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Abstract. Accurate cloud quantification is essential in climate change research. In this work, we 
construct an automated computer vision framework by synergistically incorporating deep neural 
networks and finite sector clustering to achieve robust whole sky image-based cloud classification, 
adaptive segmentation, and recognition under intricate illumination dynamics. A bespoke YOLOv8 
architecture attains over 95% categorical precision across four archetypal cloud varieties curated 
from extensive annual observations (2020) at a Tibetan highland station. Tailor-made segmentation 
strategies adapted to distinct cloud configurations, allied with illumination-invariant image 
enhancement algorithms, effectively eliminate solar interference and substantially boost 
quantitative performance even in illumination-adverse analysis scenarios. Compared with the 
traditional threshold analysis method, the cloud quantification accuracy calculated within the 
framework of this paper is significantly improved. Collectively, the methodological innovations 
provide an advanced solution to markedly escalate cloud quantification precision levels imperative 
for climate change research, while offering a paradigm for cloud analytics transferable to various 
meteorological stations. 

Keywords: cloud quantification; deep neural networks; adaptive segmentation; finite element 
clustering; whole sky image  

 

1. Introduction 

Clouds play an extremely critical role in regulating the Earth's climate system (Voigt et al., 2021). 
Clouds can reflect incoming solar shortwave radiation, reducing the amount of heat absorbed at the 
surface; meanwhile, they can also absorb outgoing longwave radiation from the surface, producing 
a greenhouse effect (Feng et al., 2021). In essence, clouds serve as an important "sunshade" to maintain 
the balance of the greenhouse effect and prevent overheating of the Earth (Werner et al., 2013). 
However, different cloud types at varying altitudes impact the climate system differently. For 
instance, high-level cirrus clouds mainly contribute to reflection and scattering, while low-level 
stratus and cumulus clouds more so cause the greenhouse effect (Riihimaki et al., 2021). Accurately 
determining cloud types, distributions and evolutions is vital for long-term climate change 
monitoring and forecasting (Jafariserajehlou et al., 2019). Moreover, there are considerable regional 
disparities in cloud amount, and pronounced differences exist in regional climate characteristics, 
which makes precise cloud quantification even more crucial. Accurate cloud detection can provide 
critical climate change information to advance our understanding of the climate system from multiple 
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dimensions (Hutchison et al., 2019); it also helps validate the accuracy of climate model predictions, 
furnishing input parameters for climate sensitivity research (Hutchison et al., 2019). Therefore, 
conducting accurate quantitative cloud observations is of great significance for climate change 
science, which is also the motivation behind this study's effort to achieve precise cloud quantification 
through image processing techniques. 

Currently, accurate cloud typing and quantification still face certain difficulties and limitations. 
For cloud classification, common approaches include manual identification, threshold segmentation, 
texture feature extraction, satellite remote sensing, ground-based cloud radar detection, aircraft 
sounding observations, etc. (Li et al., 2017; He et al., 2018; Ma et al., 2021; Rumi et al., 2015; Wu et al., 
2021). Manual visual identification relies on the experience of professional meteorological observers 
to discern cloud shapes, colors, boundaries and other features to categorize cloud types. This method 
has long been widely used, but is heavily impacted by individual differences and lacks consistency, 
with low efficiency (Alonso-Montesinos, 2020). Threshold segmentation sets thresholds based on 
RGB values, brightness and other parameters in images to extract pixel features corresponding to 
different cloud types for classification. It is susceptible to illumination conditions and ineffective at 
distinguishing transitional cloud zones (Nakajima et al., 2011). Texture feature analysis utilizes 
measurements of roughness, contrast, directionality and other metrics to perform multi-feature 
combined identification of various clouds, but adapts poorly to both tenuous and thick clouds (Yu et 
al., 2013). Satellite remote sensing discerns cloud types based on spectral features in different bands 
combined with temperature inversion results, but has low resolution and inaccurate recognition of 
ground-level small clouds (Yang et al., 2007). Ground-based cloud radar differentiation of water and 
ice clouds relies on measured Doppler velocity and other parameters, with inadequate detection of 
high thin clouds (Irbah et al., 2023). Aircraft sounding observations synthesize multiple parameters 
to make judgments, but have limited coverage and observation time. For cloud quantification, 
currently prevalent methods include laser radar measurement, satellite remote sensing inversion, 
ground-based cloud radar, and whole sky image recognition (Li et al., 2022a). Laser radar emits 
sequenced laser pulses and estimates cloud vertical structure and optical depth from the backscatter 
to directly quantify cloud amount, but has large equipment size, high costs, limited coverage area, 
and cannot produce cloud distribution maps. Satellite remote sensing inversion utilizes parameters 
like cloud top temperature and optical depth, combined with inversion algorithms to obtain cloud 
amount distribution. However, restricted by resolution, it has poor recognition of local clouds (Rumi 
et al., 2015). Ground-based cloud radar can measure backscatter signals at different altitudes to 
determine layered cloud distribution, but has weak return signals for high thin clouds, resulting in 
inadequate detection. With multiple cloud layers, it struggles to differentiate between levels, 
unfavorable for accurate quantification (Van De Poll et al., 2006). The conventional whole sky image 
segmentation utilizes fisheye cameras installed at ground stations to acquire whole sky images, then 
segments the images based on color thresholds or texture features to calculate pixel proportions of 
various cloud types, which are converted to cloud cover. This method has the advantage of easy and 
economical image acquisition, but is susceptible to illumination changes that can impact 
segmentation outcomes, with poor recognition of small or high clouds (Alonso-Montesinos, 2020). In 
summary, the current technical means for cloud classification and quantification lack high accuracy, 
cannot precisely calculate regional cloud information, and need improved stability and reliability. 
They fall short of meeting the climate change science demand for massive fine-grained cloud datasets. 

