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Article 

Integrating External Controls by Regression 
Calibration for Genome-Wide Association Study  

Lirong Zhu, Shijia Yan, Xuewei Cao, Shuanglin Zhang and Qiuying Sha *  

Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan, USA 

* Correspondence: Qiuying Sha, Department of Mathematical Sciences, Michigan Technological University, 

Houghton, Michigan 49931, USA. E-mail: qsha@mtu.edu. 

Abstract: Genome-wide association studies (GWAS) have successfully revealed many disease-associated 

genetic variants. For a case-control study, the adequate power of an association test can be achieved with a 

large sample size, although genotyping large samples is expensive. A cost-effective strategy to boost power is 

to integrate external control samples with publicly available genotyped data. However, the naïve integration 

of external controls may inflate the type I error rates if ignoring the systematic differences (batch effect) between 

studies, such as the differences in sequencing platforms, genotype calling procedures, population stratification, 

and so forth. To account for the batch effect, we propose an approach by integrating External Controls into the 

Association Test by Regression Calibration (iECAT-RC) in case-control association studies. Extensive 

simulation studies show that iECAT-RC not only can control type I error rates but also can boost statistical 

power in all models. We also apply iECAT-RC to the UK Biobank data for M72 Fibroblastic disorders by 

considering genotype calling as the batch effect. Four SNPs associated with Fibroblastic disorders have been 

detected by iECAT-RC and the other two comparison methods. However, our method has a higher probability 

of identifying these significant SNPs in the scenario of an unbalanced case-control association study. 

Keywords: genome-wide association test; case-control study; batch effect; data integration 

 

Introduction 

Genome-wide association studies (GWAS) play a major role in associating specific genetic 

variants with common diseases and complex traits [1–3]. Sometimes, researchers may have limited 

access to individuals’ genetic information with specific traits and large-scale genetic studies can be 

expensive and resource-intensive [4]. Thus, with a small sample size in GWAS, the association test 

could have low power and may also increase the possibility of false-positive findings, especially for 

infrequent variants (i.e., MAF < 5%) [5,6]. 

The rapid development of sequencing technologies has promoted substantial advancement in 

GWAS, particularly in obtaining comprehensive genetic information from limited samples [7,8]. The 

integration of sequenced samples provides a great opportunity for identifying novel genetic 

associations and increasing the statistical power of single-variant association tests [9]. Nevertheless, 

the challenges associated with integrating sequenced samples arise from various factors, such as the 

utilization of diverse sequencing platforms, variations in genotype calling procedures, the presence 

of population stratification, and so forth [10]. In a single study, by incorporating sequenced samples 

from other studies as an external control sample, the power of single-variant tests can be significantly 

increased without incurring additional sequencing costs. However, the systematic differences (batch 

effect) between studies could inflate the type I error rates and increase the possibility of false-positive 

findings in association studies [11].  

Several methods have been proposed recently to address the systematic differences between 

genotyped data of internal and external sources using likelihood-based methods [12]. Liu and Leal 

proposed a method SEQCHIP to correct bias for integrating genotype data in rare variant association 

studies [13]. Derkach et al. proposed another method that substitutes the genotype calls by the 

expected values given observed sequence data to account for differential read depths between studies 

[14]. Motivated by Derkach et al., Chen and Lin proposed regression calibration (RC) methods to 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 December 2023                   doi:10.20944/preprints202312.1184.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202312.1184.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

account for differential sequencing errors between cases and controls [15]. Although these methods 

are powerful, computing genotype probabilities and storing sequence reads data can be challenging 

and expensive for large-scale studies. Thus, ProxECAT incorporates external controls to estimate 

enrichment of rare variants using allele counts in case-control analysis [16]. However, nonuse of the 

internal control samples potentially limits the power of the association test. iECAT allowed the 

incorporation of external controls in single variant association tests [11]. And the batch effect between 

internal and external studies can be assessed by comparing odds ratio estimates of alleles using 

internal control samples and combined control samples from internal and external studies. Then an 

empirical Bayesian-type shrinkage estimator is constructed based on the degrees of odds ratios in the 

single-variant test. And it is demonstrated that this method can control type I error rates, as well as 

improve the power of the association test. However, this method cannot adjust for covariates such as 

age, gender, and so on [11]. Based on the aforementioned method, Li and Lee proposed a novel score 
based test, which constructs a shrinkage score statistic using exclusively internal samples and 

external control samples, allowing for covariate adjustment [17]. However, the power increase of this 

method in association testing by integrating external controls is limited for extremely unbalanced 

case-control studies. 

