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Abstract: Large-scale farms are pivotal sites for the development of the agricultural industry, and
the quality of the ecological environment is a significant factor affecting the growth of cereal crops.
Consequently, assessing the ecological quality of large-scale farms is of great importance. This paper
leverages the advantages of remote sensing imagery for long-term, quantitative, and dynamic
monitoring of ecological quality over extensive areas. It develops an ecological assessment
procedure suitable for agricultural regions based on an Improved Remote Sensing Ecological Index
(IRSEI), which considers the coupling of ecosystem component elements. This procedure introduces
a Pan-Salinity Index (PSI) tailored to the characteristics of soil salinization in farming areas and
incorporates an ecological greenness index based on the Normalized Difference Vegetation Index
(NDVI), an ecological humidity index derived from the K-T transform (WET), an ecological dryness
index synthesized from the bare soil index and the built-up index (NDBSI), and an ecological heat
index represented by the Land Surface Temperature (LST) calculated from atmospheric parameter
models. These five indices are integrated into the ecological assessment system. The experimental
results visually demonstrate the development and changes of ecological impact factors in the farm
research area over the past decade, as well as the spatiotemporal variations in the quality of the
farm's ecological environment. The findings indicate that between 2010 and 2019, the overall trend
of IRSEI first declined, then rose, and subsequently experienced a slight decrease. Through
differential analysis, regions and areas with declining ecological quality were identified, providing
a data reference for the formulation and implementation of future ecological protection and
management measures for the farm. The proposed IRSEI method offers a rapid and effective new
monitoring approach for agricultural planting areas with a tendency towards soil salinization.

Keywords: large-scale farms; ecological environment; remote sensing imagery; remote sensing
ecological index

1. Introduction

Large-scale farms bear the critical mission of serving as the "granaries" of society. The quality of
the farm's ecological environment exerts a significant influence on crop growth. Consequently,
scientifically evaluating and appropriately adjusting the farm's ecological environment is vital for
ensuring both high yield and quality of food crops. The ecological environment also constitutes a
crucial factor affecting the sustainable development of agriculture. At present, challenges to the
quality of the farm's ecological environment arise from the irrational provision of soil nutrients,
increased human activities, and the processes of soil salinization due to soil moisture evaporation
and salt accumulation driven by arid climates. Therefore, a rational understanding of ecological
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factors on farms and research into the quality of farm ecology are of paramount importance,
providing data references for decision-making bodies and bearing significant practical significance.

Currently, methods for assessing the quality of the ecological environment include the
Ecological Index (EI) approach and the Remote Sensing Ecological Index (RESI) approach [1]. The EI
method primarily involves the coupling of individual indicators that impact the ecological
environment, followed by the application of statistical techniques or mathematical models to analyze
the weights of these indicators, thereby forming a comprehensive evaluation index. This index is used
to explore and assess the quality of the ecological environment in the study area. For instance, some
scholars have conducted a secondary classification of land use types into cultivated land and forest
land, with the former including paddy fields and dry fields, and the latter comprising general forest
land and shrub land. They have employed fuzzy mathematical methods to assign weights to relevant
ecological indicators, proposing a regional ecological index based on EI, and quantitatively assessing
the ecological environment of the study area [2]. In recent years, RESI has been widely applied to
measure the ecological condition of specific study areas. Specifically, RESI utilizes remote sensing
technology and mathematical models to acquire certain component indicator data, which are then
synthesized to evaluate the health of ecosystems and measure the potential for sustainable
development in the region. RESI can also quantitatively assess the structure, function, and services
of the ecosystems under study, providing a scientific basis for ecosystem management and
conservation. As the acquisition of component indicators relies on image data, researchers are
required to obtain appropriate remote sensing imagery through satellites, aircraft, or other remote
sensing technology platforms. The remote sensing imagery data obtained include multispectral,
hyperspectral, and radar data types. Only after data preprocessing procedures such as radiometric
calibration, atmospheric correction, geometric correction, and noise reduction are completed, can the
models be used to calculate the relevant indicators.

