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Abstract: To support pathologists in breast tumor diagnosis, deep learning plays a crucial role in the
development of histological whole slide image (WSI) classification methods. However, automatic
classification is challenging due to the high-resolution data and the scarcity of representative training
data. To tackle these limitations, we propose a deep learning-based breast tumor gigapixel histological
image multi-classifier integrated with a high-resolution data augmentation model to process the
entire slide by exploring its local and global information and generating its different synthetic
versions. The key idea is to perform classification and augmentation in feature latent space,
reducing the computational cost while preserving the class label of the input. We adopt a deep
learning-based multi-classification method and evaluate the contribution given by a Conditional
Generative Adversarial Network-based data augmentation model on the classifier’s performance
for three tumor classes in the BRIGHT Challenge dataset. The proposed method has allowed us to
achieve an average F1 equal to 69.5, considering only the WSI dataset of the Challenge. The results are
comparable to those obtained by the Challenge winning method (71.6), also trained on the annotated
tumor region dataset of the Challenge.

Keywords: deep learning; whole slide image; augmentation; classification; feature space

1. Introduction

In recent years, deep learning has played a key role in developing methods for the automatic
classification of histological images to support pathologists in tumor diagnosis [1,2]. One of the first
challenges of any research in the field of deep learning for computational pathology is the collection
of representative datasets. The greater the diversity and amount of data in the training set, the more
significantly does the model’s performance improve. However, creating a large volume of data with
corresponding annotations requires complex and time-consuming work by pathologists. Moreover, in
many cases, the distribution of disease subclasses in the histological image datasets collected can be
highly skewed in the presence of rare tumors. To mitigate these issues, reliable data augmentation
methods can generate synthetic data for the classification training model. Data augmentation not only
expands the image dataset but also helps to reduce any data imbalance, thereby preventing overfitting
and enhancing the model’s capacity to generalize.

Classic image data augmentation techniques consist in geometric transformations and photometric
shiftings. They include image processing techniques based on image transformations (flipping,
reflection, zooming, scaling etc.) and color transformations (histogram matching, change in brightness,
contrast etc.) [3]. Such methods produce new samples that are similar to the original ones, an increase
which can slightly improve the performance of the deep learning method. Other augmentation
methods are based on image mixing and deleting techniques to compose real images, either by pasting
object masks in backgrounds or by mixing two images to hide or highlight image characteristics [4-6].
However, the samples obtained with this specific type of augmentation on medical images may not
meet the requirements of a clinical characterization of the histological images. Unlike augmentation
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techniques mainly based on image processing methods, other algorithms generate synthetic data
using deep learning models. In particular, after the initial development of Generative Adversarial
Networks (GANSs), models generating completely new images have become a popular method for
data augmentation [7,8].

However, in the context of histological image processing, using standard deep learning techniques,
regardless of the purpose (classification or data augmentation), is not feasible in terms of managing
high-dimensional histological images, i.e., Whole Slide Images (WSIs). It is impossible to feed all the
pixels from such images into a neural network simultaneously. Thus, WSI processing is generally
inferred by combining the decisions obtained for the single patches in which the WSI input has been
split [9,10]. The drawback of such a strategy is the reduced analysis of the spatial relations between
these tiles, which produces a potentially debilitating analysis of the weak patterns and an inappropriate
generation of synthetic data. These issues are even more evident when the absence of annotation for
regions of interest (ROIs) within WSIs does not allow the addressing of significant patches.

Specifically, for the classification task, a tumor area in a WSI cannot be arranged into a category
by analyzing the individual parts without preserving the spatial correlations between the patches
and the interaction between the entire tumor region and the neighborhood tissue microenvironment
information. For the augmentation task, generating individual synthetic patches might introduce
excessive noise, potentially disrupting weak patterns or applying too few variations, failing to
introduce sufficient diversity to enhance the robustness of the classification models. Therefore, there
is a need for innovative data generation approaches customized for high-dimensional WSIs which
strike the right balance between incorporating diversity and preserving essential patterns within these
images.

