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Abstract: This paper is a follow-up to a previous study that was conducted in a research forest and
identified the optimal method for Diameter at Breast Height (DBH) estimation as a circular scanning
and fitting ellipses to 4cm stem cross-sections at breast height. The aim of this study was to
determine whether the identified method is applicable to natural boreal forests as well. The iPad
Pro LiDAR scanner was used to acquire point clouds for 15 sites representing a range of natural
boreal forest conditions in Ontario, Canada, and estimate DBH. The secondary objective was to
determine if tested stand (Species composition, age, density, understory) or tree (Species, DBH)
factors affected the accuracy of estimated DBH. Overall, estimated DBH values were within 1cm of
actual DBH values for 78 of 133 measured trees (59%). An RMSE of 1.5cm (8.6%) was achieved.
Stand age had a large effect (>0.15) on the accuracy of estimated DBH values, while density,
understory, and DBH had moderate effects (0.05-0.14). No trend was identified between accuracy
and stand age. Accuracy improved as understory density decreased and as tree DBH increased.
Inertial Measurement Unit (IMU) and positional accuracy errors with the iPad Pro scanner limit the
feasibility of using this device for forest inventories.

Keywords: iPad Pro LiDAR; DBH; boreal forest; forest inventory; mobile laser scanning

1. Introduction

Diameter at Breast Height (DBH) is the diameter of a tree stem 1.3m above the ground, and is a
key variable measured in forest inventories [1,2]. DBH is traditionally measured manually using a
diameter tape or callipers, but these methods are time-consuming and costly [3]. Light Detection and
Ranging (LiDAR) is a remote sensing technology that has previously been used to accurately estimate
DBH [2-5]. A key message from this previous work was the need to acquire data from multiple
perspectives due to tree stems' irregular, uneven shapes [6,7]. High site densities and significant
understory vegetation have also been found to contribute to error in estimated DBH values [8,9].

In 2020, Apple released the iPad Pro 12th Generation, a consumer tablet with an integrated
LiDAR scanner with a scanning range up to 5m and an accuracy of +1cm [5,10]. Previous studies have
examined different acquisition and processing methods when using the iPad Pro LiDAR scanner to
acquire point clouds for DBH estimation [2,5,11]. However, these studies have taken place in urban
or plantation forests with minimal variation or obstruction within the scanned plots. Therefore, it is
important to test the accuracy of DBH estimation with iPad Pro LiDAR in a range of natural boreal
forest conditions. Therefore, this study aimed to explore the possibilities of using the iPad Pro LiDAR
sensor within natural forests for DBH estimation.

This paper is a follow-up to our previous study where we compared multiple walking patterns
for LiDAR point cloud acquisition with the iPad Pro, as well as multiple processing methods to

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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determine which combination of walking pattern and processing method produced the most accurate
estimates of DBH [11]. Specific objectives of this study were to: (1) determine if site-level attributes
(Age Class, Species Class, Tree Density, Understory Density) or tree-level attributes (Tree Species,
DBH sizes) have statistically significant impacts on DBH estimate accuracy; and, (2) identify site
conditions that facilitate or inhibit accurate estimates of DBH from LiDAR point cloud data. It is
hypothesized that DBH estimate accuracy will be reduced in stands with significant leafy tissue at or
around breast height, either sites with high understory densities or sites with high site densities (trees
per ha). It is also hypothesized that DBH estimates will be more accurate for sites with larger tree
sizes, as DBH estimate accuracy has been found to increase as measured DBH increases [11].