In this study, we present a novel approach that integrates External Controls into Association 

Tests by Regression Calibration (iECAT-RC) to incorporate external control samples in case-control 

association studies. The objective of this research is to boost the statistical power of the single-variant 

association test by integrating external controls with the adjustment of batch effects. We propose an 

approach that adjusts the genotypes of an external control sample to approximate the same 

distribution as the genotypes in the internal control sample through regression calibration. 

Furthermore, we apply the Saddlepoint approximation [18] and efficient resampling [19] methods to 

control type I error rates with imbalanced case-control and low minor allele count (MAC) scenarios, 

respectively.  

Materials and Methods  

Consider a phenotype with case and control states. We code a case as 0 and control as 1. Assume 

that the internal study has the sample size 
In  with 0

In  controls and 1
In  cases and 0 1

I I In n n+ = ; 

the external study has 0
En  controls. For the 

thi  subject, let 0 /1iy =  be the dichotomous 

phenotype. Denote 
0 0 0

1 2 1 2
, ,..., , , ,...,I I I In n n n

G G G G G G
+ +

, and 
0

1 2, ,..., En
g g g  as the genotypes of the 

internal control sample, the internal case sample, and the external control sample at a genetic variant, 

respectively, with indicating the number of copies of the minor allele carried by the subject at that 

genetic variant. We denote 
I

iX  be the first p  principal components of internal genotypes, and 

E

iX  be the first p  principal components of external genotypes for the 
thi  subject. 

Motivated by the novel method iECAT-Score [20], we propose a new method by integrating 

external controls into association tests to boost the statistical power. Our proposed method involves 

three steps. Step 1. adjusting the genotypes of external controls using regression calibration; Step 2. 

conducting single-variant association test; and Step 3. calibrating single-variant test using 

Saddlepoint approximation (SPA) [18] and efficient resampling (ER) methods [19], particular 

addressing scenarios of case-control imbalance and low minor allele count (MAC). By following these 

three steps, the iECAT-RC method effectively minimizes the impact of batch effects and improves the 

power of association testing. 

Step 1. adjusting the genotypes of external controls by regression calibration 

To adjust the genotype of external control samples for the batch effect, we propose to use the 

following procedure: 

1). Without loss generality, we assume 0 0
E In n≥ . We randomly choose 0

In  individuals  
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      with genotypes 
0

1,..., Ik kn
g g  from external control samples. 

2). We assume a linear regression model 
( ) ( ) ( ) ( )
0 1
k k k I k E

i ki I i E kiG gβ β= + + +α X α X  for 

01,..., Ii n= , where
( ) ( ) ( ) ( ) ( )

0 1
ˆ ˆ ˆ ˆ ˆ( , , , )k k k k k T

I Eβ β=β α α  is the least square estimate of 

( ) ( ) ( ) ( ) ( )
0 1( , , , )k k k k k T

I Eβ β=β α α . 

3). We repeat 1) and 2) K  times. We obtain 
(1) ( )ˆ ˆ,..., Kβ β  and calculate the average value 

( )
0 1

1

ˆ ˆ ˆ ˆˆ ˆ( , , , ) /
K

T k

I E

k

Kβ β
=

= =β α α β . Let 0 1
ˆ ˆ ˆ ˆ

I

I E

i I i E in i
G gβ β

+
= + + +α X α X  for 01,..., Ii n= . When 

0In i
G a

+
< , we let In i

G
+

 take 0, where 0a  is determined such that the frequency of 0 in the internal 

control genotypes equals to the frequency of 0 in In i
G

+
for 01,..., Ii n= . When 0 1In i

a G a
+

≤ < , we 

let In i
G

+
 take 1, where 1a  is determined such that the frequency of 1 in the internal control 

genotypes equals to the frequency of 1 in In i
G

+
 for 01,..., Ii n= . When 1In i

G a
+

> , we let In i
G

+
 

take 2.  