In recent years, with advances in computer vision and machine learning theories, some more 
sophisticated technical means have been introduced into cloud classification and recognition, making 
significant progress. While traditional methods are not able to characterize and extract cloud texture 
features well, convolutional neural networks can learn increasingly complex patterns and 
discriminative textures from large pre-trained datasets. In addition, convolutional neural networks 
typically employ a hierarchical feature extraction framework that captures fine textures such as edges 
and shapes. For instance, cloud image classification algorithms based on deep learning have become 
a research hotspot. Deep learning can automatically learn feature representations from complex data 
and construct models to synthetically judge the visual information of cloud shapes, boundaries, 
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textures, etc. to distinguish between different cloud types (Yu et al., 2020). Meanwhile, unsupervised 
learning methods like k-means clustering are also widely applied in cloud segmentation and 
recognition. This algorithm can autonomously discover inherent data category structures without 
manual annotation, enabling cloud image partitioning and greatly simplifying the workflow (Krauz 
et al., 2020). Some studies train k-means models to swiftly cluster and recognize cloud and clear sky 
regions in whole sky images, improving cloud quantification speed and efficiency. It can be 
foreseeable that the combination of deep learning and unsupervised clustering for cloud recognition 
will find expanded applications in meteorology. We also hope to lay the groundwork for revealing 
circulation characteristics, radiative effects and climate impacts of different cloud types through this 
cutting-edge detection approach. 

Despite some progress made in current cloud recognition algorithms, numerous challenges 
remain. Firstly, accurately identifying different cloud types is still difficult, especially indistinct high-
altitude cirrus clouds and transitional mixed cloud types (Ma et al., 2021). Secondly, illumination 
condition changes can drastically impact recognition outcomes, leading to high misjudgment rates in 
situations like polarization and shadowing. To address these issues and limitations, we propose 
constructing an end-to-end cloud recognition framework, with a focus on achieving accurate 
classification of cirrus, clear sky, cumulus and stratus clouds, paying particular attention to the 
traditionally challenging cirrus clouds. Building upon the categorization, we design adaptive 
dehazing algorithms and k-means clustering finite sector segmentation to enhance recognition of 
cloud edges and tenuous regions. We hope that through optimized framework design, long-standing 
issues of cloud typing and fine-grained quantification can be solved, significantly improving ground-
based cloud detection and quantification for solid data support in related climate studies. The 
structure of this paper is as follows. Section 2 introduces the study area, data acquisition, and 
construction of the cloud classification dataset. Section 3 elaborates the methodologies including 
neural networks, image enhancement, adaptive processing algorithms, and evaluation metrics. 
Finally, Sections 4-6 present the results, discussions, and conclusions respectively. 

2. Study Area and Data 

2.1. Study Area 

The Yangbajing Comprehensive Atmospheric Observatory is located 90 kilometers northwest of 
Lhasa, Tibet, adjacent to the Qinghai-Tibet Highway and Railway, with an average altitude of 4300 
meters. This region has high atmospheric transparency and abundant sunlight, creating a unique 
meteorological environment (Krüger et al., 2004). Yangbajing is far from industrial areas and cities, 
with relatively good air quality and low atmospheric pollution levels, which reduces the impact of 
air pollution on cloud observation and improves cloud quantification accuracy. Meanwhile, Tibet 
spans diverse meteorological types, meaning various cloud types can be observed in the same area, 
enabling better research on the evolution patterns of different cloud types. 

2.2. Imager Information 

The cloud quantification automated observation instrument used in this study is installed at the 
Yangbajing Comprehensive Atmospheric Observatory (90°33'E, 30°05'N) and has been measuring 
since April 2019. The visible light imaging subsystem mainly comprises the visible light imaging unit 
(Figure 1a), the sun tracking unit (Figure 1b), the acquisition box, and the power box. As summarized 
in Table 1, this system images the entire sky every 10 minutes, measuring clouds ranging from 0 to 
10 km with elevation angles above 15°. It can capture RGB images in the visible spectrum at a 
resolution of 4288 × 2848 pixels. The visible light imaging device is a CMOS imaging system with an 
ultra-wide-angle fisheye lens that periodically acquires images of the entire sky in the visible 
spectrum. The sun tracking unit calculates and tracks the sun's position, effectively shielding direct 
incident sunlight to prevent damage to the CMOS sensor's photosensitive elements. It also 
significantly reduces the impact of white light around the sun on subsequent processing. 
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(a) (b) 

Figure 1. Automatic cloud observer. (a) Visible light imaging unit;(b) Sun tracking structure. 

Table 1. Detailed specifications of automatic cloud observer. 

Function Description 

Measure cloud distance 0~10Km 

Measuring range Elevation angle above 15° 

Observation periods Observe every 10 minutes 

Horizontal visibility ≥2km 

Operating temperature -40°~50° 

Sensor CMOS 

Image resolution 4288 × 2848 

Operational durability 

Ingress protection 

24 h operation 

IP65 

2.3. Dataset 

The image dataset used in this study is comprised of all-sky images during 2020. Considering 
images taken during sunset and sunrise are more easily influenced by lighting conditions, we only 
selected images taken between 9am to 4pm daily. Additionally, to reduce correlation, we only picked 
one image every half hour, amounting to 16 sample images per day. Among all selected images, cases 
of rain, snow as well as lens occlusion or contamination were removed. Finally, 4000 high quality, 
occlusion-free all-sky images with no rain or snow were screened out and categorized into four 
classes with 1000 images per class. The four classes are namely: cirrus, clear sky, cumulus, and stratus. 
It should be emphasized that the categorization into four dominant cloud types here is for accurately 
quantifying the cloud fraction of each individual category, rather than accounting for hybrid clouds. 
These screened images represent the visual characteristics of different cloud types well, forming the 
image dataset for this study. 

