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Article 
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Abstract: This paper is a follow-up to a previous study that was conducted in a research forest and 

identified the optimal method for Diameter at Breast Height (DBH) estimation as a circular scanning 

and fitting ellipses to 4cm stem cross-sections at breast height. The aim of this study was to 

determine whether the identified method is applicable to natural boreal forests as well. The iPad 

Pro LiDAR scanner was used to acquire point clouds for 15 sites representing a range of natural 

boreal forest conditions in Ontario, Canada, and estimate DBH. The secondary objective was to 

determine if tested stand (Species composition, age, density, understory) or tree (Species, DBH) 

factors affected the accuracy of estimated DBH. Overall, estimated DBH values were within 1cm of 

actual DBH values for 78 of 133 measured trees (59%). An RMSE of 1.5cm (8.6%) was achieved. 

Stand age had a large effect (>0.15) on the accuracy of estimated DBH values, while density, 

understory, and DBH had moderate effects (0.05-0.14). No trend was identified between accuracy 

and stand age. Accuracy improved as understory density decreased and as tree DBH increased. 

Inertial Measurement Unit (IMU) and positional accuracy errors with the iPad Pro scanner limit the 

feasibility of using this device for forest inventories. 

Keywords: iPad Pro LiDAR; DBH; boreal forest; forest inventory; mobile laser scanning 

 

1. Introduction 

Diameter at Breast Height (DBH) is the diameter of a tree stem 1.3m above the ground, and is a 

key variable measured in forest inventories [1,2]. DBH is traditionally measured manually using a 

diameter tape or callipers, but these methods are time-consuming and costly [3]. Light Detection and 

Ranging (LiDAR) is a remote sensing technology that has previously been used to accurately estimate 

DBH [2–5]. A key message from this previous work was the need to acquire data from multiple 

perspectives due to tree stems' irregular, uneven shapes [6,7]. High site densities and significant 

understory vegetation have also been found to contribute to error in estimated DBH values [8,9].  

In 2020, Apple released the iPad Pro 12th Generation, a consumer tablet with an integrated 

LiDAR scanner with a scanning range up to 5m and an accuracy of ±1cm [5,10]. Previous studies have 

examined different acquisition and processing methods when using the iPad Pro LiDAR scanner to 

acquire point clouds for DBH estimation [2,5,11]. However, these studies have taken place in urban 

or plantation forests with minimal variation or obstruction within the scanned plots. Therefore, it is 

important to test the accuracy of DBH estimation with iPad Pro LiDAR in a range of natural boreal 

forest conditions. Therefore, this study aimed to explore the possibilities of using the iPad Pro LiDAR 

sensor within natural forests for DBH estimation.  

This paper is a follow-up to our previous study where we compared multiple walking patterns 

for LiDAR point cloud acquisition with the iPad Pro, as well as multiple processing methods to 
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determine which combination of walking pattern and processing method produced the most accurate 

estimates of DBH [11]. Specific objectives of this study were to: (1) determine if site-level attributes 

(Age Class, Species Class, Tree Density, Understory Density) or tree-level attributes (Tree Species, 

DBH sizes) have statistically significant impacts on DBH estimate accuracy; and, (2) identify site 

conditions that facilitate or inhibit accurate estimates of DBH from LiDAR point cloud data. It is 

hypothesized that DBH estimate accuracy will be reduced in stands with significant leafy tissue at or 

around breast height, either sites with high understory densities or sites with high site densities (trees 

per ha). It is also hypothesized that DBH estimates will be more accurate for sites with larger tree 

sizes, as DBH estimate accuracy has been found to increase as measured DBH increases [11].  

2. Materials and Methods 

2.1. Study Area 

LiDAR and model validation data was collected in 15 natural, wildfire-origin stands that 

represented five age classes (20-40 years, 41-60 years, 61-80 years, 81-100 years, and 101+ years) and 

three species groups (Broadleaf-dominated sites (BRD): 68-100% broadleaf, Coniferous sites (CON): 

68-100% conifer, and mixed sites (MX): 33-67% conifer). The study sites were located in one of three 

Forest Management Units (FMUs) that adjoined each other: the Black Spruce, Dog River-Matawin, 

and English River FMUs. The sites sampled represented a selected sub-sample of the Ontario 

Ministry of Natural Resources and Forestry (OMNRF) Vegetation Sampling Network (VSN) plots. 

