Pre prints.org

Article Not peer-reviewed version

Fractional Order Mathematical
Modelling of HFMD Transmission via
Caputo Derivative

Aakash Mohandoss , Gunasundari Chandrasekar ~, Mutum Zico Meetei ~, Ahmed H. Msmali

Posted Date: 15 December 2023

doi: 10.20944/preprints202312.1175.v1

Keywords: mathematical model; fractional dynamical system; stability; fractional euler’'s method

E Preprints.org is a free multidiscipline platform providing preprint service that
Ff is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
E-r-lr Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.



https://sciprofiles.com/profile/3308497
https://sciprofiles.com/profile/3306537
https://sciprofiles.com/profile/1048837
https://sciprofiles.com/profile/2532713

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 December 2023 doi:10.20944/preprints202312.1175.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Fractional Order Mathematical Modelling of HFMD
Transmission via Caputo Derivative

Aakash Mohandoss 1, Gunasundari Chandrasekar >*{), Mutum Zico Meetei 3*
and Ahmed H. Msmali 34

1 Department of Mathematics, SRM Institute of Science and Technology, Kattankulathur- 603203, Tamil Nadu,
India; am4241@srmist.edu.in

Department of Mathematics, Anna University, Chennai- 600025, Tamil Nadu, India;
gunasundari@annauniv.edu

Department of Mathematics, College of Science, Jazan University, P.O. Box 114, Jazan- 45142, Kingdom of
Saudi Arabia; mmeetei@jazanu.edu.sa

School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, NSW-2522, Australia;
amsmali@jazanu.edu.sa

*  Correspondence: gunasundari@annauniv.edu (G.C.); mmeetei@jazanu.edu.sa (M.Z.M.)

Abstract: In this paper, we propose to explore a nonlinear fractional mathematical model of HFMD-
Hand Foot Mouth Disease with vaccinated compartment. Firstly, we prove the non negativity and
boundedness for the fractional order dynamical model. The system’s existence and uniqueness are
studied using the formulation of the Caputo derivative operator. The fixed-point approach was used
to get results indicating the presence of at least one solution. In numerical simulation, we obtained
the approximate solution by using fractional Euler method.
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1. Introduction

Mathematical modeling involves using equations or algorithms to represent real-world systems
across various disciplines such as physics, engineering, biology, economics, and social sciences. These
models serve to comprehend, evaluate, and predict system behavior, playing a vital role in scientific
research, engineering design, and decision-making. Mathematical modeling allows the study and
control of systems in ways often impractical or costly in real-world experiments. The process typically
includes problem formulation, model construction, parameter estimation, model validation, and
model analysis. Proficiency in both system understanding and mathematics is crucial for creating
and solving these equations. Validation and verification of models are essential before using them
for predictions or decision-making. This interdisciplinary field combines mathematical concepts with
domain-specific knowledge, providing insightful analyses of complex phenomena. Mathematical
modeling is indispensable for advancing scientific understanding, addressing real-world issues, and
making well-informed decisions. Researchers, engineers, and decision-makers leverage mathematical
modeling to gain knowledge, predict outcomes, and optimize systems, contributing significantly to
various fields [1-4].

The viral illness known as hand, foot, and mouth disease (HFMD) predominantly affects children
under the age of ten and occasionally even adults. There are several enterovirus types that cause it, but
Coxsackievirus A16 and Enterovirus 71 are the most frequent ones. The manifestation of diminutive
and distressing blisters or ulcers on the hands, feet, and oral cavity, coupled with other indicators like
fever and rash, typically points to the likelihood of Hand, Foot, and Mouth Disease (HFMD). It is
highly contagious and spreads through close contact with infected individuals, contaminated surfaces,
or respiratory droplets from coughs and sneezes. It is most commonly found in crowded places such
as day care centres, schools, and playgrounds, and outbreaks often occur in communities, especially
during the warmer months. The symptoms of HFMD usually start with fever, sore throat, and a general
feeling of malaise. Within a day or two, small blisters will develop in the hands, feet and mouth.
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These blisters may be painful and can sometimes become ulcers. Other symptoms may include loss of
appetite, headache, and in some cases, a skin rash. Although HFMD is often a temporary disease that
cure by itself within seven to ten days, it can cause discomfort and sometimes complications, especially
in severe cases. Complications can include viral meningitis, encephalitis (inflammation of the brain),
and in rare cases, more serious neurological complications. Treatment for HFMD is usually supportive,
focusing on relieving symptoms such as fever and discomfort. To manage discomfort and lower fever,
over-the-counter pain medicines such as acetaminophen or ibuprofen may be used, and maintaining
excellent hygiene habits, such as frequent handwashing and avoiding close contact with sick persons,
is essential for preventing the virus’s spread. The important prevention is to maintain good oral
hygiene and minimising contact with ill peoples. Vaccines for HFMD are not widely available, but
some countries have developed vaccines against Enterovirus 71, which is one of the common causes of
severe HFMD cases. Some recent research are presented in [5-7].

