes are modelled using different statistical distributions. 

Robustness of the proposed models are checked under different scenarios: with intercept only, models with 

covariate, with and without bootstrapping. Results: Main results were based on VCAT score, and validated 

via MoCA score. Findings suggested that the inverse transformation method improves modelling the cognitive 

scores compared to the conventional methods using the original cognitive scores. Association of baseline 

characteristics (age, gender and years of education) and the cognitive outcomes were reported as estimates and 

95% confidence intervals. Bootstrap methods improved the estimate precision and the bootstrapped standard 

errors of the estimates are more robust. Cognitive outcomes are widely analyzed using linear regression models 

with default normal distribution as a conventional method. We compared the results of our suggested models 

with the normal distribution under various scenarios. Goodness-of-fit measurements were compared between 

proposed models and conventional methods. Conclusions: The findings support the use of the inverse 

transformation method to model the cognitive outcomes instead of the original cognitive scores for early stage 

neurocognitive disorders where the cognitive outcomes are left skewed. 

Keywords: cognitive impairment; cognitive screening tool; montreal cognitive assessment; visual cognitive 

assessment test; skewness 

 

1. Introduction 

The recognition of cognitive impairment in neurocognitive disorders is important due to its 

association with shorter life expectancy, caregiver anxiety and potential side effects of cognitive 

enhancers. Furthermore, early diagnosis and timely intervention can result in delayed or slowed 

progression from mild cognitive impairment (MCI) to dementia. Hence, it is paramount to detect 

early cognitive deficits to provide appropriate treatment decisions to reduce complications and 

morbidities. For these reasons, routine cognitive screening is important for the optimal management 

of patients with neurocognitive disorder [1–8]. Though the gold standard of such cognitive 

evaluation should be based on neuropsychological testing, these are time consuming and hence a 

more practical screening approach is usually performed by clinicians. Cognitive tests are usually 
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performed to assess patients in clinical conditions with cognitive impairment. Such cognitive tests 

should be short, simple to perform, sensitive to subtle changes in cognition, not confounded by motor 

and visual problems, and able to assess a full range of cognitive domains. Some global cognitive 

screening tools that have been developed for patients with neurocognitive disorders are the Montreal 

Cognitive Assessment (MoCA) and Visual Cognitive Assessment Test (VCAT) among others [4,7,9–

13]. 

Among the screening tools, the MoCA is a screening instrument that can be administered within 

10-15 minutes and is developed to identify patients with MCI and dementia [13,14]. The VCAT is a 

visual-based cognitive screening tool that is comparable to the MoCA for the time of administration, 

and is designed to detect early cognitive impairment and takes 15.7±7.3 minutes to complete 

[11,12,15]. The MOCA and VCAT have been demonstrated to be particularly useful for the detection 

of early stage neurocognitive disorders such as MCI and mild dementia. The outcome for each of 

these screening tools total up to 30-points and ranges in integers between 0 and 30, where a lower 

score indicates worse cognition. In cross-sectional and association studies, these outcomes are usually 

treated as continuous variables. Therefore, in terms of statistical analysis, linear regression models 

are likely performed to study outcomes of MoCA and VCAT [11,16,17]. 

There are some limitations while using linear regression models to examine the outcomes of 

such screening tools. One such limitation is that the underlying statistical distribution of the residuals 

is assumed to be normally distributed. While this assumption can be checked using normal quantile 

(Q-Q) plot, histogram or goodness-of-fit test (e.g., the Kolmogorov-Smirnov test), it should be noted 

that such goodness-of-fit tests lack sensitivity in small studies, whereas on the other hand, the 

violation of normality assumption becomes less important with increasing sample sizes.  In 

addition, a major limitation of the normal distribution for the cognitive outcomes is that the predicted 

values are symmetric around the mean value. This is usually not the case for left-skewed outcome 

variables such as MoCA and VCAT, when used to detect early stages of neurocognitive disorders 

where a high proportion of individuals are on the right side of the distribution and minorities at the 

left side. Outcome transformation is one solution to overcome the skewness. Such transformation 

should be straightforward and generates interpretable results. Hence, the results of a complex 

transformation may not be transparent and needs back-calculations [18,19].  