2. Materials and Methods

2.1. Study Area

LiDAR and model validation data was collected in 15 natural, wildfire-origin stands that
represented five age classes (20-40 years, 41-60 years, 61-80 years, 81-100 years, and 101+ years) and
three species groups (Broadleaf-dominated sites (BRD): 68-100% broadleaf, Coniferous sites (CON):
68-100% conifer, and mixed sites (MX): 33-67% conifer). The study sites were located in one of three
Forest Management Units (FMUs) that adjoined each other: the Black Spruce, Dog River-Matawin,
and English River FMUs. The sites sampled represented a selected sub-sample of the Ontario
Ministry of Natural Resources and Forestry (OMNRF) Vegetation Sampling Network (VSN) plots.
VSN plots were selected the previous year by the OMNRF using a Principal Component Analysis
(PCA) using 26 structural attributes derived from recent aerial LiDAR (Single Photon) imagery to
select sites representing the full range of structural variability present in a given FMU [12]. VSN plots
are circular (400 m2), with a radius of 11.28m from a fixed plot center to the plot boundary. All VSN
plot centers are marked on the ground with a metal rod to ensure each field crew visiting the site uses
the same plot center. Below, Figure 1 shows the location of the sites selected for this study within
northwestern Ontario, as well as their location within Ontario.
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Figure 1. Map showing location of field sites within northwestern Ontario.
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2.2. Data Acquisition

2.2.1. Validation Data

Validation data was collected by two field crews working independently of one another. Field
crews visited each site within three months of one another to ensure site conditions did not change
between visits. The first field crew established the VSN plot (e.g., located the plot centers using
preassigned GPS coordinates, flagged the plot boundary), then numbered each tree within the plot
boundary with a DBH greater than or equal to 7cm in the 11.28m radius VSN plot, and recorded
species, status (live versus dead), DBH (recorded to the nearest 0.1cm using a diameter tape) and
height. The field crew also measured 1.3m above the point of germination for each tree and painted
a line at this height, to ensure subsequent measurements of DBH were recorded at the same height.

The second field crew recorded the species, status, and DBH of all trees larger than 7 cm within
a smaller subplot (5m radius) of the VSN plot center. The DBH was recorded to the nearest 0.1cm
using a diameter tape. An average of the two DBH values collected by each of the field crews was
used as the validation DBH value for each sampled tree. Distance from plot center was recorded to
the nearest point on each tree stem at breast height using a clinometer. The distance (m) and azimuth
(Degrees) from the plot center to the nearest point on each tree stem to facilitate correlating validation
data with trees in the extracted site cross-sections. Azimuth was recorded to the nearest degree using
a compass. For each field site, understory was classified into one of five categories of understory
density (Minimal: 0-20% of tree stems between 0 and 2.5m are obscured; Low: 21-40% obscured;
Moderate: 41-60% obscured, Dense: 61-80% obscured, or Very Dense: 81-100% obscured) based on
the amount of leafy vegetation present between 0.5m and 2.5m above the ground when the point
clouds were acquired.

2.2.2. LiDAR Data

To prepare sites for LIDAR acquisition, the metal rod at the plot center was flagged with both
pink and yellow flagging tape. The 5m radius from plot center to the LIDAR subplot boundary in
each of the four cardinal directions was measured using a 30m measuring tape. Tripods were placed
at the plot boundary in each of the four cardinal directions to simplify the process of point cloud
registration and point matching. The base of all measured, living trees located in each plot were
marked with pink flagging tape to facilitate identification of ‘in’ trees while acquiring LiDAR data.
Point clouds were acquired using the Zappcha application and an Apple iPad Pro 12th Generation
[10,13]. The circular scanning method that was found to provide the most accurate estimates of DBH
was used for point cloud acquisition [11].

2.3. Point Cloud Processing

Point clouds were imported to CloudCompare software from Zappcha app via the Veesus Cloud
Plugin for further processing [13,14]. The point clouds were projected and clipped to plot boundaries
using ArcGIS Pro [15]. Using the CloudCompare software, point clouds were co-registered for the
quadrants in each plot, then cleaned using the 'Statistical Outlier Removal (SOR)' tool [14].

