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Biomimetics
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Abstract: Proteins in the crowded environment of human cells have often been studied regarding
nonspecific interactions, misfolding, and aggregation, which may cause cellular malfunction and
disease. Specifically, proteins with high abundance are more susceptible to these issues due to the
law of mass action. Therefore, the surfaces of highly abundant cytoplasmic (HAC) proteins directly
exposed to the environment can exhibit specific physicochemical, structural, and geometrical
characteristics that reduce nonspecific interactions and adapt to the environment. However, the
quantitative relationships between the overall surface descriptors still need clarification. Here, we
used machine learning to identify HAC proteins using hydrophobicity, charge, roughness,
secondary structures, and B-factor from the protein surfaces and quantify the contribution of each
descriptor. First, several supervised learning algorithms were compared to solve binary
classification problems for the surfaces of HAC and extracellular proteins. Then, logistic regression
was adopted for the feature importance analysis of descriptors considering model performance
(80.2% accuracy and 87.6% AUC) and interpretability. The HAC proteins showed positive
correlations with negatively and positively charged areas but negative correlations with
hydrophobicity, B-factor, beta structure proportion, roughness, and disordered regions proportion.
Finally, the details of each descriptor could be explained concerning adaptative surface strategies of
HAC proteins to regulate nonspecific interactions, protein folding, flexibility, stability, and
adsorption. This study presented a novel approach using various surface descriptors to identify
HAC proteins and provided quantitative design rules for the surfaces well-suited to human cellular
crowded environments.

Keywords: bioinformatics; machine learning; protein surfaces; surface engineering

1. Introduction

The intracellular space of living organisms is highly crowded with macromolecules, which can
occupy up to nearly one-third of the entire cellular volume.[1] The resulting highly crowded
environment poses challenges of nonspecific interactions, critically influencing issues such as protein
folding, stability, and adsorption.[2-4] In human cells, these issues are specifically crucial since the
intracellular proteins that fail to fold correctly into their native shapes tend to aggregate and cause
cellular malfunction and death, resulting in detrimental pathological consequences.[5] In particular,
cytoplasmic proteins with high abundance, i.e., highly expressed proteins, are more likely to
encounter nonspecific interactions due to the law of mass action.[6] Thus, highly abundant
cytoplasmic (HAC) proteins must exhibit certain physicochemical, structural, and geometrical
characteristics to adapt to the environment and mitigate the issues. Eventually, intracellular proteins,
especially highly abundant ones, are expected to share particular characteristics differentiated from

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 December 2023

extracellular proteins, which often experience less crowded environments,[4,7] to ensure proper
cellular function in such a highly crowded environment.

Previously, computational approaches have aided in the characterization of intracellular
proteomes, with various techniques targeting different regions of proteins, including global
regions,[8] surface regions,[9,10] or both regions[11]. Notably, the surface regions of proteins are
essential for studying protein characteristics since the regions are directly exposed to the external
environment and potential partners and thus reflect various properties.[4,10] While there have been
several works on using the frequency of surface residues, [9,10] there is a lack of research revealing
quantitative relationships of specific physicochemical, structural, and geometrical descriptors, which
can have different scales for characterizing the surfaces of the HAC protein.

To address this issue, we use interpretable machine learning (ML)-based approach to
characterize the surfaces of HAC proteins by quantifying the contribution of the surface descriptors.
Over the past few decades, ML techniques have been increasingly applied to predict protein-protein
interaction,[12] protein-ligand molecular docking,[13] protein subcellular localization,[14] and
protein 3D structure prediction.[15] Despite significant advances in these areas, identifying protein
surface characteristics using only a few representative physicochemical, structural, and geometrical
descriptors remains challenging. This is the first study focusing on this specific task, revealing
quantitative relationships between the surface descriptors. By understanding the surface rules of
HAC proteins in human cells through interpretable ML, this study will enable the development of
efficient drug delivery systems, such as deepening our knowledge of the interactions between
therapeutic nanoparticles and proteins [16]

