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Abstract: In this paper, we propose to explore a nonlinear fractional mathematical model of HFMD-

Hand Foot Mouth Disease with vaccinated compartment. Firstly, we prove the non negativity and

boundedness for the fractional order dynamical model. The system’s existence and uniqueness are

studied using the formulation of the Caputo derivative operator. The fixed-point approach was used

to get results indicating the presence of at least one solution. In numerical simulation, we obtained

the approximate solution by using fractional Euler method.

Keywords: mathematical model; fractional dynamical system; stability; fractional euler’s method

1. Introduction

Mathematical modeling involves using equations or algorithms to represent real-world systems

across various disciplines such as physics, engineering, biology, economics, and social sciences. These

models serve to comprehend, evaluate, and predict system behavior, playing a vital role in scientific

research, engineering design, and decision-making. Mathematical modeling allows the study and

control of systems in ways often impractical or costly in real-world experiments. The process typically

includes problem formulation, model construction, parameter estimation, model validation, and

model analysis. Proficiency in both system understanding and mathematics is crucial for creating

and solving these equations. Validation and verification of models are essential before using them

for predictions or decision-making. This interdisciplinary field combines mathematical concepts with

domain-specific knowledge, providing insightful analyses of complex phenomena. Mathematical

modeling is indispensable for advancing scientific understanding, addressing real-world issues, and

making well-informed decisions. Researchers, engineers, and decision-makers leverage mathematical

modeling to gain knowledge, predict outcomes, and optimize systems, contributing significantly to

various fields [1–4].

The viral illness known as hand, foot, and mouth disease (HFMD) predominantly affects children

under the age of ten and occasionally even adults. There are several enterovirus types that cause it, but

Coxsackievirus A16 and Enterovirus 71 are the most frequent ones. The manifestation of diminutive

and distressing blisters or ulcers on the hands, feet, and oral cavity, coupled with other indicators like

fever and rash, typically points to the likelihood of Hand, Foot, and Mouth Disease (HFMD). It is

highly contagious and spreads through close contact with infected individuals, contaminated surfaces,

or respiratory droplets from coughs and sneezes. It is most commonly found in crowded places such

as day care centres, schools, and playgrounds, and outbreaks often occur in communities, especially

during the warmer months. The symptoms of HFMD usually start with fever, sore throat, and a general

feeling of malaise. Within a day or two, small blisters will develop in the hands, feet and mouth.
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These blisters may be painful and can sometimes become ulcers. Other symptoms may include loss of

appetite, headache, and in some cases, a skin rash. Although HFMD is often a temporary disease that

cure by itself within seven to ten days, it can cause discomfort and sometimes complications, especially

in severe cases. Complications can include viral meningitis, encephalitis (inflammation of the brain),

and in rare cases, more serious neurological complications. Treatment for HFMD is usually supportive,

focusing on relieving symptoms such as fever and discomfort. To manage discomfort and lower fever,

over-the-counter pain medicines such as acetaminophen or ibuprofen may be used, and maintaining

excellent hygiene habits, such as frequent handwashing and avoiding close contact with sick persons,

is essential for preventing the virus’s spread. The important prevention is to maintain good oral

hygiene and minimising contact with ill peoples. Vaccines for HFMD are not widely available, but

some countries have developed vaccines against Enterovirus 71, which is one of the common causes of

severe HFMD cases. Some recent research are presented in [5–7].

Fractional differential equations (FDEs) are differential equations that incorporate non-integer

order derivatives. This permit the use of fractional orders, which can be any real or complex number,

in contrast to ordinary differential equations (ODEs), where the order of the derivatives is always a

positive integer [8]. When a system’s behaviour depends on the fractional derivatives of its variables,

FDEs are an effective mathematical tool for describing a wide range of physical, biological, and

engineering phenomena. In 18th and 19th centuries, mathematicians especially Leibniz and Riemann

established the concept of fractional calculus, that is associated with non-integer order derivatives

and integrals. However, because of its applications in numerous disciplines, including physics,

engineering, finance, and biology, it has recently attracted new interest. Among other complex

phenomena, FDEs have been used to model and examine viscoelastic materials, diffusion in fractal

media, electrochemical processes, and biological systems. Most of the models stated above are integer

order models, however they are unable to depict real life difficulties because there is no non-locality

impact in local differentiation. Mathematicians thus developed the idea of differentiation with non-local

operators to address this issue. The memory effect of fractional calculus has been demonstrated to

produce more accurate results when predicting physical systems, including mathematical models

[9]. In order to solve systems of differential equations of both integer and non-integer orders

resulting from real life issues, such as applications related to integrodifferential equations, [10,11],

mathematical epidemiology [12,13], economic and financial [14,15], new discoveries have resulted

from advances in constructing new fractional order operators, especially Caputo, Atangana-Baleanu

and Caputo-Fabrizio. Most researchers are optimistic on the fractional-order differential equation,

especially in biological modelling [16]. A unique interpretation of the fractional operator without a

single kernel was proposed by Caputo and Fabrizio [17]. In this paper, we choose Hand foot mouth

disease as our social problem and formulated a five compartmental nonlinear mathematical model.

Further, we extend the nonlinear ODE model into fractional order model by using Caputo derivative.

