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Article 

Application of Machine Learning in the Quantitative 
Analysis of Surface Characteristics of Highly 
Abundant Cytoplasmic Proteins: Toward AI-Based 
Biomimetics 

Joo A Moon ¹, Guanghao Hu ¹, and Tomohiro Hayashi 1,2,* 

1 Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo 

Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan 
2 The Institute for Solid State Physics, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-

0882, Japan 

Abstract: Proteins in the crowded environment of human cells have often been studied regarding 

nonspecific interactions, misfolding, and aggregation, which may cause cellular malfunction and 

disease. Specifically, proteins with high abundance are more susceptible to these issues due to the 

law of mass action. Therefore, the surfaces of highly abundant cytoplasmic (HAC) proteins directly 

exposed to the environment can exhibit specific physicochemical, structural, and geometrical 

characteristics that reduce nonspecific interactions and adapt to the environment. However, the 

quantitative relationships between the overall surface descriptors still need clarification. Here, we 

used machine learning to identify HAC proteins using hydrophobicity, charge, roughness, 

secondary structures, and B-factor from the protein surfaces and quantify the contribution of each 

descriptor. First, several supervised learning algorithms were compared to solve binary 

classification problems for the surfaces of HAC and extracellular proteins. Then, logistic regression 

was adopted for the feature importance analysis of descriptors considering model performance 

(80.2% accuracy and 87.6% AUC) and interpretability. The HAC proteins showed positive 

correlations with negatively and positively charged areas but negative correlations with 

hydrophobicity, B-factor, beta structure proportion, roughness, and disordered regions proportion. 

Finally, the details of each descriptor could be explained concerning adaptative surface strategies of 

HAC proteins to regulate nonspecific interactions, protein folding, flexibility, stability, and 

adsorption. This study presented a novel approach using various surface descriptors to identify 

HAC proteins and provided quantitative design rules for the surfaces well-suited to human cellular 

crowded environments. 

Keywords: bioinformatics; machine learning; protein surfaces; surface engineering 

 

1. Introduction 

The intracellular space of living organisms is highly crowded with macromolecules, which can 

occupy up to nearly one-third of the entire cellular volume.[1] The resulting highly crowded 

environment poses challenges of nonspecific interactions, critically influencing issues such as protein 

folding, stability, and adsorption.[2-4] In human cells, these issues are specifically crucial since the 

intracellular proteins that fail to fold correctly into their native shapes tend to aggregate and cause 

cellular malfunction and death, resulting in detrimental pathological consequences.[5] In particular, 

cytoplasmic proteins with high abundance, i.e., highly expressed proteins, are more likely to 

encounter nonspecific interactions due to the law of mass action.[6] Thus, highly abundant 

cytoplasmic (HAC) proteins must exhibit certain physicochemical, structural, and geometrical 

characteristics to adapt to the environment and mitigate the issues. Eventually, intracellular proteins, 

especially highly abundant ones, are expected to share particular characteristics differentiated from 
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extracellular proteins, which often experience less crowded environments,[4,7] to ensure proper 

cellular function in such a highly crowded environment.  

Previously, computational approaches have aided in the characterization of intracellular 

proteomes, with various techniques targeting different regions of proteins,  including global 

regions,[8] surface regions,[9,10] or both regions[11]. Notably, the surface regions of proteins are 

essential for studying protein characteristics since the regions are directly exposed to the external 

environment and potential partners and thus reflect various properties.[4,10] While there have been 

several works on using the frequency of surface residues, [9,10] there is a lack of research revealing 

quantitative relationships of specific physicochemical, structural, and geometrical descriptors, which 

can have different scales for characterizing the surfaces of the HAC protein. 

To address this issue, we use interpretable machine learning (ML)-based approach to 

characterize the surfaces of HAC proteins by quantifying the contribution of the surface descriptors. 

Over the past few decades, ML techniques have been increasingly applied to predict protein-protein 

interaction,[12] protein-ligand molecular docking,[13] protein subcellular localization,[14] and 

protein 3D structure prediction.[15] Despite significant advances in these areas, identifying protein 

surface characteristics using only a few representative physicochemical, structural, and geometrical 

descriptors remains challenging. This is the first study focusing on this specific task, revealing 

quantitative relationships between the surface descriptors. By understanding the surface rules of 

HAC proteins in human cells through interpretable ML, this study will enable the development of 

efficient drug delivery systems, such as deepening our knowledge of the interactions between 

therapeutic nanoparticles and proteins [16]  