In this study, we aim to distinguish the surfaces of HAC proteins from those of extracellular
proteins using binary classification algorithms. We extracted surface physicochemical, structural, and
geometrical descriptors from protein surfaces to build a database and apply ML (Figure 1). As a first
step of the database construction, we collected around 330 3D protein structures each for human
HAC and extracellular proteins. Then, various descriptors on protein surfaces, such as
hydrophobicity, charged area, roughness, B-factor, and the proportions of protein structures, were
calculated for the collected 3D protein structures. Then, several supervised ML algorithms: K-Nearest
Neighbor (KNN), Random Forest (RF), Logistic Regression (LR), and Support Vector Machine (SVM)
were used to solve the binary classification of extracellular and HAC proteins. Based on excellent
performance and high model interpretability, we selected the LR algorithm to explain the importance
of each descriptor quantitatively. Namely, this study answers the following questions: (1) Can surface
characteristics of HAC proteins be identified with several physicochemical, structural, and
geometrical descriptors? and (2) Which descriptor contributes to the crowded environment-adaptive
surface in human cells to what extent? The LR model used in our study enabled the identification of
HAC proteins, and coefficients from LR represented the importance of each descriptor.

Database Construction 'Machine Learning |

Prediction by Logistic
Regression

/— Protein Collection

Extracellular
Proteins
.‘ -

@ Data Points
—— LR Mode!

Protein Surface

Rolling z_f___, P

Probe
Spheres

\ s T T ~
&) [ Hydrophobicity Charge Secondary B-factor \
\ & {nl e Loy Structures Fin . §
Homo Sapiens o= : K R . Qe B3
: | oLy 2 G
| g

|
|
|
1 : Calculation of
|
|

-4-3-2-101 23 45
X
Feature Importance

Scaled Coefficients
o
=)

Surface

HAC Proteins ©
Descriptors

Des2 Des1 Des3 Desd

Descriptors /

\_Total around 670 Proteiny ‘\

-




Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 December 2023

Figure 1. Schematic representation of key processes in functional prediction and quantitative analysis
of surface physicochemical, structural, and geometrical descriptors on protein surface. HAC: Highly
abundant cytoplasmic; SES: Solvent-excluded surface; SAS: Solvent accessible surface.

2. Methodology

2.1. Protein Sample Collection

The datasets consist of two types of human proteins: human cytoplasmic proteins with high
abundance and extracellular proteins. First, we collected cytoplasmic proteins with the highest
abundance level from the PaxDb database, a collection of experimental data on protein
abundance.[17] The cytoplasmic proteins that were also tagged extracellular keywords (e.g., secreted,
extracellular matrix, and extracellular space) in Uniprot were eliminated. Then, proteins in
extracellular environments determined with experimental assay were collected (GO ID: 5615).[18]
Finally, 331 human extracellular proteins and 337 HAC proteins within the sequence length range of
100 to 700 were collected for analysis.

The 3D structures of a total of 668 proteins were collected through the Alphafold ver2.0
(Alphafold2) (https://alphafold.ebi.ac.uk/) protein structure prediction model.[15,19] Alphafold2 3D
models provide entire protein structures, allowing for comprehensive surface analysis, unlike partial
structures often found in experimental Protein Data Bank (PDB) files from X-ray crystallography.
Alphafold2 is known to be the top-ranked prediction model with a median global distance test score
of 92.4 across all targets and 87.0 on the challenging free modeling category in the 14" CASP
assessment (https://predictioncenter.org/caspl4/zscores_final.cgi). Additionally, in most cases,
Alphafold2’s structural prediction accuracy has reached experimental accuracy.[15]

Even though the overall predictability of Alphafold2 is exceptional, not all predicted structures
are suitable for the analysis. Every residue from Alphafold2 3D protein structure is given with per-
residue metric, which reflects the structural model confidence called predicted local distance
difference test (pLDDT), scaling from 0 to 100. The pLDDT evaluates how well the predicted model
agrees with experimental data using local distance difference test Ca.[20] pLDDT > 90 is considered
a high-accuracy cut-off, and pLDDT> 70 can be regarded as generally correct backbone prediction.[21]
When the pLDDT is lower than 50, the predicted region is expected to be intrinsically disordered.[22]
However, a low pLDDT score in Alphafold2 results from high residue flexibility and dynamic
structure rather than ‘low confidence.’[23] Also, since disordered regions of proteins are involved in
molecular recognition and hydrophobic interactions, it is essential to include the regions for the
analysis.[24] Considering the potential interpretability difficulty from intrinsically disordered
proteins, we set our cut-off value as average pLDDT>50 for a whole protein structure. Finally, we
ensured that over 80% of extracellular and HAC proteins had average pLDDT values over 70 (Figure
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Figure 2. Average predicted local distance difference test value distribution of collected 668
proteins.