An overview of our article is provided below. In Section 2, the fractional order model was

formulated, followed by some essential preliminaries in Section 3. In Section 4, we addressed

the system’s positivity and boundedness. Section 5 discusses the suggested model’s existence and

uniqueness, followed by the qualitative analysis in Section 6. The 7th section explains how to use the

modified Euler’s approach to get the general solution to the suggested system. In Section 8, a brief

summary was presented.

2. Model Formulation

We consider a SVEIR, five compartment HFMD model. The basic structure of the model

comprises distinct population groups, including those that are susceptible, vaccinated, exposed,

infected and recovered. In this case, we presume that not all vaccinated persons are immune to this

virus, and that some may be exposed to it. We also believe that persons who have recovered from

HFMD do not have a lifetime immunity to the condition. As a result, we believe that recovered people

are susceptible at a rate of α0, and that after recovery, some people will take vaccination and therefore
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enter the vaccinated compartment at a rate of α1. As a result of the aforesaid assumptions, a basic

nonlinear mathematical model was developed in [21]. That is,

dS

dt
= A − δ1SI − δ2SE − µS − zS + α0R,

dV

dt
= zS − δ3VI − δ4VE − µV + α1R,

dE

dt
= δ1SI + δ2SE + δ3VI + δ4VE − ηE − µE,

dI

dt
= ηE − γI − µI − µ1 I,

dR

dt
= γI − µR − α0R − α1R.

(1)

It is vital to investigate viral disease mathematical models in order to have a deeper comprehension of

their assessment, presence, stability, and control. Because typical mathematical models do not provide

a great level of precision in describing these diseases, FDE which have many uses in practical domains,

were designed to manage such situations. So, here ODE model for HFMD in [21] was extended to the

fractional order model by using the Caputo derivative.

C
D

α
t [S(t)] = A − δ1SI − δ2SE − µS − zS + α0R,

C
D

α
t [V(t)] = zS − δ3VI − δ4VE − µV + α1R,

C
D

α
t [E(t)] = δ1SI + δ2SE + δ3VI + δ4VE − ηE − µE,

C
D

α
t [I(t)] = ηE − γI − µI − µ1 I,

C
D

α
t [R(t)] = γI − µR − α0R − α1R.

(2)

Here, 0 < α ≤ 1 and S(0) = S0, V(0) = V0, E(0) = E0, I(0) = I0 and R(0) = R0 are the initial conditions.

Table 1 contains a description of the model (2) parameters.

Table 1. Overview of the Parameters.

Parameter Description

A Rate of recruitment.
δ1 Rate of transmission from I to S.
δ2 Rate of transmission from E to S.
δ3 Rate of transmission from infected to vaccinated.
δ4 Rate of transmission from exposed to vaccinated.
µ Natural death rate
α1 Transmission from recovered to vaccinated.
η Rate of progression from exposed to infected.
γ Rate of recovery.
µ1 Death due to HFMD disease.
α0 Rate from recovered to susceptible.
z Rate of vaccination.

3. Preliminaries

In this, we present the essential definitions of fractional calculus within the context of Caputo

significance.

Definition 3.1. Consider a function y ∈ Cm, then CDα
t in (m-1,m) where m ∈ N is provided by,

C
D

α
t (g(t)) =

1

Γ (m − α)

∫ t

0
(t − s)(m−α−1)g(m)(s)ds.

Here, CDα
t (g(t)) → g′(t) as α tends to 1.
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Definition 3.2. For α > 0, the corresponding integral of g : R+ → R is expressed as follows,

Iα
t (g(t)) =

1

Γ (α)

∫ t

0
(t − s)(α−1)g(s)ds,

where, 0 < α < 1, t > 0.

4. Positivity and Boundedness

Here we demonstrate the system’s boundedness and non-negative solutions of (2).

Theorem 4.1. Every solution of (2) are non negative and bounded.

Proof. By using the same approach from [18], We define dN
dt = dS

dt + dV
dt + dE

dt + dI
dt +

dR
dt . Also let

consider µ > 0.

C
D

α
t [N(t)] + µN(t) = A − δ1SI − δ2SE − µS − zS + α0R + zS − δ3VI − δ4VE − µV + α1R

+ δ1SI + δ2SE + δ3VI + δ4VE − ηE − µE + ηE − γI − µI − µ1 I

+ γI − µR − α0R − α1R + µS + µV + µE + µI + µR

= A − µ1 I

≤ A

By using standard comparison theorem [19] for (2), we get,

N(t) ≤ N(0)Eα (−µ(t)α) + A(t)αEα,α+1 (−µ(t)α)

where the Mittag Leffler function is represented by Eα. As stated by [19], we have

N(t) ≤ A

µ
, t → α.

Hence, all solutions of equation (2) are restricted to the domain Ω,

Ω = {(S, V, E, I, R) ∈ R
5
+|N(t) ≤ A

µ
+ ǫ0, f or any ǫ0 > 0}. (3)

Now, we show the solutions of (2) are positive. From first equation of (2), we have,

C
D

α
t [S(t)] = A − δ1SI − δ2SE − µS − zS + α0R

≥ −[δ1 I + δ2E + µ + z]S

≥ −[(δ1 + δ2)
A

µ
+ µ + z]S

≥ −d1S.

where d1 = (δ1 + δ2)
A
µ + µ + z.