Fractional differential equations (FDEs) are differential equations that incorporate non-integer
order derivatives. This permit the use of fractional orders, which can be any real or complex number,
in contrast to ordinary differential equations (ODEs), where the order of the derivatives is always a
positive integer [8]. When a system’s behaviour depends on the fractional derivatives of its variables,
FDEs are an effective mathematical tool for describing a wide range of physical, biological, and
engineering phenomena. In 18th and 19th centuries, mathematicians especially Leibniz and Riemann
established the concept of fractional calculus, that is associated with non-integer order derivatives
and integrals. However, because of its applications in numerous disciplines, including physics,
engineering, finance, and biology, it has recently attracted new interest. Among other complex
phenomena, FDEs have been used to model and examine viscoelastic materials, diffusion in fractal
media, electrochemical processes, and biological systems. Most of the models stated above are integer
order models, however they are unable to depict real life difficulties because there is no non-locality
impact in local differentiation. Mathematicians thus developed the idea of differentiation with non-local
operators to address this issue. The memory effect of fractional calculus has been demonstrated to
produce more accurate results when predicting physical systems, including mathematical models
[9]. In order to solve systems of differential equations of both integer and non-integer orders
resulting from real life issues, such as applications related to integrodifferential equations, [10,11],
mathematical epidemiology [12,13], economic and financial [14,15], new discoveries have resulted
from advances in constructing new fractional order operators, especially Caputo, Atangana-Baleanu
and Caputo-Fabrizio. Most researchers are optimistic on the fractional-order differential equation,
especially in biological modelling [16]. A unique interpretation of the fractional operator without a
single kernel was proposed by Caputo and Fabrizio [17]. In this paper, we choose Hand foot mouth
disease as our social problem and formulated a five compartmental nonlinear mathematical model.
Further, we extend the nonlinear ODE model into fractional order model by using Caputo derivative.

An overview of our article is provided below. In Section 2, the fractional order model was
formulated, followed by some essential preliminaries in Section 3. In Section 4, we addressed
the system’s positivity and boundedness. Section 5 discusses the suggested model’s existence and
uniqueness, followed by the qualitative analysis in Section 6. The 7th section explains how to use the
modified Euler’s approach to get the general solution to the suggested system. In Section 8, a brief
summary was presented.

2. Model Formulation

We consider a SVEIR, five compartment HFMD model. The basic structure of the model
comprises distinct population groups, including those that are susceptible, vaccinated, exposed,
infected and recovered. In this case, we presume that not all vaccinated persons are immune to this
virus, and that some may be exposed to it. We also believe that persons who have recovered from
HEFMD do not have a lifetime immunity to the condition. As a result, we believe that recovered people
are susceptible at a rate of xg, and that after recovery, some people will take vaccination and therefore
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enter the vaccinated compartment at a rate of #1. As a result of the aforesaid assumptions, a basic
nonlinear mathematical model was developed in [21]. That is,

d
d—f =A—061S] —6SE — uS —z5+ R,
‘%/ = 25— 83VI— 6 VE — uV + R,
%’f = 6,ST + 8,SE + 83VI + 6,VE — yE — iE, @
dl
5 —ME—l—pl—ml,
R
% :rﬂfyR—txoRfaclR.

It is vital to investigate viral disease mathematical models in order to have a deeper comprehension of
their assessment, presence, stability, and control. Because typical mathematical models do not provide
a great level of precision in describing these diseases, FDE which have many uses in practical domains,
were designed to manage such situations. So, here ODE model for HFMD in [21] was extended to the
fractional order model by using the Caputo derivative.

CDY[S(t)] = A — 6;ST — 6,SE — uS — 25 + agR,

DYV (t)] = 28 — 83V — 5 VE — uV + m; R,

CDY[E(t)] = 6,SI 4 6,SE + 83VI + 6,VE — yE — uE, )
“DEI(1)] = nE — I — pl =,

“D¥[R(t)] = yI — R — agR — a;; R.

Here, 0 < « <1and S(0) = Sp, V(0) = Vy, E(0) = Ep, I(0) = Iy and R(0) = Ry are the initial conditions.
Table 1 contains a description of the model (2) parameters.

Table 1. Overview of the Parameters.

Parameter Description

A Rate of recruitment.

& Rate of transmission from I to S.

Oy Rate of transmission from E to S.

O3 Rate of transmission from infected to vaccinated.
04 Rate of transmission from exposed to vaccinated.
H Natural death rate

a1 Transmission from recovered to vaccinated.

7 Rate of progression from exposed to infected.

0% Rate of recovery.

U Death due to HFMD disease.

X0 Rate from recovered to susceptible.

z Rate of vaccination.

3. Preliminaries

In this, we present the essential definitions of fractional calculus within the context of Caputo
significance.

Definition 3.1. Consider a function y € C™, then D} in (m-1,m) where m € N is provided by,

D) = gy (=9 Vg

Here, D% (g(t)) — ¢'(t) as a tends to 1.
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Definition 3.2. For « > 0, the corresponding integral of ¢ : RT — R is expressed as follows,

I (g(t) = r(l) [0 Dg(5)as,

where, 0 < a < 1,t> 0.

4. Positivity and Boundedness

Here we demonstrate the system’s boundedness and non-negative solutions of (2).
Theorem 4.1. Every solution of (2) are non negative and bounded.

Proof. By using the same approach from [18], We define %{ = ‘fi—f + ‘fi—‘t/ + ‘fi—f + % + ‘;—If. Also let
consider > 0.