2.2. Calculation of Surface Descriptors

Previous studies have introduced several definitions of protein surfaces, each with different
characteristics. Among them, we adopted solvent-accessible Surface (SAS) and solvent-excluded
surface (SES) for calculating other descriptors (Figure 1).[25] The SAS was calculated by rolling probe
spheres that have an equivalent size with water molecules. We used SAS for the residue-based
analysis: we assumed that a specific residue in a protein could have a maximum SAS when its
neighboring amino acids are Glycines. (i.e., having Gly-residue-Gly structure) When the proportion
of an actual SAS for a residue to a maximum SAS was higher than or equal to 30%, the residue was
defined as surface residue. Another protein surface used in the analysis is SES, also called the
Connolly surface.[26] The surface moves inward from the SAS by a distance identical to the probe
sphere radius (Figure 1). Lewis et al. uncovered that this continuous and functional surface is
particularly useful in calculating the protein surface roughness. Then, protein surface descriptors
representing various physicochemical, structural, and geometrical descriptors were calculated (Table
1) based on the two surface types. All the descriptors were computed using Python 3.9.12.

Table 1. Descriptors used in this work to explain protein surface characteristics.

Variables S

Category ] Definition Analyzed Surface
(Descriptors)
Hydrophobicity s_phobic_avg Average Surface Hydrophobicity
Fraction of Positively Charged
s_pos_areqa
Surface Area

Charge s_neg_area Fraction of Negatively Charged

Surface Area

Fraction of Total Charged Surface
s_charge_avg Area

. Solvent accessible
Proportion of Surface Alpha

s_ah ) surface
Helix
b Proportion of Surface Beta
s_bs
Protein - Structures
Structure p Proportion of Surface Disordered
s_do
- Regions
5 Structure Surface Exposure
5_s
- Degree
. Average Normalized Surface B-
Flexibility norm_s_b
factors
Average Protein Surface Solvent excluded
Geometry FD
Roughness surface

Surface hydrophobicity, charge, secondary structures, and overall morphology of proteins are
critical parameters for protein structures. The normalized consensus hydrophobicity scale
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quantitatively measured the average protein surface hydrophobicity.[27] Surface charge-related
descriptors were collected by calculating the fraction of SAS of negatively charged and positively
charged amino acids under physiological conditions (pH=7). Each surface amino acid contributing
to the secondary structure was directly extracted by Pymol (http://www.pymol.org) to calculate the
surface proportion of each secondary structure. The surface exposure degree was defined by the SAS
divided by the volume of protein.

The B-factor, which is also called the Debye-Waller factor, indicates the thermal motion-induced
attenuation of X-ray scattering or coherent neutron scattering.[28,29] Equation (1) defines B-factor:

, o))
where u (A) denotes the mean displacement of a scattering center. The B-factor is used to interpret
properties such as thermostability, flexibility, internal motion, and binding of proteins.[30-34] In
Alphafold2 models, the B-factor columns are replaced by pLDDT values, which can provide insights
into structural flexibility.[23] We converted pLDDT values into pseudo B-factors since pLDDT values
and original B-factor show a reverse relationship. The pLDDT values were first converted into root-
mean-square deviation (RMSD) using the following empirical formula (Equation (2)):

A= 1.5exp[4(0.5 — pLDDT)], ()
where A denotes error estimates. pLDDT values were transformed into the scale of 0-1 from 0-
100.[35-37] Then, the converted pseudo B-factor is expressed as Equation (3) after substituting the
converted error estimates into eq 1, considering the root-mean-square positional variation in three
dimensions.