With the aim of preserving the spatial correlations in the WSI, some recent methods for the
classification task only [11-13] and for the data augmentation improvement classification [14,15]
propose mapping images from a low-level pixel space to a higher-level latent space using neural
networks. Features are extracted patch-wise by a network and rearranged to form a compressed image
which saves most of the discriminative information and can be used to classify the entire WSI. Based
on this approach, we introduce a model to perform data augmentation in feature space instead of in
image space by relinquishing visual evidence but reducing computational costs and promoting global
image analysis. In particular, we introduce a data augmentation model that does not generate images
but rather "synthetic" feature maps. Using a residual network dedicated to extracting features from
each patch into which the image has been partitioned, the WSI input is transformed into a grid-based
feature map (GFM). Next, the proposed data augmentation model, based on traditional methodologies
(rotation, flipping and translation) and a trained generative network, operates on the GFM to generate
synthetic GFMs. This model has been integrated into a histological breast tumor image multi-classifier,
which analyzes both the GFMs of the input WSI and the generated data.

In detail, together with classic augmentation methodologies, we have used a Conditional
Generative Adversarial Network (cGAN) [16], a variant of a standard GAN, to generate the synthetic
features of a WSI. Integrating such a network with the deep learning-based multi-classification
architecture presented in [11] and adopted as the baseline of the BRIGHT Challenge!, we have
evaluated the contribution given by the proposed augmentation approach to the performance of the
multi-classifier for three breast tumor classes. The adopted model uses only the label of the WSI (weak
label annotation) for the classification, not requiring any further pixel-level or patch-level annotations.
To achieve this, the experimentation has been conducted considering only the annotated WSIs of the
reference dataset. The results show that the performance of the proposed model is comparable with
that obtained by the winning team which secured first place in the BRIGHT Challenge?, whose method

https:/ /research.ibm.com/haifa/Workshops/BRIGHT/
2 https:/ /www.synapse.org/#Synapse:syn26480664 /wiki/ 616847
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is based on the combination of strongly-annotated data (from ROIs) and weakly-annotated data (from
WSIs) [17], proving better than other recent methods [18,19].
Specifically, the highlights of the proposed work are:

¢ performing the classification and augmentation in feature latent space allows the model to deal
with the local and global information of gigapixel WSIs;

¢ working in feature latent space reduces the computational cost while preserving the class label
of the input; and

* combining a two-stage augmentation process into an all-in-one model enables the network to
generate and classify the WSIs during the training without a separate classifier, increasing the
classification accuracy on the testing dataset.

2. Method

The proposed approach to the classification-augmentation integration is illustrated in Figure
1. A deep neural network is employed as a backbone to extract a more compact and meaningful
representation of the original data, reducing its dimensionality. In this context, the features extracted
in this unsupervised manner can be seen as a representation of the latent feature space, which is
an abstract representation of data or information. The input image is split into patches, each of
which is represented by using an embedding structure. These feature vectors are generated using a
Convolutional Neural Network (CNN) and are aggregated into a GFM according to the spatial location
of the corresponding patches in the WSI input. Online data augmentation techniques are applied to the
GFM during the training, reducing the storage resources required to implement the data augmentation.
A ¢cGAN network generates new "synthetic" GFM representations for the specific type of class c of
the WSl input. At the same time, classic affine transformations produce different placements of the
feature vectors into the initial GFM. Next, an Attention-Based Neural Network is adopted for the WSI
multi-classification [11].
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Figure 1. The diagram’s higher and lower sections illustrate the training and testing phases, respectively.
For the training, after transforming the WSI input into a GFM, new GFM representations are generated
by an augmentation module. An Attention-Based Neural Network processes the GFM input of one of
the generated GFMs.
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2.1. Grid-based Features Map Extraction

The purpose of the process of extraction of the GFM is to produce a more compact representation
of the WSI input that could be managed in its entirety by the following processing pipeline. The input
is a gigapixel WSI, with a dimension of M x N X 3, and it is partitioned into a set of non-overlapping
patches of a size equal to P x P x 3, mapped into a 1D feature vector with length K by applying a
CNN. According to the patch-wise spatial order, a GFM of size (M/P) x (N/P) x K is used to store
the extracted feature vectors.

2.2. GFM Augmentation

In the following sections, two different processes producing new versions of the GFM are
described.

2.2.1. Standard Data Augmentation

The training GFM undergoes standard affine transformations, which include horizontal and
vertical flips, shifts and rotations. These transformations do not alter the content of the GFM input.
They are applied dynamically during batch generation throughout the training process, utilizing
standard image processing functions in the PyTorch torch-vision library.