The Cloth Simulation Filtering (CSF) method developed by Zhang et al. (2016) was used to
identify points related to the ground in each filtered point cloud and interpolate the ground surface
for areas without data [16]. Using the elevation value for the interpolated ground surface, the
elevation value representing breast height (1.3 m above ground) for each point cloud was calculated.
A single 4 cm tall cross-section centered at breast height was extracted from each non-ground point
cloud. Points representing individual features in plot cross-sections were identified and segmented
using the density-based clustering algorithm (DBSCAN) in ArcGIS Pro [15]. By cross-referencing the
identified clusters with stem maps for each plot, the cluster representing each measured tree was
identified. Clusters representing more than one tree were manually split into separate shapefiles.
Manual cleaning of the clusters representing measured trees was performed. The X and Y coordinates
of each point in the trimmed cluster shapefiles were appended to the attribute tables.
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All tree attributes were imported to R, using the ‘conicfit’ package for curve fitting [17,18]. An
iterative geometric ellipse fit was applied to the points in each stem cross-section [11,18]. The iterative
ellipse fitting formula used the results of Taubin’s Direct-Least Squares Ellipse fitting formula as the
initial estimated ellipse parameters for each tree. The iterative ellipse-fitting formula then used the
Levenberg-Marquardt method with a maximum of 200 iterations to reduce the error metric of the
fitted ellipses [18,19]. Using the geometric parameters for each fitted ellipse, the average diameter of
each ellipse was calculated as the estimated DBH (cm).

2.4. Statistical Methods

The average of the DBH values (cm) recorded by the two field crews for each tree were used as
the validation DBH values. The difference (cm), absolute error, and relative absolute error between
the estimated DBH and the validation DBH were calculated for each tree. The acceptable accuracy
level of OMNREF’s DBH estimation in forest inventories is 1cm compared to the actual measurements
[20]. Hence, this study adapted the same accuracy level.

The absolute error (cm) and relative absolute error (%) of each individual tree were used as
measures of accuracy for statistical analyses. Box plots were created for the overall dataset to identify
skew and distribution of the results. Kruskal-Wallis tests were used to determine if any of the tested
independent variables at the site level (Site type, species class, stand age, stand density, understory
class) or individual tree level (tree species, measured DBH size) had statistically significant impacts
on the accuracy of estimated DBH values (relative error). For variables with significant impacts on
estimate accuracy, a Dunn-Bonferroni post-hoc test was used to determine how different values of
that variable impacted estimate accuracy.

3. Results

3.1. Validation Data

The 15 sites varied considerably for live tree density (254 - 2928 stems ha-1), ranged in age from
25-114 years, and had a range of understory densities (Table 1). None of the 15 study sites had all
estimated DBH values within 1cm of the measured DBH, ranging from as high as 83.3% (Site MX 81-
100) to as low as 0% (Site MX 61-80). The least accurate DBH estimate was a White Spruce (Picea
glauca) in plot CON 20-40, with an actual DBH of 12.2cm and an estimated DBH of 7.1cm.

Table 1. Field Site Overview.

Site Age Measure Density Species Average Understory
d Trees * (Stems ha-1) ** Composition *** DBH (cm) Class (1-5)
BRD 20-40 35 19 2419 Pt74 Sb26 13.1 Low (2)
BRD 41-60 45 7 1019 Pt80 Pj10 Bw10 20.9 Dense (4)
BRD 61-80 74 9 1273 By50 Mr50 16.0 Moderate (3)
BRD 81-100 91 8 1146 Pt100 29.7 Moderate (3)
BRD 101+ 114 3 764 Pt100 21.5 Very Dense (5)
CON 20-40 27 23 2928 Sb91 Pj9 10.4 Low (2)
CON 41-60 54 12 1528 Bf83 Pt17 19.5 Very Dense (5)
CON 61-80 74 2 382 Pj100 30.6 Low (2)
CON 81-100 91 15 1909 Pj100 21.9 Minimal (1)
CON 101+ 105 7 1146 Cw78 Bf11 Bwl1 23.8 Minimal (1)
MX 20-40 25 8 1401 Pt64 Pj18 Sb16 174 Minimal (1)
MX 41-60 50 8 1146 Bf44 Bw22 5b22 14.9 Moderate (3)
Agl2
MX 61-80 70 2 254 Sw50 Bw50 28.4 Very Dense (5)
MX 81-100 84 6 764 Pt50 Bf30 Sw20 28.4 Dense (4)
MX 101+ 109 4 764 Pj66 Pt34 25.4 Minimal (1)