B= sm’A? 3)
3

The converted pseudo-B-factors were calculated for each residue in proteins. However, in the

case of X-ray analysis, low resolution leads to high B-factors around 100-200, and such high values of

B-factors are not recommended to make specific conclusions.[38] Therefore, only surface residues

with RMSD smaller than or equal to 1.5 (almost equivalent to B < 60) were included for analyzing

surface B-factors. Finally, B-factors were normalized as Equation (4) since the non-normalized B-

factor does not represent an absolute quantity, therefore, cannot be used to compare different protein
structures.[39]

B—<B>
Brorm =

(4)

g

<B> denotes the average B-factor in the whole protein structure, and ¢ implies the standard
deviation. Then, the mean value of normalized surface B-factors in a protein was used to characterize
the protein surface.

Surface roughness, which can be quantitatively characterized by the fractal dimension (FD), was
calculated to identify the surface structural irregularity (Equation (5)).[26]

o dlog(Ag)
FD =2 -2 )

A; and R represent the molecular surface area and rolling probe radius, respectively. FD falls
within the range of 2 to 3, having the smoothest surface on 2 and having the roughest surface on 3.
As for the calculation of A, we calculated SES using 3V calculator (http://3vee.molmovdb.org).[40]
Then, Equation (5) was transformed into Equation (6) for the convenience of calculation.

= (log Ases)i—(log Ases)i—1 _ l N
Di= (log R);—(log R)i—1 ' FD = Nznzl Dn ©)

i refers to a probe radius starting from 1.2, in the range of 1.0 to 3.6, with the interval of 0.2
(1.0,1.2,1.4,1.6 ... 3.6, N (Number of sets)=13). i-1 refers to the previous step of i (i-1 starts from 1.0).
(log Ases); indicates the log value of solvent excluded surface area under the probe radius i. The
range of probe radius is suitable for the analysis since the probe sizes are sensitive to specific
interactions between residues, reflecting the size of water molecules and side chains.[26] Finally, the
mean value of all the calculated D: represents the FD.
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2.3. Application of Machine Learning

The logistic Regression (LR) model, a regression model for binary classification problems, shows
its chief advantage in providing high model interpretability. An odds ratio of each independent
variable enables quantitatively evaluating its contribution to dependent variables. Surface
descriptors were given as independent continuous variables, and <HAC:1, Extracellular:0> tags were
provided as dependent dichotomous variables in the models. Then, Equation (7) represents the
probability of being HAC proteins under the given independent variables[41]:

_ N — _explfXupp] _ _ePorPiXirBaXot 4By
P(y - llxl’le ""xl) - 1+€Xp[f(Xi.Bi)] - 1+eB0+B1X1+B2X2+'“+BiXi (7)

P, xi, Bi denote the probability of being a HAC protein, a surface descriptor, and an
accompanying beta coefficient. LR uses a method of maximum likelihood to estimate f; and the
odds ratio corresponds to exp[fi]. Then, logistic transformation, which converts the non-linear
relationship into the original linear regression equation, is applied as eq 8.

[f X8I P
P = Ingt s = Ing = Bo+ LBiXi = o+ fiXs + BoXy + -+ BiXi (8)

A positive f; indicates that the increase in xi leads to the stochastic increase in the probability
of being HAC proteins. Conversely, A negative f; means that an increase in xiresults in the stochastic
decrease for the probability of being HAC proteins.

As a parametric model, LR requires several statistical assumptions to perform well.[41] Thus,
several data preprocessing steps were conducted, including checking the multicollinearity of surface
descriptors, deletion of strongly influential outliers, and data scaling to meet the assumptions and
enhance the model performance. Pearson correlation (PC) analysis, a statistical test that measures the
linear association between two variables, was conducted to limit the multicollinearity problem. Also,
Cook’s distance from the statsmodels module in Python was calculated for leverage and residual
values analysis. Conclusively, 1.03% of proteins turned out to be highly influential and outliers
simultaneously and were eliminated from the dataset. Finally, the surface descriptors were
standardized with StandardScaler function in Python sci-kit learn library for data scaling.

