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Abstract: Genome-wide association studies (GWAS) have successfully revealed many disease-associated
genetic variants. For a case-control study, the adequate power of an association test can be achieved with a
large sample size, although genotyping large samples is expensive. A cost-effective strategy to boost power is
to integrate external control samples with publicly available genotyped data. However, the naive integration
of external controls may inflate the type I error rates if ignoring the systematic differences (batch effect) between
studies, such as the differences in sequencing platforms, genotype calling procedures, population stratification,
and so forth. To account for the batch effect, we propose an approach by integrating External Controls into the
Association Test by Regression Calibration (iIECAT-RC) in case-control association studies. Extensive
simulation studies show that iECAT-RC not only can control type I error rates but also can boost statistical
power in all models. We also apply iECAT-RC to the UK Biobank data for M72 Fibroblastic disorders by
considering genotype calling as the batch effect. Four SNPs associated with Fibroblastic disorders have been
detected by iECAT-RC and the other two comparison methods. However, our method has a higher probability
of identifying these significant SNPs in the scenario of an unbalanced case-control association study.

Keywords: genome-wide association test; case-control study; batch effect; data integration

Introduction

Genome-wide association studies (GWAS) play a major role in associating specific genetic
variants with common diseases and complex traits [1-3]. Sometimes, researchers may have limited
access to individuals’ genetic information with specific traits and large-scale genetic studies can be
expensive and resource-intensive [4]. Thus, with a small sample size in GWAS, the association test
could have low power and may also increase the possibility of false-positive findings, especially for
infrequent variants (i.e., MAF <5%) [5,6].

The rapid development of sequencing technologies has promoted substantial advancement in
GWAS, particularly in obtaining comprehensive genetic information from limited samples [7,8]. The
integration of sequenced samples provides a great opportunity for identifying novel genetic
associations and increasing the statistical power of single-variant association tests [9]. Nevertheless,
the challenges associated with integrating sequenced samples arise from various factors, such as the
utilization of diverse sequencing platforms, variations in genotype calling procedures, the presence
of population stratification, and so forth [10]. In a single study, by incorporating sequenced samples
from other studies as an external control sample, the power of single-variant tests can be significantly
increased without incurring additional sequencing costs. However, the systematic differences (batch
effect) between studies could inflate the type I error rates and increase the possibility of false-positive
findings in association studies [11].

Several methods have been proposed recently to address the systematic differences between
genotyped data of internal and external sources using likelihood-based methods [12]. Liu and Leal
proposed a method SEQCHIP to correct bias for integrating genotype data in rare variant association
studies [13]. Derkach et al. proposed another method that substitutes the genotype calls by the
expected values given observed sequence data to account for differential read depths between studies
[14]. Motivated by Derkach et al., Chen and Lin proposed regression calibration (RC) methods to
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account for differential sequencing errors between cases and controls [15]. Although these methods
are powerful, computing genotype probabilities and storing sequence reads data can be challenging
and expensive for large-scale studies. Thus, ProxECAT incorporates external controls to estimate
enrichment of rare variants using allele counts in case-control analysis [16]. However, nonuse of the
internal control samples potentially limits the power of the association test. iECAT allowed the
incorporation of external controls in single variant association tests [11]. And the batch effect between
internal and external studies can be assessed by comparing odds ratio estimates of alleles using
internal control samples and combined control samples from internal and external studies. Then an
empirical Bayesian-type shrinkage estimator is constructed based on the degrees of odds ratios in the
single-variant test. And it is demonstrated that this method can control type I error rates, as well as
improve the power of the association test. However, this method cannot adjust for covariates such as
age, gender, and so on [11]. Based on the aforementioned method, Li and Lee proposed a novel score
based test, which constructs a shrinkage score statistic using exclusively internal samples and
external control samples, allowing for covariate adjustment [17]. However, the power increase of this
method in association testing by integrating external controls is limited for extremely unbalanced
case-control studies.