VSN plots were selected the previous year by the OMNRF using a Principal Component Analysis 

(PCA) using 26 structural attributes derived from recent aerial LiDAR (Single Photon) imagery to 

select sites representing the full range of structural variability present in a given FMU [12]. VSN plots 

are circular (400 m2), with a radius of 11.28m from a fixed plot center to the plot boundary.  All VSN 

plot centers are marked on the ground with a metal rod to ensure each field crew visiting the site uses 

the same plot center. Below, Figure 1 shows the location of the sites selected for this study within 

northwestern Ontario, as well as their location within Ontario.  

 

Figure 1. Map showing location of field sites within northwestern Ontario. 
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2.2. Data Acquisition 

2.2.1. Validation Data 

Validation data was collected by two field crews working independently of one another. Field 

crews visited each site within three months of one another to ensure site conditions did not change 

between visits. The first field crew established the VSN plot (e.g., located the plot centers using 

preassigned GPS coordinates, flagged the plot boundary), then numbered each tree within the plot 

boundary with a DBH greater than or equal to 7cm in the 11.28m radius VSN plot, and recorded 

species, status (live versus dead), DBH (recorded to the nearest 0.1cm using a diameter tape) and 

height. The field crew also measured 1.3m above the point of germination for each tree and painted 

a line at this height, to ensure subsequent measurements of DBH were recorded at the same height.  

The second field crew recorded the species, status, and DBH of all trees larger than 7 cm within 

a smaller subplot (5m radius) of the VSN plot center. The DBH was recorded to the nearest 0.1cm 

using a diameter tape. An average of the two DBH values collected by each of the field crews was 

used as the validation DBH value for each sampled tree. Distance from plot center was recorded to 

the nearest point on each tree stem at breast height using a clinometer. The distance (m) and azimuth 

(Degrees) from the plot center to the nearest point on each tree stem to facilitate correlating validation 

data with trees in the extracted site cross-sections. Azimuth was recorded to the nearest degree using 

a compass. For each field site, understory was classified into one of five categories of understory 

density (Minimal: 0-20% of tree stems between 0 and 2.5m are obscured; Low: 21-40% obscured; 

Moderate: 41-60% obscured, Dense: 61-80% obscured, or Very Dense: 81-100% obscured) based on 

the amount of leafy vegetation present between 0.5m and 2.5m above the ground when the point 

clouds were acquired. 

2.2.2. LiDAR Data 

To prepare sites for LiDAR acquisition, the metal rod at the plot center was flagged with both 

pink and yellow flagging tape. The 5m radius from plot center to the LiDAR subplot boundary in 

each of the four cardinal directions was measured using a 30m measuring tape. Tripods were placed 

at the plot boundary in each of the four cardinal directions to simplify the process of point cloud 

registration and point matching. The base of all measured, living trees located in each plot were 

marked with pink flagging tape to facilitate identification of ‘in’ trees while acquiring LiDAR data. 
Point clouds were acquired using the Zappcha application and an Apple iPad Pro 12th Generation 

[10,13]. The circular scanning method that was found to provide the most accurate estimates of DBH 

was used for point cloud acquisition [11]. 

2.3. Point Cloud Processing 

Point clouds were imported to CloudCompare software from Zappcha app via the Veesus Cloud 

Plugin for further processing [13,14]. The point clouds were projected and clipped to plot boundaries 

using ArcGIS Pro [15]. Using the CloudCompare software, point clouds were co-registered for the 

quadrants in each plot, then cleaned using the 'Statistical Outlier Removal (SOR)' tool [14]. 

The Cloth Simulation Filtering (CSF) method developed by Zhang et al. (2016) was used to 

identify points related to the ground in each filtered point cloud and interpolate the ground surface 

for areas without data [16]. Using the elevation value for the interpolated ground surface, the 

elevation value representing breast height (1.3 m above ground) for each point cloud was calculated. 