The RSEI has been extensively applied in the assessment studies of various land cover types.
These studies encompass evaluations of urban ecological environment quality [3-5], rural ecological
environment quality [6,7], forestland ecological environment quality [8], wetland ecological
environment quality [9,10], island ecological environment quality [11], and arid desert region
ecological environment quality [12], among others. The widespread application across diverse land
cover types can be attributed to the RSEI's robust periodicity and its efficient, objective characteristics.
In agricultural planting areas, such as large farms, RSEI can accurately assess the growth environment
of crops through remote sensing data in conjunction with relevant models. It can reveal the
characteristics and dynamics of the farm's ecological environment and provide a scientific basis for
planting environment management and farmland protection decisions. Consequently, this enhances
the efficiency of agricultural production and the utilization rate of agricultural resources.

Research on the RSEI typically integrates four component indicators that represent the quality
of the ecological environment: greenness, humidity, dryness, and heat. By coupling these component
indicators, a comprehensive index is formed that can holistically assess the regional ecological
environment quality. The principle of indicator acquisition should be such that it reflects the
ecological characteristics and trends of the agricultural ecological environment, thereby providing a
scientific basis for its evaluation [13]. This paper, addressing the semi-arid characteristics of the study
area's farms and the environmental feature of soil salinization, incorporates the soil salinity indicator
into the theoretical framework of the remote sensing ecological index. Consequently, an Improved
Remote Sensing Ecological Index (IRSEI) model is proposed. This model has been applied to
ecological detection at the Tenihe Farm in Northeast China, assessing the ecological quality of the
farm over the past decade and analyzing its changing trends, with the aim of providing scientific data
references for subsequent ecological protection measures.
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2. Research Area and Data

2.1. Introduction to the Research Area

The Tenihe Farm was established in July 1955 and comprises 11 planting divisions, representing
an agricultural reclamation enterprise with a modern management level. Geographically situated in
the northern section of the Daxing'anling mountain area, the eastern and northern parts of the farm
fall within the stony mid-mountain sub-region of the northern Daxing'anling, while the western and
southern parts belong to the stony low-mountain sub-region of the northern Daxing'anling's western
slope [14]. The overall topography is characterized by lower elevations in the west and higher in the
east, with a regional distribution of rocks, among which granite occupies a significant area. Together
with other types of igneous rocks, these form a terrain that combines plains with mountainous
features, thus exhibiting typical riparian geomorphological characteristics [14]. The mountains,
shaped by long-term weathering and erosion, have gentle slopes. The total area of the farm is
approximately 1,900 square kilometers, with about 670,000 mu of arable land available for cultivation.
It is located between 119°45’-120°60'East longitude and 49°10'-49°55'North latitude, with elevations
ranging from 628 to 1,064 meters. The cropping system of the farm's agriculture is based on a single
harvest per year, with land preparation and sowing typically carried out in May, and crop harvesting
generally completed by October. The water requirements for the crops during the growing season
are primarily met by natural precipitation.

The geographical location and basic information of the Tenihe Farm are illustrated in Figure 1

below:
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Figure 1. Overview of Tenihe Farm.

2.2. Data Preparation

The experimental data presented in this chapter predominantly consist of Landsat satellite
imagery spanning approximately a decade, pertinent to the study area. Due to the geographical
extent of the Tenihe Farm, it was necessary to utilize two separate images to achieve complete
coverage, resulting in the acquisition of eight remote sensing image datasets. These datasets include
Landsat TM (Thematic Mapper) imagery from 2010, Landsat ETM (Enhanced Thematic Mapper)
imagery from 2013, as well as Landsat OLI (Operational Land Imager) imagery from the years 2016
and 2019. The procurement of the Landsat series imagery was facilitated through the Geospatial Data
Cloud website (https://www.gscloud.cn/). The selection of the sensor imagery was strategically timed
to avoid the ice and snow seasons. The extensive presence of ice and snow can obscure a variety of
surface features, significantly impacting the sensor's ability to accurately detect the true nature of the
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ground objects. The months in which the imagery was captured ranged from late April to October, a
period deliberately chosen due to the minimal cloud cover in the images. This timeframe also
coincides with the growing and harvesting seasons of crops, as well as the peak growth period for
surrounding vegetation, making it more conducive for ecological detection. Employing the IIRSEI
method within this context yielded more reliable evaluative results [15].