In this study, we present a novel approach that integrates External Controls into Association
Tests by Regression Calibration (iECAT-RC) to incorporate external control samples in case-control
association studies. The objective of this research is to boost the statistical power of the single-variant
association test by integrating external controls with the adjustment of batch effects. We propose an
approach that adjusts the genotypes of an external control sample to approximate the same
distribution as the genotypes in the internal control sample through regression calibration.
Furthermore, we apply the Saddlepoint approximation [18] and efficient resampling [19] methods to
control type I error rates with imbalanced case-control and low minor allele count (MAC) scenarios,
respectively.

Materials and Methods

Consider a phenotype with case and control states. We code a case as 0 and control as 1. Assume

that the internal study has the sample size n' with né controls and 7 cases and né +nl =n";
the external study has n(f controls. For the i" subject, let ¥, =0/1 be the dichotomous

phenotype. Denote G,,G,,..., Gné , Gnéﬂ’ Gn5+2""’ Gn, , and g>8r>&,p 3 the genotypes of the
internal control sample, the internal case sample, and the external control sample at a genetic variant,

respectively, with indicating the number of copies of the minor allele carried by the subject at that

genetic variant. We denote Xl] be the first p principal components of internal genotypes, and

Xf be the first p principal components of external genotypes for the i" subject.

Motivated by the novel method iECAT-Score [20], we propose a new method by integrating
external controls into association tests to boost the statistical power. Our proposed method involves
three steps. Step 1. adjusting the genotypes of external controls using regression calibration; Step 2.
conducting single-variant association test; and Step 3. calibrating single-variant test using
Saddlepoint approximation (SPA) [18] and efficient resampling (ER) methods [19], particular
addressing scenarios of case-control imbalance and low minor allele count (MAC). By following these
three steps, the iECAT-RC method effectively minimizes the impact of batch effects and improves the
power of association testing.

Step 1. adjusting the genotypes of external controls by regression calibration

To adjust the genotype of external control samples for the batch effect, we propose to use the
following procedure:

1). Without loss generality, we assume n(f 2 né . We randomly choose né individuals
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with genotypes gy,,...,&, , from external control samples.
0
2). We assume a linear regression model Gl.=ﬂ(§k)+ (k)gkl+a(k)X1+a(k)XE for

i= 1,...,né ,  where B(k) —(,B(k) l(k) A(k) A(k) is the least square estimate of
k k k) (k) (k
() (ﬂ()’ 1()#‘(1),0‘(5)) ]
3). We repeat 1) and 2) K times. We obtain B(l),...,B(K) and calculate the average value
K
B=(8,,0,4,a,) :ZB(k) /K. Let G, =p,+pg, +0,X +a,X’ for i=1,...,n . When

k=1

e <a,,welet G . take 0, where @, is determined such that the frequency of 0 in the internal

. . 1
control genotypes equals to the frequency of 0in G , for i=1,...,n,. When q, <G, <a,, we
let G, take 1, where @, is determined such that the frequency of 1 in the internal control

genotypes equals to the frequency of 1in G, = for i= 1,...,n, . When G, >a,welet G,
take 2.
We repeat the above procedure till we obtain Gn,ﬂ for i= 1,...,n§ . Then we perform the

association test based on the internal case-control data and external control data with genotypes

GGGy Gy Gy GGy G

s
0+1

Step 2. Single-variant association test

We combine the internal samples and external control samples with the adjusted genotypes.
G =(G,,G,,...,G,)" is the vector of genotypes at a variant for 7 subjects, where n=n' +n".

Assume that there are p covariates, then we relate the phenotype Y, to the covariate Z,, and

genotype G, using the logistic regression model logit[P(Y; =1|Z,,G,)]=Z a+G,3, where the
phenotype Y, follows a Bernoulli distribution. In this equation, @ isa pX1 vector of coefficients
for p covariates including the intercept, and [ is the genotype effect at the variant. Assessing
whether the association exists between the phenotype and the genotype at a variant is equivalent to
testing H,:[=0.