2.2.2. Conditional Generative Adversarial Network (cGAN)

Generative adversarial networks are deep learning models that use two competing neural
networks, a Generator and a Discriminator, to create realistic data. The generator expects to fake
sufficiently realistic samples and the discriminator seeks to differentiate real data from those produced
by the generator. Specifically, the generator takes random noise as the input and generates synthetic
samples intended to be similar to the real training data. The discriminator receives in input the
candidate synthesized by the generator and a real sample of the dataset by performing accurate
real/fake binary classification, i.e., indicating the probability that the synthetic input is real. The
training of these modules is called adversarial because both compete against each other regarding the
training objective. The two modules are trained iteratively and the performance increases alternately.

cGANSs use additional information to control the generation process, providing the ability to
create samples belonging to a specific class. This process can be useful in applications that aim to
generate data with specific properties or characteristics. The architecture of a cGAN is similar to
that of a traditional GAN, where a specific label c is concatenated with the input noise to feed the
generator. The generator then produces a sample that is intended to match label c. In the same way,
the discriminator not only determines whether the sample is realistic but also whether the sample
matches the label c. In this work, the label c identifies a specific tumor class of the dataset used for the
experiments.

A conditional component, introduced into the generator and discriminator losses, ensures that
the generated data are consistent with the provided label c. The generator loss evaluates how well
the discriminator identifies the generated data as real data. In this work, the Mean Squared Error
(MSE) between the fake output and real label is used to minimize the probability that the discriminator
can distinguish between generated and real data. The discriminator loss measures how well the
discriminator correctly performs the binary classification. It is split into two components:

¢ Discriminator Loss Real: this quantifies how well the discriminator correctly identifies real data
as real.

¢ Discriminator Loss Fake: Quantifies how well the discriminator correctly identifies generated
data as fake.
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In this work, the first (second) loss component has been computed as the MSE between the real (fake)
output and the real (fake) label. The adopted cGAN structure 3 requires inputs of the same size and
with a square shape. For this reason, only for the training of the cGAN, each WSI input is resized at
the same dimension of S x S x 3, where S has been selected on the basis of the medium size of the
WHEI training dataset. See Figure 2 .

GFM Generation by cGAN
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Figure 2. Synthetic GFM generation using a cGAN: each WSI input is resized at the dimension of
S x S x 3. The GFM representation and the label class of the WSI are given as input to a cGAN, which
produces a new synthetic GFM of the same dimension.

2.3. Convolutional Neural Network (CNN) Classifier

The learning path of the multi-classifier is an Attention-Based Neural Network consisting of a
3D Convolutional layer followed by two attention modules. The Convolutional Layer merges the
information provided by the features of the neighboring patches, producing a new compact volume fed
independently to two attention modules, each producing a 3D attention map. The attention modules,
based separately on min- and max-pooling mechanisms, are employed to lead the classifier to focus on
features that are considered more expressive for the class learned. The two different sets of attention
maps contain complementary information. They are inserted into the network collaboratively to
highlight discriminative feature channels while suppressing irrelevant information with respect to the
actual classification task. Each attention map is used to assign weights to features in the examined
GFM and produces a feature vector. The concatenation of the two feature vectors is fed to a linear layer
that produces an image-level label.

3. Experiments and results

Different experiments have been performed to assess the performance of the proposed method on
the histological image dataset provided by the BRIGHT Challenge. In particular, different strategies
have been considered for the training of the classification and cGAN networks to assess the potential
contribution of cGAN augmentation. The performance of the proposed model has been compared
with that provided by state-of-the-art techniques on the same task for the same testing protocols of the
BRIGHT Challenge.

3.1. Dataset

The dataset used is employed in the BRIGHT Challenge, which includes all the images of the
BRACS dataset [20]. This dataset was built through the collaboration of the National Cancer Institute -
Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) ”G. Pascale Foundation”, the
Institute for High Performance Computing and Networking (ICAR) of the National Research Council

3 https:/ /github.com/eriklindernoren/PyTorch-GAN /blob/master/implementations/cgan/cgan.py
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(CNR) and IBM Research—Zurich. It includes both annotated WSIs and ROIs. However, in this work,
only the WSIs have been considered for the experiments. The WSIs of the BRIGHT testing set are made
publicly accessible without annotations since the organizers of the BRIGHT Challenge perform the
performance evaluation of the classification algorithms according to a blind protocol. The authors of
the current work are among the organizers of the Challenge, and they can easily access the annotations
of the testing set. The BRIGHT dataset includes three breast lesion types, namely Non-cancerous,
Pre-cancerous, and Cancerous, which are further subdivided into six specified tumor subtypes, namely
Pathological Benign (PB), Usual Ductal Hyperplasia (UDH), Flat Epithelia Atypia (FEA), Atypical
Ductal Hyperplasia (ADH), Ductal Carcinoma in Situ (DCIS) and Invasive Carcinoma (IC). Table 1
shows the distribution in the training, validation and testing sets and the origin of the WSIs for the
Challenge according to the lesion type and tumor subtype. The WSIs have been obtained by scanning
slides using an Aperio AT2 scanner at a resolution of 0.25 um / pixel with a 40x magnification factor.