The acquired imagery data necessitates a series of preprocessing steps prior to the computation
of indices to enhance the accuracy of subsequent spectral band calculations. The rationale for
preprocessing is attributed to the fact that detectors and other instruments are influenced by factors
such as atmospheric radiation, the satellite's orientation during flight, the solar zenith angle, and the
conditions of the Earth's surface coverage. Moreover, the multitude of radiometric information
obtained through remote sensing methods undergoes physical alterations such as absorption or
scattering upon interaction with the atmosphere, leading to attenuation of the radiative energy and
consequently, introducing errors into the spectral information captured. Preprocessing enables the
correction of distortions in remote sensing imagery, as well as the reduction or elimination of noise
impacts, thereby ensuring more accurate geometric features of the imagery and information content
that is more representative of reality. The remote sensing image preprocessing workflow conducted
in this chapter primarily encompasses radiometric calibration, atmospheric correction, image
mosaicking, image cropping, and the combination of image bands. The remote sensing imagery of
the experimental farm area, post-preprocessing, is illustrated in the Figure 2 below:
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Figure 2. Remote sensing image data (RGB) of Tenihe Farm, (a—d) correspond to 2010, 2013, 2016 and
2019, respectively: a comes from Landsat 5 TM; b comes from Landsat 7 ETM+; ¢ and d come from
Landsat 8 OLIL.

3. Methods

3.1. Overview

The experimental procedure of the present study is illustrated in Figure 3. The specific steps are
as follows: Firstly, preprocessing operations on remote sensing imagery are conducted, which
primarily involve radiometric calibration and atmospheric correction of the raw remote sensing
images, followed by mosaicking and cropping of the corrected images to ensure that the cropped
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images are well-suited to the study area's boundaries. Secondly, the computation of the five
component indices of IRSEI is carried out, with the calculation of these indices referencing several
literatures. Through the dissection of algorithms, more appropriate expressions are selected, and
certain algorithmic models are transformed into parameter settings for the computation of remote
sensing image bands, resulting in the acquisition of specific values and distribution characteristics of
the component indices. Thirdly, the five component indices — greenness, humidity, dryness, heat, and
salinity —are standardized and fused, followed by principal component analysis to obtain statistical
information of each component. Subsequently, the first principal component post-transformation is
utilized as the representative component encapsulating the primary information of the indices.
Fourthly, mathematical transformations are applied to determine the spatiotemporal variation
characteristics of the IRSEI for the farm research area.

Time-series remote sensing image data

Data pre-processing

Radiometric Atmospheric
calibration correction ‘

Bandwidth + Algorithm
calculation analysis

; Calculation of indicators

Greenness | Humidity = Dryness = Heat | Salinity

Constructing indicators portfolios

Principal component analysis hesized
(PCA) Synthesized assessment

'

IRSEI ecological quality assessment

Figure 3. IRSEI-based process for evaluating the ecological environment quality of Tenihe Farm.

3.2. Calculation of Component Indicators

Prior to the comprehensive computation of IRSEI, it is imperative to explore and calculate the
component indices within the IRSEI framework. As critical constituents in the assessment of the
ecological environmental quality of the farm research area, these component indices require precise
control to provide an accurate data foundation for the subsequent coupling of component indices.
The theoretical underpinnings and specific calculation methods for the five component indices—
greenness, humidity, dryness, heat, and salinity —are elaborated in detail below.

3.2.1. Calculation of Greenness Index

In the context of the IRSEI framework, the greenness index is an important indicator
representing the quality of the ecological environment. This paper utilizes the normalized difference
vegetation index (NDVI) for characterizing the greenness index [16]. Vegetation, as a vital component
of ecosystems, plays an indelible role in the Earth's carbon cycle and climate dynamics. NDVI is a
commonly used remote sensing index that can also be employed for assessing and monitoring the
condition and growth of vegetation. Specifically, it reflects the greenness and growth status of
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vegetation by calculating the difference between the infrared and visible light bands in remote
sensing images. The formula for calculating NDVI is as follows:

NDVI = Prir ~ Pred (1)
P T Prea

Wherein p,,. represents the reflectance in the near-infrared band, and p., represents the

reflectance in the visible light red band. The value range of NDVI is from -1 to 1, with higher
values indicating more vegetation cover and lower values indicating less.

The principle of NDVT isbased on the reflective characteristics of vegetation across different
spectral bands. Vegetation reflects higher in the infrared band and lower in the visible light red band.
Therefore, NDVI can reflect the greenness and growth condition of vegetation by calculating the
difference between the reflectances in the infrared and visible light red bands. A higher NDVI
value typically indicates more vegetation cover and better growth conditions, while a lower ND V7
value indicates less vegetation cover and poorer growth conditions. NDVI finds extensive
applications in fields such as agriculture, forestry, and environmental monitoring. It can be utilized
for vegetation monitoring, land use research, drought monitoring, pest and disease early warning,
providing a crucial index for evaluating and monitoring vegetation status.