Let p={u,}={P(Y,=1|Z,)} and [, be the maximum-likelihood estimate of (4 under
H, . In the score test, the score is given by §= G"(Y-fi) . where Y= ,...Y)"
G= {GI} =G-Z(Z'VZ)'Z'VG is the covariate adjusted genotype vector and
V =diag{ft,(1-f1)} [2]. Under the null hypothesis of no genetic effect, E(S)=0 and

Var(S) = ZGZ f.(1—fL) . Then the score test statistic Ty =S>/Var(S) asymptotically

Score

follows the chl—square distribution with 1 degree of freedom, and the p-value can be obtained as

p:P(Z]2 > S? /Var(S)).

Step 3. Calibrating single-variant test using SPA and ER methods

The single-variant score test approximates the null hypothesis by normal distribution. The
variance estimates based on such asymptotic test behaves well for common variants and balanced
case-control studies. When allele frequency is extremely low resulting from low MAC, or when the
case-control ratio is unbalanced, the underlying distribution of test statistic could be highly skewed.
In such cases, the traditional asymptotic-based score test performs poorly with conservative or
anticonservative results [21,22].
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To account for scenarios of unbalanced case-control ratio, we apply the SPA method to obtain
the p-value when the score estimates lie far from mean zero [18]. When the MAC is low (MAC <10
) either in the internal sample, combining sample, or external sample, we apply the ER method to
obtain the p-values [19].

1). SPA method

SPA is an improvement over the normal approximation which only uses the mean and variance
to approximate the underlying distribution. SPA uses the entire cumulant-generating function (CGF).

n
Given the score test statistic § :ZGi(Yi —/[) , the estimation of the CGF of § is
i=1

K(t) =log(E, ()= Z log(1- 4, + ,[ll.eé"’) — tz Gi [, . According to the SPA method, the
i=1 i=l
distribution of § can be estimated by

Pr(S<s)=F(s)=® {w+llog(1)}
w w

b

where w=sgn(f)\]2(is— K (7)), v=1JK"(t), K'(t) and K"(¢) are the estimations of

the first- and second-order derivatives of K, f is the solution to the equation K'(f)=s,and ®

is the distribution of a standard normal distribution. The p-value can be obtained using the R package
SPAtest.

1). ER method

ER method is used for rare variant association test with binary trait. Given phenotypes Y,
genotypes G, and covariates Z, the p-value of ER method is defined as

PrQ20|Y,G,X)=> PQ20|D=d,Y,G,Z)P(D=d|Y,G,Z)
d=0

where () is the score test statistic from the original phenotype, m is the number of

individuals with minor alleles, and D is the number of cases among m individuals carrying a
minor allele. The p-value can be obtained using the R package SKAT.

Simulations

In order to evaluate the performance of the proposed method iECAT-RC related to the type I
error rates and power, we carry out simulation studies under a series of scenarios. We generate the
binary phenotypes with cases and controls from a logistic regression model:

logit[P(Y =1|Z,G)]=0, +0.5Z,+0.5Z, + fG+€ , where Z, is a continuous covariate
generated from the standard normal distribution; Z, is a binary covariate taking values 0 and 1
with the probability of 0.5; ¢, is chosen such that the disease prevalence is 0.05; G is the
genotype at a variant generated from a binomial distribution BIN(2, MAF'); [ is the effect size
of the variant; and £ follows a standard normal distribution. MAF' is sampled from the empirical

Mini-Exome genotype data provided by the GAW17, which includes 24,487 variants in 3205

genes introduced in Sha et al [2].