We repeat the above procedure till we obtain In i
G

+
 for 01,..., Ei n= . Then we perform the 

association test based on the internal case-control data and external control data with genotypes 

0 0 0 0
1 2 1 2 1
, ,..., , , ,..., , ,...,I I I I I I En n n n n n n

G G G G G G G G
+ + + +

. 

Step 2. Single-variant association test 

We combine the internal samples and external control samples with the adjusted genotypes. 

1 2( , ,..., )TnG G G=G  is the vector of genotypes at a variant for n  subjects, where 
I En n n= + . 

Assume that there are p  covariates, then we relate the phenotype iY  to the covariate iZ , and 

genotype iG  using the logistic regression model logit[P( 1| , )] T

i i i i iY G G β= = +Z Z α , where the 

phenotype iY  follows a Bernoulli distribution. In this equation, α  is a 1p×  vector of coefficients 

for p  covariates including the intercept, and β  is the genotype effect at the variant. Assessing 

whether the association exists between the phenotype and the genotype at a variant is equivalent to 

testing 0 : 0H β = . 

Let { } { ( 1| )}i i iP Yµ= = =μ Z  and ˆ
iµ  be the maximum-likelihood estimate of iµ  under 

0H . In the score test, the score is given by ˆ( )TS = −G Y μ . where 1( ,..., )TnY Y=Y , 

{ } ( ) 
iG= = − T -1 TG G Z Z VZ Z VG  is the covariate adjusted genotype vector and 

ˆ ˆ{ (1 )}i idiag µ µ= −V [2]. Under the null hypothesis of no genetic effect, ( ) 0E S =  and 

2

1

ˆ ˆ( ) (1 )
n

i i i

i

Var S G µ µ
=

= −  . Then the score test statistic 
2 / ( )ScoreT S Var S=  asymptotically 

follows the chi-square distribution with 1 degree of freedom, and the p-value can be obtained as 
2 2
1( / ( ))p P S Var Sχ= > . 

Step 3. Calibrating single-variant test using SPA and ER methods 

The single-variant score test approximates the null hypothesis by normal distribution. The 

variance estimates based on such asymptotic test behaves well for common variants and balanced 

case-control studies. When allele frequency is extremely low resulting from low MAC, or when the 

case-control ratio is unbalanced, the underlying distribution of test statistic could be highly skewed. 

In such cases, the traditional asymptotic-based score test performs poorly with conservative or 

anticonservative results [21,22]. 
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To account for scenarios of unbalanced case-control ratio, we apply the SPA method to obtain 

the p-value when the score estimates lie far from mean zero [18]. When the MAC is low ( 10MAC <
) either in the internal sample, combining sample, or external sample, we apply the ER method to 

obtain the p-values [19]. 

1). SPA method 

SPA is an improvement over the normal approximation which only uses the mean and variance 

to approximate the underlying distribution. SPA uses the entire cumulant-generating function (CGF). 

Given the score test statistic 
1

ˆ ˆ( )
n

i i i

i

S G Y µ
=

= − , the estimation of the CGF of S  is 

0

ˆ

1 1

ˆˆ ˆ ˆ( ) log( ( )) log(1 )i
n n

G tts

H i i i i

i i

K t E e e t Gµ µ µ
= =

= = − + −  . According to the SPA method, the 

distribution of S  can be estimated by  

1Pr( ) ( ) log( )vS s F s w
w w

 
< ≈ = Φ + 

 


, 

where ˆ ˆ ˆsgn( ) 2( ( ))w t ts K t= − , ˆ ˆ''( )v t K t= , '( )K t  and ''( )K t  are the estimations of 

the first- and second-order derivatives of K , t̂  is the solution to the equation ˆ'( )K t s= , and Φ  

is the distribution of a standard normal distribution. The p-value can be obtained using the R package 

SPAtest. 

1). ER method 

ER method is used for rare variant association test with binary trait. Given phenotypes Y , 

genotypes G , and covariates Z , the p-value of ER method is defined as  

0

ˆ ˆPr( | , , ) Pr( | , ) Pr( | )
m

d

Q Q Y G X Q Q D d D d
=

≥ = ≥ = = Y,G,Z Y,G,Z  

where Q̂  is the score test statistic from the original phenotype, m  is the number of 

individuals with minor alleles, and D  is the number of cases among m  individuals carrying a 

minor allele. The p-value can be obtained using the R package SKAT. 