CDE[N(H)] 4+ uN(t) = A — 6,SI — 5,SE — uS — 28 + agR + 28 — 63VI — 6,VE — uV + a1 R
+01S1 4+ 62SE+63VI+ 04VE —E — yE +4yE — vl — ul — upl
+9l —uR —aogR — a1 R+ uS+puV + uE + ul + uR

=A—ml
<A

By using standard comparison theorem [19] for (2), we get,

N(t) < N(O)Eq (=p(8)*) + A(H)*Eg a1 (—p(£))

where the Mittag Leffler function is represented by E,. As stated by [19], we have
A
N() < =t >
K
Hence, all solutions of equation (2) are restricted to the domain (),
5 A
Q={(SV,EILR) e RYIN(t) < m +€o, forany ey > 0}. 3)

Now, we show the solutions of (2) are positive. From first equation of (2), we have,

CDE[S(t)] = A — 6,;SI — 8,SE — S — 28 + agR
> —[6 I+ &HE+p+2|S

v

A
*[((51 +(52); +]/l+2]5

v

—d4S.
where dy = (61 + 52)% +u+z.
As per the traditional comparison theorem [19] and the non negativity of Mitag Leffler function, we

have, E,1(t) > 0 forany a € (0,1),

S > S(0)Eq1(—d1t*) = S >0.
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From (2), we get

DYV ()] = 28 — 83VI — 6, VE — uV + a1 R

—[531 + 04E + ]/l]V

Y

Y

—[(%3 +54)§ +ulv

WY

—dy V.

where dy = (63 + 54)% + .
Therefore,

V > V(0)Ey1(—dat") = V >0.
For third equation of (2), we get

CDYE(t)] = 61SI + 82SE + 63V + 8, VE — yE — uE
> —[=0,8 — 8,V + 1+ ulE

5A A
Z—[—27—47+17+]4]E

Heredgz—@TA—%—i-n—i—y.

. E>E(0)Ey1(—dst") = E>0.
For fourth equation of (2), we get

“DEI(H)] = nE — yI — ul — uy1
> —[y+p+mll
> —d,I.
where dy = v+ u + 1.
1> I(0)Eyq(—dgt®) = 1>0.

For fifth equation of (2), we get

“DF[R(+)] = I — pR — &R — a1 R
> —[p+ao+aq]l
> _dsR.

where ds = p + ag + «5.
Therefore,

R > R(O)Elxll(—d5ta) — R >0.

Thus, the solutions of (2) are positive. [
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5. Existence and Uniqueness

In this, we established the formulated fractional order system’s existence and uniqueness. The
following equations were found after utilising the equation (2).

S(t) = S(0) 4 CI§S(t){A — 6,SI — 6,SE — uS — zS + agR},
V(t) = V(O) +CI8V (£){zS — 83V — 64VE — uV + a1 R},

E(0) + CISE(t){6,SI + 6,SE + 63VI + 6,VE — yE — uE},
I(t) = 1(0) + SIS 1) {E — o1 — pl — 1},
R(t) = R(0) + CI§R(t){yI — uR — agR — a1 R}.

By using Definition 3.2,
S(t) = S5(0) + —— /t(t — o) 1Ky (0, §)dor
- r(lx) O l 7 7
_ 1 t a—1
V() = V) + /0 (t — o) Ky (0, V)do,
_ 1 f a—1
E() = E0) + 5 /O (t — o) 'Ks(0, E)do, @)
_ 1 f a—1
1) = 10) + £ /0 (t — o) 'Ky(0, D)do,
_ 1 f a—1
R(t) = RO0) + g3 /0 (t — o) 'Ks(c, R)do.
Here,
Ki(o,S) = A—6,SI — 6,SE — uS — z5 + agR,
Ky(o,V) =25 —083VI —64VE — uV + a4 R,
K(0, E) = 8181 + 6,SE + 63VI + 8, VE — yE — yE, 5)

Ky(o, 1) = nE =yl —pl =,
Ks(c, R) = yI — uR — agR — ay R.
Assume all population groups are positive bounded function that is 3 some positive constants
I1;,I1,,115, 114, I1s5, such that

[S(8)[| < TT,
V(B < T,
IE(H)]| < T3,
[1(8)]| < Ty,
IR(#)]| < TIs.

Theorem 5.1. If 0 < M = max{A1,A,A3,M4,A5} < 1, then K; for i = 1,2,3,4,5 satisfies Lipchitz
conditions.

Proof. Consider K, for any S and Sy,

1K1 (£, S) — Ky (t, S1)|| = — 611S — 62ES — S — 28 + 61151 + 62ESy + Sy + 251
=|611(S; — S) +8E(S; —S) + u(S1 — S) +z(S1 = 9)||
< [IOI +GIEM] +p+2][S1 =S|
< AS =S
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where Ay = 6111y + 02113 + p + z. Thus K; satisfy Lipchitz condition. Similarly we can find A; for
j = 2,3,4,5. So that K| for i = 2,3,4,5 the lipchitz’s requirements are met under the condition,

0 <M = max{A1, Ay, A3, Ay, As} < 1, the functions are contractions. Hence the proof.
O

Now, we rewrite (4) recursively as,

Su(t) = r(l,x) / (= o) 1Ry (o, Sp_1)do,
Va(t) = r(l,x) / (= 01Ky (0, Vy_1)do,
En(t) = r(l,x) / (t = o) K0, Ey_1)do, ©)
L(t) = F(lw) /Ot(t — o) Ky(0, I, 1 )do,
Ru(t) = F(la) /Ot(t — o) Ks(0, R,_1)do.