A single 4 cm tall cross-section centered at breast height was extracted from each non-ground point 

cloud. Points representing individual features in plot cross-sections were identified and segmented 

using the density-based clustering algorithm (DBSCAN) in ArcGIS Pro [15]. By cross-referencing the 

identified clusters with stem maps for each plot, the cluster representing each measured tree was 

identified. Clusters representing more than one tree were manually split into separate shapefiles. 

Manual cleaning of the clusters representing measured trees was performed. The X and Y coordinates 

of each point in the trimmed cluster shapefiles were appended to the attribute tables.  
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All tree attributes were imported to R, using the ‘conicfit’ package for curve fitting [17,18]. An 
iterative geometric ellipse fit was applied to the points in each stem cross-section [11,18]. The iterative 

ellipse fitting formula used the results of Taubin’s Direct-Least Squares Ellipse fitting formula as the 

initial estimated ellipse parameters for each tree. The iterative ellipse-fitting formula then used the 

Levenberg-Marquardt method with a maximum of 200 iterations to reduce the error metric of the 

fitted ellipses [18,19]. Using the geometric parameters for each fitted ellipse, the average diameter of 

each ellipse was calculated as the estimated DBH (cm). 

2.4. Statistical Methods 

The average of the DBH values (cm) recorded by the two field crews for each tree were used as 

the validation DBH values. The difference (cm), absolute error, and relative absolute error between 

the estimated DBH and the validation DBH were calculated for each tree. The acceptable accuracy 

level of OMNRF’s DBH estimation in forest inventories is 1cm compared to the actual measurements 
[20]. Hence, this study adapted the same accuracy level. 

The absolute error (cm) and relative absolute error (%) of each individual tree were used as 

measures of accuracy for statistical analyses. Box plots were created for the overall dataset to identify 

skew and distribution of the results. Kruskal-Wallis tests were used to determine if any of the tested 

independent variables at the site level (Site type, species class, stand age, stand density, understory 

class) or individual tree level (tree species, measured DBH size) had statistically significant impacts 

on the accuracy of estimated DBH values (relative error). For variables with significant impacts on 

estimate accuracy, a Dunn-Bonferroni post-hoc test was used to determine how different values of 

that variable impacted estimate accuracy. 

3. Results 

3.1. Validation Data 

The 15 sites varied considerably for live tree density (254 - 2928 stems ha-1), ranged in age from 

25-114 years, and had a range of understory densities (Table 1). None of the 15 study sites had all 

estimated DBH values within 1cm of the measured DBH, ranging from as high as 83.3% (Site MX 81-

100) to as low as 0% (Site MX 61-80). The least accurate DBH estimate was a White Spruce (Picea 

glauca) in plot CON 20-40, with an actual DBH of 12.2cm and an estimated DBH of 7.1cm. 

Table 1. Field Site Overview. 

Site  Age 
Measure

d Trees * 

Density 

(Stems ha-1) ** 

Species  

Composition *** 

Average 

DBH (cm) 

Understory 

Class (1-5) 

BRD 20-40 35 19 2419 Pt74 Sb26 13.1 Low (2) 

BRD 41-60 45 7 1019 Pt80 Pj10 Bw10 20.9 Dense (4) 

BRD 61-80 74 9 1273 By50 Mr50 16.0 Moderate (3) 

BRD 81-100 91 8 1146 Pt100 29.7 Moderate (3) 

BRD 101+ 114 3 764 Pt100 21.5 Very Dense (5) 

CON 20-40 27 23 2928 Sb91 Pj9 10.4 Low (2) 

CON 41-60 54 12 1528 Bf83 Pt17 19.5 Very Dense (5) 

CON 61-80 74 2 382 Pj100 30.6 Low (2) 

CON 81-100 91 15 1909 Pj100 21.9 Minimal (1) 

CON 101+ 105 7 1146 Cw78 Bf11 Bw11 23.8 Minimal (1) 