Simulations 

In order to evaluate the performance of the proposed method iECAT-RC related to the type I 

error rates and power, we carry out simulation studies under a series of scenarios. We generate the 

binary phenotypes with cases and controls from a logistic regression model:

0 1 2logit[ ( 1| , )] 0.5 0.5P Y G Z Z Gα β ε= = + + + +Z , where 1Z  is a continuous covariate 

generated from the standard normal distribution; 2Z  is a binary covariate taking values 0  and 1 

with the probability of 0.5 ; 0α  is chosen such that the disease prevalence is 0.05 ; G  is the 

genotype at a variant generated from a binomial distribution (2, )BIN MAF ; β  is the effect size 

of the variant; and ε  follows a standard normal distribution. MAF  is sampled from the empirical 

Mini-Exome genotype data provided by the GAW17, which includes 24,487  variants in 3205  

genes introduced in Sha et al [2]. 

To mimic the batch effect between internal and external control studies, we first define the 

differential variant size (DVS), that is the proportion of the variants subject to different MAFs 

between the internal and external control samples. For such variants, we set the MAFs of the external 

controls to be randomly generated based on the following two scenarios to mimic the level of batch 

effect: (1) Uniform(0.1 ,4 )q q  and (2) 2q , where q  is the MAF of the corresponding variants in 
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the internal sample. Subsequently, we consider different numbers of cases and controls in the internal 

sample and the number of controls in the external controls. We set the following three ratios between 

the internal cases, internal controls and external controls 1 0 0( : : )I I En n n : (1) 5000 : 5000 :10000 , (2) 

6667 : 3333 :10000 , and (3) 500 : 5000 :10000 . Thus, we consider a total of six models. Model 1: 

the ratio 1 0 0( : : )I I En n n  is 5000 : 5000 :10000  and MAF of the external sample is from 2q ; Model 

2: the ratio is 6667 : 3333 :10000 and MAF of external sample is from 2q ; Model 3: the ratio is 

500 : 5000 :10000  and MAF of external sample is from 2q ; Model 4: the ratio is

5000 : 5000 :10000  and MAF of external sample is from Uniform(0.1 ,4 )q q ; Model 5: the ratio 

is 6667 : 3333 :10000  and MAF of external sample is from Uniform(0.1 ,4 )q q ; and Model 6: the 

ratio is 500 : 5000 :10000  and MAF of external sample is from Uniform(0.1 ,4 )q q . 

We compare our proposed method, iECAT-RC, with other three approaches for a single-variant 

association test: iECAT-N based on the naïve integrating the internal and external control samples; 

Internal using only the internal sample; and iECAT-Score proposed by Li and Lee [20]. If the case-

control ratio of the combined sample is unbalanced or MAC is low (< 10 is used in the simulation 

studies), iECAT-RC, iECAT-N, and Internal use SPA or ER to obtain the corresponding p-values, 

respectively. 

To evaluate type I error rates, phenotypes are generated with 0β = . For each simulation, we 

generate 
55 10×  data sets and use different significance levels 0.05 , 0.01 , 

310−
, and 

410−
 for 

single-variant tests. To save computation time, we generate 
35 10×  genotypes, then resample the 

disease phenotypes of internal samples 100  times for each set, while keeping other data fixed in the 

type I error rate evaluation.  

To evaluate power, the effect size β  in Model 3 and Model 6 is set to be 

log(2),  log(2.4),  log(2.8),  and log(3.2) . The effect size β  for other models is set to be 

log(1.6),  log(1.8),  log(2.0),  and log(2.2) . We generate 
35 10×  data sets for each model to 

evaluate the empirical power at the significance level of 
85 10−× . 