In this study, we aim to distinguish the surfaces of HAC proteins from those of extracellular 

proteins using binary classification algorithms. We extracted surface physicochemical, structural, and 

geometrical descriptors from protein surfaces to build a database and apply ML (Figure 1). As a first 

step of the database construction, we collected around 330 3D protein structures each for human 

HAC and extracellular proteins. Then, various descriptors on protein surfaces, such as 

hydrophobicity, charged area, roughness, B-factor, and the proportions of protein structures, were 

calculated for the collected 3D protein structures. Then, several supervised ML algorithms: K-Nearest 

Neighbor (KNN), Random Forest (RF), Logistic Regression (LR), and Support Vector Machine (SVM) 

were used to solve the binary classification of extracellular and HAC proteins. Based on excellent 

performance and high model interpretability, we selected the LR algorithm to explain the importance 

of each descriptor quantitatively. Namely, this study answers the following questions: (1) Can surface 

characteristics of HAC proteins be identified with several physicochemical, structural, and 

geometrical descriptors? and (2) Which descriptor contributes to the crowded environment-adaptive 

surface in human cells to what extent? The LR model used in our study enabled the identification of 

HAC proteins, and coefficients from LR represented the importance of each descriptor.  
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Figure 1. Schematic representation of key processes in functional prediction and quantitative analysis 

of surface physicochemical, structural, and geometrical descriptors on protein surface. HAC: Highly 

abundant cytoplasmic; SES: Solvent-excluded surface; SAS: Solvent accessible surface. 

2. Methodology 

2.1. Protein Sample Collection 

The datasets consist of two types of human proteins: human cytoplasmic proteins with high 

abundance and extracellular proteins. First, we collected cytoplasmic proteins with the highest 

abundance level from the PaxDb database, a collection of experimental data on protein 

abundance.[17] The cytoplasmic proteins that were also tagged extracellular keywords (e.g., secreted, 

extracellular matrix, and extracellular space) in Uniprot were eliminated. Then, proteins in 

extracellular environments determined with experimental assay were collected (GO ID: 5615).[18] 

Finally, 331 human extracellular proteins and 337 HAC proteins within the sequence length range of 

100 to 700 were collected for analysis. 

The 3D structures of a total of 668 proteins were collected through the Alphafold ver2.0 

(Alphafold2) (https://alphafold.ebi.ac.uk/) protein structure prediction model.[15,19] Alphafold2 3D 

models provide entire protein structures, allowing for comprehensive surface analysis, unlike partial 

structures often found in experimental Protein Data Bank (PDB) files from X-ray crystallography. 

Alphafold2 is known to be the top-ranked prediction model with a median global distance test score 

of 92.4 across all targets and 87.0 on the challenging free modeling category in the 14th CASP 

assessment (https://predictioncenter.org/casp14/zscores_final.cgi). Additionally, in most cases, 

Alphafold2’s structural prediction accuracy has reached experimental accuracy.[15] 

Even though the overall predictability of Alphafold2 is exceptional, not all predicted structures 

are suitable for the analysis. Every residue from Alphafold2 3D protein structure is given with per-

residue metric, which reflects the structural model confidence called predicted local distance 

difference test (pLDDT), scaling from 0 to 100. The pLDDT evaluates how well the predicted model 

agrees with experimental data using local distance difference test Cα.[20] pLDDT > 90 is considered 

a high-accuracy cut-off, and pLDDT> 70 can be regarded as generally correct backbone prediction.[21] 

When the pLDDT is lower than 50, the predicted region is expected to be intrinsically disordered.[22] 

However, a low pLDDT score in Alphafold2 results from high residue flexibility and dynamic 

structure rather than ‘low confidence.’[23] Also, since disordered regions of proteins are involved in 

molecular recognition and hydrophobic interactions, it is essential to include the regions for the 

analysis.[24] Considering the potential interpretability difficulty from intrinsically disordered 

proteins, we set our cut-off value as average pLDDT>50 for a whole protein structure. Finally, we 

ensured that over 80% of extracellular and HAC proteins had average pLDDT values over 70 (Figure 

2).  
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Figure 2. Average predicted local distance difference test value distribution of collected 668 

proteins. 