As per the traditional comparison theorem [19] and the non negativity of Mitag Leffler function, we

have, Eα,1(t) > 0 for any α ∈ (0, 1),

S ≥ S(0)Eα,1(−d1tα) =⇒ S ≥ 0.
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From (2), we get

C
D

α
t [V(t)] = zS − δ3VI − δ4VE − µV + α1R

≥ −[δ3 I + δ4E + µ]V

≥ −[(δ3 + δ4)
A

µ
+ µ]V

≥ −d2V.

where d2 = (δ3 + δ4)
A
µ + µ.

Therefore,

V ≥ V(0)Eα,1(−d2tα) =⇒ V ≥ 0.

For third equation of (2), we get

C
D

α
t [E(t)] = δ1SI + δ2SE + δ3VI + δ4VE − ηE − µE

≥ −[−δ2S − δ4V + η + µ]E

≥ −[− δ2 A

µ
− δ4 A

µ
+ η + µ]E

≥ −d3E.

Here d3 = − δ2 A
µ − δ4 A

µ + η + µ.

∴ E ≥ E(0)Eα,1(−d3tα) =⇒ E ≥ 0.

For fourth equation of (2), we get

C
D

α
t [I(t)] = ηE − γI − µI − µ1 I

≥ −[γ + µ + µ1]I

≥ −d4 I.

where d4 = γ + µ + µ1.

∴ I ≥ I(0)Eα,1(−d4tα) =⇒ I ≥ 0.

For fifth equation of (2), we get

C
D

α
t [R(t)] = γI − µR − α0R − α1R

≥ −[µ + α0 + α1]I

≥ −d5R.

where d5 = µ + α0 + α1.

Therefore,

R ≥ R(0)Eα,1(−d5tα) =⇒ R ≥ 0.

Thus, the solutions of (2) are positive.
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5. Existence and Uniqueness

In this, we established the formulated fractional order system’s existence and uniqueness. The

following equations were found after utilising the equation (2).

S(t) = S(0) + C Iα
0 S(t){A − δ1SI − δ2SE − µS − zS + α0R},

V(t) = V(0) + C Iα
0 V(t){zS − δ3VI − δ4VE − µV + α1R},

E(t) = E(0) + C Iα
0 E(t){δ1SI + δ2SE + δ3VI + δ4VE − ηE − µE},

I(t) = I(0) + C Iα
0 I(t){ηE − γI − µI − µ1 I},

R(t) = R(0) + C Iα
0 R(t){γI − µR − α0R − α1R}.

By using Definition 3.2,

S(t) = S(0) +
1

Γ(α)

∫ t

0
(t − σ)α−1

K1(σ, S)dσ,

V(t) = V(0) +
1

Γ(α)

∫ t

0
(t − σ)α−1

K2(σ, V)dσ,

E(t) = E(0) +
1

Γ(α)

∫ t

0
(t − σ)α−1

K3(σ, E)dσ,

I(t) = I(0) +
1

Γ(α)

∫ t

0
(t − σ)α−1

K4(σ, I)dσ,

R(t) = R(0) +
1

Γ(α)

∫ t

0
(t − σ)α−1

K5(σ, R)dσ.

(4)

Here,

K1(σ, S) = A − δ1SI − δ2SE − µS − zS + α0R,

K2(σ, V) = zS − δ3VI − δ4VE − µV + α1R,

K3(σ, E) = δ1SI + δ2SE + δ3VI + δ4VE − ηE − µE,

K4(σ, I) = ηE − γI − µI − µ1 I,

K5(σ, R) = γI − µR − α0R − α1R.

(5)

Assume all population groups are positive bounded function that is ∃ some positive constants

Π1, Π2, Π3, Π4, Π5, such that

‖S(t)‖ ≤ Π1,

‖V(t)‖ ≤ Π2,

‖E(t)‖ ≤ Π3,

‖I(t)‖ ≤ Π4,

‖R(t)‖ ≤ Π5.

Theorem 5.1. If 0 ≤ M = max{∆1, ∆2, ∆3, ∆4, ∆5} < 1, then Ki for i = 1, 2, 3, 4, 5 satisfies Lipchitz

conditions.

Proof. Consider K1, for any S and S1,

‖K1(t, S)−K1(t, S1)‖ =‖ − δ1 IS − δ2ES − µS − zS + δ1 IS1 + δ2ES1 + µS1 + zS1‖
=‖δ1 I(S1 − S) + δ2E(S1 − S) + µ(S1 − S) + z(S1 − S)‖
≤ [δ1‖I(t)‖+ δ2‖E(t)‖+ µ + z]‖S1 − S‖
≤ ∆1‖S − S1‖
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where ∆1 = δ1Π4 + δ2Π3 + µ + z. Thus K1 satisfy Lipchitz condition. Similarly we can find ∆j for

j = 2, 3, 4, 5. So that Ki for i = 2, 3, 4, 5 the lipchitz’s requirements are met under the condition,

0 ≤ M = max{∆1, ∆2, ∆3, ∆4, ∆5} < 1, the functions are contractions. Hence the proof.