3.2.2. Calculation of Humidity Index

The humidity index primarily characterizes the moisture content of vegetation and soil within
image coverage. This index is extensively employed across various domains, such as ecological
environment monitoring and evaluation. The humidity index can be represented by the WET
component of the Tasseled Cap Transform (TCT), also known as the K-T transform. The WET
component is essentially a feature component generated through the K-T transform [17]. The K-T
transform can be viewed as a specialized form of principal component analysis (PCA). However, a
notable distinction is that, unlike conventional PCA, the K-T transform utilizes a fixed transformation
matrix. The K-T transform introduces a constant matrix into the digitized original remote sensing
image and translates it into a new feature space, whereby humidity can be aptly transformed to obtain
results. The transformed components can enhance image information and effectively represent
spatial moisture content. The transformation formula is as follows:

B=21A4 ()

Wherein, B represents the image after the K-T transformation; A denotes the matrix
coefficients of the transformation; A4 signifies the original image. To perform a K-T transformation
on remote sensing images, it is necessary to obtain information about the transformation matrix
coefficients. The transformation matrix coefficients vary with the different settings of satellite sensors,
and thus, the coefficient settings of the WET calculation formula are not identical. Through expert
experience summarization, the humidity calculation formula corresponding to different Landsat
satellite sensors can be realized through different parameter settings [18,19]. The specific settings of
the transformation matrix coefficients for the humidity index are shown in Table 1 below:

Table 1. K-T transformation matrix coefficients of Landsat series satellites.

Band b Green Red NIR SWIR1 SWIR2
Sensor
Landsat TM 0.0315 0.2021 0.3102 0.1594 0.6806 0.6109
Landsat ETM+ 0.1509 0.1973 0.3279 0.3406 0.7112 0.4572
Landsat OLI 0.1511 0.1973 0.3283 0.3407 0.7117 0.4559

Through the configuration of different K-T transformation matrix coefficients, various WET
index calculation formulas for different sensors can be derived, as shown below:
The WET index calculation formula for Landsat 5 TM is as follows:
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WET 1, =0.0315p,,, +0.2021p,,, +0.3102p,, +0.1594p, . —

(©)
0.6806 Oy = 0.6109 Py

The WET index calculation formula for Landsat 7 ETM+ is as follows:

WET, 110y, = 0.1509,,, +0.1973 ;.. +0.3279 py., +0.3406 0, —

4)
0.71 12pSWIR1 - 0‘4572pSWIR2

The WET index calculation formula for Landsat 8 OLI is as follows:

WET,,,;, = 0.1511p,,, +0.1973p,,., +0.3283p,,, +0.3407 o, —

®)
0.71 l7,0514/11?1 - 0'4559pSW1R2

In the aforementioned three equations, p,, . represents the reflectance in the blue band; p,..,
denotes the reflectance in the green band; p., signifies the reflectance in the red band; p,,,
corresponds to the reflectance in the near-infrared band; P, isindicative of the reflectance in the

shortwave infrared-1 band; and Pz, stands for the reflectance in the shortwave infrared-2 band.

A higher WET value suggests increased humidity.

3.2.3. Calculation of Dryness Index

Due to the presence of human settlements and construction areas in the study area, as well as
the existence of bare soil, the aridity index in this chapter is characterized using a composite approach
combining the Building Index and the Bare Soil Index. These two indices can to some extent reflect
the condition of soil health, soil aridification phenomena, and consequently, to a certain degree, the
changes and quality of the local ecological environment. The aridity index, known as the Normalized
Difference Build and Soil Index (NDBSI) [20], is calculated by adding the Soil Erosion Index (SI) [21]
and the Index-based Build-up Index (IBI) [22], and then averaging the result. The SI and IBI indices
can be expressed using different band calculation formulations. The specific formulas are as follows:

NDBSI = (SI +IBI)/ 2 (6)
SI = [(pSWIR] + pRed) - (pNIR + pBlue)] / [(IOSWIRI + pRed) + (pNIR + pBlue)] (7)

IBI = {2pSWIR1 /(pSWIRl + pNIR) _[pNIR /(leR + pRed) + pGreen /(pGreen + pSWIRl)]} /

8)
{2pSW[R1 / (pSWIRl + pNIR) + [pNIR / (pNIR + pRed) + pGreen / (pGreen + pSWIRl )]}

In this context, pg,,, represents the reflectance in the shortwave infrared 1 (SWIR1) band;
Preq represents the reflectance in the visible red band; p,,, represents the reflectance in the near-

infrared band; p,, . represents the reflectance in the visible blue band; and p,,,,, represents the

reflectance in the visible green band. The values of these parameters typically range from -1 to 1.
Because these indicators characterize two types of content, namely, content that enhances dryness
and content that reduces dryness, where the enhancing content typically includes buildings and bare
soil, while content that reduces dryness includes vegetation and water bodies, among others.