The difference between two terms can be represented as

M) = $0() = S04 = 15 [ 0= 01 M Ea(0,80-1) K (0,5, -2)) o,
Qpu(t) = Vu(t) = Vya(t) = r(la) /Ot(t — o) [Ka(o, Vio1) — Ka(o, Vya)] do,
Xn(t) = En(t) - Enfl(t) = l"(ltx) /Ot(t - 0')“_1 [K3(0'/ Enfl) - KB(UI En72)] do, (7)

Pu(t) = Ln(t) — L1 (1) = r(l) / (t = ) [Ka(0, In1) — Ka(o, I_)] do,

1

(1) = Rult) = Rua (1) = 5 | (£ = ) [Ks(0, Ry_1) — Ks(0, Ru_s)] do.

where,
Sa(t) = gAm,
Vat) = g:o (),
En(t) = i;xi(t), (8)
In(t) = ;0 »i(t),

Ra(f) = ﬁ%ﬂim.

doi:10.20944/preprints202312.1175.v1
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Now consider,
[Ax ()] =[S (t) = Su-1(B)]

1t B

= F) b ) Ea(0,80) ~ K, Su-2) do
A t

= T«i)/o 1Sn—1— Su—z||do
A t

= 0 ) 18ncr ()

In the same fashion, we obtain

10,01 = 13y 10020,
In (D = £ /||xn1 (1),
I9u(e)] = r%) [ e s,
10,01 = 755 [ 12-2(0) e

Theorem 5.2. (i) The functions stated in (8) exists and are smooth, (ii) If 3ty > 1> (’) to strictly less than
one, i =1,2,3,4,5, then atleast one solution of the system exist.

Proof. (i) Since all populations are bounded and for each K;, where i = 1, 2,3, 4, 5 satisfy Lipchitz’s
conditions, then we will get the below relation.

n

7

lAn(B)] <5O)] Hr?lf

I

n

1Qa ()] <[[V(0)

4

ln ()1 <|[E(O)] , ©

‘I‘(zx
a0l <111 |75 '
I

18 ()] <[IRO)] W'

Therefore equation (9) shows the existence and smoothness of all populations which was defined in

).

.. ! / !/ / ! . ! ! !/ !’ !/
(ii) Here we show, S,,, V,,, E,,, I, and R,, converge to solutions of (2). Now let, uj, , wy, , x5, , vy, , Zn »

are remainder terms after n iterations, >

(0) =S, —uy,
V —v(0) =V, —w,
E—E0)=E,—x, (10)
[ —100)=1,~yy,
R —R(0)=R,—z .
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By using triangle inequality along with K, we get
* 1 t a—1
O = Ty /0 (t=0)"" [Ki(o,S) = Ki(o, Sp1)] do
Ay
— IS — Su-1||t
= r(“) ”S Sn 1”
We obtain the below equation by iteratively using the previous process,
M n+1
D) < |[|=—=t II
ol < okt
Then at ty, we have
Al n+1
* < -1 .
01 < |0 m
Taking limit as n — oo,
lijn||u ) < lgn H IT;. (11)
n—oo n—,oo

Using hypothesis, 2L ty < 1. Equation (11) becomes,
g hyp T(w) q
,}gloolllun(t)ll =0

Asn — oo, we get

Thus, the system has at least one solution.
O

Theorem 5.3. A unique solution exists for (2) if (1 — %t) >0fori=1tob5.

Proof. Let S1(t), V1(t), E1(¢), I1(t), Ry (¢) is another set of solution of (2) thus,

I8 = S (0]l = r(1> [ = a 5,8) — i s, 51)] s
< IS = 5.0

By rearranging,

15(8) = S1(H)]l = r?;)flls(t) -5 <0

15() = S1(0)] [1 - rﬁl)t} <0 12

doi:10.20944/preprints202312.1175.v1
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using hypothesis (1 - %t) is strictly greater than zero, then (12) takes the structure ||S(t) — S1(t)|| =
0.

It means that S(t) = Sy (¢).

By repeating the similar procedure to each solution for i = 2,3,4,5, we get,

V(t) =Va(t),
E(t) = Ei(t),
I(t) = L(t),
R(t) = Ry(t).

Hence the proof. O
6. Model Analysis
This section examines the existence of equilibrium points and the local stability of the system.

6.1. Equilibrium Points

In our case, we found two equilibrium points: Eg= (S°, V?, E?, I, R?) and E; = (S*, V*, E*, I*, R¥).
We get the disease free equilibrium points for system (2) as Eg = (%, 240, 0,0). Also for endemic

*9]]/1
Aby+agyyl *
04 (grrras g 1) *
P s ok _ 1 ABs+agynl* w _ P04\, w81y +0,050T) x _ 031 *
equilibrium we obtain §* = 820701 oy T 2857 T) V* = 83 (057 [ 13301 T77) ,E* = and R

= 79—1*. Here I* will be in the form of g(I*) = I;1* 4 [,]*? + I3* 4 I; = 0. By using Descartes rule of
signs [21], we can able to the positive roots of I*.