MX 20-40 25 8 1401 Pt64 Pj18 Sb16 17.4 Minimal (1) 

MX 41-60 50 8 1146 
Bf44 Bw22 Sb22 

Ag12 
14.9 Moderate (3) 

MX 61-80 70 2 254 Sw50 Bw50 28.4 Very Dense (5) 

MX 81-100 84 6 764 Pt50 Bf30 Sw20 28.4 Dense (4) 

MX 101+ 109 4 764 Pj66 Pt34 25.4 Minimal (1) 

* Number of measured trees includes only living trees (DBH ≥ 7.0cm) within the 5m sub-plot. ** Density 

calculated using number of living and dead trees (DBH ≥ 7.0cm) within the 5m sub-plot. *** Species composition 
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is represented by two-letter species codes: Pt, trembling aspen (Populus tremuloides); Sb, black spruce (Picea 

mariana); Pj, jack pine (Pinus banksiana); Bw, white birch (Betula papyrifera); By, yellow birch (Betula alleghaniensis); 

Mr, red maple (Acer rubrum); Bf, balsam fir (Abies balsamea), Cw, eastern white cedar (Thuja occidentalis); Ag, 

green ash (Fraxinus pennsylvanica); Sw, white spruce (Picea glauca). 

Table 3. Comparison between the mean measured and estimated DBH values (cm) and associated 

MAE (cm and %) for the 15 visited sites. 

Site Name 
Mean Measured DBH 

(cm) 

Mean Estimated DBH 

(cm) 
MAE (cm) MAE (%) 

BRD 20-40 13.1 12.7 1.1 8.4 

BRD 41-60 20.9 20.9 1.3 6.2 

BRD 61-80 16.0 15.3 1.6 10.0 

BRD 81-100 29.7 29.8 0.6 2.0 

BRD 101+ 18.7 17.7 1.9 10.2 

CON 20-40 10.4 9.4 1.0 9.6 

CON 41-60 14.8 14.6 2.0 13.5 

CON 61-80 30.6 31.3 0.7 2.3 

CON 81-100 21.9 21.9 0.9 4.1 

CON 101+ 23.8 24.8 1.1 4.6 

MX 20-40 17.4 17.3 0.6 3.4 

MX 41-60 14.9 13.9 1.2 8.1 

MX 61-80 28.4 26.9 1.5 5.3 

MX 81-100 26.2 26.1 0.5 1.9 

MX 101+ 25.4 25.6 1.3 5.1 

3.2. Impact of Site- and Tree-Level Factors on Estimation Accuracy 

Overall, an RMSE of 1.5cm (8.6%), and an MAE of 1.1cm (6.4%) were achieved in this study. The 

distribution of the individual tree absolute error values was not normally distributed, and the results 

skewed towards zero (Figure 2). 

 

Figure 2. Histogram showing distribution of the number of trees as a function of the relative error 

values. 
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The 81-100 age class produced the most accurate estimates of DBH, with an MAE of 0.72cm 

(3.01%) (Table 4). In terms of stand density effects, the lowest density class (250-500 stems ha-1) 

produced the most accurate estimates of DBH in terms of relative MAE, with an MAE of 1.13 (3.92%), 

although this density class only had 4 measured trees. For density classes with 10 or more measured 

trees, the most accurate estimates of DBH (cm) were achieved in the 501-1000 stems ha-1 density class, 

which had an MAE of 1.03cm (4.59%; Table 4). The sites with minimal understory produced the most 

accurate estimates of DBH, with an MAE of 0.91cm (4.06%) (Table 4). Generally, the MAE were 

comparable across the understory classes 1 (minimal) to 4 (dense), but increased substantially in the 

very dense class (MAE: 19.4cm and relative MAE of 17.6%). The 25.1-30cm DBH class produced the 

lowest MAE (0.82cm; 3.02%), while the 30.1-35cm DBH class produced the lowest relative MAE 

(0.94cm; 2.97%) (Table 4). 

Table 4. Number of trees, Mean Absolute Error (cm), and relative Mean Absolute Error (%) as a 

function of the tested site and species factors. 