2.2. Calculation of Surface Descriptors 

Previous studies have introduced several definitions of protein surfaces, each with different 

characteristics. Among them, we adopted solvent-accessible Surface (SAS) and solvent-excluded 

surface (SES) for calculating other descriptors (Figure 1).[25] The SAS was calculated by rolling probe 

spheres that have an equivalent size with water molecules. We used SAS for the residue-based 

analysis: we assumed that a specific residue in a protein could have a maximum SAS when its 

neighboring amino acids are Glycines. (i.e., having Gly-residue-Gly structure) When the proportion 

of an actual SAS for a residue to a maximum SAS was higher than or equal to 30%, the residue was 

defined as surface residue. Another protein surface used in the analysis is SES, also called the 

Connolly surface.[26] The surface moves inward from the SAS by a distance identical to the probe 

sphere radius (Figure 1). Lewis et al. uncovered that this continuous and functional surface is 

particularly useful in calculating the protein surface roughness. Then, protein surface descriptors 

representing various physicochemical, structural, and geometrical descriptors were calculated (Table 

1) based on the two surface types. All the descriptors were computed using Python 3.9.12. 

Table 1. Descriptors used in this work to explain protein surface characteristics. 

Category 
Variables 

(Descriptors) 
Definition Analyzed Surface 

Hydrophobicity s_phobic_avg Average Surface Hydrophobicity 

Solvent accessible 

surface 

 

Charge 

s_pos_area 
Fraction of Positively Charged 

Surface Area 

s_neg_area 
Fraction of Negatively Charged 

Surface Area 

s_charge_avg 
Fraction of Total Charged Surface 

Area 

Protein 

Structure  

s_ah 
Proportion of Surface Alpha 

Helix  

s_bs 
Proportion of Surface Beta 

Structures  

s_do 
Proportion of Surface Disordered 

Regions 

s_sf 
Structure Surface Exposure 

Degree 

Flexibility norm_s_b 
Average Normalized Surface B-

factors 

Geometry FD 
Average Protein Surface 

Roughness 

Solvent excluded 

surface 

Surface hydrophobicity, charge, secondary structures, and overall morphology of proteins are 

critical parameters for protein structures. The normalized consensus hydrophobicity scale 
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quantitatively measured the average protein surface hydrophobicity.[27] Surface charge-related 

descriptors were collected by calculating the fraction of SAS of negatively charged and positively 

charged amino acids under physiological conditions (pH=7).  Each surface amino acid contributing 

to the secondary structure was directly extracted by Pymol (http://www.pymol.org) to calculate the 

surface proportion of each secondary structure. The surface exposure degree was defined by the SAS 

divided by the volume of protein. 

The B-factor, which is also called the Debye-Waller factor, indicates the thermal motion-induced 

attenuation of X-ray scattering or coherent neutron scattering.[28,29] Equation (1) defines B-factor:  

,     (1) 

where 𝑢 (Å) denotes the mean displacement of a scattering center. The B-factor is used to interpret 

properties such as thermostability, flexibility, internal motion, and binding of proteins.[30-34] In 

Alphafold2 models, the B-factor columns are replaced by pLDDT values, which can provide insights 

into structural flexibility.[23] We converted pLDDT values into pseudo B-factors since pLDDT values 

and original B-factor show a reverse relationship. The pLDDT values were first converted into root-

mean-square deviation (RMSD) using the following empirical formula (Equation (2)):  ∆=  1.5exp[4(0.5 − 𝑝𝐿𝐷𝐷𝑇)],    (2) 

where ∆ denotes error estimates. pLDDT values were transformed into the scale of 0-1 from 0-

100.[35-37] Then, the converted pseudo B-factor is expressed as Equation (3) after substituting the 

converted error estimates into eq 1, considering the root-mean-square positional variation in three 

dimensions.  𝐵 = 8𝜋2∆2

3
       (3) 

The converted pseudo-B-factors were calculated for each residue in proteins. However, in the 

case of X-ray analysis, low resolution leads to high B-factors around 100-200, and such high values of 

B-factors are not recommended to make specific conclusions.[38] Therefore, only surface residues 

with RMSD smaller than or equal to 1.5 (almost equivalent to B ≤ 60) were included for analyzing 
surface B-factors. Finally, B-factors were normalized as Equation (4) since the non-normalized B-

factor does not represent an absolute quantity, therefore, cannot be used to compare different protein 

structures.[39] 𝐵𝑛𝑜𝑟𝑚 = 𝐵−<𝐵>𝜎       (4) 

<B> denotes the average B-factor in the whole protein structure, and σ implies the standard 

deviation. Then, the mean value of normalized surface B-factors in a protein was used to characterize 

the protein surface. 