Result 

Type I error rates 

To evaluate the Type I error rates, we simulate 
55 10×  data sets under the null hypothesis of 

no association. Table 1 and Table S1 provide a summary of the type I error rates of the four methods, 

iECAT-RC, iECAT-N, Internal, and iECAT-Score, at different significance levels under 

0.03,  and 0.5DVS = , respectively. From these two tables, we can see that iECAT-RC, Internal, 

and iECAT-Score control Type I error rates very well. However, the Type I error rates of iECAT-N 

are significantly inflated when the internal samples and external control samples are naively 

integrated without adjusting the batch effect. For instance, as shown in Table 1, the empirical Type I 

error rates of iECAT-N exceed the nominal significance level 
410α −=  by approximately 1000-fold 

when the internal and external samples are combined naively. Furthermore, we examine scenarios 

when the case, control, and external control ratio remains the same but the batch effect levels differ 

(Model 1 and Model 4). The performance of the four methods under Model 4 is consistent with those 

in Model 1. Under both models, the results show well-controlled Type I error rates across all methods 

except iECAT-N. Additionally, we consider scenarios with varying case, control, and external control 

ratio but the same batch effect level (Model 1-3). In these cases, iECAT-RC effectively controls the 

Type I error rates, even under extremely unbalanced case-control samples. 
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Table 1. Empirical Type I error rates of iECAT-RC, compared with other three methods iECAT-N, 

Internal, and iECAT-Score when DVS is 0.03 at different significance levels, 0.05 , 0.01 , 
310−

, and 
410−

. 

Model 
Significance 

level 
iECAT-RC iECAT-N Internal iECAT-Score 

Model 1 

0.05 0.0382 0.3956 0.0512 0.0482 

0.01 0.0057 0.3352 0.0102 0.0096 

0.001 3.00E-04 0.2771 0.001 0.001 

1E-04 1.00E-04 0.2429 1.00E-04 0 

Model 2 

0.05 0.0397 0.4163 0.0348 0.0394 

0.01 0.0078 0.3685 0.0087 0.0089 

0.001 9.00E-04 0.3263 4.00E-04 0.0013 

1E-04 1.00E-04 0.2919 0 2.00E-04 

Model 3 

0.05 0.0457 0.113 0.0136 0.0357 

0.01 0.0111 0.0628 0.004 0.0081 

0.001 6.00E-04 0.0345 5.00E-04 3.00E-04 

1E-04 0 0.0223 0 0 

Model 4 

0.05 0.0372 0.4269 0.0511 0.0475 

0.01 0.0065 0.3513 0.0105 0.0101 

0.001 4.00E-04 0.2804 9.00E-04 0.001 

1E-04 0 0.2359 3.00E-04 1.00E-04 

Model 5 

0.05 0.0494 0.457 0.0335 0.0446 

0.01 0.0107 0.3876 0.0079 0.0096 

0.001 0.0017 0.3244 9.00E-04 0.001 

1E-04 4.00E-04 0.2806 0 1.00E-04 

Model 6 

0.05 0.0467 0.1013 0.0133 0.0342 

0.01 0.011 0.0569 0.0042 0.007 

0.001 0.0012 0.0291 9.00E-04 7.00E-04 

1E-04 1.00E-04 0.0169 0 0 

Note: The bold-faced values indicate the type I error rates beyond the upbound of the corresponding 95% 

confidence interval. 

Power 

To evaluate the performance of our proposed method, we consider different batch effect levels, 

different values of DVS, and different values of 1 0 0: :I I En n n . We compare the power of the three 

methods iECAT-RC, Internal, and iECAT-Score at an empirical significance level 
85 10−× . iECAT-N 

is ignored in the power comparison since this method inflates type I error rates. Figure 1 shows the 

power comparison of these three tests (iECAT-RC, Internal, and iECAT-Score) for different values of 

1 0 0: :I I En n n  when DVS is 0.03. As shown in the figure, in the case of both balance (Model 1 and model 

4) and slightly unbalanced (Model 2 and Model 5) case control ratio in the internal samples, iECAT-

RC is more powerful than the other two tests; Internal is the least powerful one due to a smaller 

sample size compared with other two methods. For the extremely unbalanced internal case-control 

ratio (Model 3 and Model 6), these three methods have a similar power performance. This is 

reasonable because there is slight inflation in the p-value for the extremely unbalanced case-control 

ratio after calibrating the score test by SPA [18].  

Power comparison of the three tests for DVS = 0.5 is showed in Figure S1. The power patterns of 

the three methods are very similar between these two different DVS settings for Models 1, 2, 4, and 

5. iECAT-RC is more powerful than the other two methods, iECAT is the second powerful method, 

and Internal is the least powerful method. For models 3 and 6, similar to the pattern for DVS = 0.03, 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 December 2023                   doi:10.20944/preprints202312.1184.v1

https://doi.org/10.20944/preprints202312.1184.v1


 7 

 

iECAT-RC and Internal have similar power, but iECAT-Score has lower power than iECAT-RC and 

Internal.  