Upon constructing the LR model, several popular supervised learning algorithms for
classifications: K-Nearest Neighbor (KNN), Random Forest (RF), and Support Vector Machine
(SVM), were used to compare the performance of different models. All the algorithms were
performed through Scikit-learn Package in Python 3.9.12. The hyperparameters for each algorithm
were optimized using GridSearch cross-validation (CV), where every parameter combination is
tested to evaluate ML models. 5-fold cross-validation was used to avoid overfitting to the test set.
Before constructing machine learning models, datasets were randomly divided into a training set
(80%) and a test set (20%), maintaining the original ratio of the target class. Then, the performance of
different models was assessed by the predictive indicators: the classification accuracy and the area
under the curve of receiver operating characteristic (AUC-ROC) curve. We repeated five times
randomly splitting training and test sets to avoid sampling bias and overfitting, then reported the
mean accuracy of each model. We selected the final ML model, LR, for the feature importance analysis
considering high accuracy and model interpretability. Finally, each descriptor's significance and
importance were explained with statistical analysis.

4. Results and Discussion

4.1. Pearson Correlation (PC) Analysis

First, PC analysis for all the descriptors in the train set was conducted before applying machine
learning. Table 2 shows PC coefficients between independent variables, i.e., surface descriptors and
dependent variables (where HAC is tagged as 1 and extracellular as 0). A PC coefficient ranges from
-1 to 1, showing a perfectly negative correlation at -1 and a perfectly positive correlation at 1. A PC
coefficient of 0 represents the absence of linear correlation. As a result, all the relationships between
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each surface descriptor and dependent variables were significant at 0.05 (p<0.05) except for structure
surface exposure degree (s_sf) (Table 2).

Table 2. Pearson Correlation (PC) Coefficients between independent and dependent variables from a

train set.
Surface Descriptors PC Coefficients

Hydrophobicity s_phobic_avg -0.472 **
S_pos_area 0.401 **

Charge s_neg_area 0.239 **
s_charge_avg 0.142 **

s_ah 0.206 **
s_bs -0.228 **

Protein Structures

s_do -0.102 *

s_sf -0.023
Flexbility norm_s_b -0.225 **
Geometry FD -0.106 *

** p-value<0.01 * p-value<0.05.

As shown in Figure 3, two descriptors, surface alpha helix proportion (s_ah) and the proportion
of total charged surface area (s_charge_avg), were highly linearly correlated to the descriptors in their
categories: protein structures and charge, respectively. Therefore, the descriptors were eliminated
from the descriptor pool, considering that they showed the highest linear correlation with other
descriptors in their category. According to the above results, we excluded three descriptors using PC

analysis: s_sf, s_ah, and s_charge_avg from the initial pool of ten surface descriptors, only applying
seven for machine learning.
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Figure 3. PC coefficients between the descriptors from a train set.

4.2. Comparison of Supervised Machine Learning Algorithms for Binary Classification Problem

The performance of different machine learning algorithms for the binary classification problem
(KNN, LR, RF, and SVM) was compared using identical training and test data sets. The performance
of each model was evaluated using accuracy and AUC-ROC graphs. The models were compared with
the 5-times of randomly splitting train and test sets to avoid the effect of fluctuation in the results
(Figure 4a). As a result, all the algorithms showed excellent and similar performance, exhibiting
79.7%,80.2%,79.3%, and 80.2% accuracy for KNN, LR, RF, and SVM, respectively. The ROC curves
for the algorithms were also in nearly identical and impartial shapes (Figure 4b). The algorithms also
demonstrated comparable AUC scores, with the LR exhibiting the highest AUC score (87.6%), albeit
not significantly outperforming the other algorithms (87.5%,87.3%, and 87.1% for KNN, RF, and
SVM, respectively). After comprehensively considering prediction performance and interpretability,
we chose LR for the feature importance analysis of the surface descriptors.
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Figure 4. (a) Comparison of the performance of different ML algorithms. KNN: K-Nearest Neighbor;
RF: Random Forest; LR: Logistic Regression; and SVM: Support Vector Machine (b) ROC curves for
four machine learning algorithms from a single-shot trial. Hyperparameters used to tune each model
in a single-shot trial is described in Table S1.