Surface roughness, which can be quantitatively characterized by the fractal dimension (FD), was 

calculated to identify the surface structural irregularity (Equation (5)).[26]  𝐹𝐷 = 2 − 𝑑𝑙𝑜𝑔(𝐴𝑠)𝑑𝑙𝑜𝑔(𝑅)       (5) 𝐴𝑠 and 𝑅 represent the molecular surface area and rolling probe radius, respectively. FD falls 

within the range of 2 to 3, having the smoothest surface on 2 and having the roughest surface on 3. 

As for the calculation of 𝐴𝑠, we calculated SES using 3V calculator (http://3vee.molmovdb.org).[40] 

Then, Equation (5) was transformed into Equation (6) for the convenience of calculation. 𝐷𝑖 = (log 𝐴𝑠𝑒𝑠)𝑖−(log 𝐴𝑠𝑒𝑠)𝑖−1(log  𝑅)𝑖−(log  𝑅)𝑖−1
, 𝐹𝐷 = 1𝑁 ∑ 𝐷𝑛𝑁𝑛=1      (6) 

i refers to a probe radius starting from 1.2, in the range of 1.0 to 3.6, with the interval of 0.2 

(1.0,1.2,1.4, 1.6 … 3.6, N (Number of sets)=13). i-1 refers to the previous step of i (i-1 starts from 1.0). (𝑙𝑜𝑔 𝐴𝑠𝑒𝑠)𝑖 indicates the log value of solvent excluded surface area under the probe radius i. The 

range of probe radius is suitable for  the analysis since the probe sizes are sensitive to specific 

interactions between residues, reflecting the size of water molecules and side chains.[26] Finally, the 

mean value of all the calculated Di represents the FD.  
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2.3. Application of Machine Learning 

The logistic Regression (LR) model, a regression model for binary classification problems, shows 

its chief advantage in providing high model interpretability. An odds ratio of each independent 

variable enables quantitatively evaluating its contribution to dependent variables. Surface 

descriptors were given as independent continuous variables, and <HAC:1, Extracellular:0> tags were 

provided as dependent dichotomous variables in the models. Then, Equation (7) represents the 

probability of being HAC proteins under the given independent variables[41]: 𝑃(𝑦 = 1|𝑥1, 𝑥2, … , 𝑥𝑖) = 𝑒𝑥𝑝[𝑓(𝑋𝑖,𝛽𝑖)]
1+𝑒𝑥𝑝[𝑓(𝑋𝑖,𝛽𝑖)] = 𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑖𝑋𝑖

1+𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑖𝑋𝑖  (7) 

P, xi, βi denote the probability of being a HAC protein, a surface descriptor, and an 

accompanying beta coefficient. LR uses a method of maximum likelihood to estimate 𝛽𝑖  and the 

odds ratio corresponds to exp[βi]. Then, logistic transformation, which converts the non-linear 

relationship into the original linear regression equation, is applied as eq 8. 𝑙𝑛 𝑃 =  𝑙𝑛 𝑒𝑥𝑝[𝑓(𝑋𝑖,𝛽𝑖)]
1+𝑒𝑥𝑝[𝑓(𝑋𝑖,𝛽𝑖)] =  𝑙𝑛 𝑃

1−𝑃  =  𝛽0 + ∑ 𝛽𝑖𝑋𝑖 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑖𝑋𝑖   (8) 

A positive 𝛽𝑖 indicates that the increase in xi leads to the stochastic increase in the probability 

of being HAC proteins. Conversely, A negative 𝛽𝑖 means that an increase in xi results in the stochastic 

decrease for the probability of being HAC proteins.  

As a parametric model, LR requires several statistical assumptions to perform well.[41] Thus, 

several data preprocessing steps were conducted, including checking the multicollinearity of surface 

descriptors, deletion of strongly influential outliers, and data scaling to meet the assumptions and 

enhance the model performance. Pearson correlation (PC) analysis, a statistical test that measures the 

linear association between two variables, was conducted to limit the multicollinearity problem. Also, 

Cook’s distance from the statsmodels module in Python was calculated for leverage and residual 

values analysis. Conclusively, 1.03% of proteins turned out to be highly influential and outliers 

simultaneously and were eliminated from the dataset. Finally, the surface descriptors were 

standardized with StandardScaler function in Python sci-kit learn library for data scaling.  

Upon constructing the LR model, several popular supervised learning algorithms for 

classifications: K-Nearest Neighbor (KNN), Random Forest (RF), and Support Vector Machine 

(SVM), were used to compare the performance of different models. All the algorithms were 

performed through Scikit-learn Package in Python 3.9.12. The hyperparameters for each algorithm 

were optimized using GridSearch cross-validation (CV), where every parameter combination is 

tested to evaluate ML models. 5-fold cross-validation was used to avoid overfitting to the test set. 