6.2. Basic Reproduction Number (BRN)

The spectral radius of the next generation matrix determines the Ry [4] for the system (2).
3

Therefore, we have Ry = '75(51“”3;; 3352 05V By substituting disease free equilibrium points we get,

1()81 +1(§5,)03 + (88205 + 63(55,) 04

Ry = £
0 6263
where,
bh=p+z
b =n+p,
03 =7 +p+u.
6.3. Local stability
The Jacobian matrix for (2) is presented by,
—(511 — (52E — 91 0 —(525 —515 1%
z *531 — (54E — U *(54V *(53‘/ 15}
J= 6011+ 6E 031 + 64E 0S40,V —0, 5BV+6S 0
0 0 n —03 0
0 0 0 0% —04

Theorem 6.1. The disease free equilibrium point Eq of the fractional order model (2) is stable if Ry < 1.

Proof. By the approach of Matignon’s condition in [20], Ey of the fractional order (2) is locally
asymptotically stable <= all the eigen values of ]y should fulfil |arg(A;)| > %F.
O

doi:10.20944/preprints202312.1175.v1
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The Jacobi matrix at Ey is obtained as follows,
5A A
. T PR
Z Z
: o 0 A 7(5315\ J ; 31]4(5 A “
= 024 4zA 32 asa
0 0 N —03 0
0 0 0 v —0,

Clearly, from the above matrix we can say, Ay = —61, A2 = —pu, A5 = —0, are the three eigen values.

Here A3 and A4 can be computed from the below matrix.

»HA 04zA 03zA A
(91 + 92 + 0,

O1p O
1 —03

They are A3 = y1 + +/y2 + y3 and Ay = y1 — /y2 + y3, where,

y1 = Abap — 010 — 0103 + Adyz,

Yo = A203p% + 02031 + 2020,03% + 0203 1% + 2A%6)0,uz + A25322
— 2A8,01001% — 2A8201031% — 2A5401021z — 2A5,6163pz,

Y3 = 4(A620103p% + 61 AB1 i + Ady01631z + Ad301pz — 03620312).

y1 < 0Owhen 0101 + 60103 > Adbp + Absz,
y2 > 0 when A2831% + 020312 4 2620,03 1% + 0203 % + 2A%5,0, 112
+ A2522% > 2A8201001% + 2A5,01031° + 2A8,6100z + 2A8,61031z,
y3 > 0 when 4(Ady01031% + 51 Ab1yp? + Ady0103pz + Ads01uz) > 4036,051°.

Therefore A3 and A4 have negative real numbers with the above conditions. From this clearly we can

conclude that all eigenvalues are negative and does fulfil the Matignon’s condition [20]. Hence, Ep=

(éil, % 0, 0, 0) is stable whenever BRN is less than one.

Table 2. Necessary components for the stability of the equilibrium points.

Eigen value | Sign Conditions Stability
Az — y1 <0,y > 0and y3 > 0 and hence y; > /y2 +y3 Stable
Ay - y1 <0,y2 > 0and y3 > 0 and hence y; — /y2 +y3 <0 Stable

Theorem 6.2. When Rg > 1, the endemic equilibrium E, of the model (2) is asymptotically stable point.

Proof. By using [20], the endemic equilibrium E; of (2) is locally asymptotically stable <= all the
eigenvalues of below mentioned matrix should fulfil |arg(A;)| > %F.
For (2), the Jacobi matrix at E; is obtained as,

—61I" — 6E* — 64 0 —0,5* —0,5* X0
z —(531* — 54E* — U —§4V* —(53V* o1
h= 01" + 6E* 031" + O4E* 0S* + 0,V —0, BVF+6S* 0
0 0 7 —63 0
0 0 0 v —0,

Let us consider,

bi1 = =611 — 5,E* — 04,
biz = =657,

b1y = —6,5%,

bis = ag,
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by =z,

bys = —04V™,
byy = —383V7,
bys = a1,

by = 611* + 6,EF,
b3y = 031" + 04E*,
b33 = 625" + 04V* — 0y,

by = 63V* 4 6,5%,
bz =1,

by = —03,

bsy =7,

bss = —04

The characteristic equation of the J; is,

= A+ xl)\4 + x2/\3 + x3/\2 +x4A + x5 =0,

where,

x1 = —b11 — by — b3z — byy — bss,

X2 = bygbss + b3zbss + bpobss + b11bss + bazbag + boabag + b11bag + boobss + bi1bss + briba
— b3gbyz — basbsy — bisbsy,

x3 = bagbyzbss + basbspbss + b13b31bs5 + ba3baobas + b13b31bag + baobasbas + b11b34bys
+ b11b23bsz + bi3baabs1 — bazbaabss — baobasbss — b11baabss — baobazbss — b11basbss
— b11b2obss — boobssbay — b11b33bag — b11b2obag — bagbsabyz — b14bzibyz — b11bobss
— bizbaibay,

x4 = bpbs3baabss + b11b33baabss + b11b22baabss + bagbzabazbss + b14bs1bazbss + b11baabszbss
+ b13ba1b3abss + b11b22b33b4g + b11b23b32bay + b13b21b32bag + b11b24b32ba3 + b14b2nb31bys
— bosbspbasbss — b13b31b4abss — bpabsabasbss — b11b3abaszbss — b11basbspbss — bizbarbaibss
— bosbspbazbsy — b15b31ba3bss — bi3baobsibag — b1boobsabas — b1abaibabas,

x5 = b11b23b32b44b55 + b13b2ob31basbss + b11b22b34bas3bss + b14ba1bspbasbss + b11b25bspbasbsy
+ b15b22b31b43bsy — b11b22b33b44bs5 — b13b21b32D44bs5 — b11b24b3abyzbss — b14bazbz1basbss
— b15b21b32b43b54.