To counter the limitations of the normal distribution in linear regression model, some alternative 

statistical distributions may be worth considering overcome this problem; and eventually improve 

the model performance and predictions. However, the domain of some statistical distributions is for 

non-negative values, and as mentioned above, the cognitive outcomes are non-negative integers 

(ranged between 0 and 30). In addition, count distributions belong to this category and they have the 

advantages of dealing with integers. Given that the two cognitive outcomes are right-skewed, an 

alternative option is to look at the inverse outcomes (which is left-skewed) and fit statistical 

distributions where allows for left-skewness. This paper aims to investigate the distribution of the 

cognitive outcomes under various scenarios. First, both VCAT outcome and inverse-VCAT outcome 

will be modeled using different statistical distributions in the presence and absence of predictor 

variables. Next, bootstrap method will be applied to investigate whether such resampling techniques 

could improve the modelling. Lastly, goodness-of-fit measurements will be compared among 

candidate models. The results various scenarios mentioned above will be validated using the MoCA 

cognitive outcome and its inverse version. 
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2. Materials and Methods 

2.1. Study Setting 

In this retrospective cohort study, 883 participants at risk of dementia having a diagnosis of 

subjective cognitive decline (SCD) or MCI were recruited from the community as well as from a 

tertiary neurology centre between January 2015 and December 2020. These participants were 

recruited from the community through posters and they reported subjective cognitive complains and 

were not diagnosed with dementia at the time of recruitment. This study was approved by the 

SingHealth Centralized Institutional Review Board and written informed consent was obtained 

according to the Declaration of Helsinki from all participants. SCD and MCI were diagnosed based 

on the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria [20] or 

the National Institute on Aging-Alzheimer's Association (NIA-AA) criteria [21]. Participants were 

excluded if they had a prior diagnosis of major psychiatric diseases or dementia.  

2.2. Outcome Assessments  

Data on demographics (including age, gender and years of education) and cognitive outcomes 

(VCAT and MoCA) were obtained through clinical interview and assessment. The two cognitive 

outcomes in this paper are VCAT and MoCA.  

MoCA is a widely used cognitive screening test, and its items include attention, concentration, 

executive functions, memory, language, visuospatial skills, abstraction, calculation and orientation 

[10,22]. The MoCA adds one point for those whose educational level is ≤12 years or <10 years in local 

population [23]. More recently, the VCAT was developed as a language-neutral cognitive screening 

tool to detect early cognitive impairment. The main advantage of the VCAT is that there is no 

necessity to translate the test as long as the rater and the participant speak the same language, thus 

more applicable to the multilingual populations throughout the world. This visual-based test 

includes 11 items, which contains five specific cognitive domains: episodic memory, 

attention/working memory (WM), executive function, visuospatial ability, and language [12,15]. 

2.3. Outcome Distribution 

The two cognitive outcomes (VCAT and MoCA) scored from 0 to 30, whereby a higher score 

denotes higher cognitive functioning. As it can be seen in Figure 1 (a), they are left skewed. The 

distribution of the inverse outcomes (indicating the number of errors in the questionnaire), where a 

lower score indicates higher cognitive functioning, is shown in Figure 1 (b). The inverse outcomes 

are also scored between 0 and 30, and defined as follows:  
Inverse (MoCA) = 30 − MoCA

Inverse (VCAT) = 30 − VCA
  (1) 

2.4. Statistical Analysis Plan 

The distribution of cognitive outcomes is modelled using the normal distribution as baseline 

model. Although normal distribution is considered mostly as default model, the distribution of 

cognitive outcomes is not symmetric and some skewness is usually observed. To address this issue, 

log-Normal, Gamma and Weibull distributions are used as potential candidate models. As the 

cognitive outcome variables (including VCAT and MoCA) can only be non-negative integers, count 

distributions are also considered as alternative models. Count models considered in this paper 

include Poisson, Negative binomial (NB), Conway-Maxwell-Poisson (CMP) and Generalized Poisson 

(GP).  