Before constructing machine learning models, datasets were randomly divided into a training set 

(80%) and a test set (20%), maintaining the original ratio of the target class. Then, the performance of 

different models was assessed by the predictive indicators: the classification accuracy and the area 

under the curve of receiver operating characteristic (AUC-ROC) curve. We repeated five times 

randomly splitting training and test sets to avoid sampling bias and overfitting, then reported the 

mean accuracy of each model. We selected the final ML model, LR, for the feature importance analysis 

considering high accuracy and model interpretability. Finally, each descriptor's significance and 

importance were explained with statistical analysis. 

4. Results and Discussion 

4.1. Pearson Correlation (PC) Analysis  

First, PC analysis for all the descriptors in the train set was conducted before applying machine 

learning. Table 2 shows PC coefficients between independent variables, i.e., surface descriptors and 

dependent variables (where HAC is tagged as 1 and extracellular as 0). A PC coefficient ranges from 

-1 to 1, showing a perfectly negative correlation at -1 and a perfectly positive correlation at 1. A PC 

coefficient of 0 represents the absence of linear correlation. As a result, all the relationships between 
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each surface descriptor and dependent variables were significant at 0.05 (p<0.05) except for structure 

surface exposure degree (s_sf) (Table 2). 

Table 2. Pearson Correlation (PC) Coefficients between independent and dependent variables from a 

train set. 

Surface Descriptors PC Coefficients 

Hydrophobicity s_phobic_avg -0.472 ** 

Charge 

s_pos_area 0.401 ** 

s_neg_area 0.239 ** 

s_charge_avg 0.142 ** 

Protein Structures 

s_ah 0.206 ** 

s_bs -0.228 ** 

s_do -0.102 * 

s_sf -0.023 

Flexbility norm_s_b -0.225 ** 

Geometry FD -0.106 * 

** p-value<0.01 * p-value<0.05. 

As shown in Figure 3, two descriptors, surface alpha helix proportion (s_ah) and the proportion 

of total charged surface area (s_charge_avg), were highly linearly correlated to the descriptors in their 

categories: protein structures and charge, respectively. Therefore, the descriptors were eliminated 

from the descriptor pool, considering that they showed the highest linear correlation with other 

descriptors in their category. According to the above results, we excluded three descriptors using PC 

analysis: s_sf, s_ah, and s_charge_avg from the initial pool of ten surface descriptors, only applying 

seven for machine learning. 
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Figure 3. PC coefficients between the descriptors from a train set. 

4.2. Comparison of Supervised Machine Learning Algorithms for Binary Classification Problem 

The performance of different machine learning algorithms for the binary classification problem 

(KNN, LR, RF, and SVM) was compared using identical training and test data sets. The performance 

of each model was evaluated using accuracy and AUC-ROC graphs. The models were compared with 

the 5-times of randomly splitting train and test sets to avoid the effect of fluctuation in the results 

(Figure 4a). As a result, all the algorithms showed excellent and similar performance, exhibiting 

79.7%,80.2%,79.3%, and 80.2% accuracy for KNN, LR, RF, and SVM, respectively. The ROC curves 

for the algorithms were also in nearly identical and impartial shapes (Figure 4b). The algorithms also 

demonstrated comparable AUC scores, with the LR exhibiting the highest AUC score (87.6%), albeit 

not significantly outperforming the other algorithms (87.5%,87.3%, and 87.1% for KNN, RF, and 

SVM, respectively). After comprehensively considering prediction performance and interpretability, 

we chose LR for the feature importance analysis of the surface descriptors. 
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Figure 4. (a) Comparison of the performance of different ML algorithms. KNN: K-Nearest Neighbor; 

RF: Random Forest; LR: Logistic Regression; and SVM: Support Vector Machine (b) ROC curves for 

four machine learning algorithms from a single-shot trial. Hyperparameters used to tune each model 

in a single-shot trial is described in Table S1. 