3. Materials and Methods 

The framework proposed in this study is illustrated in Figure 2. It can be summarized into the 
following steps:(1) Data quality control and preprocessing. First, quality control is performed on the 
collected raw all-sky images to remove distorted images caused by occlusion or sensor issues. Then, 
image size and resolution are standardized.(2) Deep neural network classification and evaluation 
metrics. The YOLOv8 deep neural network is utilized to categorize the cloud images, judging which 
of the four types (cirrus, clear sky, cumulus, and stratus) each image belongs to. Precision, recall, and 
F1-scores are used to evaluate the classification performance.(3) Adaptive enhancement. Different 
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image enhancement strategies are adopted according to cloud type to selectively perform operations 
like dehazing, contrast adjustment etc. to improve image quality. (4) K-means Clustering with Finite 
Sector Segmentation: The improved photos are subjected to category-based K-means clustering, 
which is based on finite sector segmentation, in order to extract cloud features and produce precise 
cloud detection outcomes. 

cirrus
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YOLO

ba

c

Cloud Classification Algorithm

Finite element segmentation and k-means clustering

Enhanced Cloud 
Image Recognition

d

Dehaze 
Algorithm
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Segmentation

Image Mask

Resize
Compression

 

Figure 2. Cloud detection flowchart. (a) Traditional NRBR threshold segmentation to compute the 
cloud amount; (b) YOLOv8 model to identify the cloud type; (c) Finite sector segmentation k-mean 
clustering process; (d) Local refinement for cloud identification. 

3.1. Quality Control and Preprocessing 

Considering that irrelevant ground objects may occlude the edge areas of the original all-sky 
images, directly using the raw images to train models could allow unrelated ground targets to 
interfere with the learning of cloud features, reducing the model's ability to recognize cloud regions 
(Wu et al., 2023). Therefore, we cropped the edges of the original images, using the geometric center 
of the all-sky images as the circle center and calculating the circular coverage range corresponding to 
a 26° zenith angle, to precisely clip out this circular image area and remove ground objects on the 
edges. This cropping operation eliminated ground objects from the original images that could 
negatively impact cloud classification, resulting in circular image regions containing only sky 
elements. To facilitate subsequent image processing operations while ensuring image detail features, 
the cropped images underwent size adjustment to set the target resolution to 680×680 pixels. 
Compared to the original 4288×2848 pixels, adjusting the resolution retained the main detail features 
of the cloud areas in the images, but significantly reduced the file size for easier loading and 
calculation during network training. Finally, a standardized dataset was constructed by cloud type - 
the resolution-adjusted images were organized and divided into four folders for cirrus, clear sky, 
cumulus, and stratus, with 1000 pre-processed images in each folder. A standardized all-sky image 
dataset containing diverse cloud morphologies was built. 
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3.2. Deep Neural Network Classification 

3.2.1. Network Structure Design 

This study employs YOLOv8 as the base model architecture for the cloud classification task. As 
illustrated in Figure 3, the YOLOv8 network structure consists primarily of the Backbone, Neck, Head 
and Loss components. The Backbone of YOLOv8 uses the Darknet-53 network, replacing all C3 
modules in the backbone with C2f modules, which draw design inspiration from C3 modules and 
ELAN to extract richer gradient flow information (Li et al., 2023). The Neck of YOLOv8 implements 
a PAN-FPN structure to achieve model lightweightization while retaining original performance 
levels. The detection Head uses a decoupled structure with two convolutions respectively responsible 
for classification and regression (Xiao et al., 2023). For the classification task, binary cross entropy 
loss (BCE Loss) is utilized, while distribution focal loss (DFL) and complete IoU (CIoU) are used for 
predicting bounding box regression. This detection structure can improve detection accuracy and 
accelerate model convergence (Wang et al., 2023). Considering the limited scale of cloud datasets, we 
load the YOLOv8-X-cls model pre-trained on ImageNet with 57.4M parameters as the initialized 
model. Through deliberate designs of modules, pre-trained model initialization and configuration of 
training parameters, a superior end-to-end cloud classification network is constructed. 

P1
P2

P3

P4

P5 U
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C

C
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Figure 3. YOLOv8 machine learning architecture, divided into four parts: Backbone, Neck, Head 
and Loss. 

3.2.2. Experimental Parameter Settings 

After constructing the model architecture, we trained the model using the previously prepared 
classification dataset containing images of multiple cloud types. During training, the input image size 
was set to 680×680. We set the maximum number of training epochs to 400, and the number of 
samples used per iteration was 32. To prevent overfitting, momentum and weight decay terms were 
added to the optimizer and the patience parameter was adjusted to 50. To augment the sample space, 
various data augmentation techniques were employed such as random horizontal flipping 
(probability of 0.5) and mosaic (probability of 1.0). The SGD optimizer was chosen since its stochastic 
sampling and parameter update provide opportunities to jump out of local optima, helping locate 
the global optimum in a wider region. Considering initial and final learning rates, the initial learning 
rate was set to 0.01 and gradually decayed during training to enable more refined optimization of 
model parameters during later convergence. 