Table 1. Number of WSIs from the BRIGHT dataset for the three breast tumor classes and the six tumor
subtypes, divided into training, validation and testing sets.

Non-cancerous Pre-Cancerous Cancerous

Total
PB UDH FEA ADH DCIS IC
Training 131 65 30 36 49 112 423
Validation 16 9 11 12 12 20 80
Testing 34 33 33 33 33 34 200

In the BRIGHT Challenge, two WSI classification tasks have been established:

e Task 1: a 3-class WSI classification is required by grouping the original six tumor subtypes
into three lesion types: Non-cancerous (PB+UDH), Pre-cancerous (ADH+FEA), and Cancerous
(DCIS+IC).

¢ Task 2: a 6-class WSI classification is required to perform a fine-grained subtyping of the tumors
within the WSIs. Six tumor subtypes have been considered: PB, UDH, ADH, FEA, DCIS, and IC.

In this work, different experiments have been performed and discussed for Task 1, while only the
final results are shown for Task 2.

3.2. Training Protocol

All the WSIs have been normalized using the method proposed in [21]. Morphological operations
have been employed to eliminate the peripheral white areas of the WSI inputs, which represent the
slide’s background outside the tissue section. The experiments have mainly been focused on the
3-class task for which a WSI magnification of 2.5 has produced the best results. In general, a low
magnification analysis is useful to obtain an overview of the sample, allowing the pathologist to
identify basic tissue structures and architecture. Thus, images with a lower magnification help to solve
the first task of the classification into three classes. Conversely, the pathologist can examine cellular
details at higher magnification levels, such as the cell morphology, mitosis and other features that
distinguish various lesions [22,23]. Therefore, by analyzing higher-resolution images (e.g., at a 10x
magnification), the 6-class task might be better resolved. As the GFM extraction module, the WSI
input is split into a set of non-overlapping patches with a size equal to P x P x 3, with P = 224, and
a residual neural network ResNet-34 pre-trained on natural images from ImageNet [24], adopted to
generate feature vectors with length K = 512 for each patch.

3.2.1. cGAN Training

As specified in Section 2.2.2, the cGAN network receives as input a GFM obtained by resizing
the WSl input at the S x S x 3 dimension. The value S = 7168 has been selected on the basis of the
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evaluation of the medium size of the WSIs of the training set. Thus, all the generated GFMs have
dimensions equal to 32 x 32 x 512. The cGAN has been trained for 1000 epochs with a batch size of
64. The MSE Loss has been considered for the backpropagation and an Adam optimizer [25] has been
adopted with a learning rate equal to le — 6. Figure 3 shows the Generator and Discriminator losses
for the training.

cgan 000001b64

0 1000 2000 3000 4000 5000 6000 7000
iterations

Figure 3. The Generator and Discriminator loss curves (blue and orange lines, respectively) during the
training: after approximately 750 epochs, the generator begins to improve, while the performance of
the discriminator deteriorates.