4.3. Results of Logistic Regression Analysis 

Table 3 and Figure 5 show the influence of each surface descriptor on the logistic regression 

analysis. The coefficients and standard errors of the descriptors were calculated based on the mean 

values from five randomly split training sets. Table 3 showed that all the surface descriptors were 

statistically significant at 0.05 (p<0.05). The sign of the coefficient for each descriptor determines its 

influence on the probability of the protein being classified as an HAC protein: a positive coefficient 

suggests that an increase in the descriptor value increases the likelihood of the protein being classified 

as an HAC protein. In contrast, a negative coefficient indicates that an increase in the descriptor value 

decreases the probability of the protein being classified as an HAC protein. Two descriptors related 

to surface charge had positive coefficients in the model: negatively charged surface area (s_neg_area) 

and positively charged surface area (s_pos_area). 

On the other hand, the other descriptors: surface hydrophobicity (s_phobic_avg), normalized 

surface B-factor (norm_s_b), the proportion of surface beta structures (s_bs), surface roughness (FD), 

and the proportion of surface disordered regions (s_do) exhibited negative coefficients. Moreover, the 

odds ratio, which is the exponentiated coefficient of a descriptor, along with its 95% confidence 

interval (C.I.), can aid in interpreting each coefficient by providing information on the probability of 

being a HAC protein.[41] All the statistical summaries of each descriptor were provided in Table S2. 

The following sections will provide further statistical details for each descriptor, including their 

relationships with several issues related to crowded cellular environments and nonspecific 

interactions. 

Table 3. Results of Logistic Regression Analysis for each surface descriptor. 

Logistic Regression Analysis 

Descriptors β S.E. z-value 
Significant 

Level 

Odds 

ratio 

Exp(β) 95% C.I. 

Min Min 

s_phobic_avg -0.807 0.045 -17.913 <0.001 0.446 0.408 0.487 
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s_pos_area_avg 0.617 0.051 12.016 <0.001 1.853 1.675 2.049 

s_neg_area_avg 0.622 0.047 13.112 <0.001 1.862 1.697 2.043 

norm_s_b -0.408 0.029 -13.972 <0.001 0.665 0.628 0.704 

s_bs -0.286 0.036 -7.992 <0.001 0.751 0.700 0.806 

s_do -0.138 0.050 -2.738 <0.05 0.872 0.790 0.962 

FD -0.265 0.024 -11.211 <0.001 0.767 0.733 0.804 

 

Figure 5. Importance of surface descriptors toward classifying proteins into HAC and extracellular 

proteins. Error bars denote the standard deviation from five times of randomly splitting training and 

test sets to prevent sampling bias and overfitting. 

4.4. Proper Folding of HAC Proteins Can Be Achieved with Low Surface Hydrophobicity and Secondary 

Structure Compositions 

Our findings corroborate that HAC proteins adopt a protein folding strategy limiting the 

nonspecific interactions in crowded environments. A protein entropically prefers a compactly folded 

state over an unfolded or expanded state in macromolecular crowded environments.[42-44] 

Especially, hydrophobic interaction plays a central role in protein folding, clustering non-polar 

residues in the protein core to form globular structures.[45] On the other hand, polar residues are 

often exposed to the protein surface, restricting hydrophobic interactions involved in molecular 

recognition. We observed that the surfaces of HAC proteins exhibited lower hydrophobicity and 

well-folded states with a lower proportion of disordered regions (Figure 6a,b). 

Surface hydrophobicity, as quantitatively measured using the normalized consensus 

hydrophobicity scale proposed by Eisenberg et al. (Figure 6c),[27] had the highest influence 

(s_phobic_avg = -0.807) among all the surface descriptors (Figure 5). With the considerably high 

population of highly hydrophilic aspartic acid (D) and arginine (R), we assume that the significantly 

high surface hydrophilicity on HAC proteins mainly derives from the remarkable scarcity of leucine 

(L) and notably abundant lysine (K) and glutamic acid (E) (Figure 6d). Our observations of the high 

population of K and E on the HAC protein surfaces are consistent with the findings of White et al.[9] 
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Their study demonstrated that molecular chaperones, which require non-adhesive surfaces for 

reversible interactions with multiple proteins, have a higher abundance of E and K, that possess 

strong water-binding properties and weak associations with surrounding amino acids. Here, we 

suggest that highly hydrophobic L also plays a vital role in forming hydrophilic surfaces. While the 

proportion of L is similar in buried regions of both protein types, there is a significant contrast on the 

surface region, where HAC proteins are strikingly lacking L compared to extracellular proteins 

(Figure 6d). Hence, the HAC proteins can have a stable hydrophobic core and exhibit higher surface 

hydrophilicity. 