Factor Factor Level 
Number of 

Trees 

Mean Absolute 

Error (cm) 

Relative Mean 

Absolute Error (%) 

Species Class 

Broadleaf 46 1.19 7.30 

Conifer 59 1.16 9.45 

Mixed 28 0.90 4.91 

Age Class 

20-40 50 0.96 8.19 

41-60 27 1.56 13.05 

61-80 13 1.48 8.94 

81-100 29 0.72 3.01 

101+ 14 1.30 5.66 

Density Class 

(Stems ha-1) 

250-500  4 1.13 3.92 

500-1000 13 1.03 4.59 

1001-1500 47 1.09 6.24 

1501-2000 12 1.95 19.66 

2001-2500 34 0.98 6.25 

2501-3000 23 1.00 9.88 

Understory Class 

Minimal (1) 34 0.91 4.06 

Low (2) 44 1.01 8.77 

Moderate (3) 25 1.17 7.34 

Dense (4) 15 0.99 4.87 

Very Dense (5) 15 1.94 17.59 

Tree Species 

Balsam Fir 17 1.31 14.80 

Black Spruce 35 0.92 8.99 

Cedar 5 0.80 3.39 

Green Ash 1 0.80 7.48 

Jack Pine 13 0.92 3.55 

Red Maple 4 2.02 9.21 

Trembling Aspen 46 1.15 5.72 

White Birch 5 1.26 6.30 

White Spruce 2 1.75 6.31 

Yellow Birch 5 1.32 12.74 

DBH Class (cm) 

7-10 30 1.08 13.58 

10.1-15 28 1.13 9.49 

15.1-20 23 1.02 5.95 

20.1-25 25 1.32 5.81 

25.1-30 17 0.82 3.02 

30.1-35 5 0.94 2.97 

35.1-40 3 1.13 3.00 

40.1-50 1 4.80 11.46 

As highlighted in Figure 2, the data did not follow a normal distribution. The skewness was 3.17 

with a Kurtosis value of 16.56, indicating a highly skewed dataset. To determine if any of the above 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 December 2023                   doi:10.20944/preprints202312.1133.v1

https://doi.org/10.20944/preprints202312.1133.v1


 7 

 

factors had statistically significant impacts on the accuracy of DBH estimates (relative MAE; %), 

Kruskal-Wallis tests were therefore used. Age class and density had large magnitudes of effect on the 

relative accuracy of the estimated DBH values for individual trees (Table 5). Understory classes had 

a moderate magnitude of effect, while species class had a small effect on the accuracy of estimated 

DBH values. Age (0.17) and understory classes (0.13) had the greatest effect sizes when examined 

individually, as well as when examining pairwise interactions (0.23). Species class (0.01) had the 

smallest effect size on the relative accuracy of estimated DBH values. 

Table 5. Kruskal-Wallis test results showing the statistical impact of individual stand- and site-level 

attributes and significant pairwise interactions on relative accuracy of DBH estimates. 

Factor(s) Df Test Statistic p-Value Effect Size Magnitude Of Effect 

Age Class 4 25.95 3.24E-05 0.17 Large 

Density Class 5 16.26 6.15E-04 0.09 Moderate 

Site Species Class 2 2.78 0.25 0.01 Small 

Understory 4 20.40 4.17E-04 0.13 Moderate 

DBH Class 8 25.67 1.40E-03 0.14 Moderate 

Species 9 12.67 0.18 0.03 Small 

Age Class * Density Class 13 39.08 1.94E-04 0.22 Large 

Age Class * Site Species Class 14 39.69 2.85E-04 0.22 Large 

Age Class * Understory 12 39.34 9.23E-05 0.23 Large 

Density Class * Site Species 

Class 
13 37.86 3.04E-04 0.21 Large 

Density Class * Understory 14 39.69 2.85E-04 0.22 Large 

Site Species Class * 

Understory 
9 25.76 2.23E-03 0.14 Moderate 

DBH Class * Age Class 27 43.99 0.02 0.16 Large 

DBH Class * Density Class 27 37.83 0.08 0.10 Moderate 

DBH Class * Site Species Class 22 39.92 0.01 0.16 Large 

DBH Class * Understory 29 55.36 6.43E-03 0.20 Large 

Age Class * Species 22 45.91 2.03E-03 0.22 Large 

Density Class * Species 22 36.26 0.03 0.13 Moderate 

Species * Understory 21 49.49 4.29E-04 0.26 Large 

Individual tree species had a small (0.03) effect on relative accuracy of estimated DBH values, 