3.2.4. Calculation of Heat Index

This study investigates the use of land surface temperature (LST) as a representation of heat [23].
The thermal infrared bands of the Landsat satellite series are sensitive to the thermal radiation of
surface coverings, making them extensively utilized in monitoring LST variations [24]. Regarding
LST computation, there are two conventional methodologies: the single-channel algorithm and the
multi-channel algorithm. The single-channel algorithm encompasses methods such as atmospheric
correction (also referred to as the radiative transfer equation), the universal single-channel method,
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and the single-window algorithm. The multi-channel algorithm primarily includes the split-window
algorithm and the temperature emissivity separation algorithm. In this chapter, the atmospheric
correction method is adopted for LST inversion. The principle of calculating surface temperature
using the atmospheric correction method involves initially aggregating the total thermal radiation
detected by the satellite sensor. Subsequently, various techniques are employed to simulate and
quantify the atmospheric influence on surface thermal radiation. The total thermal radiation is then
reduced by the radiation amount consumed by atmospheric effects, yielding the actual thermal
radiation at the surface. This genuine surface thermal radiation undergoes mathematical
transformation to derive the inverted surface temperature. The process of calculating surface
temperature using the atmospheric correction method can be illustrated as shown in the following
Figure 4:

Landsat data

v

Radiometric calibration

!
v

Atmospheric correction

Calculation of NDVI

Thermal infrared

Calculation of vegetation radiation brightness
cover image
Calculation of surface
specific emissivity
Atmospheric profile
information
A 4

Calculation of blackbody radiant brightness

v

Calculation of land surface temperature

Figure 4. Calculation process of land surface temperature.

From Figure 4, it is discernible that the computation of surface temperature necessitates several
intermediary steps for realization, involving the acquisition of remote sensing imagery and some
preprocessing routines, as well as the calculation of certain indices and parameter retrieval. The
specific intermediary processes and steps are elaborated in detail in the following text.

(1) Radiometric calibration

Utilizing atmospheric correction, an initial step involves conducting radiometric calibration on
the thermal infrared band to obtain radiance imagery. It is noteworthy that the thermal infrared
bands of Landsat 7 and Landsat 8 sensors are not identical; Landsat 7 operates in the sixth band,
while Landsat 8 operates in the tenth and eleventh bands, with the tenth band being employed for
operations in this study.

(2) NDVI calculation

The calculation of the NDVI is synonymous with the computation of the greenness index, as
seen in Equation 1.

(3) Vegetation cover calculation

Vegetation cover is primarily calculated by comparing the vertical projection area of vegetation
on the surface to the overall area of the study region, including branches, stems, and leaves in the
projection. Numerous studies focus on estimating vegetation cover using remote sensing methods,
among which the utilization of vegetation indices is a frequently applied approach. A commonly
used vegetation index is expressed through NDVI . The vegetation cover in this chapter's experiment
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is mainly calculated through NDVI . In the imagery, areas with and without vegetation cover, as
well as purely vegetated areas, are present. Vegetation cover is characterized by calculating the ratio
of the difference between NDVI and the non-vegetated area to the difference between purely
vegetated and non-vegetated areas. The formula can be expressed as follows:

FV =(NDVI — NDVI)/ (NDVI, — NDVI,)

Herein, F1 represents the magnitude of vegetation coverage; NDVI denotes the NDVI
value for areas devoid of vegetation coverage; and NDVI, signifies the NDVZ value for purely
vegetated areas. In the experiments of this chapter, based on empirical evidence, NDVI; and
NDVI, are set to 0.05 and 0.7, respectively. This implies that when the value of NDV7 within a

pixel exceeds 0.7, the value of FJ7 isset to 1; when the value of NDVI within a pixel is less than
0.05, the value of F'V7 issetto 0[25].