To mimic the batch effect between internal and external control studies, we first define the
differential variant size (DVS), that is the proportion of the variants subject to different MAFs
between the internal and external control samples. For such variants, we set the MAFs of the external
controls to be randomly generated based on the following two scenarios to mimic the level of batch
effect: (1) Uniform(0.1¢,4g) and (2) 2q, where g is the MAF of the corresponding variants in

doi:10.20944/preprints202312.1184.v1
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the internal sample. Subsequently, we consider different numbers of cases and controls in the internal
sample and the number of controls in the external controls. We set the following three ratios between

the internal cases, internal controls and external controls (n : 1, :ny): (1) 5000:5000:10000, (2)
6667 :3333:10000, and (3) 500:5000:10000 . Thus, we consider a total of six models. Model 1:
the ratio (n11 :né :nOE ) is 5000:5000:10000 and MAF of the external sample is from 2¢g ; Model
2: the ratio is 6667 :3333:10000 and MAF of external sample is from 2¢; Model 3: the ratio is
500:5000:10000 and MAF of external sample is from 2g ; Model 4: the ratio is
5000:5000:10000 and MAF of external sample is from Uniform(0.1¢,4q); Model 5: the ratio
is 6667:3333:10000 and MAF of external sample is from Uniform(0.1¢g,4¢) ; and Model 6: the
ratiois 500:5000:10000 and MAF of external sample is from Uniform(0.1g,4q) .

We compare our proposed method, iECAT-RC, with other three approaches for a single-variant
association test: iECAT-N based on the naive integrating the internal and external control samples;
Internal using only the internal sample; and iECAT-Score proposed by Li and Lee [20]. If the case-
control ratio of the combined sample is unbalanced or MAC is low (< 10 is used in the simulation
studies), iECAT-RC, iECAT-N, and Internal use SPA or ER to obtain the corresponding p-values,
respectively.

To evaluate type I error rates, phenotypes are generated with / = 0. For each simulation, we

generate 5x10° data sets and use different significance levels 0.05, 0.01, 107, and 10" for

single-variant tests. To save computation time, we generate 5x10° genotypes, then resample the
disease phenotypes of internal samples 100 times for each set, while keeping other data fixed in the
type I error rate evaluation.

To evaluate power, the effect size B in Model 3 and Model 6 is set to be

log(2), log(2.4), log(2.8), and 1log(3.2) . The effect size [ for other models is set to be
log(1.6), log(1.8), log(2.0), and log(2.2) . We generate 5x10° data sets for each model to

evaluate the empirical power at the significance level of 5x107°.
Result

Type I error rates

To evaluate the Type I error rates, we simulate 5%10° data sets under the null hypothesis of
no association. Table 1 and Table S1 provide a summary of the type I error rates of the four methods,
iECAT-RC, iECAT-N, Internal, and iECAT-Score, at different significance levels under
DVS =0.03, and 0.5, respectively. From these two tables, we can see that iECAT-RC, Internal,

and iECAT-Score control Type I error rates very well. However, the Type I error rates of iECAT-N
are significantly inflated when the internal samples and external control samples are naively
integrated without adjusting the batch effect. For instance, as shown in Table 1, the empirical Type I

error rates of iECAT-N exceed the nominal significance level & = 107 by approximately 1000-fold
when the internal and external samples are combined naively. Furthermore, we examine scenarios
when the case, control, and external control ratio remains the same but the batch effect levels differ
(Model 1 and Model 4). The performance of the four methods under Model 4 is consistent with those
in Model 1. Under both models, the results show well-controlled Type I error rates across all methods
except iECAT-N. Additionally, we consider scenarios with varying case, control, and external control
ratio but the same batch effect level (Model 1-3). In these cases, iECAT-RC effectively controls the
Type I error rates, even under extremely unbalanced case-control samples.
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Table 1. Empirical Type I error rates of iECAT-RC, compared with other three methods iECAT-N,
Internal, and iECAT-Score when DVSis 0.03 at different significance levels, 0.05, 0.01, 10_3 ,and
107,