Here we consider,

o x1 >0, if b1y + byp + bsz + byy + bs5 <O,

® x3 > 0, if by1bs3 + b11ban > bagbys + bazbsn + b1abay,

® x3 > 0, if b11b34bgs + b11b23bap + b13baobay > bazbaabss + baabyabss + bi1b4abss + bpabszbss
+ b11b33bs5 + b11b22bs5 + baabazbas + b11b33bas + b11b22bag + boabspbas + b14bs1bas
+ b11b2bsz + bizba bsy,

® x4 > 0, if b11bogb3abyz + b14b2obs1 bz > ba3baabagbss + bi3bs1basbss + bapbzsbyzbss
+ b11b34b43bss + b11b23b3abss + b13boabsi bss + bosbspbasbsg + b1sbaibasbsy + bisbazbsibag
+ b1b2b3abaz + b1abo1 b3pbas,

® x5 > 0, if by1ba3bazbasbss > b11b22b33baabss + b13ba1baabaabss + by1b2abaabasbss
+ b14b22b31b43b55 + b15b21b32ba3bss.
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From the above conditions, we can say that, E; = (S*,E*, I*, Q*, R*, D*) of equation (2) is stable
whenever Ry > 1.
O

7. Numerical Simulation

In this, we derive general fractional order Euler method approach for (2). By reformulating, we

get
DF[S(H)] = n(t, S(t)),
DE[V(8)] = ra(t, V(1)),
DY [E(t)] = (¢, E(1)), (13)
DE[I(t)] = w(t, I(1)),
D [R(#)] = (¢, R(t))
where,
T (t,S(t)) = A — 6,5 — 5,SE — uS — zS + agR,
T(t, V(t)) =28 — 53VI — 6, VE — uV +aR,
73(t, E(t)) = 61SI + 6,SE + 83V + 64,VE — yE — uE, (14)
w(t I(t) =nE —yI —pl —ml,
T5(t, R(+)) = v — uR — agR — a1 R.

From first equation of (2),

DE[S(8)] = nu(t, S(1)),

S5(0) = Sy, t > 0. (15

Let [0, d] be the collection of points for which we wish to discover the solution of (15). In fact, we are
unable to assess S(t) that will be corresponding to (15). Instead, a collection of (¢, t, + 1) is formed, and
the points are used in our iterative approach. From t, = rh, r = 0,1, 2, 3, ...k, we partition the interval
[0,d] into k subintervals [t,, t, + 1] with equal width & = 4. Assume S(t), D¥[S(t)] and D?*[S(t)] are
continuous on [0,d]. By using the generalised Taylor formula, extend S(t) to t = ty = 0. There is a
value ¢y for each value f, therefore

ta tZDt
_ o 2a - 16
S(t) = S(to) + DEISOlbo gy gy + PP IS0ler (16)
Substitute DY [S(t)]to = 11 (to, S(tp)) and h = t; in (16)
o » hZa
S(t1) = S(to) +T1(t0/5(t0))m + D; [S(t)}clm,
If 1 is small, thus
hﬂ(
S(tl) = S(t()) + T](t(), S(to))m, (17)
A general formula, ¢, 1 = t, + h can be written as
th
S(tr1) = S(t) + 7u(ty, S(tr)) (18)

Fa+1)
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Using the fractional integral on (15), we obtain
[S(1)] = S(0) + I*[n (8, 5(1))] (19)
To obtain (t,S(t1)), we replace t = t; into (19), then
S5(t1) = S(0) + (I*[n (8, S(£)]) (t1)- (20)

With the help modified trapezoidal rule, we approximate (I*[7y (¢, S(t))])(t1) with h = t; — to then (20)
becomes

s(t1) = 5(0) + 0l S 10 0 S0 o1

The expression S(t;) appears in the formula on the RHS of (21). As a result, we estimate S(t7).
For this purpose, the fractional Euler approach can be used. Substitute (17) for (21).

0(]1“[’['1“0,5([’0))] ha[Tl (tll (tO))] + T “+1)Tl (i’o,S(to))
Tat2) T(a+2)

S(t) = S(0) +

The technique is iterated until a sequence of points that closely approximate the solution is obtained.
Therefore, the general formula for our approach can be written as,

5(t) = 5(0) + r( )[(V—l)’”1 (r—a—1)r*]ni(to, S(to))

ﬂc r—1

Fagz) Sl =i+ =20 =1 (=i = )" (5, 5(1)) 22)
h* B
+ r(“ T 2) 1 [trls(trfl) + ml’l (trfl,S(tril))].

Using the same method, we construct numerical schemes for the model’s additional compartments.