3.2.3. Cloud Classification Evaluation Indicators 

To comprehensively evaluate the cloud classification performance of the model, a combined 
qualitative and quantitative analysis scheme was adopted. Qualitatively, we inspected the model's 
ability in categorizing different cloud types, boundaries, and detail structures by comparing 
classification recognition differences between the validation set and test set. Quantitatively, metrics 
including precision, recall and F1-score were used to assess the model. Precision reflects the portion 
of true positive cases among samples predicted as positive, and is calculated as: Precision = TPTP + FP (1)
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Recall represents the fraction of correctly classified positive examples out of all positive samples, 
and is calculated as: Recall = TPTP + FN (2)

F1-score considers both precision and recall via the formula: F1 = 2 × Precision × RecallPrecision + Recall (3)

Here, TP stands for true positives, TN true negatives, FP false positives, and FN false negatives. 
Through this combined qualitative and quantitative evaluation system, the cloud classification 
recognition performance can be fully examined. 

3.3. Adaptive Enhancement Algorithm 

When processing all-sky images, we face the challenges of visual blurring and low contrast 
caused by overexposure and haze interference. To address this, a dark channel prior algorithm is 
adopted in this study. The core idea of the dark channel prior algorithm is to perform haze estimation 
and elimination based on dark channel images (Kaiming et al., 2009). The dark channel image selects 
the minimum value among the RGB channels at each pixel location, thus reflecting the minimum 
brightness within the pixel area. Low brightness values tend to manifest in regions with haze, thereby 
providing clues for haze. We utilize an image enhancement algorithm to further optimize image 
quality following these steps based on the dark channel prior assumption: First, calculate the dark 
channel for each pixel of the input image by taking the minimum value across the three RGB color 
channels. Next, estimate the global atmospheric light A using the non-zero minimums of the dark 
channel. Based on the atmospheric scattering model, obtain the transmission t for each pixel, which 
indicates the visibility of that pixel. Finally, apply the formula: Jሺxሻ = Iሺxሻ − At + A (4)

where J is the recovered haze-free image, and I is the original input image. The dehazing algorithm 
can effectively eliminate fog in images to yield more discernible cloud and sky boundaries, 
facilitating subsequent generation of high-quality cloud covers.  

In the image enhancement algorithm, the atmospheric light value A directly impacts the 
intensity of dehazing. Adaptive enhancement strategies are designed according to cloud type. For 
relatively thin cirrus, excessive enhancement may filter them out, hence smaller A values are chosen 
to preserve details. Meanwhile, thicker cumulus, stratus and clear sky images allow larger A values 
to strengthen haze removal, eliminating overexposed areas surrounding the sun and on edges to 
obtain more uniform sky distributions. We focused our analyses on the processing effects on two 
types of easily misclassified areas - surrounding the sun, where overexposure often leads to 
misjudgements; and white glows on sky edges, which can also readily cause errors. To improve 
segmentation quality, additional processing is implemented on these two areas. The sun's position 
can be determined by recognizing the location of the occulting disk, enabling application of enhanced 
dehazing to this circular region to reduce white glow. For the sky edge area, after removing ground 
elements, an annular region on the sky edge is designated for strengthened haze removal to alleviate 
white glow influence on identification. Through the above optimized designs, misjudgement issues 
surrounding the sun and edges can be effectively controlled to boost cloud segmentation quality. 

3.4. Finite Sector Segmentation and K-means Clustering 

On the basis of obtained cloud type classification results, we propose an adaptive image 
segmentation method tailored to cloud morphology. Different cloud types exhibit varying shapes, 
necessitating customized segmentation strategies for optimal effects. Specifically, we adopt an 
adaptive image segmentation method based on cloud types, taking the geometric center of the all-
sky image as the center of the circle, and the distance from the center of the circle to the edge of the 
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circular sky as the radius, to evenly divide the circular area into multiple Sector shape to meet the 
characteristics of different cloud shapes. For example, we segment the cirrus cloud image into 72 
sector-shaped areas. Because cirrus clouds are weak in shape and similar in color to the sky, more 
detailed segmentation can help improve the accuracy of the clustering algorithm. For sunny days, 
there are fewer elements in the image, so dividing it into four sectors can enable the subsequent 
clustering algorithm to achieve higher classification accuracy. The edge of cumulus clouds is obvious, 
but there may be uneven light. This study divided it into 36 fan-shaped areas. There are fewer 
elements that need to be divided in the stratus image, so it is also divided into 4 sectors. This adaptive 
segmentation strategy is based on the understanding of the characteristics of the four types of cloud 
forms and is determined through a large number of actual test results, which significantly improves 
the accuracy of the clustering algorithm in identifying cloud cover. 

With cloud type adaptively segmented images, a K-means clustering algorithm is then 
implemented in each sector to further glean cloud information. It first randomly initializes K cluster 
centers, then categorizes samples to the nearest cluster based on distance, before recalculating cluster 
centers (Dinc et al., 2022). This iterative process converges when centers remain static. A proper k 
value is chosen per sector to partition it into sky, cloud and background. Each region is then recolored 
according to clustering outcomes to obtain a preliminary cloud detection image. This design 
capitalizes on K-means’ clustering capability to automatically distinguish sky and cloud elements in 
sectors. 