3.2.2. Classifier training

The multi-classifier analyzes the GFMs obtained by the WSI input, affine transformations and
trained cGAN without limitations about the shape and size of the WSI input. The online augmentation
includes nine affine transformations of the GFM input (three rotations at 90°, 180° and 270°, two
flips, horizontally and vertically, and four shifts, right, left, up and down) and the trained cGAN,
which generates nine synthetic versions consistently with the class of the WSI input. Additionally, to
augment further the amount of the training data, the non-normalized WSI input has been considered.
Thus, a set of 20 different feature map representations may be generated for each WSI input. Indeed,
to obtain a better balance of the training data set, the number of samples generated for the classes
consisting of a high number of data must be lower than that of the minority classes. For this reason, in
correspondence with inputs belonging to the majority classes, not all 20 feature map representations
are produced. An augmentation selection is randomly provided through the type specification of
the affine transformations to apply and the number of synthetic versions to generate. Table 2 shows
the balancing of the initial training dataset after the controlled augmentation process. In the original
dataset, the number of WSIs belonging to the pre-cancerous class proves to be less than that of the
non-cancerous and cancerous classes. Thus, all 20 different feature map representations have been
produced only for the Pre-cancerous lesions. The attention-based network has been trained for 100
epochs with a batch size equal to 8. Cross Entropy Loss has been considered for the backpropagation
and an AdamW optimizer [26] has been adopted with an initial learning rate equal to le — 4 and
using the “learning rate annealing with restarts” technique. The combination of these two learning
methods is aimed at enhancing the efficiency and effectiveness of the neural network training and limit
overfitting. In detail, AdamW is a stochastic optimization technique based on the separation of weight
decay from the gradient update. While the original implementation of Adam applies weight decay
directly to the weights during the update, AdamW applies weight decay after each weight update
step, preventing excessive weight shrinkage during the training. The weight decay has been set equal
to le — 5. Different learning rates are set in the “learning rate annealing with restarts” technique and
“restarts” are scheduled during the training. During each cycle, the learning rate gradually decreases
over time but is periodically reset to a higher value (“restart period”). The restart period has been set
equal to 6, i.e., every six epochs, and the learning rate is equal to the initial value le — 4.
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Table 2. Number of WSIs in the original training dataset and the balanced augmented dataset.

Non-cancerous Pre-Cancerous Cancerous Total
Original Dataset 196 66 161 423
Augmented Dataset 1960 (196x10) 1320 (66x20) 1932(161x12) 5212

3.3. Result and discussion

Considering the strong imbalance of the training dataset, the F1-score has been chosen as a metric
to evaluate the proposed method. Table 3 shows a comparison with three recent state-of-the-art
gigapixel WSI classification methods. The first method [19] is a recent weakly supervised framework
which processes the entire slide by exploring its local and global information. The deep network is
split into numerous gradient-isolated modules, each trained independently with local supervision.
Moreover, a Random Feature Reconstruction model is introduced to enhance the performance and
optimize the GPU utilization. The publicly available online code* has been used to obtain the results
of the method on the WSI BRIGHT dataset. The second method, namely WINM, has been presented to
the BRIGHT Challenge through two submissions with different settings of the learning parameters,
ranking in first and second place. WINM is a semi-supervised multiple-instance learning method based
on cross-slide contrastive learning in which patch-level annotations are used to regularize the attention
mechanism. For this reason, the annotated tumor region training dataset is also used in the learning
phase. The team submitted only a draft paper on WINM to the challenge organizers and presented in
[17] a modified version of WINM, tested on different datasets, which do not require the involvement of
the annotated ROIs. The performance of the method in [17] is not evaluable on the WSI BRIGHT dataset
due to the fact that the code is not publicly available. The third method [18], ranked in third place in
the BRIGHT Challenge, is based on a Multiple Instance Learning CNN, allowing the combination of
strongly annotated data (from ROIs) and weakly annotated data (from WSIs) via the optimization
of a multi-task loss function. The data in Table 3 on the performance in terms of the Fl-score of the
five different classifiers highlight how the proposed method provides a good performance even if a
simple network architecture is adopted and no additional annotations in the training phase other than
those related to the labeling of WSIs are used. Except for [18], all the compared methods provide the
best (worst) performance for the Cancerous (Pre-cancerous) class. However, the proposed method
obtains the highest value for the Non-cancerous class. The performance of the proposed method is
significantly higher than that of [18,19] in terms of the F1-score for both the average and the single
classes, although [18] involves the ROIs in the training phase.With respect to WINM, the results are
comparable, although WINM uses the annotated training ROIs. Indeed, only for the Cancerous class is
the evaluation gap higher. In contrast, for the Pre-cancerous class, the proposed method has a slightly
lower (higher) performance than the first-ranking (second-ranking) WINM. These results highlight the
importance of label-conditional data generation on the performance of the classifier. This is even more
evident from the results of some ablative experiments, shown in Table 4 and described below.

4 https:/ /github.com/cvlab-stonybrook/local_learning_wsi/blob/main
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Table 3. Comparison of the proposed method for the 3-classes task, in terms of the F1-score, with recent
state-of-the-art methods.