* Number of measured trees includes only living trees (DBH > 7.0cm) within the 5m sub-plot. ** Density
calculated using number of living and dead trees (DBH > 7.0cm) within the 5m sub-plot. *** Species composition
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is represented by two-letter species codes: Pt, trembling aspen (Populus tremuloides); Sb, black spruce (Picea
mariana); Pj, jack pine (Pinus banksiana); Bw, white birch (Betula papyrifera); By, yellow birch (Betula alleghaniensis);
Mr, red maple (Acer rubrumy); Bf, balsam fir (Abies balsamea), Cw, eastern white cedar (Thuja occidentalis); Ag,
green ash (Fraxinus pennsylvanica); Sw, white spruce (Picea glauca).

Table 3. Comparison between the mean measured and estimated DBH values (cm) and associated
MAE (cm and %) for the 15 visited sites.

Mean Measured DBH  Mean Estimated DBH

Site Name MAE (cm) MAE (%)
(cm) (cm)

BRD 20-40 13.1 12.7 1.1 8.4
BRD 41-60 20.9 20.9 1.3 6.2
BRD 61-80 16.0 15.3 1.6 10.0
BRD 81-100 29.7 29.8 0.6 2.0
BRD 101+ 18.7 17.7 1.9 10.2
CON 20-40 10.4 9.4 1.0 9.6
CON 41-60 14.8 14.6 2.0 13.5
CON 61-80 30.6 31.3 0.7 2.3
CON 81-100 21.9 21.9 0.9 4.1
CON 101+ 23.8 24.8 1.1 4.6
MX 20-40 17.4 17.3 0.6 3.4
MX 41-60 14.9 13.9 1.2 8.1
MX 61-80 28.4 26.9 1.5 5.3
MX 81-100 26.2 26.1 0.5 1.9
MX 101+ 25.4 25.6 1.3 5.1

3.2. Impact of Site- and Tree-Level Factors on Estimation Accuracy

Overall, an RMSE of 1.5cm (8.6%), and an MAE of 1.1cm (6.4%) were achieved in this study. The
distribution of the individual tree absolute error values was not normally distributed, and the results
skewed towards zero (Figure 2).
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Figure 2. Histogram showing distribution of the number of trees as a function of the relative error

values.
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The 81-100 age class produced the most accurate estimates of DBH, with an MAE of 0.72cm
(3.01%) (Table 4). In terms of stand density effects, the lowest density class (250-500 stems ha-1)
produced the most accurate estimates of DBH in terms of relative MAE, with an MAE of 1.13 (3.92%),
although this density class only had 4 measured trees. For density classes with 10 or more measured
trees, the most accurate estimates of DBH (cm) were achieved in the 501-1000 stems ha-1 density class,
which had an MAE of 1.03cm (4.59%; Table 4). The sites with minimal understory produced the most
accurate estimates of DBH, with an MAE of 0.91cm (4.06%) (Table 4). Generally, the MAE were
comparable across the understory classes 1 (minimal) to 4 (dense), but increased substantially in the
very dense class (MAE: 19.4cm and relative MAE of 17.6%). The 25.1-30cm DBH class produced the
lowest MAE (0.82cm; 3.02%), while the 30.1-35cm DBH class produced the lowest relative MAE
(0.94cm; 2.97%) (Table 4).