Model S‘grl‘:f‘:f““ iECAT-RC iECAT-N Internal  iECAT-Score
0.05 0.0382 0.3956 0.0512 0.0482
Model 1 0.01 0.0057 0.3352 0.0102 0.0096
0.001 3.00E-04 0.2771 0.001 0.001
1E-04 1.00E-04 0.2429 1.00B-04 0
0.05 0.0397 0.4163 0.0348 0.0394
Model 2 0.01 0.0078 0.3685 0.0087 0.0089
0.001 9.00E-04 0.3263 4.00E-04 0.0013
1E-04 1.00B-04 0.2919 0 2.00E-04
0.05 0.0457 0.113 0.0136 0.0357
Model 3 0.01 0.0111 0.0628 0.004 0.0081
0.001 6.00E-04 0.0345 5.00E-04 3.00E-04
1E-04 0 0.0223 0 0
0.05 0.0372 0.4269 0.0511 0.0475
Model 4 0.01 0.0065 0.3513 0.0105 0.0101
0.001 4.00E-04 0.2804 9.00E-04 0.001
1E-04 0 0.2359 3.00E-04 1.00E-04
0.05 0.0494 0.457 0.0335 0.0446
Model 5 0.01 0.0107 0.3876 0.0079 0.0096
0.001 0.0017 0.3244 9.00E-04 0.001
1E-04 4.00E-04 0.2806 0 1.00E-04
0.05 0.0467 0.1013 0.0133 0.0342
Model 6 0.01 0.011 0.0569 0.0042 0.007
0.001 0.0012 0.0291 9.00E-04 7.00E-04
1E-04 1.00E-04 0.0169 0 0

Note: The bold-faced values indicate the type I error rates beyond the upbound of the corresponding 95%
confidence interval.

Power

To evaluate the performance of our proposed method, we consider different batch effect levels,

different values of DVS, and different values of nll :né :nOE . We compare the power of the three

methods iECAT-RC, Internal, and iECAT-Score at an empirical significance level 5x10™ . iECAT-N
is ignored in the power comparison since this method inflates type I error rates. Figure 1 shows the
power comparison of these three tests (ECAT-RC, Internal, and iECAT-Score) for different values of

nll : né : nOE when DVSis 0.03. As shown in the figure, in the case of both balance (Model 1 and model

4) and slightly unbalanced (Model 2 and Model 5) case control ratio in the internal samples, iECAT-
RC is more powerful than the other two tests; Internal is the least powerful one due to a smaller
sample size compared with other two methods. For the extremely unbalanced internal case-control
ratio (Model 3 and Model 6), these three methods have a similar power performance. This is
reasonable because there is slight inflation in the p-value for the extremely unbalanced case-control
ratio after calibrating the score test by SPA [18].

Power comparison of the three tests for DVS = 0.5 is showed in Figure S1. The power patterns of
the three methods are very similar between these two different DVS settings for Models 1, 2, 4, and
5.iECAT-RC is more powerful than the other two methods, iECAT is the second powerful method,
and Internal is the least powerful method. For models 3 and 6, similar to the pattern for DVS = 0.03,

doi:10.20944/preprints202312.1184.v1
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iECAT-RC and Internal have similar power, but iECAT-Score has lower power than iECAT-RC and

Internal.

Model 1 Model 2 Model 3
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Figure 1. Power comparison of iECAT-RC, Internal, and iECAT-Score at the significance level

5)(10_8 and DVS =0.03 . The horizontal axis represents the odds ratio, and the vertical axis
represents power.