In traditional cloud segmentation, the Normalized Red/Blue Ratio (NRBR) method exhibits 
certain shortcomings. Firstly, it struggles to effectively distinguish intense white light around the sun, 
often misclassifying these overexposed areas as cloud regions. Secondly, it fails to properly handle 
the bottom of thick cloud layers, where the regions appear dark due to the lack of penetrating light 
and may be erroneously classified as clear sky areas. Both misclassifications stem from the NRBR 
method overly relying on RGB color features without comprehensive consideration of lighting 
conditions. When atypical lighting distributions occur, accurate cloud and sky differentiation 
becomes challenging based solely on red/blue ratio values. Therefore, after obtaining the initial cloud 
segmentation results, we propose a mask-based refined segmentation method to further enhance the 
effectiveness. The specific approach involves first extracting the predicted sky regions from the 
aforementioned segmentation results, using them as a mask template. Subsequently, each sector 
undergoes k-means clustering to identify blue sky and white clouds, restricting the region after 
concatenating sectors within the mask-defined blue sky template. This process yields more nuanced 
identification results. By conducting secondary segmentation only on key areas and leveraging the 
results from adaptive k-means extraction, a finer segmentation is achieved. Ultimately, building upon 
the initial segmentation, this approach significantly improves potential misclassifications at the cloud 
edges, generating more accurate final cloud detection results. This design, guided by prior masks for 
localized refinement, effectively enhances the quality of cloud segmentation. 

4. Results 

4.1. Cloud Classification Results 

This study constructs a dataset based on four dominant types of cloud images collected from the 
Yangbaqing station in Tibet and employs the YOLOv8 deep learning model for cloud classification. 
To quantitatively assess the training effectiveness of the YOLOv8 cloud classification model, we 
record the values of the loss function and training accuracy at different training epochs, as depicted 
in Figure 4a. With the increase in training iterations, the model's loss value consistently decreases, 
with the training set loss decreasing from around 0.4 to near 0. The model gradually achieves 
improved predictive performance, reducing the gap between predicted values and true labels. 
Simultaneously, we analyze the classification accuracy curve during the model training process. As 
seen in Figure 4b, the model's Top-1 Accuracy rises from 0.5 to around 0.98. Through continuous 
training optimization, the model demonstrates sustained improvement in accuracy for distinguishing 
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the four cloud types, progressively acquiring the ability to effectively discriminate the visual features 
of different cloud formations. 

 
(a) (b) 

Figure 4. YOLOv8 classification model training results. (a) Loss curve for network training; (b) 
Top-1 network training accuracy curve of the training set. 

After training completion on the self-built dataset, we tested the model's classification 
performance. These results cover four major cloud types, including Cirrus, Clear, Cumulus, and 
Stratus. Table 2 demonstrates the model's precision, recall, and F1 scores. As shown in the table, on 
the Self-built Dataset, the model delivers fairly steady classification performance for indistinctly 
bounded cumulus clouds, maintaining relatively high precision, recall, and F1 scores of over 95%, 
indicating robustness and generalization capability of the model in categorizing cumulus clouds. The 
model achieves outstanding classification efficacy on clear days, with all metrics reaching or 
approximating 100%, reflecting powerful generalization aptitude in recognizing clear conditions. The 
Cumulus type also sees all classification performance parameters surpassing 96%, denoting high 
classification accuracy. The Stratus category manifests extremely excellent outcomes on the Self-built 
Dataset across all metrics of 100%, implying that the model classifies Stratus very accurately with 
stable performance unaffected by dataset variations, successfully learning effective visual traits to 
discriminate the Stratus type. 

When verifying our model's classification performance, we opted to validate on the public TCI 
Dataset to ensure extensive applicability of our model. Firstly, stringent quality control was imposed 
on the TCI dataset, removing images of inferior quality and ambiguous categorization. Eventually 
900 high quality images per cloud type - Cirrus, Clear, Cumulus and Stratus - were screened, totaling 
3600 images. Adopting identical training parameters as the self-built dataset, we trained the public 
dataset and validated performance on the test set containing 200 images per cloud type - Cirrus, 
Clear, Cumulus and Stratus - subsequently computing precision, recall and F1 scores for the model's 
classifications as depicted in Table 2. Evident from the table, the model demonstrates outstanding 
performance on the public TCI dataset, attaining commendable classification outcomes. Notably, for 
the Clear and Stratus cloud types, the model approximates or achieves 100% accuracy across multiple 
evaluation metrics. 

Compared to related research utilizing the bag of micro-structures (BoMS) approach for cloud 
type identification on the TCI dataset which encompassed five cloud types and attained an average 
accuracy of 93.80% after excluding mixed types (Li et al., 2016), our model realizes a higher average 
accuracy of 98.31% under the same assessment criteria. This further exhibits the superiority of our 
model architecture over preceding techniques, possessing more potent classification capability and 
performance. These results signify that our model framework not only manifests stellar performance 
on the self-built dataset, but can also maintain lofty competency with robustness and generalization 
strengths on public data. 
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Table 2. Performance comparison of cloud type classification and recognition: precision, recall and 
F1 score of public data sets and self-built data sets. 

 Self-built dataset Public cloud dataset 

Cloud Type 

 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

BoMS_Precision 

(%) 

Cirrus 95.45 98.00 96.71 94.71 98.50 96.57 87.20 

Clear 100.00 98.67 99.33 100.00 98.50 99.24 99.50 

Cumulus 97.30 96.00 96.65 98.52 100.00 99.25 92.00 

Stratus 100.00 100.00 100.00 100.00 100.00 100.00 96.50 

Average 98.19 98.17 98.17 98.31 99.25 98.77 93.80 

On the four-type weather test set, five randomly selected images from each type were tested. As 
Figure 5 shows, all images obtained accurate category labels with confidence scores of 1.00, again 
validating the reliability of the training results in Table 2. Through training, the model has acquired 
the capability to discern different cloud morphologies based on visual characteristics like shape, 
boundary and thickness to generate cloud type classification outcomes. In summary, the model can 
not only effectively tackle various challenges in cloud classification tasks but also delivers consistent 
performance across cloud types on validation and test sets. The robust overall performance provides 
a reliable cloud classification tool for practical applications. 