The negative coefficients (s_bs= -0.286 and s_do= -0.138) obtained from Figure 5 indicated that 

the HAC proteins generally exhibited higher proportions of alpha-helices and lower proportions of 

beta structures and disordered regions than those of extracellular proteins in both surface and buried 

regions (Figure 6b). This trend of surface secondary structures aligns with the global secondary 

structures of cytoplasmic proteins proposed by Loos et al., which revealed that cytoplasmic proteins 

are globally more enriched in alpha-helices and show lower frequency of beta structures and 

disordered regions.[8] Furthermore, the surface trend in the two well-folded structures: alpha-helices 

and beta structures can be supported by the previous study of Bhattacharjee and Biswas, which 

suggested that beta sheets are highly hydrophobic and buried in the core of proteins. In contrast, long 

polar residues contribute to the formation of alpha helices.[46] The lower proportions of disordered 

regions of HAC proteins can be explained by the nonspecific interaction propensity of its innate 

flexibility. The study of  Nishizawa et al. highlighted the engagement of disordered regions on 

nonspecific interaction, observing the nonspecific ATP-protein interactions in intrinsically 

disordered proteins and flexible regions.[47] The study used NMR spectroscopy and molecular 

dynamics simulations to capture concentration-dependent noncovalent interactions between ATP 

and disparate proteins. As a result, the interaction was notably distinct in the intrinsically disordered 

proteins (α-synuclein) and flexible regions (loops or termini). Our findings on the hydrophobicity 

and secondary structures on the surfaces of HAC proteins support the protein folding strategy for 

environmental adaptation in crowded environments.  
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Figure 6. (a) Boxplots of average surface hydrophobicity of extracellular and HAC proteins (b) 

Boxplots of the proportion of secondary structures of extracellular and HAC proteins (AH: Alpha 

helix; BS: Beta structure; and DO: Disordered region) in the surface and buried regions (c) 

Hydrophobicity scale of 20 kinds of amino acids (d) Proportion of amino acids in the surface and 

buried regions of proteins. 

4.5. The HAC Proteins Are Emphasized with Surface Rigidity and an Extreme Range of net Surface Charge 

The HAC proteins should perform different structural surface characteristics to function 

correctly in a crowded environment. For instance, proteins in cellular environments are expected to 

have better thermostability with higher melting temperatures due to the crowding effect.[3] Previous 

studies have shown that increased thermostability is often accompanied by decreased overall 

flexibility of proteins.[30,31] Also, protein solubility, which indicates the characteristic of a protein to 

maintain its intact state, is an essential issue for protein stability to avoid aggregation, which refers 

to protein binding accompanying irreversible conformation change.[48] Here, we plotted the 

distributions of surface pseudo-B-factors and the distributions of surface charges to understand the 

surface flexibility and stability of HAC proteins (Figure 7). 

A pseudo-B-factor gets higher as protein structures show more considerable flexibility.[23] We 

obtained two insights from Figure 7a: (1) the surfaces of HAC proteins tend to have lower flexibility 

than extracellular proteins, and  (2) the lower flexibility on the surfaces of HAC proteins is 
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emphasized as the analyzed domain is shifted from buried regions to surface regions. The lower 

flexibility on the surfaces of HAC may be supported by the recent findings on the direct relationship 

between protein intracellular abundance and thermal stability, which is often observed with reduced 

flexibility.[49,50] The findings showed that the protein interface stability was positively correlated 

with the protein abundance, enabling the prevention of misinteractions. At the same time, abundant 

intracellular proteins with high thermostability were less prone to aggregation or local unfolding. 

Thus, we suggest that the surfaces of HAC proteins reflect reduced flexibility to be adaptive in 

crowded environments.  

Two charge-related descriptors with positive coefficients contributed to the model with nearly 

equivalent scales (s_neg_area = 0.622, s_pos_area = 0.617) (Figure 5). Our findings show that the 

richness of both negatively charged and positively charged areas is significant on the surfaces of HAC 

proteins compared to extracellular proteins (Figure 7b). To further understand the charge distribution 

on protein surfaces, we plotted the net surface charge distribution of extracellular and HAC proteins 

using the rearranged Henderson-Hasselbalch equation (more details, see Table S3) (Figure 7c).[51] In 

nature, it is known that zwitterionic surfaces with evenly distributed positively and negatively 

charged residues help resist nonspecific interactions with stronger hydrostatic repulsion fields.[4] 

Our data showed the more extreme range of net surface charge in HAC proteins. We assume that the 

results come from the complex considerations of aggregation and solubility. For instance, Ryan et al. 

elucidated that increased protein solubility is strongly correlated with negative surface charge, 

explained by the water-binding properties of E and D.[52] Also, positively charged amino acids like 

K and R have effectively inhibited aggregation by weakening protein-protein interactions.[53] To 

sum up, our results showed a higher charged surface and extreme net charge range on the surfaces 

of HAC proteins, and we assume that this is the result of complex behaviors of HAC proteins for the 

adaptation in crowded environment. 