V(ty) =V(0)+ F( Tt [(r = 1) = (r —a = 1)r*]1a(bo, V (ko))
ahiz ri] r—i+ )" —2(r = 1)+ (r—i = 1) (t, V(1)) (23)
" F(“hiz)rz[t,,V(trl) + F([xhjrl)rz(trl, V)],
E(ty) = E(0) + 1“(0?112)[(7 = 1) — (r —a = 1)r*]3(to, E(to))
" r(ah: 5 :i[(r DT 2 ) (- i ) (B (24)
+ r(a’iz)@[th—:(t”) + mfil)rg(t,l,E(t”))],
1) = 1(0) + (f“ 5l = D = (= a = 1) ralt (k)
aiz 21 P i 1) = 2(r = D) (7 — i — 1)y (1, (1)) (25)
e e

+ T4[tr/ I(trfl) + T4<tr71/ I(trfl))]'

T(a+2) T(a+1)
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R(t) = R(0) + F(ochj— 2y [(r =" = (= = )rfas(to, R(to))
b gy DD 20 U i U RG) 0
+ r(;’jLz)r5[t,,R(t,1) + r(:lil)Ts(frer(frl))]’

The numerical scheme described above is employed to obtain the numerical results. Furthermore,
assumptions are introduced for the initial states of variables and input parameters to streamline the
calculations. Figures 1-4 show the results of the most effective cases. Figure 1a shows the local stability
of SVEIR individuals for the corresponding disease free equilibrium. Let us consider, A = 1000,
41 = 0.0009, 5, = 0.0008, 53 = 0.009, 64 = 0.0008, u = 0.9, p; = 0.042, z = 0.099, ay = 0.05, a; = 0.005,
v = 0.0052 and # = 0.7. For this set of parameter values we obtain BRN Ry < 1. So from this we
clearly sum up that our Ej is locally stable. For different set of parameter we get Ry > 1, which was
illustrated in the Figure 1b. So from this we sum up that our E; is locally stable. Figure 2a,b shows
the phase diagram for vaccinated, infected and recovered population of both DFE and EE. Next, we
checked the influence of progression rate for infected individuals, which was depicted in the Figure 3.
For this simulation we consider progression rate as 0.10, 0.25, 0.50 respectively. Then we also checked
the influence of recovery rate due to treatment for recovered individuals, which was shown in Figure
4. For this simulation we consider recovery rate as 0.10, 0.25, 0.50 respectively. Our analysis predicts
that how the input factors influence the output of the system of HFMD transmission.

10 100 —
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== Exposed
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— Recovered

1000 1000

600
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vl === Suspectible
\aceinated
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— Recovered

600
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2

400 1

4 0

Time Time

Figure 1. (a) Variation of S, V, E, I, R for Ey when BRN is less than one and (b) Variationof S, V, E, I,
R for E; when BRN is greater than one.
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Figure 2. Three dimensional Phase diagram of V, I, R for corresponding (a) Eg and (b) E;.
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8. Conclusion

In this study, we focus on investigating the applicability of the CFO mathematical model
in understanding the spread dynamics of Hand Foot Mouth Disease (HFMD). The focus of our
investigation is to determine whether the system is non negative and bounded, which allowed us to
analyse the stability of the model. Through nonlinear analysis, we demonstrated the existence and
uniqueness of the model, which enhances its reliability in predicting disease spread. Furthermore, we
calculated the numerical solution of the suggested system using the fractional Euler’s approach. This
approach is widely used to solve fractional differential equations, and it provides accurate results that
are vital in disease modelling. By utilizing this method, we were able to obtain precise solutions for
the model, which allowed us to make better predictions about HFMD transmission. Overall, our study
demonstrates that the Caputo fractional order mathematical model is a reliable tool for understanding
the spread of HFMD. The establishment of positive invariance and boundedness of the system, coupled
with the use of nonlinear analysis and numerical solution, enhances the accuracy of the model, which
can be used to inform policies aimed at controlling and preventing the spread of HFMD.

Author Contributions: Conceptualization, A.M. and G.C.; methodology, A.M., G.C. and M.Z.M.; software,
A.H.M,; validation, A.M. and A.H.M.; formal analysis, A.M. and G.C.; investigation, A.M.; resources, A.M. and
A H.M; data curation, A.H.M.; writing—original draft preparation, A.M., G.C. and M.Z M.; writing—review and
editing, A.M. and A.H.M,; visualization, A.M. and M.Z.M.; supervision, G.C. and A.H.M.; project administration,
M.ZM.; funding acquisition, M.Z.M. All authors have read and agreed to the published version of the manuscript.

Acknowledgments: The authors extend their appreciation to the Deputyship for Research and Innovation,
Ministry of Education in Saudi Arabia for funding this research work through the project number ISP-2024.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Santhosh kumar, G.; Gunasundari, C. Turing instability of a Diffusive Predator-Prey Model along with an
Allee Effect on a Predator. Commun. Math. Biol. Neurosci. 2022, 40, 1-15.

2. Sharmila, N.B.; Gunasundari, C. Travelling Wave Solutions for a Diffusive Prey-Predator Model with One
Predator and Two Preys. Int. |. Appl. Math. 2022, 35.