whereas DBH size class had a moderate effect (0.14). For the individual site-level attributes that had 

significant effects on the accuracy of estimated DBH values (age, density, and understory classes), 

Dunn-Bonferroni post-hoc tests were conducted to identify interactions between two values for a 

single variable with a significant impact on the accuracy of estimated DBH values (Table 6). 

Table 6. Dunn-Bonferroni post-hoc test results showing age classes, DBH categories, density 

categories, and understory classes with significant statistical differences. 

Factor Group 1 Group 2 N1 N2 Statistic p-Value 

Age Class 20-40 81-100 50 29 -3.67 2.39E-04 

Age Class 41-60 81-100 27 29 -4.79 1.66E-06 

Age Class 61-80 81-100 18 29 -2.92 3.50E-03 

DBH Class 7-10cm 25.1-30cm 30 17 -3.71 2.09E-04 

DBH Class 10.1-15cm 25.1-30cm 28 17 -3.65 2.61E-04 

Density Class 1001-1500 1501-2000 47 12 3.23 1.24E-03 

Density Class 1501-2000 2001-2500 12 34 -3.01 2.61E-03 

Density Class 1501-2000 501-1000 12 13 -3.4 6.66E-04 

Understory Minimal (1) Low (2) 34 44 2.85 4.39E-03 

Understory Minimal (1) Very Dense (5) 34 15 4.08 4.45E-05 

Understory Dense (4) Very Dense (5) 15 15 3.17 1.50E-03 
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Below, Figure 3 shows a scatter plot of the estimated DBH (cm) for each individual tree (Colored 

by site species class), plotted as a function of measured DBH (cm), with a line plotted showing a 1:1 

relationship. 

 

Figure 3. Scatter plot showing estimated DBH (cm) as a function of actual DBH (cm) colored by site 

species class, with a line modelling a 1:1 relationship. 

74 trees had estimated DBH values lower than the actual DBH values (55.6% of measured trees), 

with 53 estimated DBH values greater than the actual DBH values (39.9% of measured trees), with an 

additional 6 trees (4.5% of measured trees) having an estimated DBH equal to the actual DBH.  

The pairwise interaction with the largest effect size was between individual tree species and 

understory classes (Table 5). Interactions between individual tree DBH size class and age class, 

species class, and understory class all had large effects (> 0.10) on the relative accuracy of individual 

tree DBH estimates. Overall, age class, individual tree DBH size class, and site understory classes had 

the largest effects on the accuracy of individual tree DBH estimates (Table 5). 

4. Discussion 

This study achieved an overall RMSE of 1.5cm (8.6%) for DBH values estimated from iPad Pro 

LiDAR data for 15 sites in the boreal forest. This is a lower RMSE than those reported in several 

previous studies using the iPad Pro to estimate DBH, such as: an urban park (Slovakia), 2.8cm (7.0%) 

and 5.2cm (13.0%); a research forest (Austria), 3.1cm (10.5%) and 6.3cm (21.2%); Natural and 

plantation forests (Japan), 2.3cm (10.5%); and, a university campus (Türkiye), 2.3cm (11.7%) [5,21–
23]. A previous study using the same methodology as used in this study reported an RMSE of 1.1cm 

(6.2%) for a plantation forest in Canada [11]. 