Application to the UK Biobank Data

The UK Biobank dataset, which contains approximately 500,000 individuals with 784,256

variants from across the United Kingdom, provides a prospective cohort study for discovering more
genetic associations and the genetic bases of complex traits with deep genetic and phenotypic data
[23-25]. In the UK Biobank dataset, genotypes are assayed using two genotyping calling procedures
which are the Applied Biosystems UK BiLEVE Axiom Array (UKBL) and the UK Biobank Axiom
Array (UKBB) [26,27]. However, the common practice of calling underlying genotypes and then
treating the called values as known is prone to false positive findings, especially when genotyping
errors are systematically different between cases and controls [28]. Therefore, we apply our proposed
method to the real data from the UK Biobank based on two genotype calling procedures and consider
genotype calling as the batch effect. The genotype quality control is performed by PLINK 1.9
https://www.cog-genomics.org/plink/1.9/ with missing rate 5%, Hardy-Weinberg equilibrium exact
test threshold 107, and MAF greater than 5% [29]. Then 288,647 variants are obtained after
quality control. We consider the M72 Fibroblastic disorders as phenotype, and choose individuals
from UKBL as internal data with 229 cases and UKBB with controls as the external data. The
overlap variants in these two samples are used in real analysis. And the covariates age, sex, and the
first 10 principal components are adjusted in the model. The descriptive statistics of subjects from
internal and external studies are shown in Table 2.
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Table 2. Descriptive statistics of subjects from UK Biobank for real analysis.

Samples size

Study Cases Controls Totals
UKBL (Internal) 229 22,472 22,701
UKBB (External) 297,068 297,068

Total 229 318,540 319,769

We apply iECAT-RC, Internal, and iECAT-Score to analyze M72 Fibroblastic disorders for two
genotyping calling procedures in the UK Biobank. Four SNPs are detected to be associated with

Fibroblastic disorders by all three methods at the significance level 5x107° (Table 3 and Figure 2).
iECAT-RC detect these three SNPs with smaller p-values. Among the four SNPs, SNP rs62228062
locates in gene WNT7B. A recent transcriptome study identified WNT7B as amongst the most
enriched transcripts in anterior capsule tissue in patients undergoing arthroscopic capsulotomy
surgery for frozen shoulder (tissue disorder) suggesting WNT7B as a potential causal gene at the
locus [30]. SNP rs2290221 on chromosome 7 is identified for association with Fibroblastic disorders,

and shows the strongest association signal with a p-value of 1.26X10™° by iECAT-RC. This SNP is
in the intronic of the genes secreted frizzled-related protein 4 (SFRP4) and ependymal related protein
1 (zebrafish) (EPDR1). And it is detected to be associated with Dupuytren’s disease which has a large
overlap with frozen shoulder-associated loci [31,32].

Manhattan plot for iECAT-RC

14 4 1562228062
12
159330811
10 1528628653
—_
< 8+ 152290221
=)
o
= 159626908
6 1528520003
. .
.
4 —
5 -

Chromosome

Figure 2. Manhattan plot for M72 Fibroblastic disorders based on iECAT-RC. The p-values are
represented in genomic order by chromosome and position on the chromosome. The value on the y-
axis represents the —log10 of the p-value. This plot is based on 22,701 individuals from UKBL and

297,068 individuals from UKBB. The genome-wide significance level is set at 5%107*. The most
significant SNP in the experiment is rs62228062 in the WNT7B gene.

Table 3. Significant SNPs identified by iECAT-RC, iECAT-Score, and Internal at significance level of

5%107%.
Chromosome SNP Base Position Genes iECAT-RC iECAT-Score Internal
7 rs2290221 37987632 SFRP4, EPDR1 1.26E-08 2.91E-08 1.86E-08
22 rs9330811 46362396 WNT7B 1.65E-11 3.37E-11 3.00E-11
22 1s62228062 46381234 WNT7B 6.04E-18 8.82E-18 6.04E-18

22 1528628653 46396925 LOC730668 1.54E-10 1.40E-10 1.54E-10
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The Q-Q plot is used to assess the number and magnitude of observed associations between
SNPs and the disease under study, compared to the association statistics expected under the null
hypothesis of no association. The —log10 p-values calculated from each method are ranked in order
from smallest to largest on the y-axis and plotted against the distribution that would be expected
under the null hypothesis of no association on the x-axis. We test for association between the disease
status of M72 Fibroblastic disorders and a SNP, adjusting for age, sex, and the first 10 principal
components. The QQ plots from the tests integrating external control samples using the iECAT-RC
method, Internal method, and iECAT-Score method are shown in Figure 3. We observe the similarity
between the patterns of the three QQ plots, which are both close to the 45-degree line and show that
all three methods can control Type I error rates well in this analysis.