4.3. Results of Logistic Regression Analysis

Table 3 and Figure 5 show the influence of each surface descriptor on the logistic regression
analysis. The coefficients and standard errors of the descriptors were calculated based on the mean
values from five randomly split training sets. Table 3 showed that all the surface descriptors were
statistically significant at 0.05 (p<0.05). The sign of the coefficient for each descriptor determines its
influence on the probability of the protein being classified as an HAC protein: a positive coefficient
suggests that an increase in the descriptor value increases the likelihood of the protein being classified
as an HAC protein. In contrast, a negative coefficient indicates that an increase in the descriptor value
decreases the probability of the protein being classified as an HAC protein. Two descriptors related
to surface charge had positive coefficients in the model: negatively charged surface area (s_neg_area)
and positively charged surface area (s_pos_area).

On the other hand, the other descriptors: surface hydrophobicity (s_phobic_avg), normalized
surface B-factor (norm_s_b), the proportion of surface beta structures (s_bs), surface roughness (FD),
and the proportion of surface disordered regions (s_do) exhibited negative coefficients. Moreover, the
odds ratio, which is the exponentiated coefficient of a descriptor, along with its 95% confidence
interval (C.L), can aid in interpreting each coefficient by providing information on the probability of
being a HAC protein.[41] All the statistical summaries of each descriptor were provided in Table S2.
The following sections will provide further statistical details for each descriptor, including their
relationships with several issues related to crowded cellular environments and nonspecific

interactions.
Table 3. Results of Logistic Regression Analysis for each surface descriptor.
Logistic Regression Analysis
. Significant ~ Odds Exp(B) 95% C.I.
Descriptors € S.E. z-value

Level ratio Min Min

s_phobic_avg -0.807 0.045 -17.913 <0.001 0.446 0.408 0.487
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norm_s_b -0.408 0.029 -13.972 <0.001 0.665 0.628 0.704
s_bs -0.286 0.036 -7.992 <0.001 0.751 0.700 0.806
s_do -0.138 0.050 -2.738 <0.05 0.872 0.790 0.962
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Figure 5. Importance of surface descriptors toward classifying proteins into HAC and extracellular
proteins. Error bars denote the standard deviation from five times of randomly splitting training and
test sets to prevent sampling bias and overfitting.

4.4. Proper Folding of HAC Proteins Can Be Achieved with Low Surface Hydrophobicity and Secondary
Structure Compositions

Our findings corroborate that HAC proteins adopt a protein folding strategy limiting the
nonspecific interactions in crowded environments. A protein entropically prefers a compactly folded
state over an unfolded or expanded state in macromolecular crowded environments.[42-44]
Especially, hydrophobic interaction plays a central role in protein folding, clustering non-polar
residues in the protein core to form globular structures.[45] On the other hand, polar residues are
often exposed to the protein surface, restricting hydrophobic interactions involved in molecular
recognition. We observed that the surfaces of HAC proteins exhibited lower hydrophobicity and
well-folded states with a lower proportion of disordered regions (Figure 6a,b).

Surface hydrophobicity, as quantitatively measured using the normalized consensus
hydrophobicity scale proposed by Eisenberg et al. (Figure 6c),[27] had the highest influence
(s_phobic_avg = -0.807) among all the surface descriptors (Figure 5). With the considerably high
population of highly hydrophilic aspartic acid (D) and arginine (R), we assume that the significantly
high surface hydrophilicity on HAC proteins mainly derives from the remarkable scarcity of leucine
(L) and notably abundant lysine (K) and glutamic acid (E) (Figure 6d). Our observations of the high
population of K and E on the HAC protein surfaces are consistent with the findings of White et al.[9]
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Their study demonstrated that molecular chaperones, which require non-adhesive surfaces for
reversible interactions with multiple proteins, have a higher abundance of E and K, that possess
strong water-binding properties and weak associations with surrounding amino acids. Here, we
suggest that highly hydrophobic L also plays a vital role in forming hydrophilic surfaces. While the
proportion of L is similar in buried regions of both protein types, there is a significant contrast on the
surface region, where HAC proteins are strikingly lacking L compared to extracellular proteins
(Figure 6d). Hence, the HAC proteins can have a stable hydrophobic core and exhibit higher surface
hydrophilicity.