Now, we rewrite (4) recursively as,

Sn(t) =
1

Γ(α)

∫ t

0
(t − σ)α−1

K1(σ, Sn−1)dσ,

Vn(t) =
1

Γ(α)

∫ t

0
(t − σ)α−1

K2(σ, Vn−1)dσ,

En(t) =
1

Γ(α)

∫ t

0
(t − σ)α−1

K3(σ, En−1)dσ,

In(t) =
1

Γ(α)

∫ t

0
(t − σ)α−1

K4(σ, In−1)dσ,

Rn(t) =
1

Γ(α)

∫ t

0
(t − σ)α−1

K5(σ, Rn−1)dσ.

(6)

The difference between two terms can be represented as

Λn(t) = Sn(t)− Sn−1(t) =
1

Γ(α)

∫ t

0
(t − σ)α−1 [K1(σ, Sn−1)−K1(σ, Sn−2)] dσ,

Ωn(t) = Vn(t)− Vn−1(t) =
1

Γ(α)

∫ t

0
(t − σ)α−1 [K2(σ, Vn−1)−K2(σ, Vn−2)] dσ,

χn(t) = En(t)− En−1(t) =
1

Γ(α)

∫ t

0
(t − σ)α−1 [K3(σ, En−1)−K3(σ, En−2)] dσ,

ψn(t) = In(t)− In−1(t) =
1

Γ(α)

∫ t

0
(t − σ)α−1 [K4(σ, In−1)−K4(σ, In−2)] dσ,

ϑn(t) = Rn(t)− Rn−1(t) =
1

Γ(α)

∫ t

0
(t − σ)α−1 [K5(σ, Rn−1)−K5(σ, Rn−2)] dσ.

(7)

where,

Sn(t) =
n

∑
i=0

Λi(t),

Vn(t) =
n

∑
i=0

Ωi(t),

En(t) =
n

∑
i=0

χi(t),

In(t) =
n

∑
i=0

ψi(t),

Rn(t) =
n

∑
i=0

ϑi(t).

(8)
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Now consider,

‖Λn(t)‖ =‖Sn(t)− Sn−1(t)‖

=
1

Γ(α)

∫ t

0
(t − σ)α−1 [K1(σ, Sn−1)−K1(σ, Sn−2)] dσ

=
∆1

Γ(α)

∫ t

0
‖Sn−1 − Sn−2‖dσ

=
∆1

Γ(α)

∫ t

0
‖Λn−1(t)‖dσ.

In the same fashion, we obtain

‖Ωn(t)‖ =
∆2

Γ(α)

∫ t

0
‖Ωn−1(t)‖dσ,

‖χn(t)‖ =
∆3

Γ(α)

∫ t

0
‖χn−1(t)‖dσ,

‖ψn(t)‖ =
∆4

Γ(α)

∫ t

0
‖ψn−1(t)‖dσ,

‖ϑn(t)‖ =
∆5

Γ(α)

∫ t

0
‖ϑn−1(t)‖dσ.

Theorem 5.2. (i) The functions stated in (8) exists and are smooth, (ii) If ∃ t0 > 1 ∋ ∆i
Γ(α)

t0 strictly less than

one, i = 1, 2, 3, 4, 5, then atleast one solution of the system exist.

Proof. (i) Since all populations are bounded and for each Ki, where i = 1, 2, 3, 4, 5 satisfy Lipchitz’s

conditions, then we will get the below relation.

‖Λn(t)‖ ≤‖S(0)‖
∥

∥

∥

∥

∆1

Γ(α)
t

∥

∥

∥

∥

n

,

‖Ωn(t)‖ ≤‖V(0)‖
∥

∥

∥

∥

∆2

Γ(α)
t

∥

∥

∥

∥

n

,

‖χn(t)‖ ≤‖E(0)‖
∥

∥

∥

∥

∆3

Γ(α)
t

∥

∥

∥

∥

n

,

‖ψn(t)‖ ≤‖I(0)‖
∥

∥

∥

∥

∆4

Γ(α)
t

∥

∥

∥

∥

n

,

‖ϑn(t)‖ ≤‖R(0)‖
∥

∥

∥

∥

∆5

Γ(α)
t

∥

∥

∥

∥

n

.

(9)

Therefore equation (9) shows the existence and smoothness of all populations which was defined in

(8).

(ii) Here we show, S
′
n, V

′
n, E

′
n, I

′
n and R

′
n converge to solutions of (2). Now let, u∗

n

′
, w∗

n

′
, x∗n

′
, y∗n

′
, z∗n

′
,

are remainder terms after n iterations, ∋

S
′ − S(0) = S

′
n − u∗

n

′
,

V
′ − V(0) = V

′
n − w∗

n

′
,

E
′ − E(0) = E

′
n − x∗n

′
,

I
′ − I(0) = I

′
n − y∗n

′
,

R
′ − R(0) = R

′
n − z∗n

′
.

(10)
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By using triangle inequality along with K1, we get

‖u∗
n(t)‖ =

1

Γ(α)

∫ t

0
(t − σ)α−1 [K1(σ, S)−K1(σ, Sn−1)] dσ

≤ ∆1

Γ(α)
‖S − Sn−1‖t

We obtain the below equation by iteratively using the previous process,

‖u∗
n(t)‖ ≤

∥

∥

∥

∥

∆1

Γ(α)
t

∥

∥

∥

∥

n+1

Π1

Then at t0, we have

‖u∗
n(t)‖ ≤

∥

∥

∥

∥

∆1

Γ(α)
t0

∥

∥

∥

∥

n+1

Π1.