A iECAT-RC B Internal C  iECAT-Score
A=1.12 . A=1.25 . A=1.17

Observed -logqoP
13
Observed -logqoP
3,
Observed -logyoP
13

0 2 4 6 0 2 4 6 0 2 4 6
Expected -logoP Expected -log;oP Expected -log;oP

Figure 3. Quantile-quantile (QQ) plot of GWAS results based on iECAT-RC, Internal, and iECAT-
Score. QQ plots show the distribution of expected p-value under the null model versus observed p-
value in the -log10 scale. A indicates the genomic inflation factor.

The case-control ratio of the combined samples has a significant impact on the performance of
these three methods (iIECAT-RC, Internal, and iECAT-Score), particularly in extremely unbalanced
case-control studies, as observed in the simulation studies. Our method demonstrates increased
statistical power when the case-control ratio is small. To assess the model's performance in real data

analysis, we randomly select a subset from the real dataset while maintaining a value of nll : né : nf

is 1:1:2. This allows us to compare the probabilities of detecting potentially significant SNPs using
different methods. Specifically, we conduct 10,000 random samples, with each sample comprising

229 internal cases, 229 internal controls, and 458 external controls. Then we implement
different methods and the proportion of detected significant SNPs among the 10,000 samples is
presented in Table S2. The proposed method, iECAT-RC, demonstrates a higher probability of
detecting significant SNPs. For instance, the relative frequency of detecting SNP rs62228062 is
95.3%, surpassing that of the other two methods.

Discussion

In case-control studies, it is cost-effective to boost statistical power by increasing the sample size
of case-control study. However, integrating external controls without considering systematic
differences (batch effect) between studies, such as the differences in sequencing platforms, genotype
calling procedures, population stratification, and so forth, may lead to inflated Type I error rates. In
this paper, we propose an approach to integrate external control samples and allows for covariate
adjustment. The proposed method, iECAT-RC, effectively addresses potential batch effects by
calibrating bias using a regression model.

Simulation studies revealed that iECAT-RC can control for Type I error rates very well and boost
power in the presence of batch effect. Specifically, we consider different simulation scenarios,
including varying the batch effect level, DVS, and case-control ratios. Comparing iECAT-RC with
three referenced methods, Internal, iECAT-Score, and iECAT-N, we demonstrate that all other
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methods could maintain Type I error rates except iECAT-N which naively combine internal and
external samples without adjusting for the batch effects. Additionally, the simulation studies show
that iECAT-RC has a higher power compared with other methods under different batch effect
mechanisms.

In the real data analysis, we apply iECAT-RC, Internal, and iECAT-Score to genetic data from
approximately 500,000 individuals with 784,256 SNPs across the United Kingdom. These individuals
are used to identify the association between SNPs and M72 Fibroblastic disorders, while considering
the genotype calling as the batch effect. Although all of the three methods, iECAT-RC, Internal, and
iECAT-Score, identify four SNPs that are significantly associated with the disease, our proposed
method has a higher probability of detecting these disease-associated SNPs compared to the other
two methods when the case-control ratio is 1:3.

In conclusion, the proposed iECAT-RC method can integrate external control samples and at the
same time, control type I error rate and boos statistical power. Through the linear regression
calibration, we effectively reduce the batch effects arising from different platforms. Additionally, we
employ SPA [18] and ER [19] methods to accurately calibrate p-values in scenarios of unbalanced
case-control ratios and low MAFs. Our method provides a robust and effective improvement in score
tests, ultimately contributing to a better understanding of the genetic architecture of complex
diseases.
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