3. Aakash, M.; Gunasundari, C.; Qasem M. Al-Mdallal. Mathematical modeling and simulation of SEIR model
for COVID-19 outbreak: A case study of Trivandrum. Front. Appl. Math. Stat. 2023, 9.

4. Aakash, M.; Gunasundari, C. Effect of Partially and Fully Vaccinated Individuals in some Regions of India:
A Mathematical Study on COVID-19 Outbreak. Commun. Math. Biol. Neurosci. 2023, 25.

5. Abdulaziz, A.; Famara, S.; Mouna, L.; Magloire, PN.; Francis, B.B.; Ilka, E.; Enagnon, K.A.; Didier, H.
Enteroviruses and Type 1 Diabetes Mellitus: An Overlooked Relationship in Some Regions. Microorganisms.
2020, 8.

6. Syed, Z.S.; Basit, J.; Muhammad, U.M.; Muhammad, W.; Shahkaar, A.; Sobia, A.H.; Amjad, A.; Shazia, R.;
Muhammad, I.; Asaad, K.; Ashraf, N.A; Ajmal, K. An Immunoinformatics Approach to Design a Potent
Multi-Epitope Vaccine against Asia-1 Genotype of Crimean-Congo Haemorrhagic Fever Virus Using the
Structural Glycoproteins as a Target. Vaccines. 2023, 61.

7.  Sivakumar, S.; Moni, S.I.A.; Aamena, J.; Mohammed, E.E.; Duaa, A.; Gassem, G.; Bassem, O.; Abdulla, M.E,;
Ahmed, A.J.; Mahdi, M.A.; Alnajai, AM.H.M.A. Advancements in Vaccine Adjuvants: The Journey from
Alum to Nano Formulations. Vaccines. 2023, 11.

8.  Nageswara, R.S.; Ahmed, H.M.; Manoj, S.; Abdullah, A.-H.A.; Existence and Uniqueness for a system
of Caputo-Hadamard Fractional Differential Equations with Multipoint Boundary Conditions. Journal of
Function Spaces. 2020.

9. Li, X.P; DarAssi, M.H.; Khan, M.A.; Chukwu, C.W.; Mohammad, Y.A.; mesfer, A.S.; Muhammad, B.R.
Assessing the potential impact of COVID-19 Omicron variant: Insight through a fractional piecewise model.
Results Phys. 2022, 38.

10. Kumar, PR.; Haloi, R.; Bahuguna, D.; Dwijendra, N.P. Existence of solutions to a new class of abstract
non-instantaneous impulsive fractional integro-differential equations. Nonlinear Dyn. Syst. Theory. 2016, 16,
73-85.


https://doi.org/10.20944/preprints202312.1175.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 December 2023 doi:10.20944/preprints202312.1175.v1

18 of 18

11. Atangana, A ; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and
application to heat transfer model. Therm Sci. 2016, 20, 763-769.

12.  Fatmawati, E.M.; Shaiful, M.I,; Utoyo. A fractional-order model for HIV dynamics in a two-sex population.
Int. J. Math. Math. Sci. 2018, 2018, 763-769.

13. Bonyah, E.; Zarin, R.; Fatmawati, E.M. Mathematical modeling of cancer and hepatitis co-dynamics with
non-local and non-singular kernel. Commun. Math. Biol. Neurosci. 2020.

14. Tarasova, V.V,; Tarasov, V.E. Comments on the article long and short memory in economics: fractional-order
difference and differentiation. Probl. Mod. Sci. Educ. 2017, 31.

15. Wang, W.; Khan, M.A.; Fatmawati.; Kumam.; Thounthong, P. A Comparison study of bank data in fractional
calculus. Chaos Solitons Fractals. 2019, 126.

16. Sharmila, N.B.; Gunasundari, C. Stability Analysis of a Fractional Order Prey-Predator Model with Disease
in Preys. Mathematica Applicanda. 2022, 50, 287-302.

17.  Nortey, S.N.; Juga, M.; Bonyah, E. Fractional order modelling of Anthrax-Listeriosis coinfection with
nonsingular Mittag Leffler law. Scientific African. 2022, 16, 287-302.

18. Belgaid, Y.; Helal, M.; Lakmeche, A.; Venturino, E. Mathematical Study of a Coronavirus Model with the
Caputo Fractional-Order Derivative. Fractal Fract. 2021, 5.

19. Choi, S.K.; Kang B.; Koo, N. Stability for Caputo fractional differential systems. Abstr. Appl. Anal. 2014, 2014.

20. Askar, SS.; Ghosh, D.; Santra, PK.; Elsadany, A.A. Mahapatra, G.S, (2021), A fractional order SITR
mathematical model for forecasting of transmission of COVID-19 of India with lockdown effect. Results in
Physics. 2021, 24.

21. Aakash, M.; Gunasundari, C.; Rashid, J. Modelling and Analysis of Vaccination Effects on Hand, Foot, and
Mouth Disease Transmission Dynamics. Mathematical Modelling of Engineering Problems. 2023, (accepted; in
press).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202312.1175.v1

	Introduction
	Model Formulation
	Preliminaries
	Positivity and Boundedness
	Existence and Uniqueness
	Model Analysis
	Equilibrium Points
	Basic Reproduction Number (BRN)
	Local stability

	Numerical Simulation
	Conclusion
	References