The negative coefficients (s_bs= -0.286 and s_do= -0.138) obtained from Figure 5 indicated that
the HAC proteins generally exhibited higher proportions of alpha-helices and lower proportions of
beta structures and disordered regions than those of extracellular proteins in both surface and buried
regions (Figure 6b). This trend of surface secondary structures aligns with the global secondary
structures of cytoplasmic proteins proposed by Loos et al., which revealed that cytoplasmic proteins
are globally more enriched in alpha-helices and show lower frequency of beta structures and
disordered regions.[8] Furthermore, the surface trend in the two well-folded structures: alpha-helices
and beta structures can be supported by the previous study of Bhattacharjee and Biswas, which
suggested that beta sheets are highly hydrophobic and buried in the core of proteins. In contrast, long
polar residues contribute to the formation of alpha helices.[46] The lower proportions of disordered
regions of HAC proteins can be explained by the nonspecific interaction propensity of its innate
flexibility. The study of Nishizawa et al. highlighted the engagement of disordered regions on
nonspecific interaction, observing the nonspecific ATP-protein interactions in intrinsically
disordered proteins and flexible regions.[47] The study used NMR spectroscopy and molecular
dynamics simulations to capture concentration-dependent noncovalent interactions between ATP
and disparate proteins. As a result, the interaction was notably distinct in the intrinsically disordered
proteins (a-synuclein) and flexible regions (loops or termini). Our findings on the hydrophobicity
and secondary structures on the surfaces of HAC proteins support the protein folding strategy for
environmental adaptation in crowded environments.
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Hydrophobicity scale of 20 kinds of amino acids (d) Proportion of amino acids in the surface and
buried regions of proteins.

4.5. The HAC Proteins Are Emphasized with Surface Rigidity and an Extreme Range of net Surface Charge

The HAC proteins should perform different structural surface characteristics to function
correctly in a crowded environment. For instance, proteins in cellular environments are expected to
have better thermostability with higher melting temperatures due to the crowding effect.[3] Previous
studies have shown that increased thermostability is often accompanied by decreased overall
flexibility of proteins.[30,31] Also, protein solubility, which indicates the characteristic of a protein to
maintain its intact state, is an essential issue for protein stability to avoid aggregation, which refers
to protein binding accompanying irreversible conformation change.[48] Here, we plotted the
distributions of surface pseudo-B-factors and the distributions of surface charges to understand the
surface flexibility and stability of HAC proteins (Figure 7).

A pseudo-B-factor gets higher as protein structures show more considerable flexibility.[23] We
obtained two insights from Figure 7a: (1) the surfaces of HAC proteins tend to have lower flexibility
than extracellular proteins, and (2) the lower flexibility on the surfaces of HAC proteins is
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emphasized as the analyzed domain is shifted from buried regions to surface regions. The lower
flexibility on the surfaces of HAC may be supported by the recent findings on the direct relationship
between protein intracellular abundance and thermal stability, which is often observed with reduced
flexibility.[49,50] The findings showed that the protein interface stability was positively correlated
with the protein abundance, enabling the prevention of misinteractions. At the same time, abundant
intracellular proteins with high thermostability were less prone to aggregation or local unfolding.
Thus, we suggest that the surfaces of HAC proteins reflect reduced flexibility to be adaptive in
crowded environments.

Two charge-related descriptors with positive coefficients contributed to the model with nearly
equivalent scales (s_neg_area = 0.622, s_pos_area = 0.617) (Figure 5). Our findings show that the
richness of both negatively charged and positively charged areas is significant on the surfaces of HAC
proteins compared to extracellular proteins (Figure 7b). To further understand the charge distribution
on protein surfaces, we plotted the net surface charge distribution of extracellular and HAC proteins
using the rearranged Henderson-Hasselbalch equation (more details, see Table S3) (Figure 7c).[51] In
nature, it is known that zwitterionic surfaces with evenly distributed positively and negatively
charged residues help resist nonspecific interactions with stronger hydrostatic repulsion fields.[4]
Our data showed the more extreme range of net surface charge in HAC proteins. We assume that the
results come from the complex considerations of aggregation and solubility. For instance, Ryan et al.
elucidated that increased protein solubility is strongly correlated with negative surface charge,
explained by the water-binding properties of E and D.[52] Also, positively charged amino acids like
K and R have effectively inhibited aggregation by weakening protein-protein interactions.[53] To
sum up, our results showed a higher charged surface and extreme net charge range on the surfaces
of HAC proteins, and we assume that this is the result of complex behaviors of HAC proteins for the
adaptation in crowded environment.
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Figure 7. Boxplots of (a) average surface B-factors on surface and buried regions, (b) fraction of
positively charged and negatively charged surface area on extracellular and HAC proteins, and (c)
net surface charge of extracellular and HAC Proteins.