Table 4. Number of trees, Mean Absolute Error (cm), and relative Mean Absolute Error (%) as a
function of the tested site and species factors.

Factor Factor Level Number of Mean Absolute Relative Mean
Trees Error (cm) Absolute Error (%)

Broadleaf 46 1.19 7.30

Species Class Conifer 59 1.16 9.45
Mixed 28 0.90 491

20-40 50 0.96 8.19
41-60 27 1.56 13.05

Age Class 61-80 13 1.48 8.94
81-100 29 0.72 3.01

101+ 14 1.30 5.66

250-500 4 1.13 3.92

500-1000 13 1.03 4.59

Density Class 1001-1500 47 1.09 6.24
(Stems ha-1) 1501-2000 12 1.95 19.66
2001-2500 34 0.98 6.25

2501-3000 23 1.00 9.88

Minimal (1) 34 0.91 4.06

Low (2) 44 1.01 8.77

Understory Class Moderate (3) 25 1.17 7.34
Dense (4) 15 0.99 4.87

Very Dense (5) 15 1.94 17.59

Balsam Fir 17 1.31 14.80

Black Spruce 35 0.92 8.99

Cedar 5 0.80 3.39

Green Ash 1 0.80 7.48

Tree Species Jack Pine 13 0.92 3.55
Red Maple 4 2.02 9.21

Trembling Aspen 46 1.15 5.72

White Birch 5 1.26 6.30

White Spruce 2 1.75 6.31
Yellow Birch 5 1.32 12.74

7-10 30 1.08 13.58

10.1-15 28 1.13 9.49

15.1-20 23 1.02 5.95

20.1-25 25 1.32 5.81

DBH Class (cm) 25.1-30 17 0.82 3.02
30.1-35 5 0.94 2.97

35.1-40 3 1.13 3.00

40.1-50 1 4.80 11.46

As highlighted in Figure 2, the data did not follow a normal distribution. The skewness was 3.17
with a Kurtosis value of 16.56, indicating a highly skewed dataset. To determine if any of the above
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factors had statistically significant impacts on the accuracy of DBH estimates (relative MAE; %),
Kruskal-Wallis tests were therefore used. Age class and density had large magnitudes of effect on the
relative accuracy of the estimated DBH values for individual trees (Table 5). Understory classes had
a moderate magnitude of effect, while species class had a small effect on the accuracy of estimated
DBH values. Age (0.17) and understory classes (0.13) had the greatest effect sizes when examined
individually, as well as when examining pairwise interactions (0.23). Species class (0.01) had the
smallest effect size on the relative accuracy of estimated DBH values.

Table 5. Kruskal-Wallis test results showing the statistical impact of individual stand- and site-level
attributes and significant pairwise interactions on relative accuracy of DBH estimates.

Factor(s) Df Test Statistic p-Value Effect Size Magnitude Of Effect
Age Class 4 25.95 3.24E-05 0.17 Large
Density Class 5 16.26 6.15E-04 0.09 Moderate
Site Species Class 2 2.78 0.25 0.01 Small
Understory 4 20.40 4.17E-04 0.13 Moderate
DBH Class 8 25.67 1.40E-03 0.14 Moderate
Species 9 12.67 0.18 0.03 Small
Age Class * Density Class 13 39.08 1.94E-04 0.22 Large
Age Class * Site Species Class 14 39.69 2.85E-04 0.22 Large
Age Class * Understory 12 39.34 9.23E-05 0.23 Large
Density Class * Site Species 5 3786 3.04E-04 021 Large
Class
Density Class * Understory 14 39.69 2.85E-04 0.22 Large
Site Species Class * 9 2576 223E-03 0.4 Moderate
Understory
DBH Class * Age Class 27 43.99 0.02 0.16 Large
DBH Class * Density Class 27 37.83 0.08 0.10 Moderate
DBH Class * Site Species Class 22 39.92 0.01 0.16 Large
DBH Class * Understory 29 55.36 6.43E-03 0.20 Large
Age Class * Species 22 4591 2.03E-03 0.22 Large
Density Class * Species 22 36.26 0.03 0.13 Moderate
Species * Understory 21 49.49 4.29E-04 0.26 Large