Taking limit as n → ∞,

lim
n→∞

‖u∗
n(t)‖ ≤ lim

n→∞

∥

∥

∥

∥

∆1

Γ(α)
t0

∥

∥

∥

∥

n+1

Π1. (11)

Using hypothesis, ∆1
Γ(α)

t0 < 1. Equation (11) becomes,

lim
n→∞

‖u∗
n(t)‖ = 0

As n → ∞, we get

‖w∗
n(t)‖ → 0,

‖x∗n(t)‖ → 0,

‖y∗n(t)‖ → 0,

‖z∗n(t)‖ → 0.

Thus, the system has at least one solution.

Theorem 5.3. A unique solution exists for (2) if
(

1 − ∆i
Γ(α)

t
)

> 0 for i = 1 to 5.

Proof. Let S1(t), V1(t), E1(t), I1(t), R1(t) is another set of solution of (2) thus,

‖S(t)− S1(t)‖ =
1

Γ(α)

∫ t

0
(t − σ)α−1 [K1(s, S)−K1(s, S1)] ds

≤ ∆1

Γ(α)
t‖S(t)− S1(t)‖

By rearranging,

‖S(t)− S1(t)‖ −
∆1

Γ(α)
t‖S(t)− S1(t)‖ ≤ 0

‖S(t)− S1(t)‖
[

1 − ∆1

Γ(α)
t

]

≤ 0 (12)
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using hypothesis
(

1 − ∆1
Γ(α)

t
)

is strictly greater than zero, then (12) takes the structure ‖S(t)− S1(t)‖ =

0.

It means that S(t) = S1(t).

By repeating the similar procedure to each solution for i = 2, 3, 4, 5, we get,

V(t) = V1(t),

E(t) = E1(t),

I(t) = I1(t),

R(t) = R1(t).

Hence the proof.

6. Model Analysis

This section examines the existence of equilibrium points and the local stability of the system.

6.1. Equilibrium Points

In our case, we found two equilibrium points: E0= (S0, V0, E0, I0, R0) and E1 = (S∗, V∗, E∗, I∗, R∗).
We get the disease free equilibrium points for system (2) as E0 = ( A

θ1
, zA

θ1µ 0, 0, 0). Also for endemic

equilibrium we obtain S∗ =
ηAθ4+α0γη I∗

θ4(ηθ1+δ1η I∗+δ2θ3η I∗) , V∗ =
ηzθ4(

ηAθ4+α0γη I∗
θ4(ηθ1+δ1η I∗+δ2θ3η I∗)+ηα1γI∗)

θ4(δ3η I∗+δ4θ3 I∗+ηµ)
, E∗ = θ3 I∗

η and R∗

= γI∗
θ4

. Here I∗ will be in the form of g(I∗) = l1 I∗3 + l2 I∗2 + l3 I∗ + l4 = 0. By using Descartes rule of

signs [21], we can able to the positive roots of I∗.

6.2. Basic Reproduction Number (BRN)

The spectral radius of the next generation matrix determines the R0 [4] for the system (2).

Therefore, we have R0 = ηSδ1+ηVδ3+Sδ2θ3+θ3Vδ4
θ2θ3

. By substituting disease free equilibrium points we get,

R0 =
η( A

θ1
)δ1 + η( zA

θ1µ )δ3 + ( A
θ1
)δ2θ3 + θ3(

zA
θ1µ )δ4

θ2θ3
.

where,

θ1 = µ + z,

θ2 = η + µ,

θ3 = γ + µ + µ1.

6.3. Local stability

The Jacobian matrix for (2) is presented by,

J =















−δ1 I − δ2E − θ1 0 −δ2S −δ1S α0

z −δ3 I − δ4E − µ −δ4V −δ3V α1

δ1 I + δ2E δ3 I + δ4E δ2S + δ4V − θ2 δ3V + δ1S 0

0 0 η −θ3 0

0 0 0 γ −θ4















.

Theorem 6.1. The disease free equilibrium point E0 of the fractional order model (2) is stable if R0 < 1.

Proof. By the approach of Matignon’s condition in [20], E0 of the fractional order (2) is locally

asymptotically stable ⇐⇒ all the eigen values of J0 should fulfil |arg(λi)| > aπ
2 .
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The Jacobi matrix at E0 is obtained as follows,

J0 =

















−θ1 0 − δ2 A
θ1

− δ1 A
θ1

α0

z −µ − δ4zA
θ1µ − δ3zA

θ1µ α1

0 0 δ2 A
θ1

+ δ4zA
θ1µ − θ2

δ3zA
θ1µ + δ1 A

θ1
0

0 0 η −θ3 0

0 0 0 γ −θ4

















Clearly, from the above matrix we can say, λ1 = −θ1, λ2 = −µ, λ5 = −θ4 are the three eigen values.

Here λ3 and λ4 can be computed from the below matrix.