The two cognitive outcomes (original scores) are left-skewed; hence their inverse score would 

be right-skewed, as seen in Figure 1. As most of the above distributions could handle right skewed 

data, the same models are used for the inverse outcomes (right skewed) as well. The proposed 

alternative distributions have shape and scale parameters, which makes them flexible towards 

skewness.  
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Figure 1. Distribution of the two outcomes and their inverse version (VCAT, MoCA). 

Normal distribution along with the proposed distributions are modelled to the cognitive 

outcomes and their inverse versions. For each model, two scenarios are explored: intercept-only 

model (without predictor variables) and models with predictors (age, gender and education). 

Intercept-only models are explored to purely investigate the distribution of the cognitive outcomes, 

whereas models with predictors are studied to improve the fitted distributions and explore the 

associations of baseline characteristics and cognitive outcomes.  

The bootstrap resampling method is applied to investigate whether bootstrapping could 

improve the model performance under the above two scenarios (intercept-only and models with 

predictors) and for both VCAT and inverse (VCAT) outcomes. The unrestricted random method is 

used as resampling technique, which selects patients with equal probability and with replacement, 

and therefore patients could be selected for the bootstrapped sample more than once. The sampling 

rate of 100% is used, where results in bootstrapped sample sizes of 883 (which equals to the cohort 

sample size), and 10,000 replications are used. The bootstrap percentile method is used to calculate 

the confidence interval (CI). A 95% percentile bootstrap CI with 10,000 bootstrap samples is 

determined using the interval between the 2.5th percentile and the 97.5th percentile value of the 

10,000 bootstrap parameter estimates, i.e., minimum and maximum value of the 10,000 bootstrap 

estimates after excluding the 2.5% in each tail of the distribution.  

Models performances are compared using goodness-of-fit statistics, including -2log-likelihood 

( −2𝐿𝐿𝐿𝐿 ), Akaike's Information Criterion (AIC) and Bayesian Information Criterion (BIC) 

measurements. Predicted VCAT outcomes are compared to the observed VCAT for all the above 

settings. To validate the findings on model performances of VCAT outcome, similar methodology is 

applied on MoCA outcome. Goodness-of-fit statistics and models’ fits are compared across the two 

cognitive outcomes. Statistical analysis is performed using PROC NLMIXED in SAS software version 

9.4 for Windows (Cary, NC: SAS Institute Inc.). 

3. Results 

3.1. Patient Characteristics 
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Descriptive statistics of demographic variables are reported in Table 1. In this cross-sectional 

study, 883 patients are enrolled. Mean age is 63.5 ± 7.8 years with 302 (34.2%) being male. Median of 

education is 11 years (first- and third-quartile of 10-14 years). Mean/median of VCAT and MoCA are 

as follows: 24.6/26 and 25.6/27. The distribution of the cognitive outcomes is shown in Figure 1. Left 

skewness with long tail on the left side of the distribution is observed in VCAT and MoCA scores. 

The inverse outcomes, on the other hand, shows a long tail on the right side of the distribution. Mean 

and median values of the outcome and inverse outcome scores shown in Figure 1 indicate that a 

normal distribution may not be a good model to fit the data.  

Table 1. Patients’ characteristics and outcome distributions, n=883. 

Variable Frequency (%) Mean ± SD Median (Q1 - Q3) 

Age (year)  63.5 ± 7.8 63 (58 - 69) 

Male Gender  302 (34.2%)   

Education (year)  11.6 ± 4 11 (10 - 14) 

MoCA  25.6 ± 4.1 27 (24 - 28) 

VCAT  24.6 ± 4.5 26 (23 - 28) 

Abbreviations: MoCA = Montreal Cognitive Assessment; VCAT = Visual Cognitive Assessment Test; SD = 

standard deviation; Q1 and Q3 = first and third quartile. 