Individual tree species had a small (0.03) effect on relative accuracy of estimated DBH values,
whereas DBH size class had a moderate effect (0.14). For the individual site-level attributes that had
significant effects on the accuracy of estimated DBH values (age, density, and understory classes),
Dunn-Bonferroni post-hoc tests were conducted to identify interactions between two values for a
single variable with a significant impact on the accuracy of estimated DBH values (Table 6).

Table 6. Dunn-Bonferroni post-hoc test results showing age classes, DBH categories, density
categories, and understory classes with significant statistical differences.

Factor Group 1 Group 2 N1 N2 Statistic p-Value
Age Class 20-40 81-100 50 29 -3.67 2.39E-04
Age Class 41-60 81-100 27 29 -4.79 1.66E-06
Age Class 61-80 81-100 18 29 -2.92 3.50E-03
DBH Class 7-10cm 25.1-30cm 30 17 -3.71 2.09E-04
DBH Class 10.1-15cm 25.1-30cm 28 17 -3.65 2.61E-04

Density Class 1001-1500 1501-2000 47 12 3.23 1.24E-03
Density Class 1501-2000 2001-2500 12 34 -3.01 2.61E-03
Density Class 1501-2000 501-1000 12 13 -34 6.66E-04
Understory Minimal (1) Low (2) 34 44 2.85 4.39E-03
Understory Minimal (1) Very Dense (5) 34 15 4.08 4.45E-05

Understory Dense (4) Very Dense (5) 15 15 3.17 1.50E-03
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Below, Figure 3 shows a scatter plot of the estimated DBH (cm) for each individual tree (Colored
by site species class), plotted as a function of measured DBH (cm), with a line plotted showing a 1:1
relationship.
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Figure 3. Scatter plot showing estimated DBH (cm) as a function of actual DBH (cm) colored by site
species class, with a line modelling a 1:1 relationship.

74 trees had estimated DBH values lower than the actual DBH values (55.6% of measured trees),
with 53 estimated DBH values greater than the actual DBH values (39.9% of measured trees), with an
additional 6 trees (4.5% of measured trees) having an estimated DBH equal to the actual DBH.

The pairwise interaction with the largest effect size was between individual tree species and
understory classes (Table 5). Interactions between individual tree DBH size class and age class,
species class, and understory class all had large effects (> 0.10) on the relative accuracy of individual
tree DBH estimates. Overall, age class, individual tree DBH size class, and site understory classes had
the largest effects on the accuracy of individual tree DBH estimates (Table 5).

4. Discussion

This study achieved an overall RMSE of 1.5cm (8.6%) for DBH values estimated from iPad Pro
LiDAR data for 15 sites in the boreal forest. This is a lower RMSE than those reported in several
previous studies using the iPad Pro to estimate DBH, such as: an urban park (Slovakia), 2.8cm (7.0%)
and 5.2cm (13.0%); a research forest (Austria), 3.1cm (10.5%) and 6.3cm (21.2%); Natural and
plantation forests (Japan), 2.3cm (10.5%); and, a university campus (Tiirkiye), 2.3cm (11.7%) [5,21-
23]. A previous study using the same methodology as used in this study reported an RMSE of 1.1cm
(6.2%) for a plantation forest in Canada [11].