4.6. The Smoother Surface of HAC Proteins May Modulate Molecular Adsorption

As mentioned, molecular crowding and protein abundance are crucial for studying nonspecific
interactions. We hypothesized that the surface geometry of HAC proteins should take strategies
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minimizing molecular adsorption and nonspecific interactions. Surface roughness is a critical
parameter to describe surface geometry. Indeed, nano-scale surface roughness had a significant
influence on protein-protein interactions.[54,55] Also, surface homogeneity and low surface
roughness were found on the surface of streptavidin, which is known to have exceptionally strong
specific binding with biotin and exhibits low nonspecific binding.[56] Here, we calculated the surface
roughness of proteins using FD, which can represent the degree of surface irregularity.[26] FD shows
the lowest value for a completely smooth surface (FD=2). In contrast, it has the highest value for the
roughest protein surface (FD=3). With FD of all proteins ranging from 2.044 to 2.372, we observed
subtle but discernable distinctions between extracellular and HAC proteins (Figure 8).

The HAC proteins exhibited smoother surfaces in general, which can be inferred by the large
population of Alanine, which has the shortest residue chain length among 20 amino acids (Figure
6d). To add, among four types of aromatic amino acids (Tryptophan, Phenylalanine, Tyrosine, and
Histidine) that can have higher van der Waals volumes, three of them (Tryptophan, Phenylalanine,
and Histidine) were more abundant on the surfaces of extracellular proteins. Considering that protein
surface roughness is necessary upon binding with small molecules[57], we suggest that the smoother
surface of an HAC protein can be a strategy for minimizing small molecules-induced nonspecific
interactions. However, further investigation will be necessary to substantiate our assumptions.
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Figure 8. Boxplots of surface roughness of extracellular and HAC proteins.

5. Summary and Conclusions

In this study, we utilized surface physicochemical, structural, and geometrical descriptors to
identify HAC proteins with ML and quantitatively analyzed the surface characteristics. We first
solved binary classification for HAC and extracellular proteins using several supervised ML
algorithms (KNN, LR, RF, and SVM). Then, LR was chosen for the descriptors’ final feature
importance analysis, considering both excellent model performance (80.2% accuracy, 87.6% AUC)
and high model interpretability. The charge-related descriptors showed positive correlations, while
hydrophobicity, B-factor, beta structures proportion, roughness, and disordered regions proportion
exhibited negative correlations to the HAC proteins in the importance analysis of descriptors.

We also found that the E, K, and L populations and well-folded secondary structures on the
HAC protein surfaces played vital roles in their hydrophilicity and compactly folded structures. Also,
we observed limited protein flexibility and extreme net charge from the surfaces of HAC proteins,
which the previous studies on the adaptation of cytoplasmic proteins in crowded environments can
explain. Finally, we suggest that smoother surfaces of proteins can be critical in minimizing the
nonspecific adsorption of small molecules. Our results indicate that several surface descriptors can
be employed to identify, quantify, and explain the protein surface characteristics in a crowded
cellular environment.

Our findings on the quantitative analysis of the descriptors could facilitate the design of surfaces
well-adapted to crowded environments, such as nonspecific interaction-resistant surfaces with



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 December 2023

15

selectivity to target materials.[58-63] One example of the application is the design of immunosensors,
where the nonspecific adsorption of various biomolecules causes background noise and critically
impairs sensitivity.[64] Another field highlighting the importance of nonspecific interaction-resistant
surfaces is reducing protein corona on nanoparticles.[65] When nanoparticles first come into contact
with biological fluid, proteins attach to their surfaces and form a protein layer, i.e., protein corona.
Since protein corona causes direct impacts on the performance of nanoparticles, the new strategy —
applying nonspecific interaction-resistant surface — of nanoparticles should aim to reduce or slow
protein corona formation.
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