3.2. Model Comparisons-VCAT 

Goodness-of-fit measurements are reported in Table 2. A lower −2𝐿𝐿𝐿𝐿 (as well as AIC and BIC) 

value indicates a better fit. Normal distribution outperforms all other alternative models except 

Weibull distribution in both intercept-only model and model with covariates. The predicted model-

based values for VCAT using Weibull model also results in a better fit compared to all other 

distributions (Figure 2). It should also be noted that the Poisson model shows similar fit compared to 

CMP and GP under intercept-only models and models with covariates.  

Table 2. Model's performance, VCAT outcome. 

Distribution 
Intercept-only Model Model with covariates 

-2LL AIC BIC -2LL AIC BIC 

Normal 5170.6 5174.6 5184.2 5028.6 5038.6 5062.5 

Log-Normal 5603.5 5607.5 5617.0 5490.4 5500.4 5524.3 

Gamma 5432.7 5436.7 5446.3 5304.3 5314.3 5338.2 

Poisson 5279.9 5281.9 5286.7 5165.4 5173.4 5192.6 

NB 5415.4 5419.4 5429.0 5452.8 5462.8 5486.7 

CMP 5278.1 5282.1 5291.6 5146.8 5156.8 5180.7 

GP 5280.2 5284.2 5293.8 5171.7 5181.7 5205.6 

Weibull 4992.9 4996.9 5006.5 4916.8 4926.8 4950.7 

Abbreviations: LL = log-likelihood; AIC = Akaike's Information Criterion; BIC = Bayesian Information Criterion; 

NB = Negative Binomial; CMP = Conway-Maxwell-Poisson; GP = Generalized Poisson. 
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Figure 2. Predicted values by various distributions under different scenarios, VCAT outcome: (a) 

Without covariates (intercept-only); (b) With covariates (age, gender, and education variables as 

predictors). 

3.3. Model Comparisons-Inverse VCAT 

For the inverse VCAT, GP and NB models followed by Gamma model shows better performance 

in terms of goodness-of-fit measurements under intercept-only scenario. In models with covariates, 

GP and gamma distributions followed by NB model outperform other models (Table 3). The same 

results could be extracted from the predicted VCAT values, looking at Figure 3. It should be also 

noted that lognormal model over-estimate the predicted inverse VCAT values at the left side of the 

distribution (when the original VCAT values are high); and the fitted values out of the normal 

distribution are far off from the observed values and other models’ predictions. The model goodness-

of-fits also indicate that Poisson model results in the highest statistics, i.e., poorest model.  

3.4. Bootstrapping Method 

The models show similar results using the bootstrap method. Weibull model outperforms other 

models under intercept-only model and models with predictors when looking at VCAT outcome 

(Table 4). For the inverse VCAT outcome, GP, NB and gamma models indicate better performance 

compared to other distributions (Table 5). Similar conclusions could be made based on the predicted 

values for VCAT and inverse VCAT scores in Figure 4. 
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Table 3. Model's performance, VCAT inverse outcome. 

Distribution 
Intercept-only Model Model with covariates 

-2LL AIC BIC -2LL AIC BIC 

Normal 5170.6 5174.6 5184.2 5028.6 5038.6 5062.5 

Log-Normal 4791.9 4795.9 4805.4 4654.2 4664.2 4688.1 

Gamma 4780.9 4784.9 4794.5 4634.5 4644.5 4668.4 

Poisson 5878.0 5880.0 5884.8 5459.4 5467.4 5486.5 

NB 4770.1 4774.1 4783.6 4646.6 4656.6 4680.6 

CMP 4786.9 4790.9 4800.5 4668.2 4678.2 4702.2 

GP 4766.7 4770.7 4780.3 4626.2 4636.2 4660.1 

Weibull 4817.1 4821.1 4830.7 4801.0 4811.0 4834.9 

Abbreviations: LL = log-likelihood; AIC = Akaike's Information Criterion; BIC = Bayesian Information Criterion; 

NB = Negative Binomial; CMP = Conway-Maxwell-Poisson; GP = Generalized Poisson. 