This study set out to investigate the effects of various site-level (Age Class, Species Class, Tree 

Density, Understory Density) and tree-level (Tree Species, Actual DBH) attributes on the relative 

accuracy of DBH values estimated using point cloud data acquired by an iPad Pro LiDAR scanner. It 

was found that all tested variables, with the exception of species class and individual tree species, 

had moderate to large magnitudes of effect on the relative accuracy of estimated DBH values (Tables 

10–13). The secondary objective was to identify specific site conditions that facilitate or inhibit 

accurate estimation of DBH using the iPad Pro LiDAR scanner. While some trends were identified in 

the data, the results do not conclusively identify specific site conditions that facilitate or inhibit 
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accurate estimation of DBH. Generally, sites with lower tree densities and less understory vegetation 

improved accuracy of DBH estimates, as did the measurement of larger trees (Table 4). In contrast, 

individual tree species, species composition, and stand age were not found to significantly affect the 

relative accuracy of estimated DBH values (Table 5). 

It was hypothesized that DBH estimate accuracy would be lower in stands with significant leafy 

tissue or other obstructions at or around breast height (i.e., stands with high understory plant cover 

or stands with high tree densities). Our results showed that DBH estimates were most accurate in 

stands with minimal understory (Table 4). However, the results also show the understory class with 

the second most accurate estimates of DBH was the second-densest understory class. Understory 

class did have a moderate magnitude of effect on the relative accuracy of DBH estimates (Table 5). 

However, Dunn-Bonferroni post-hoc test for differences between levels of understory density 

suggested differences in the accuracies of estimated DBH values between these groups did not follow 

any trends (Table 6).  

It was also hypothesized that the most accurate estimates of DBH would be achieved on sites 

with lower tree densities. Our results found that the lower three density classes (250-500 stems ha-1; 

501-1000 stems ha-1; 1001-1500 stems ha-1) had more accurate estimates of DBH (Table 4). However, 

significant differences were observed between the 501-1000 and 1501-2000 stems ha-1 density classes; 

the 1001-1500 and 1501-2000 stems ha-1 classes; and, the 1501-2000 and 2001-2500 stems ha-1 classes. 

The most extreme density classes, 250-500 stems ha-1 and 2501-3000 stems ha-1, were not significantly 

different from one another or any of the other tested density classes. The lack of significant differences 

in estimate accuracy between the lowest and highest site density classes and the rest of the dataset 

suggests that site density alone is not sufficient to predict the accuracy of DBH estimates. 

The final hypothesis suggested that the relative error of DBH estimates would decrease as tree 

size increased. With the exception of the sole tree in the 40cm+ DBH class, relative error of DBH 

estimates decreased as tree size increased. Discarding the three size classes with 5 or fewer measured 

trees (30.1-35cm; 35.1-40cm; 40.1-50cm), the 25.1-30cm DBH class was the size class with the largest 

measured DBH values, and had the lowest relative error (Table 4). Dunn-Bonferroni post-hoc testing 

found significant differences between the 25.1-30cm DBH class and both the 7-10cm and 10.1-15cm 

DBH classes (Table 6). This demonstrates that increases in actual DBH reduced the relative error of 

estimated DBH values in a statistically significant manner.  

Understory density was not considered when selecting sites for this study, as only site species 

composition and site age were known during the site selection period. As a result, the different 

combinations of understory density, site species class, and site age class were not evenly distributed, 

potentially causing bias in the results for the impact of understory density on the relative accuracy of 

estimated DBH values. Future research should incorporate multiple replicates of each combination 

of site species/age class to capture as much variation in understory density for that species/age class 

combination as possible.  

Common causes of error identified in previous studies using the iPad Pro include IMU errors 

with the iPad Pro, as well as high proportions of misplaced points (‘noise’) in acquired point clouds 
[5,21]. IMU errors contribute to scanned features with low surface fidelities, especially when 

significant movement occurs during the acquisition of a given point cloud [24,25]. Other factors 

contributing to IMU errors include changes in walking speed, rapid movements, or turning the iPad 

during the course of a scan [5,11,21,23]. IMU errors were present in this study as well, with misaligned 

tree cross-sections encountered several times. The misalignments were manually corrected, although 

this introduced a potential cause of error. High levels of error in point location (-/+1cm) in point 

clouds acquired with the iPad Pro LiDAR scanner have been found to cause trees to appear ‘fuzzy’ 
in the point clouds, which caused increased levels of error as tree size decreased [5]. This was also 

found in this study, with the relative accuracy of estimated DBH values lowest in the smallest DBH 

class and relative accuracy improving as actual DBH increased (Table 4). 