CIRRUS

CLEAR

CUMULUS 

STRATUS

 
Figure 5. Categorization effects of the four cloud dominant types. 

To further validate the model's discrimination of different cloud types, we computed the average 
probability density functions of normalized red-blue ratio (NRBR) distributions for 1000 RGB images 
per cloud dataset. Cloud image samples were then randomly drawn from each category and their 
NRBR distributions derived. Finally, the Kullback–Leibler (KL) divergences between the sample 
distributions and corresponding category averages were calculated. As Table 3 shows, the KL 
divergence between a sample and its ground truth category is markedly lower than divergences to 
other categories. For instance, a clear sky sample has an average KL divergence of 0.0357 to the clear 
sky category, but 11.2321 to the stratus category. This signifies that the NRBR distribution of the clear 
sky sample identified by YOLOv8 aligns closely with the true category average, with similar KL 
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divergence relationships holding for other cloud type samples. It verifies that the model can 
effectively discriminate the NRBR traits of different cloud types to ultimately yield accurate cloud 
classification outcomes. 

Table 3. Verification of classification results by KL divergence. NRBR mean image: horizontal axis 
is Normalised RedBlue Ratio, vertical axis is probability density. 

StratusCumulusClearCirrusNRBR Mean

KL
Isolated   dispersion
example

5.27980.20792.15330.0623Cirrus-
997

11.23211.04830.03571.1152Clear-
50

5.26000.09782.47380.6723Cumulus-
80

0.02950.89727.47352.3976Stratus-
148

 

4.2. Cloud Recognition Effect 

To improve the accuracy of subsequent cloud quantification, we first performed pre-processing 
enhancement on the whole sky images. However, considering different cloud types are impacted 
differently by illumination and haze, we designed an adaptive image enhancement strategy: 
applying lower intensity for cirrus clouds to preserve more edge details, while stronger intensity for 
other cloud types to eliminate overexposed areas. As shown in Figure 6b, 7b and 7f, this image 
enhancement algorithm makes the boundaries between clouds and blue sky more pronounced, with 
clearer ground objects and richer detail features. 

 
(a) (b) 

Figure 6. Comparison of image preprocessing effects. (a) Original image; (b) Image enhancement 
result. 
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This study employs an adaptive finite sector segmentation strategy for feature extraction. For 
stratus clouds and clear sky with distinct boundaries, just a few sectors are sufficient to accurately 
capture their traits. In contrast, more sectors are utilized for the indistinct boundary cirrus and 
cumulus clouds to enable more delicate partitioning that precisely seizes cloud edges. By further 
leveraging the k-means algorithm, we divide each sector region into three classes - blue sky, cloud 
and background. Compared to conventional holistic NRBR segmentation, the segmentation tailored 
to cloud types has significantly better adaptivity and partitioning outcomes. As depicted in Figure 7, 
the finite sector segmentation and k-means clustering achieve remarkable results in three challenging 
scenarios: (1) The bottom of thick cloud layers that are prone to misjudgment as blue sky by 
traditional methods; (2) The overexposed vicinity of the sun where RGB values resemble clouds, 
potentially causing some blue sky around the sun to be wrongly judged as white clouds by 
conventional techniques; (3) Thin edge areas of cloud layers that are difficult to accurately recognize 
by standard NRBR algorithms, leading to deficient cloud quantification. 

 
(a) (b) (c) (d) 

 
(e) (f) (g) (h) 

Figure 7. Comparison of sector segmentation effects. (a/e) Cropped original image; (b/f) Adaptive 
enhancement processing results; (c/g) Traditional NRBR recognition processing results; (d/h) 
Finite sector segmentation k-means clustering results. 

Through adaptive finite sector segmentation, we divide the original image into multiple sectoral 
regions, reducing the complexity of directly processing the entire image. This process enables the k-
means clustering method to more effectively identify clouds in each sector, thereby significantly 
improving the accuracy of detection. This forms the key strategy for our success in cloud amount 
calculation. As illustrated in Figure 8, the curve charts the cloud amount information at 15:00 every 
afternoon in June 2020 collected from valid images in Yangbajing area, comparing and analyzing the 
differences in cloud amount identification between the traditional NRBR method and the image 
enhancement technique. Over the course of this month, after image enhancement, the cloud 
recognition effect has conspicuous improvements for whole sky images with cloud cover below 80%. 
As denoted by the marked points in Figure 8, at 15:00 on June 17th, the cloud amount calculated from 
the enhanced cloud map has an approximated 40% higher precision than that obtained using the 
traditional NRBR threshold segmentation method. This is primarily attributed to NRBR solely relying 
on color features, whereas the finite sector method synthesizes multiple features including shape and 
position for comprehensive judgment, hence possessing superior recognition effects on the 
overexposed areas surrounding the sun. Similarly, as exhibited in Figure 7d and 7h, after image 
enhancement, the cloud amount identification results for the bottom of thicker cloud layers and the 
overexposed regions around the sun are pronouncedly ameliorated.  
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Figure 8. Comparison of cloud cover between the traditional NRBR method and the finite sector 
partitioned K-means clustering method in June 2020. 