 

Figure 3. Predicted values by various distributions under different scenarios, VCAT inverse outcome: 

(a) Without covariates (intercept-only); (b) With covariates (age, gender, and education variables as 

predictors). 
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Table 4. Model's performance, VCAT outcome, with bootstrap. 

Distribution 
Intercept-only Model Model with covariates 

-2LL AIC BIC -2LL AIC BIC 

Normal 
5167.33 * 

(5169.01) 

5171.33 

(5173.01) 

5180.89 

(5182.58) 

5020.69 

(5022.41) 

5030.69 

(5032.41) 
5054.6 (5056.33) 

Log-Normal 
5596.42 

(5599.39) 

5600.42 

(5603.39) 

5609.98 

(5612.96) 

5477.49 

(5480.48) 

5487.49 

(5490.48) 

5511.41 

(5514.39) 

Gamma 
5427.36 

(5429.73) 

5431.36 

(5433.73) 
5440.93 (5443.3) 5292.85 (5294.5) 5302.85 (5304.5) 

5326.76 

(5328.42) 

Poisson 
5279.28 

(5277.90) 

5281.28 

(5279.90) 

5286.06 

(5284.69) 

5161.84 

(5160.15) 

5169.84 

(5168.15) 

5188.97 

(5187.29) 

NB 
5285.56 

(5284.23) 

5289.56 

(5288.23) 

5299.12 

(5297.80) 

5875.61 

(5182.70) 

5885.61 

(5192.70) 

5909.52 

(5216.62) 

CMP 
5274.06 

(5275.76) 

5278.06 

(5279.76) 

5287.62 

(5289.32) 

5138.46 

(5140.29) 

5148.46 

(5150.29) 
5172.37 (5174.2) 

GP 
5279.88 

(5278.5) 
5283.88 (5282.5) 

5293.45 

(5292.07) 

5174.34 

(5171.94) 

5184.34 

(5181.94) 

5208.25 

(5205.85) 

Weibull 
4990.21 

(4991.17) 

4994.21 

(4995.17) 

5003.78 

(5004.74) 

4909.14 

(4909.17) 

4919.14 

(4919.17) 

4943.06 

(4943.08) 
* Reported numbers are mean (median), Abbreviations: LL = log-likelihood; AIC = Akaike's Information 

Criterion; BIC = Bayesian Information Criterion; NB = Negative Binomial; CMP = Conway-Maxwell-Poisson; GP 

= Generalized Poisson. 

Table 5. Model's performance, VCAT inverse outcome, with bootstrap. 

Distribution 
Intercept-only Model Model with covariates 

-2LL AIC BIC -2LL AIC BIC 

Normal 
5167.33 * 

(5169.01) 

5171.33 

(5173.01) 

5180.89 

(5182.58) 

5020.69 

(5022.41) 

5030.69 

(5032.41) 
5054.6 (5056.33) 

Log-Normal 
4789.75 

(4790.15) 

4793.75 

(4794.15) 

4803.32 

(4803.72) 
4648.85 (4649.1) 4658.85 (4659.1) 

4682.77 

(4683.02) 

Gamma 
4778.83 

(4779.02) 

4782.83 

(4783.02) 
4792.4 (4792.59) 

4629.23 

(4629.44) 

4639.23 

(4639.44) 

4663.15 

(4663.35) 

Poisson 
5874.34 

(5873.37) 

5876.34 

(5875.37) 

5881.12 

(5880.16) 

5444.91 

(5444.17) 

5452.91 

(5452.17) 