This study set out to investigate the effects of various site-level (Age Class, Species Class, Tree
Density, Understory Density) and tree-level (Tree Species, Actual DBH) attributes on the relative
accuracy of DBH values estimated using point cloud data acquired by an iPad Pro LiDAR scanner. It
was found that all tested variables, with the exception of species class and individual tree species,
had moderate to large magnitudes of effect on the relative accuracy of estimated DBH values (Tables
10-13). The secondary objective was to identify specific site conditions that facilitate or inhibit
accurate estimation of DBH using the iPad Pro LiDAR scanner. While some trends were identified in
the data, the results do not conclusively identify specific site conditions that facilitate or inhibit
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accurate estimation of DBH. Generally, sites with lower tree densities and less understory vegetation
improved accuracy of DBH estimates, as did the measurement of larger trees (Table 4). In contrast,
individual tree species, species composition, and stand age were not found to significantly affect the
relative accuracy of estimated DBH values (Table 5).

It was hypothesized that DBH estimate accuracy would be lower in stands with significant leafy
tissue or other obstructions at or around breast height (i.e., stands with high understory plant cover
or stands with high tree densities). Our results showed that DBH estimates were most accurate in
stands with minimal understory (Table 4). However, the results also show the understory class with
the second most accurate estimates of DBH was the second-densest understory class. Understory
class did have a moderate magnitude of effect on the relative accuracy of DBH estimates (Table 5).
However, Dunn-Bonferroni post-hoc test for differences between levels of understory density
suggested differences in the accuracies of estimated DBH values between these groups did not follow
any trends (Table 6).

It was also hypothesized that the most accurate estimates of DBH would be achieved on sites
with lower tree densities. Our results found that the lower three density classes (250-500 stems ha-1;
501-1000 stems ha-1; 1001-1500 stems ha-1) had more accurate estimates of DBH (Table 4). However,
significant differences were observed between the 501-1000 and 1501-2000 stems ha-1 density classes;
the 1001-1500 and 1501-2000 stems ha-1 classes; and, the 1501-2000 and 2001-2500 stems ha-1 classes.
The most extreme density classes, 250-500 stems ha-1 and 2501-3000 stems ha-1, were not significantly
different from one another or any of the other tested density classes. The lack of significant differences
in estimate accuracy between the lowest and highest site density classes and the rest of the dataset
suggests that site density alone is not sufficient to predict the accuracy of DBH estimates.

The final hypothesis suggested that the relative error of DBH estimates would decrease as tree
size increased. With the exception of the sole tree in the 40cm+ DBH class, relative error of DBH
estimates decreased as tree size increased. Discarding the three size classes with 5 or fewer measured
trees (30.1-35cm; 35.1-40cm; 40.1-50cm), the 25.1-30cm DBH class was the size class with the largest
measured DBH values, and had the lowest relative error (Table 4). Dunn-Bonferroni post-hoc testing
found significant differences between the 25.1-30cm DBH class and both the 7-10cm and 10.1-15cm
DBH classes (Table 6). This demonstrates that increases in actual DBH reduced the relative error of
estimated DBH values in a statistically significant manner.

Understory density was not considered when selecting sites for this study, as only site species
composition and site age were known during the site selection period. As a result, the different
combinations of understory density, site species class, and site age class were not evenly distributed,
potentially causing bias in the results for the impact of understory density on the relative accuracy of
estimated DBH values. Future research should incorporate multiple replicates of each combination
of site species/age class to capture as much variation in understory density for that species/age class
combination as possible.

Common causes of error identified in previous studies using the iPad Pro include IMU errors
with the iPad Pro, as well as high proportions of misplaced points (‘noise’) in acquired point clouds
[5,21]. IMU errors contribute to scanned features with low surface fidelities, especially when
significant movement occurs during the acquisition of a given point cloud [24,25]. Other factors
contributing to IMU errors include changes in walking speed, rapid movements, or turning the iPad
during the course of a scan [5,11,21,23]. IMU errors were present in this study as well, with misaligned
tree cross-sections encountered several times. The misalignments were manually corrected, although
this introduced a potential cause of error. High levels of error in point location (-/+1cm) in point
clouds acquired with the iPad Pro LiDAR scanner have been found to cause trees to appear ‘fuzzy’
in the point clouds, which caused increased levels of error as tree size decreased [5]. This was also
found in this study, with the relative accuracy of estimated DBH values lowest in the smallest DBH
class and relative accuracy improving as actual DBH increased (Table 4).