(

δ2 A
θ1

+ δ4zA
θ1µ − θ2

δ3zA
θ1µ + δ1 A

θ1

η −θ3

)

They are λ3 = y1 +
√

y2 + y3 and λ4 = y1 −
√

y2 + y3, where,

y1 = Aδ2µ − θ1θ2µ − θ1θ3µ + Aδ4z,

y2 = A2δ2
2µ2 + θ2

1θ2
2µ2 + 2θ2

1θ2θ3µ2 + θ2
1θ2

3µ2 + 2A2δ2δ4µz + A2δ2
4z2

− 2Aδ2θ1θ2µ2 − 2Aδ2θ1θ3µ2 − 2Aδ4θ1θ2µz − 2Aδ4θ1θ3µz,

y3 = 4(Aδ2θ1θ3µ2 + δ1 Aθ1ηµ2 + Aδ4θ1θ3µz + Aδ3θ1ηµz − θ2
1θ2θ3µ2).

y1 < 0 when θ1θ2µ + θ1θ3µ > Aδ2µ + Aδ4z,

y2 > 0 when A2δ2
2µ2 + θ2

1θ2
2µ2 + 2θ2

1θ2θ3µ2 + θ2
1θ2

3µ2 + 2A2δ2δ4µz

+ A2δ2
4z2

> 2Aδ2θ1θ2µ2 + 2Aδ2θ1θ3µ2 + 2Aδ4θ1θ2µz + 2Aδ4θ1θ3µz,

y3 > 0 when 4(Aδ2θ1θ3µ2 + δ1 Aθ1ηµ2 + Aδ4θ1θ3µz + Aδ3θ1ηµz) > 4θ2
1θ2θ3µ2.

Therefore λ3 and λ4 have negative real numbers with the above conditions. From this clearly we can

conclude that all eigenvalues are negative and does fulfil the Matignon’s condition [20]. Hence, E0=

( A
θ1

, zA
θ1µ 0, 0, 0) is stable whenever BRN is less than one.

Table 2. Necessary components for the stability of the equilibrium points.

Eigen value Sign Conditions Stability

λ3 − y1 < 0, y2 > 0 and y3 > 0 and hence y1 >
√

y2 + y3 Stable

λ4 − y1 < 0, y2 > 0 and y3 > 0 and hence y1 −
√

y2 + y3 < 0 Stable

Theorem 6.2. When R0 > 1, the endemic equilibrium E1 of the model (2) is asymptotically stable point.

Proof. By using [20], the endemic equilibrium E1 of (2) is locally asymptotically stable ⇐⇒ all the

eigenvalues of below mentioned matrix should fulfil |arg(λi)| > aπ
2 .

For (2), the Jacobi matrix at E1 is obtained as,

J1 =















−δ1 I∗ − δ2E∗ − θ1 0 −δ2S∗ −δ1S∗ α0

z −δ3 I∗ − δ4E∗ − µ −δ4V∗ −δ3V∗ α1

δ1 I∗ + δ2E∗ δ3 I∗ + δ4E∗ δ2S∗ + δ4V∗ − θ2 δ3V∗ + δ1S∗ 0

0 0 η −θ3 0

0 0 0 γ −θ4















Let us consider,

b11 = −δ1 I∗ − δ2E∗ − θ1,

b13 = −δ2S∗,

b14 = −δ1S∗,

b15 = α0,
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b21 = z,

b22 = −δ3 I∗ − δ4E∗ − µ,

b23 = −δ4V∗,

b24 = −δ3V∗,

b25 = α1,

b31 = δ1 I∗ + δ2E∗,

b32 = δ3 I∗ + δ4E∗,

b33 = δ2S∗ + δ4V∗ − θ2,

b34 = δ3V∗ + δ1S∗,

b43 = η,

b44 = −θ3,

b54 = γ,

b55 = −θ4.

The characteristic equation of the J1 is,

⇒ λ5 + x1λ4 + x2λ3 + x3λ2 + x4λ + x5 = 0,

where,

x1 = −b11 − b22 − b33 − b44 − b55,

x2 = b44b55 + b33b55 + b22b55 + b11b55 + b33b44 + b22b44 + b11b44 + b22b33 + b11b33 + b11b22

− b34b43 − b23b32 − b13b31,

x3 = b34b43b55 + b23b32b55 + b13b31b55 + b23b32b44 + b13b31b44 + b22b34b43 + b11b34b43

+ b11b23b32 + b13b22b31 − b33b44b55 − b22b44b55 − b11b44b55 − b22b33b55 − b11b33b55

− b11b22b55 − b22b33b44 − b11b33b44 − b11b22b44 − b24b32b43 − b14b31b43 − b11b22b33

− b13b21b32,

x4 = b22b33b44b55 + b11b33b44b55 + b11b22b44b55 + b24b32b43b55 + b14b31b43b55 + b11b22b33b55

+ b13b21b32b55 + b11b22b33b44 + b11b23b32b44 + b13b21b32b44 + b11b24b32b43 + b14b22b31b43

− b23b32b44b55 − b13b31b44b55 − b22b34b43b55 − b11b34b43b55 − b11b23b32b55 − b13b22b31b55

− b25b32b43b54 − b15b31b43b54 − b13b22b31b44 − b1b22b34b43 − b14b21b32b43,

x5 = b11b23b32b44b55 + b13b22b31b44b55 + b11b22b34b43b55 + b14b21b32b43b55 + b11b25b32b43b54

+ b15b22b31b43b54 − b11b22b33b44b55 − b13b21b32b44b55 − b11b24b32b43b55 − b14b22b31b43b55

− b15b21b32b43b54.