5472.04 

(5471.31) 

NB 
4767.86 

(4767.99) 

4771.86 

(4771.99) 

4781.43 

(4781.55) 

4626.65 

(4627.04) 

4636.65 

(4637.04) 

4660.56 

(4660.96) 

CMP 
4784.53 

(4784.92) 

4788.53 

(4788.92) 
4798.1 (4798.48) 

4661.92 

(4662.69) 

4671.92 

(4672.69) 

4695.83 

(4696.61) 

GP 
4764.55 

(4764.88) 

4768.55 

(4768.88) 

4778.12 

(4778.45) 

4620.38 

(4620.63) 

4630.38 

(4630.63) 

4654.29 

(4654.55) 

Weibull 
4814.9 

(4815.09) 
4818.9 (4819.09) 

4828.47 

(4828.66) 

4795.86 

(4796.39) 

4805.86 

(4806.39) 

4829.77 

(4830.31) 
* Reported numbers are mean (median). 
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Figure 4. Predicted values by various distributions under different scenarios, VCAT and Inverse 

VCAT outcomes, with bootstrap: (a) Without covariates (intercept-only), original score; (b) With 

covariates (age, gender, and education variables as predictors), original score; (c) Without covariates 

(intercept-only), inverse score; (d) With covariates (age, gender, and education variables as 

predictors), inverse score. 

3.5. Association Analysis 

Using the model with best-fit performances, the association analyses of baseline characteristics 

and VCAT outcome were reported as beta coefficients and 95% confidence interval using the Weibull 

model. Male gender and lower education were found to be significantly associated with worse VCAT 

scores with and without bootstrapping. For the inverse VCAT outcome, the association results using 

the GP model (as the best model) are reported. Older age and lower education were found to be 

significantly associated with worse VCAT score. The results of VCAT and inverse VCAT models are 

not consistent for age (being significant in the inverse VCAT model, but not in VCAT model) and 

gender (being significant in VCAT model, but not in inverse VCAT). Except for gender variables 

under VCAT model, the confidence intervals are very similar to the bootstrapped confidence 

intervals (Table 6).  

3.6. Validation of the Findings 

The findings of the model performances on VCAT scores are validated using MoCA outcome 

scores. Weibull model (followed by Normal distribution) consistently shows the lowest goodness-of-

fit measurements under intercept-only models and models with covariates in MoCA outcome. In the 

inverse outcome scenarios (for MoCA), log-normal followed by GP and NB (and then gamma) 

models indicates the best performances based on goodness-of-fit statistics (supplement Table 1). 

Predicted scores of MoCA and their inverse scores also result in similar findings (supplement Figure 

1). 
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Table 6. Association analysis of the baseline characteristics with VCAT and inverse (VCAT) 

outcomes. 

Variable 
Whole cohort (n=883) 

Whole cohort (n=883) 

+ bootstrap method 

Beta (95% CI) P value Beta (95% CI) P value 

VCAT     

Age (year) -0.31 (-0.75, 0.13) 0.162 -0.33 (-1.07, 0.35) 0.261 

Female Gender  1.47 (0.67, 2.26) <0.001 1.46 (0.36, 2.53) 0.037 

Education (year) 1.05 (0.87, 1.24) <0.001 1.05 (0.85, 1.26) <0.001 

     

Inverse (VCAT)      

Age (year) 0.15 (0.10, 0.20) <0.001 0.15 (0.09, 0.21) <0.001 

Female Gender  -0.10 (-0.20, 0.01) 0.062 -0.10 (-0.20, 0.01) 0.174 

Education (year) -0.19 (-0.22, -0.15) <0.001 -0.19 (-0.23, -0.15) <0.001 

Abbreviations: VCAT = Visual Cognitive Assessment Test; CI = Confidence Interval. 