4.3. Spatial and Temporal Analysis of Cloud Types 

To gain deeper insight into the seasonal variations and diurnal patterns of cloud types in the 
Yangbajing area, Tibet, more detailed classification statistics on the 2020 annual daylight data are 
conducted. As depicted in Figure 9, stratus clouds occurred most frequently throughout the year, 
accumulating 6622 times and accounting for 30% of total cloud occurrences. Clear sky and cumulus 
clouds took the second and third places, appearing 5447 and 5365 times respectively, both comprising 
around 24%. Cirrus clouds occurred least, at 5001 times making up 22%. This aligns with the climate 
characteristics of the Qinghai-Tibet Plateau. Stratus clouds primarily form from atmospheric water 
vapor condensation, facilitated by the high altitude and greater atmospheric thickness in Tibet. Cirrus 
clouds often develop at relatively lower altitudes and more humid climatic conditions (Monier et al., 
2006), while the dry climate on the Tibetan plateau is less conducive to their formation. Analyzing by 
seasons, stratus clouds appeared most in spring (March-May), occurring 2678 times and occupying 
42.9% of all daytime cloud types in the season. Cumulus clouds occurred most frequently in summer 
(June-August), reaching 3838 times and taking up 46.5% of total daytime cloud types. Clear sky 
dominated in autumn (September-November), appearing 2249 times and accounting for 42.8% of the 
daytime varieties. Winter (December-February) was also predominated by clear sky, which occurred 
2150 times constituting 45.7% of the daytime population. The distinct seasonal shifts in cloud types 
across Tibet match its climate patterns - increased evaporation in spring facilitates thick cloud 
buildup; intense convection readily forms cumulus clouds in summer (Chen et al., 2012), aligning 
with the greater summer precipitation; while the relatively dry, less snowy winters see more clear 
sky days. Analyzing diurnal fluctuations reveals that stratus and cumulus clouds concentrate in 
afternoon hours, peaking at 17:00 and 18:00 for stratus (761 and 756 times respectively), and 13:00, 
14:00 and 15:00 for cumulus (665, 707 and 684 times), potentially related to convective activity 
strengthened by afternoon surface heating. Clear sky occurrences are mainly distributed in the 
morning at 9:00, 10:00 and 11:00 (740, 812 and 743 times). Cirrus clouds vary more evenly throughout 
the day. Dividing the daylight hours of 7-20 into 7 periods, we statistically determine the peak timing 
of different cloud types: (1) Stratus clouds peak at 17-18:00, occupying 39.1% of the total occurrences. 
(2) Cumulus clouds peak at 13-14:00, taking up 34.2%. (3) Clear sky peaks at 9-10:00, constituting 
40.6%. (4) Cirrus clouds peak at 17-18:00, comprising 24.9%. The common afternoon emergence of 
cumulus clouds may relate to intensified convective motions caused by daytime solar heating of the 
surface. Because the early air is less volatile and has a lower water vapor content than other times of 
the day, clear skies are more common in the morning. Generally speaking, the development of cirrus 
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clouds requires relatively humid circumstances. Late afternoon solar radiation warms the surface and 
causes the air to rise, which aids in the vertical movement that carries water vapor to higher altitudes 
where it condenses as cirrus clouds. 

 
Figure 9. Yangbajing Region's Monthly Distribution Trend of Four Types of Clouds for 2020. 

5. Discussion 

Cloud detection and identification has long been a research focus and challenge in meteorology 
and remote sensing. Current mainstream ground-based cloud detection methods can be summarized 
into two categories – traditional image processing approaches and deep learning-based techniques 
(Hensel et al., 2021). Traditional methods like threshold segmentation and texture analysis rely on 
manually extracted features with weaker adaptability to atypical cases, whereas deep learning can 
automatically learn features for superior performance. This study belongs to the latter, utilizing the 
YOLOv8 model for cloud categorization to capitalize on deep learning’s visual feature extraction 
strengths. Compared to other deep learning based cloud detection studies, the innovations of this 
research are three-fold: 1) An adaptive segmentation strategy tailored to different cloud types was 
designed, with segmentation parameters set according to cloud morphology to extract representative 
traits, improving partitioning accuracy. 2) Adaptive image enhancement algorithms were 
introduced, which markedly improved detection in regions with strong illumination impact like solar 
vicinity over conventional NRBR segmentation. 3) Multi-level refinement was adopted to enhance 
capturing of cloud edges and bottoms. These aspects enhanced adaptivity to various cloud types 
under complex illumination. Limitations of this study include: 1) Small dataset scale containing only 
Yangbajing area samples due to geographic and instrumentation constraints; 2) Sophisticated model 
training and tuning demanding substantial computational resources; 3) Room for further improving 
adaptability to overexposed regions. Future work may address these deficiencies via enlarged 
samples, cloud computing resources, and more powerful models. 