Here we consider,

• x1 > 0, if b11 + b22 + b33 + b44 + b55 < 0,

• x2 > 0, if b11b33 + b11b22 > b34b43 + b23b32 + b13b31,

• x3 > 0, if b11b34b43 + b11b23b32 + b13b22b31 > b33b44b55 + b22b44b55 + b11b44b55 + b22b33b55

+ b11b33b55 + b11b22b55 + b22b33b44 + b11b33b44 + b11b22b44 + b24b32b43 + b14b31b43

+ b11b22b33 + b13b21b32,

• x4 > 0, if b11b24b32b43 + b14b22b31b43 > b23b32b44b55 + b13b31b44b55 + b22b34b43b55

+ b11b34b43b55 + b11b23b32b55 + b13b22b31b55 + b25b32b43b54 + b15b31b43b54 + b13b22b31b44

+ b1b22b34b43 + b14b21b32b43,

• x5 > 0, if b11b23b32b44b55 > b11b22b33b44b55 + b13b21b32b44b55 + b11b24b32b43b55

+ b14b22b31b43b55 + b15b21b32b43b54.
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From the above conditions, we can say that, E1 = (S∗, E∗, I∗, Q∗, R∗, D∗) of equation (2) is stable

whenever R0 > 1.

7. Numerical Simulation

In this, we derive general fractional order Euler method approach for (2). By reformulating, we

get

D
α
t [S(t)] = τ1(t, S(t)),

D
α
t [V(t)] = τ2(t, V(t)),

D
α
t [E(t)] = τ3(t, E(t)),

D
α
t [I(t)] = τ4(t, I(t)),

D
α
t [R(t)] = τ5(t, R(t)).

(13)

where,

τ1(t, S(t)) = A − δ1SI − δ2SE − µS − zS + α0R,

τ2(t, V(t)) = zS − δ3VI − δ4VE − µV + α1R,

τ3(t, E(t)) = δ1SI + δ2SE + δ3VI + δ4VE − ηE − µE,

τ4(t, I(t)) = ηE − γI − µI − µ1 I,

τ5(t, R(t)) = γI − µR − α0R − α1R.

(14)

From first equation of (2),

D
α
t [S(t)] = τ1(t, S(t)),

S(0) = S0, t > 0.
(15)

Let [0, d] be the collection of points for which we wish to discover the solution of (15). In fact, we are

unable to assess S(t) that will be corresponding to (15). Instead, a collection of (tr, tr + 1) is formed, and

the points are used in our iterative approach. From tr = rh, r = 0, 1, 2, 3, ...k, we partition the interval

[0, d] into k subintervals [tr, tr + 1] with equal width h = d
k . Assume S(t), Dα

t [S(t)] and D2α
t [S(t)] are

continuous on [0, d]. By using the generalised Taylor formula, extend S(t) to t = t0 = 0. There is a

value c1 for each value t, therefore

S(t) = S(t0) +D
α
t [S(t)]t0

tα

Γ(α + 1)
+D

2α
t [S(t)]c1

t2α

Γ(2α + 1)
(16)

Substitute Dα
t [S(t)]t0 = τ1(t0, S(t0)) and h = t1 in (16)

S(t1) = S(t0) + τ1(t0, S(t0))
hα

Γ(α + 1)
+D

2α
t [S(t)]c1

h2α

Γ(2α + 1)
,

If h is small, thus

S(t1) = S(t0) + τ1(t0, S(t0))
hα

Γ(α + 1)
, (17)

A general formula, tr+1 = tr + h can be written as

S(tr+1) = S(tr) + τ1(tr, S(tr))
hα

Γ(α + 1)
. (18)
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Using the fractional integral on (15), we obtain

[S(t)] = S(0) + Iα[τ1(t, S(t))] (19)

To obtain (t1, S(t1)), we replace t = t1 into (19), then

S(t1) = S(0) + (Iα[τ1(t, S(t))])(t1). (20)

With the help modified trapezoidal rule, we approximate (Iα[τ1(t, S(t))])(t1) with h = t1 − t0 then (20)

becomes

S(t1) = S(0) +
αhα[τ1(t0, S(t0))]

Γ(α + 2)
+

hα[τ1(t1, S(t1))]

Γ(α + 2)
(21)

The expression S(t1) appears in the formula on the RHS of (21). As a result, we estimate S(t1).

For this purpose, the fractional Euler approach can be used. Substitute (17) for (21).

S(t1) = S(0) +
αhα[τ1(t0, S(t0))]

Γ(α + 2)
+

hα[τ1(t1, S(t0))] +
hα

Γ(α+1)
τ1(t0, S(t0))

Γ(α + 2)

The technique is iterated until a sequence of points that closely approximate the solution is obtained.

Therefore, the general formula for our approach can be written as,

S(tr) = S(0) +
hα

Γ(α + 2)
[(r − 1)α+1 − (r − α − 1)rα]τ1(t0, S(t0))

+
hα

Γ(α + 2)

r−1

∑
i=1

[(r − i + 1)α+1 − 2(r − 1)α+1 + (r − i − 1)α+1]τ1(ti, S(ti))

+
hα

Γ(α + 2)
τ1[tr, S(tr−1) +

hα

Γ(α + 1)
τ1(tr−1, S(tr−1))].