 

Figure 1. Power comparison of iECAT-RC, Internal, and iECAT-Score at the significance level 
85 10−×  and 0.03DVS = . The horizontal axis represents the odds ratio, and the vertical axis 

represents power. 

Application to the UK Biobank Data 

The UK Biobank dataset, which contains approximately 500,000  individuals with 784,256  

variants from across the United Kingdom, provides a prospective cohort study for discovering more 

genetic associations and the genetic bases of complex traits with deep genetic and phenotypic data 

[23–25]. In the UK Biobank dataset, genotypes are assayed using two genotyping calling procedures 

which are the Applied Biosystems UK BiLEVE Axiom Array (UKBL) and the UK Biobank Axiom 

Array (UKBB) [26,27]. However, the common practice of calling underlying genotypes and then 

treating the called values as known is prone to false positive findings, especially when genotyping 

errors are systematically different between cases and controls [28]. Therefore, we apply our proposed 

method to the real data from the UK Biobank based on two genotype calling procedures and consider 

genotype calling as the batch effect. The genotype quality control is performed by PLINK 1.9 

https://www.cog-genomics.org/plink/1.9/ with missing rate 5% , Hardy-Weinberg equilibrium exact 

test threshold 
610−

, and MAF greater than 5%  [29]. Then 288,647  variants are obtained after 

quality control. We consider the M72 Fibroblastic disorders as phenotype, and choose individuals 

from UKBL as internal data with 229  cases and UKBB with controls as the external data. The 

overlap variants in these two samples are used in real analysis. And the covariates age, sex, and the 

first 10  principal components are adjusted in the model. The descriptive statistics of subjects from 

internal and external studies are shown in Table 2. 
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Table 2. Descriptive statistics of subjects from UK Biobank for real analysis. 

Study 
Samples size 

Cases Controls Totals 

UKBL (Internal) 229 22,472 22,701 

UKBB (External)  297,068 297,068 

Total 229 318,540 319,769 

We apply iECAT-RC, Internal, and iECAT-Score to analyze M72 Fibroblastic disorders for two 

genotyping calling procedures in the UK Biobank. Four SNPs are detected to be associated with 

Fibroblastic disorders by all three methods at the significance level 
85 10−×  (Table 3 and Figure 2). 

iECAT-RC detect these three SNPs with smaller p-values. Among the four SNPs, SNP rs62228062 

locates in gene WNT7B. A recent transcriptome study identified WNT7B as amongst the most 

enriched transcripts in anterior capsule tissue in patients undergoing arthroscopic capsulotomy 

surgery for frozen shoulder (tissue disorder) suggesting WNT7B as a potential causal gene at the 

locus [30]. SNP rs2290221 on chromosome 7 is identified for association with Fibroblastic disorders, 

and shows the strongest association signal with a p-value of 
81.26 10−×  by iECAT-RC. This SNP is 

in the intronic of the genes secreted frizzled-related protein 4 (SFRP4) and ependymal related protein 

1 (zebrafish) (EPDR1). And it is detected to be associated with Dupuytren’s disease which has a large 

overlap with frozen shoulder-associated loci [31,32]. 

 

Figure 2. Manhattan plot for M72 Fibroblastic disorders based on iECAT-RC. The p-values are 

represented in genomic order by chromosome and position on the chromosome. The value on the y-

axis represents the −log10 of the p-value. This plot is based on 22,701 individuals from UKBL and 

297,068 individuals from UKBB. The genome-wide significance level is set at 
85 10−× . The most 

significant SNP in the experiment is rs62228062 in the WNT7B gene. 

Table 3. Significant SNPs identified by iECAT-RC, iECAT-Score, and Internal at significance level of  
85 10−× . 