Experiment Fl-average FI1-Non-Cancerous F1-Pre-Cancerous F1-Cancerous

[19] 65.3 68.0 54.0 74.2
WINM 71.6 725 62.3 80.0
1° rank
WINM 69.6 70.8 52.7 85.3
2° rank

[18] 65.0 71.8 51.6 71.7

Proposed
Method 69.5 74.0 59.5 75.2

In the first experiment (namely AT_NcGAN), only affine transformations have been considered
in the augmentation module; in the second experiment (namely NAT_cGAN), only the contribution
of the cGAN is evaluated; and in the last experiment (namely AT_3GAN), the cGAN has been
substituted by three traditional GANSs, one for every single label. When only one augmentation
method is adopted (AT_NcGAN or NAT_cGAN), the experiments have always been conducted
with a controlled balancing while avoiding excessive increases in the number of samples to prevent
overfitting. Therefore, for these two types of experiments, the amount of the generated data is lower
than that obtained with AT_3GAN and the proposed method. The greatest increase in performance is
achieved for the Pre-cancerous class when generative adversarial networks (conditional or not) are
adopted for the data augmentation. Pre-cancerous tumors are very similar to cancerous ones [20];
thus, the affine transformations, generating samples very similar to the original data, provide only a
slight improvement in the classifier performance in terms of discriminating between pre-cancerous
and cancerous tumors. The use of only the cGAN clearly allows for a significant improvement in
performance for the pre-cancerous cases without introducing substantial changes for the other two
classes. Although the combination of the affine transformations with a generative adversarial network
allows the obtainment of a greater number of different samples, preventing overfitting, the performance
in terms of the Fl-average of AT_3GAN is worse than that obtained with NAT_cGAN. Indeed,
each GAN is trained with fewer samples for a given tumor class. For these reasons, the proposed
augmentation model based on the combination of the affine transformations and a conditional GAN
provides the best performance in terms of the F1-score for both the average and the single classes.

Table 4. Ablative experiments adopting different combinations of augmentation processes: AT_NcGAN
for only affine transformations, NAT_cGAN for only cGAN and AT_3GAN for a fusion of the affine
transformations with three GANSs, one for each label.

Experiment Fl-average F1-Non-Cancerous F1-Pre-Cancerous F1-Cancerous

AT_NcGAN 61.6 71.0 44.2 69.4
NAT_cGAN 62.4 70.5 47.8 68.9
AT_3GAN 62.1 66.7 48.2 71.3
Proposed
Method 69.5 74.0 59.5 75.2

We have also evaluated the proposed method for Task 2 of the Challenge (i.e., for six classes),
ranking sixth in the challenge leaderboard, preceded by WINM and [18] with different parameter
settings. This task is more challenging as it involves a greater number of classes and a higher potential
for inter-class ambiguities. Thus, the involvement of annotated ROIs in the network training phase has


https://doi.org/10.20944/preprints202312.1044.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 December 2023 doi:10.20944/preprints202312.1044.v1

10 of 11

significantly benefited WINM and [18] in terms of performance. The comparison with [19], shown in
Table 5, highlights a better performance in terms of F1 score for both the average and the four classes.

Table 5. Comparison of the proposed method for the 6-classes task, in terms of F1-score, with a recent
weakly supervised method.

Experiment Fl-average FI1-PB F1-UDH F1-FEA F1-ADH F1-DCIS F1-IC

[19] 403 46.1 415 318 13.0 453 64.1
Proposed
Method 41.5 49.6 28.0 40.0 20.0 40.8 71.2

4. Conclusions

In this work, a WSI multi-classification using weakly supervised learning integrated with a
high-resolution data augmentation model has been applied to the imbalanced dataset of breast
gigapixel WSIs of the BRIGHT Challenge. Rather than using the conventional approach based on
the analysis of the single patches, the notion of an intrinsic feature relationship across patches has
been used to realize a compact representation of the WSI input as a GFEM. Both classification and
data augmentation operate at the compact representation level, allowing an efficient analysis of
the gigapixel WSIs. Activating the augmentation module during the classifier training brings two
advantages: high-resolution synthetic data generation and reduced storage resources required to
implement the data augmentation. The augmentation module is based on affine transformations and a
c¢GAN operating on the GFM input. Experiments have been performed to evaluate the contribution
of the augmentation module for the multi-classification. This study shows that a well-designed and
adequately trained deep learning model can achieve, considering only a weak label dataset, an average
F1 comparable to that of the winning method of the BRIGHT Challenge, also trained on the annotated
tumor region dataset, and a result better than that obtained by other recent methods.
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