 

Figure 7. Boxplots of (a) average surface B-factors on surface and buried regions, (b) fraction of 

positively charged and negatively charged surface area on extracellular and HAC proteins, and (c) 

net surface charge of extracellular and HAC Proteins. 

4.6. The Smoother Surface of HAC Proteins May Modulate Molecular Adsorption 

As mentioned, molecular crowding and protein abundance are crucial for studying nonspecific 

interactions. We hypothesized that the surface geometry of HAC proteins should take strategies 
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minimizing molecular adsorption and nonspecific interactions. Surface roughness is a critical 

parameter to describe surface geometry. Indeed, nano-scale surface roughness had a significant 

influence on protein-protein interactions.[54,55] Also, surface homogeneity and low surface 

roughness were found on the surface of streptavidin, which is known to have exceptionally strong 

specific binding with biotin and exhibits low nonspecific binding.[56] Here, we calculated the surface 

roughness of proteins using FD, which can represent the degree of surface irregularity.[26] FD shows 

the lowest value for a completely smooth surface (FD=2). In contrast, it has the highest value for the 

roughest protein surface (FD=3). With FD of all proteins ranging from 2.044 to 2.372, we observed 

subtle but discernable distinctions between extracellular and HAC proteins (Figure 8).  

The HAC proteins exhibited smoother surfaces in general, which can be inferred by the large 

population of Alanine, which has the shortest residue chain length among 20 amino acids (Figure 

6d). To add, among four types of aromatic amino acids (Tryptophan, Phenylalanine, Tyrosine, and 

Histidine) that can have higher van der Waals volumes, three of them (Tryptophan, Phenylalanine, 

and Histidine) were more abundant on the surfaces of extracellular proteins. Considering that protein 

surface roughness is necessary upon binding with small molecules[57], we suggest that the smoother 

surface of an HAC protein can be a strategy for minimizing small molecules-induced nonspecific 

interactions. However, further investigation will be necessary to substantiate our assumptions.  

 

Figure 8. Boxplots of surface roughness of extracellular and HAC proteins. 

5. Summary and Conclusions 

In this study, we utilized surface physicochemical, structural, and geometrical descriptors to 

identify HAC proteins with ML and quantitatively analyzed the surface characteristics. We first 

solved binary classification for HAC and extracellular proteins using several supervised ML 

algorithms (KNN, LR, RF, and SVM). Then, LR was chosen for the descriptors’ final feature 
importance analysis, considering both excellent model performance (80.2% accuracy, 87.6% AUC) 

and high model interpretability. The charge-related descriptors showed positive correlations, while 

hydrophobicity, B-factor, beta structures proportion, roughness, and disordered regions proportion 

exhibited negative correlations to the HAC proteins in the importance analysis of descriptors. 

We also found that the E, K, and L populations and well-folded secondary structures on the 

HAC protein surfaces played vital roles in their hydrophilicity and compactly folded structures. Also, 

we observed limited protein flexibility and extreme net charge from the surfaces of HAC proteins, 

which the previous studies on the adaptation of cytoplasmic proteins in crowded environments can 

explain. Finally, we suggest that smoother surfaces of proteins can be critical in minimizing the 

nonspecific adsorption of small molecules. Our results indicate that several surface descriptors can 

be employed to identify, quantify, and explain the protein surface characteristics in a crowded 

cellular environment. 

Our findings on the quantitative analysis of the descriptors could facilitate the design of surfaces 

well-adapted to crowded environments, such as nonspecific interaction-resistant surfaces with 
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selectivity to target materials.[58-63] One example of the application is the design of immunosensors, 

where the nonspecific adsorption of various biomolecules causes background noise and critically 

impairs sensitivity.[64] Another field highlighting the importance of nonspecific interaction-resistant 

surfaces is reducing protein corona on nanoparticles.[65] When nanoparticles first come into contact 

with biological fluid, proteins attach to their surfaces and form a protein layer, i.e., protein corona. 

Since protein corona causes direct impacts on the performance of nanoparticles, the new strategy – 

applying nonspecific interaction-resistant surface – of nanoparticles should aim to reduce or slow 

protein corona formation.  
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