4. Discussion 

This study investigated the distribution of cognitive scores in the early stages of neurocognitive 

disorders different statistical models. Different models were conducted on the VCAT outcome as 

primary endpoint variable. Intercept-only models and models with covariates were considered and 

the model fits were compared using goodness-of-fit measurements. Bootstrapping methods were 

conducted to calculate robust confidence intervals for the point estimates. The inverse VCAT 

outcome was modelled using the same distributions and under the above scenarios (intercept-only 

model and model with covariates, with and without bootstrapping) to present the precision of the 

estimates via confidence intervals. To validate the findings, similar methods were applied to MoCA 

outcome variable.  

Our findings showed that Weibull distribution is a better fit in both intercept-only models and 

models with covariates on VCAT compared to other models. This is because other models are not 

flexible towards left-skewed data, while Weibull distribution could deal with such data. An 

alternative model to consider is Normal distribution which shows a better fit compared to other 

models. This may be because other distributions are slightly right-skewed models and away from 

being symmetric. Hence, the normal distribution (symmetric model) will be preferred over right-

skewed models with left skewed VCAT outcome.  

Under inverse VCAT outcome scenario, the GP model indicates a better fit compared to other 

distributions for both intercept-only models and models with covariates. In addition, NB and Gamma 

models also indicate close fit to GP model. This is an expected finding given that GP, NB and Gamma 

models can handle right skewed distributions. However, at the left side of the distribution (within 

cognitively normal range), all the above three models show a reasonably close fit to the observed 

scores, Weibull and Normal distributions under-predict and log-normal model over-predict the 

outcome. It is also noted that all the above models perform better under inverse VCAT compared to 

the original VCAT results, unlike Normal distribution which shows similar fit under both scenarios 

which is expected as such outcome transformation does not reduce data skewness, i.e., only switches 

the left-skewness to right-skewness where both are far away from symmetric distribution.  

Among the methods with bootstrap method, similar findings are found under both VCAT 

(Weibull model outperforms other models) and inverse VCAT (GP followed by NB and Gamma 

models showing the best fit) scenarios. Comparing the goodness-of-fit statistics between with and 

without bootstrapping is not recommended, because such statistics are used as model selection 

criteria among the various distributions under the same settings. Bootstrap methods improved the 

estimate precision and the bootstrapped standard errors of the estimates are more robust. Hence, it 

is recommended to use bootstrapping methods to present robust estimates along with 95% CI for 

both VCAT and inverse VCAT models for all models.  
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The results of the VCAT and inverse VCAT modelling were validated on the MoCA outcome 

variable. As the distribution of MoCA scores is right skewed, Weibull model, as expected, showed a 

better fit compared to other models. Hence, the findings are consistent across the two cognitive 

outcomes under the original scores. However, when using the inverse score method, the results of 

model fits for MoCA are different compared to VCAT outcome. Log-normal distribution indicated 

the lowest goodness-of-fit statistics compared to other models for inverse MoCA outcome 

(supplement Table 1). This is an inconsistent finding compared to the results of the inverse VCAT 

outcome where three other distributions (GP, NB and Gamma) showed a better performance 

compared to Log-normal model. Looking at the distribution of the cognitive outcomes (Figure 1), 

MoCA is a unimodal distribution, unlike VCAT with a bimodal distribution. Hence, it seems that GP, 

NB and Gamma models are not flexible enough to handle bimodal distributions, and log-normal 

model could fit bimodal data better than alternative distributions. Another point which should not 

be ignored is the good fit performance of log-normal distribution under inverse MoCA models at a 

normal range of cognition, where GP, NB and Gamma under-estimated the scores. Normal 

distribution, under the inverse scenario, shows the poorest fit for the two cognitive inverse outcomes 

(supplement Figure 1).  