Chromosome SNP Base Position Genes iECAT-RC iECAT-Score Internal 

7 rs2290221 37987632 SFRP4, EPDR1 1.26E-08 2.91E-08 1.86E-08 

22 rs9330811 46362396 WNT7B 1.65E-11 3.37E-11 3.00E-11 

22 rs62228062 46381234 WNT7B 6.04E-18 8.82E-18 6.04E-18 

22 rs28628653 46396925 LOC730668 1.54E-10 1.40E-10 1.54E-10 
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The Q-Q plot is used to assess the number and magnitude of observed associations between 

SNPs and the disease under study, compared to the association statistics expected under the null 

hypothesis of no association. The −log10 p-values calculated from each method are ranked in order 

from smallest to largest on the y-axis and plotted against the distribution that would be expected 

under the null hypothesis of no association on the x-axis. We test for association between the disease 

status of M72 Fibroblastic disorders and a SNP, adjusting for age, sex, and the first 10 principal 

components. The QQ plots from the tests integrating external control samples using the iECAT-RC 

method, Internal method, and iECAT-Score method are shown in Figure 3. We observe the similarity 

between the patterns of the three QQ plots, which are both close to the 45-degree line and show that 

all three methods can control Type I error rates well in this analysis. 

 

Figure 3. Quantile-quantile (QQ) plot of GWAS results based on iECAT-RC, Internal, and iECAT-

Score. QQ plots show the distribution of expected p-value under the null model versus observed p-

value in the -log10 scale. λ  indicates the genomic inflation factor. 

The case-control ratio of the combined samples has a significant impact on the performance of 

these three methods (iECAT-RC, Internal, and iECAT-Score), particularly in extremely unbalanced 

case-control studies, as observed in the simulation studies. Our method demonstrates increased 

statistical power when the case-control ratio is small. To assess the model's performance in real data 

analysis, we randomly select a subset from the real dataset while maintaining a value of 1 0 0: :I I En n n  

is 1:1: 2 . This allows us to compare the probabilities of detecting potentially significant SNPs using 

different methods. Specifically, we conduct 10,000  random samples, with each sample comprising 

229  internal cases, 229  internal controls, and 458  external controls. Then we implement 

different methods and the proportion of detected significant SNPs among the 10,000 samples is 

presented in Table S2. The proposed method, iECAT-RC, demonstrates a higher probability of 

detecting significant SNPs. For instance, the relative frequency of detecting SNP rs62228062 is 

95.3% , surpassing that of the other two methods. 

Discussion 

In case-control studies, it is cost-effective to boost statistical power by increasing the sample size 

of case-control study. However, integrating external controls without considering systematic 

differences (batch effect) between studies, such as the differences in sequencing platforms, genotype 

calling procedures, population stratification, and so forth, may lead to inflated Type I error rates.  In 

this paper, we propose an approach to integrate external control samples and allows for covariate 

adjustment. The proposed method, iECAT-RC, effectively addresses potential batch effects by 

calibrating bias using a regression model.  

Simulation studies revealed that iECAT-RC can control for Type I error rates very well and boost 

power in the presence of batch effect. Specifically, we consider different simulation scenarios, 

including varying the batch effect level, DVS, and case-control ratios. Comparing iECAT-RC with 

three referenced methods, Internal, iECAT-Score, and iECAT-N, we demonstrate that all other 
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methods could maintain Type I error rates except iECAT-N which naively combine internal and 

external samples without adjusting for the batch effects. Additionally, the simulation studies show 

that iECAT-RC has a higher power compared with other methods under different batch effect 

mechanisms.  

In the real data analysis, we apply iECAT-RC, Internal, and iECAT-Score to genetic data from 

approximately 500,000 individuals with 784,256 SNPs across the United Kingdom. These individuals 

are used to identify the association between SNPs and M72 Fibroblastic disorders, while considering 

the genotype calling as the batch effect. Although all of the three methods, iECAT-RC, Internal, and 

iECAT-Score, identify four SNPs that are significantly associated with the disease, our proposed 

method has a higher probability of detecting these disease-associated SNPs compared to the other 

two methods when the case-control ratio is 1:3.   

In conclusion, the proposed iECAT-RC method can integrate external control samples and at the 

same time, control type I error rate and boos statistical power. Through the linear regression 

calibration, we effectively reduce the batch effects arising from different platforms. Additionally, we 

employ SPA [18] and ER [19] methods to accurately calibrate p-values in scenarios of unbalanced 

case-control ratios and low MAFs. Our method provides a robust and effective improvement in score 

tests, ultimately contributing to a better understanding of the genetic architecture of complex 

diseases. 
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