Comparing the results of this study to previous studies using MLS or TLS in natural forests,
RMSE values of 2.7cm (10.8%; RANSAC method), 4.1cm (16.3%; Circle Fit), and 6.8cm (27.0%;
Voxelization) were found in a study in a black pine (Pinus nigra) plantation forest in Italy [2]. It was
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found that the accuracy of estimated DBH values was consistent for all sizes of tree recorded in the
study. An MAE of 4.8cm (25.9% RMSE) was achieved using MLS and an MAE of 5.0cm (27.9% RMSE)
using TLS to estimate DBH in a Ponderosa pine (Pinus ponderosa) forest in northern Arizona [8]. An
RMSE of 2.4cm (5.6%) was achieved using TLS in managed Japanese cedar (Cryptomeria japonica)
forests in Japan [9]. Common causes of inaccuracy include occlusion of scanned trees from understory
vegetation [8,9].

The results presented here support previous studies that found IMU errors, positional accuracy
errors, and high levels of noise in point clouds to cause reduced accuracy of DBH values estimated
using the iPad Pro LiDAR scanner. Factors identified as contributing to inaccuracies in previous
studies using MLS or TLS to estimate DBH, such as high levels of understory vegetation or high site
densities, were also found to reduce the accuracy of estimated DBH values with the iPad Pro. While
tree size was found to impact the accuracy of DBH estimates both here and in previous studies using
the iPad Pro LiDAR scanner, this factor did not impact the accuracy of DBH values estimated from
TLS or MLS devices in previous studies, suggesting that this limiting factor is unique to the iPad Pro.

5. Conclusions

Although there were no tested sites where all estimated DBH values fell within the acceptable
margin of error (1cm based on OMNREF standards), this methodology estimated DBH values for all
133 scanned trees, with 78 of the estimated DBH values (59%) falling within the acceptable margin of
error and 11 estimated DBH values (7%) within 0.1cm of the validation value. It was found that site
and understory density had statistically significant impacts on the accuracy of estimated DBH values,
while site species class did not (Table 5). At the individual tree level, the actual DBH of a tree had a
moderate effect on the accuracy of estimated DBH values, while individual tree species did not (Table
5).

Trends in the data suggested that increased density of both trees and understory vegetation on
a given site would decrease the accuracy of estimated DBH values on the site, as hypothesized.
Examining differences between the understory and site density classes with Dunn-Bonferroni post-
hoc testing, it was found that these factors had significant impacts on the relative accuracy of
estimated DBH values. However, the differences between different classes of these variables did not
present a consistent or continuous relationship, with no strong trends present. Increases in actual tree
size led to increases in the relative accuracy of estimated DBH values. Dunn-Bonferroni post-hoc
testing showed that the relative accuracy of estimated DBH values improved as measured tree size
increased, supporting this hypothesis.

The results of this study suggest that the significant impacts of site understory, actual tree size,
age class, and density will impact the accuracy of estimated DBH values in future studies using the
iPad Pro to estimate DBH, and must be addressed and characterized in future studies to better
contextualize results in a broader context. At this point in time, the persistent issues with the iPad
Pro IMU and positional accuracy errors limit accuracy of DBH estimates attainable with the iPad Pro
LiDAR scanner in natural boreal forests. Additionally, the use of iPad Pro LiDAR for forest inventory
is limited by an inability to perform well in unfavorable weather conditions, such as rain, fog, or
wind, limiting the operational feasibility of this method at the industry scale. The iPad Pro shows
promise, meeting accuracy specifications for 59% of the scanned trees across 15 sites representing a
range of site conditions in boreal forests. However, current limitations prevent this device from being
operationalizable in the boreal forest to replace manual mensuration of DBH for forest inventories.
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