The results of the association analysis indicated that male gender and lower education, but not 

age, are significantly associated with worse VCAT using Weibull distribution. Same findings are seen 

when testing MoCA as the cognitive outcome. On the other hand, we found inconsistent findings 

when testing the two cognitive outcomes using the inverse score scenarios. When using the GP 

model, we found that higher age and lower education are significantly associated with worse VCAT 

outcomes, while male gender was marginally associated with worse VCAT outcome. However, male 

gender and lower education are significantly associated with worse MoCA outcome under GP model 

and inverse transformation scenario (supplement Table 2). Although the association directions 

(positive/negative association) are consistent across all models and scenarios (except Weibull model 

under inverse transformed outcomes) and make clinical sense, it should be noted that the effect sizes 

might be different. Hence, a wrong assumed distribution for cognitive outcomes may under- or over-

estimate the effect size of the predictors.  

As the original cognitive scores are left skewed, there might be some computational issues with 

models without distributional flexibility towards left skewness. For example, the final Hessian matrix 

may be full rank but has at least one negative eigenvalue, or the second-order optimality condition 

may be violated. Not Estimable confidence interval reported in Supplement Table 2 are few examples 

of such computational issues, where Moore-Penrose inverse is used in covariance matrix and the 

estimates are reported based on the finite difference approximation used for the derivative of the 

probability density function. However, there are potential solutions to this issue (such as changing 

the optimization technique or integration method), it should be noted that a reasonable model is 

selected to apply. On the other hand, under the inverse transformation scenario, no computational 

and convergence problem is found.  

The results of this study support the use of analysis of inverse cognitive scores over the original 

scores. From a clinical point of view, the inverse score actually measures the number of errors 

corresponding to the specific cognitive outcome of interest. That means higher cognitive functioning 

(greater value in the original cognitive outcome) equals to lower number of errors (smaller value of 

the inverse cognitive outcome). Hence, the results of the suggested inverse transformation are easy 

to interpret and transparent compared to other potential transformations. An example of a 

challenging transformation, where a back-calculation is required to interpret the results, is the square 

root of the number of errors, which was suggested to reduce the bias (to justify the normality 

assumption of normal distribution) [18,19]. Compared to such alternative transformation, our 

suggested solution is simple, robust and easy to interpret.  

Limitations of this study include the limited number of models performed. More complex 

distributions can be applied on cognitive outcomes and the results could be compared to the results 

of this study. Although this study tried to validate the results via an additional cognitive outcome 
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with similar distributional pattern, validation on independent cohorts will be needed to verify the 

findings.   

The findings of this study suggest that the inverse transformation method improves modelling 

the cognitive scores for all proposed models, except normal distribution. Therefore, the 

recommendation is to use the inverse cognitive outcomes instead of the original cognitive scores, no 

matter how the outcome distribution looks like (unimodal/bimodal) at the early stage of the disease 

where the cognitive outcomes are left skewed. The proposed inverse method and the suggested 

statistical distributions could be also applied to other behavioral outcomes where the original scores 

are left skewed (such as Mini–Mental State Examination, MMSE), however one should be careful 

with the outcome distribution. Although normal distribution is commonly used for cognitive 

outcomes, the results of this study show that the model performance of normal distribution is the 

poorest among the proposed inverse models. Under the unimodal scenario, it is recommended to 

model the inverse cognitive outcomes via log-normal distribution and GP distribution (as alternative 

model). However, GP and NB distributions (and Gamma as alternative model) are recommended in 

the presence of bimodal inverse cognitive variables. When applying the above proposed models on 

inverse cognitive outcomes, it is suggested that the model performances should be assessed via 

predicted scores versus observed cognitive scores as well as goodness-of-fit statistics to make sure 

the findings are valid and robust. In conclusion, future studies can consider using inverse models to 

analyze the outcomes of cognitive screening tools such as the MoCA and VCAT. 

Supplementary Materials: Supplement Table 1. Model's performance, MoCA and inverse MoCA outcome 

scores. Supplement Table 2: Association analysis of the baseline characteristics with MoCA and inverse (MoCA) 

outcomes. Supplement Figure 1: Predicted values among the fitted models, MoCA and Inverse MoCA outcomes 
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