Comparing the results of this study to previous studies using MLS or TLS in natural forests, 

RMSE values of 2.7cm (10.8%; RANSAC method), 4.1cm (16.3%; Circle Fit), and 6.8cm (27.0%; 

Voxelization) were found in a study in a black pine (Pinus nigra) plantation forest in Italy [2]. It was 
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found that the accuracy of estimated DBH values was consistent for all sizes of tree recorded in the 

study. An MAE of 4.8cm (25.9% RMSE) was achieved using MLS and an MAE of 5.0cm (27.9% RMSE) 

using TLS to estimate DBH in a Ponderosa pine (Pinus ponderosa) forest in northern Arizona [8]. An 

RMSE of 2.4cm (5.6%) was achieved using TLS in managed Japanese cedar (Cryptomeria japonica) 

forests in Japan [9]. Common causes of inaccuracy include occlusion of scanned trees from understory 

vegetation [8,9].   

The results presented here support previous studies that found IMU errors, positional accuracy 

errors, and high levels of noise in point clouds to cause reduced accuracy of DBH values estimated 

using the iPad Pro LiDAR scanner. Factors identified as contributing to inaccuracies in previous 

studies using MLS or TLS to estimate DBH, such as high levels of understory vegetation or high site 

densities, were also found to reduce the accuracy of estimated DBH values with the iPad Pro. While 

tree size was found to impact the accuracy of DBH estimates both here and in previous studies using 

the iPad Pro LiDAR scanner, this factor did not impact the accuracy of DBH values estimated from 

TLS or MLS devices in previous studies, suggesting that this limiting factor is unique to the iPad Pro. 

5. Conclusions 

Although there were no tested sites where all estimated DBH values fell within the acceptable 

margin of error (1cm based on OMNRF standards), this methodology estimated DBH values for all 

133 scanned trees, with 78 of the estimated DBH values (59%) falling within the acceptable margin of 

error and 11 estimated DBH values (7%) within 0.1cm of the validation value. It was found that site 

and understory density had statistically significant impacts on the accuracy of estimated DBH values, 

while site species class did not (Table 5). At the individual tree level, the actual DBH of a tree had a 

moderate effect on the accuracy of estimated DBH values, while individual tree species did not (Table 

5). 

Trends in the data suggested that increased density of both trees and understory vegetation on 

a given site would decrease the accuracy of estimated DBH values on the site, as hypothesized. 

Examining differences between the understory and site density classes with Dunn-Bonferroni post-

hoc testing, it was found that these factors had significant impacts on the relative accuracy of 

estimated DBH values. However, the differences between different classes of these variables did not 

present a consistent or continuous relationship, with no strong trends present. Increases in actual tree 

size led to increases in the relative accuracy of estimated DBH values. Dunn-Bonferroni post-hoc 

testing showed that the relative accuracy of estimated DBH values improved as measured tree size 

increased, supporting this hypothesis.  

The results of this study suggest that the significant impacts of site understory, actual tree size, 

age class, and density will impact the accuracy of estimated DBH values in future studies using the 

iPad Pro to estimate DBH, and must be addressed and characterized in future studies to better 

contextualize results in a broader context. At this point in time, the persistent issues with the iPad 

Pro IMU and positional accuracy errors limit accuracy of DBH estimates attainable with the iPad Pro 

LiDAR scanner in natural boreal forests. Additionally, the use of iPad Pro LiDAR for forest inventory 

is limited by an inability to perform well in unfavorable weather conditions, such as rain, fog, or 

wind, limiting the operational feasibility of this method at the industry scale. The iPad Pro shows 

promise, meeting accuracy specifications for 59% of the scanned trees across 15 sites representing a 

range of site conditions in boreal forests. However, current limitations prevent this device from being 

operationalizable in the boreal forest to replace manual mensuration of DBH for forest inventories. 
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