In the context of comparing YOLOv8 model against BoMS method on the TCI dataset for cloud 
type classification, while this study has indeed exhibited superior performance attributes, we 
acknowledge that novel image classification algorithms are consistently emerging. In recent scholarly 
work (Gyasi and Swarnalatha, 2023), a streamlined convolutional neural network (CNN) built upon 
MobileNet architecture has achieved substantial enhancements, reaching an overall accuracy as high 
as 97.45% on analogous public datasets. Similarly, other cloud classification networks such as 
CloudNet (Zhang et al., 2018), Transformer-based models (Li et al., 2022b), and Combined 
convolutional network (Zhu et al., 2022) have also demonstrated commendable classification efficacy. 
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However, due to the lack of direct comparative empirical evaluations between these latest algorithms 
and our proposed YOLOv8 model within the current paper, it is not feasible to conduct a quantitative 
juxtaposition with these advancements. Despite this limitation, considering the cutting-edge 
achievements reported in the literature and the swift pace of technological progress within deep 
learning, future research endeavors will include meticulous comparative analyses of these state-of-
the-art methods. This strategic move aims at rigorously validating and augmenting the robustness 
and generalization capabilities of our model under intricate meteorological circumstances, ensuring 
its continued competitiveness at the vanguard of research into cloud quantification. Ultimately, this 
drive is directed towards refining our existing framework continually and furnishing climate science 
research with increasingly accurate and efficient solutions for cloud measurement tasks. Table 4 
shows the comparison of our model with the most recent technical approaches in the literature. 

Table 4. Comparison of this study with the latest technological approaches in the literature. 

Article Dataset Year Model/Method Accuracy(%) 

Li et al. 

(2016) 
TCI 2016 BoMS 93.80 

Zhang et al. 

(2018) 
CCSN 2018 CloudNet 88.0 

Li et al. 

(2022) 

ASGC 

CCSN 

GCD 

2022 Transformer 

94.2 

92.7 

93.5 

Zhu et al. 

(2022) 

MGCD 

NRELCD 
2022 

Combined 

convolutional network 

90.0 

95.6 

Fabel et al. 

(2022) 

All sky images 

(Owned) 
2022 

Self-supervised 

learning 
95.2 

Gyasi et al. 

(2023) 
CCSN 2023 Cloud-MobiNet 97.45 

Ours 
All sky images 

TCI 
2023 YOLOv8 

98.19 

98.31 

Although only validated at the Yangbajing Comprehensive Atmospheric Observatory in Tibet, 
this approach exhibits considerable scalability and versatility. Firstly, the constructed end-to-end 
recognition framework has generalization capability – with appropriate fine-tuning, it can adapt to 
cloud morphological traits in other regions. Secondly, the adaptive image enhancement strategy 
functions irrespective of specific lighting conditions hence widely applicable to diverse 
environments; the finite sector segmentation with k-means clustering philosophy can also generalize 
to cloud quantification at different sites – regions with more prevalent hazes would benefit well. The 
modularized design ensures convenient upgradability of individual components. Therefore, this 
proposed technique can be readily transferred within the cloud monitoring network to enable 
coordinated high-precision multi-regional recognition, providing a referential paradigm for cloud 
detection tasks under other challenging illumination circumstances. 

Exploring the relationship between cloud amount and solar radiation is an important aspect of 
our research, and previous work has provided valuable insights. To further understand the 
spatiotemporal impact of different cloud types on solar radiation in studying the solar radiation-
cloud amount relationship, techniques such as XGBoost and deep neural networks, specifically CNN-
LSTM layers, can be adopted to finely model satellite images, extracting features from vast amounts 
of satellite images to construct solar radiation models for gaining an in-depth comprehension of the 
spatiotemporal effects of assorted cloud types on solar radiation (Rocha and Santos, 2022). Efficient 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 March 2024                   doi:10.20944/preprints202312.1052.v2



 16 

 

cloud detection is also integral to solar radiation research. By introducing advanced cloud detection 
technologies, researchers can calculate cloud amount more accurately, thereby refining the modeling 
and forecasting of solar radiation. Additionally, by utilizing convolutional neural networks (CNNs) 
to perform cloud detection in remote sensing images, it is analyzed that different cloud types possess 
unique visual characteristics in images, and clouds and non-clouds can be effectively distinguished 
through these traits, which provides an intuitive yet potent approach for us to understand the impact 
of cloud amount on the solar radiation balance (Matsunobu et al., 2021). Hence, by leveraging 
advanced technical means, we can better grasp how different cloud types influence solar radiation, 
enabling enhanced prediction of meteorological changes and climate evolution. This holds great 
practical significance for establishing coupling models between cloud amount and radiation and 
promoting meteorological and climatic research. 

6. Conclusions 

This research proposes a novel deep learning based whole sky image cloud detection solution, 
constructing a 4000-image multi-cloud dataset spanning cirrus, clear sky, cumulus and stratus 
categories that achieved markedly improved recognition and quantification outcomes in Tibet’s 
Yangbajing area. Specifically, this study constructs an end-to-end cloud recognition framework. First, 
different cloud types are accurately determined using the YOLOv8 model with an average 
classification accuracy of more than 98%, and an average classification accuracy of more than 98% is 
also achieved on the TCI public dataset. On the basis of cloud classification, an adaptive segmentation 
strategy is designed for different cloud shapes, which significantly improves the segmentation 
accuracy, especially for convolutional clouds with fuzzy boundaries. Moreover, adaptive image 
enhancement algorithms were introduced to significantly improve detection in illumination-
challenging areas around the sun. Finally, multi-level refinement modules based on finite sector 
techniques further upgraded judgment precision of cloud edges and details. Validation on the 2020 
annual Yangbajing dataset proves stratus clouds constitute the predominant type, appearing in 30% 
of daytime cloud images, delivering valuable data support for regional climate studies. In conclusion, 
this framework significantly raises the automation level of ground-based cloud quantification to 
create a strong technological foundation for research on climate change. It does this by integrating 
various modules that cover classification, adaptive segmentation, and image enhancement. 
Additionally, it offers a referable paradigm for other cloud recognition tasks under complex lighting 
environments. 
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