(22)

Using the same method, we construct numerical schemes for the model’s additional compartments.

V(tr) = V(0) +
hα

Γ(α + 2)
[(r − 1)α+1 − (r − α − 1)rα]τ2(t0, V(t0))

+
hα

Γ(α + 2)

r−1

∑
i=1

[(r − i + 1)α+1 − 2(r − 1)α+1 + (r − i − 1)α+1]τ2(ti, V(ti))

+
hα

Γ(α + 2)
τ2[tr, V(tr−1) +

hα

Γ(α + 1)
τ2(tr−1, V(tr−1))],

(23)

E(tr) = E(0) +
hα

Γ(α + 2)
[(r − 1)α+1 − (r − α − 1)rα]τ3(t0, E(t0))

+
hα

Γ(α + 2)

r−1

∑
i=1

[(r − i + 1)α+1 − 2(r − 1)α+1 + (r − i − 1)α+1]τ3(ti, E(ti))

+
hα

Γ(α + 2)
τ3[tr, E(tr−1) +

hα

Γ(α + 1)
τ3(tr−1, E(tr−1))],

(24)

I(tr) = I(0) +
hα

Γ(α + 2)
[(r − 1)α+1 − (r − α − 1)rα]τ4(t0, I(t0))

+
hα

Γ(α + 2)

r−1

∑
i=1

[(r − i + 1)α+1 − 2(r − 1)α+1 + (r − i − 1)α+1]τ4(ti, I(ti))

+
hα

Γ(α + 2)
τ4[tr, I(tr−1) +

hα

Γ(α + 1)
τ4(tr−1, I(tr−1))],

(25)
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R(tr) = R(0) +
hα

Γ(α + 2)
[(r − 1)α+1 − (r − α − 1)rα]τ5(t0, R(t0))

+
hα

Γ(α + 2)

r−1

∑
i=1

[(r − i + 1)α+1 − 2(r − 1)α+1 + (r − i − 1)α+1]τ5(ti, R(ti))

+
hα

Γ(α + 2)
τ5[tr, R(tr−1) +

hα

Γ(α + 1)
τ5(tr−1, R(tr−1))].

(26)

The numerical scheme described above is employed to obtain the numerical results. Furthermore,

assumptions are introduced for the initial states of variables and input parameters to streamline the

calculations. Figures 1–4 show the results of the most effective cases. Figure 1a shows the local stability

of SVEIR individuals for the corresponding disease free equilibrium. Let us consider, A = 1000,

δ1 = 0.0009, δ2 = 0.0008, δ3 = 0.009, δ4 = 0.0008, µ = 0.9, µ1 = 0.042, z = 0.099, α0 = 0.05, α1 = 0.005,

γ = 0.0052 and η = 0.7. For this set of parameter values we obtain BRN R0 < 1. So from this we

clearly sum up that our E0 is locally stable. For different set of parameter we get R0 > 1, which was

illustrated in the Figure 1b. So from this we sum up that our E1 is locally stable. Figure 2a,b shows

the phase diagram for vaccinated, infected and recovered population of both DFE and EE. Next, we

checked the influence of progression rate for infected individuals, which was depicted in the Figure 3.

For this simulation we consider progression rate as 0.10, 0.25, 0.50 respectively. Then we also checked

the influence of recovery rate due to treatment for recovered individuals, which was shown in Figure

4. For this simulation we consider recovery rate as 0.10, 0.25, 0.50 respectively. Our analysis predicts

that how the input factors influence the output of the system of HFMD transmission.

Figure 1. (a) Variation of S, V, E, I, R for E0 when BRN is less than one and (b) Variation of S, V, E, I,

R for E1 when BRN is greater than one.

Figure 2. Three dimensional Phase diagram of V, I, R for corresponding (a) E0 and (b) E1.
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(a) with input parameter η = 0.10 (b) with input parameter η = 0.25

(c) with input parameter η = 0.50

Figure 3. Dynamical behaviour of infected individuals,

(a) with input parameter, γ = 0.10 (b) with input parameter, γ = 0.25

(c) with input parameter, γ = 0.50

Figure 4. Dynamical behaviour of recovered individuals,
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8. Conclusion

In this study, we focus on investigating the applicability of the CFO mathematical model

in understanding the spread dynamics of Hand Foot Mouth Disease (HFMD). The focus of our

investigation is to determine whether the system is non negative and bounded, which allowed us to

analyse the stability of the model. Through nonlinear analysis, we demonstrated the existence and

uniqueness of the model, which enhances its reliability in predicting disease spread. Furthermore, we

calculated the numerical solution of the suggested system using the fractional Euler’s approach. This

approach is widely used to solve fractional differential equations, and it provides accurate results that

are vital in disease modelling. By utilizing this method, we were able to obtain precise solutions for

the model, which allowed us to make better predictions about HFMD transmission. Overall, our study

demonstrates that the Caputo fractional order mathematical model is a reliable tool for understanding

the spread of HFMD. The establishment of positive invariance and boundedness of the system, coupled

with the use of nonlinear analysis and numerical solution, enhances the accuracy of the model, which

can be used to inform policies aimed at controlling and preventing the spread of HFMD.
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