By integrating the formula for vegetation coverage with the set parameters for NDVI, and
NDVI,, the formula can be transformed into a band calculation method. The band calculation

formula is as follows:

FV = (bl gt 0.7)*1+ (bl It 0.05)*0+ (bl ge 0.05 and bl le 0.7)* ((b1-0.05)/
(0.7-0.05))

Herein, Dl is the result of NDVI
(1) Calculation of Surface Emissivity (SE)

Based on prior research, remote sensing images are categorized into three types: water bodies,
urban areas, and natural surfaces [26]. In this chapter, the following methodology is adopted to
compute the surface emissivity for the study area: the emissivity value for water body pixels is set at
0.995, while the emissivity estimates for natural surface pixels and urban pixels are represented by

£ and g, ., respectively [25,26]. The specific formulae are as follows:

surface

g . =09625+0.0614FV - 0.0461FV*

surface

g =0.9589+0.086FV -0.0671FV*

building

Incorporating the parameters allows for the transformation of the equation into a band
calculation method. The formula for band calculation is as follows:
S, = (bl le 0)*0.995+ (bl gt 0 and b1 It 0.7)*(0. 9589+0. 086* b2-
0.0671*b2*b2) +(b1ge 0.7)*(0. 9625+0. 0614* b2- 0. 0461*b2* b2)

where §_ denotes the surface reflectance ratio; bl represents the value of NDVZ ; and b2
signifies the vegetation cover fraction Fp .
(2) Calculation of blackbody radiance values under identical temperature conditions

The computation of radiance values involves three types of radiative signals received by the
detector from the Landsat satellite. The first signal pertains to the atmospheric transmittance in the
thermal infrared band, which represents the portion of ground-level radiance that, after being filtered
by the atmosphere, is captured by the satellite sensor (/). The second signal is the upward
atmospheric radiance (L ). The third signal is the energy reflected back after being radiated

downwards by the atmosphere and received by the detector ( Z,). These three sets of data can be

accessed from the website published by NASA (http://atmcorr.gsfc.nasa.gov/). It's noteworthy that
during the query, one needs to provide the imaging time, the central latitude and longitude of the
image, and other relevant parameters. For ease of calculation, the radiance value parameters for four
remote sensing images from the experimental area are presented in Table 2:

doi:10.20944/preprints202312.0988.v1

)

(10)

(11)

(12)

(13)
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Table 2. Parametric statistics of radiance values of remote sensing images of Tenihe Farm.

doi:10.20944/preprints202312.0988.v1

Year t Lu La

2010 0.82 1.28 2.13
2013 0.83 1.16 1.96
2016 0.96 0.23 0.44
2019 0.95 0.27 0.48

Upon acquiring the values of t, L, and [,, the formula for calculating the brightness value

(L) of thermal infrared radiation received by the satellite can be expressed as follows:
L=[S;B,+(1-S,)L,Jt+L,

where 7' represents the true surface temperature; .S, denotes the surface emissivity; ¢
signifies the atmospheric transmittance under thermal infrared conditions; and B, stands for the

blackbody brightness value of thermal radiation.
From the aforementioned equation, the brightness value B, of the blackbody radiation in the

thermal infrared band at temperature 7' can be derived, and the formula is presented as follows:
B, =[L-L,—t(1-S;)L,]/tS,

Through the intervention of the inverse function of Planck's Law, the surface temperature can
be obtained. It is noteworthy that the actual surface temperature obtained at this point is expressed
in Kelvin (K), not the Celsius (°C) unit commonly used in general contexts. Consequently, a
conversion of temperature units is requisite. Converting Kelvin to Celsius merely necessitates
subtracting 273.15 from the original temperature. Hence, the expression for LST is as follows:

LST =K, /InK, /(B, +1)-273.15
In this context, K, and K, represent predefined constants prior to the satellite launch. The

settings for K, and K, for different sensor types of Landsat satellites are presented in Table 3.

Table 3. Setting of K1 and K2 under different sensor types.

(14)

(15)

(16)

Sensor Types K1 K2

Landsat 5 TM (band 6) 607.76 1260.56
Landsat 7 ETM+ (band 6) 666.09 1282.71
Landsat 8 TIRS (band 10) 774.89 1321.08
Landsat 8 TIRS (band 11) 480.89 1201.14

Due to the susceptibility of the 11th band of Landsat 8 TIRS to interference from stray light and
other noise, calibration can introduce significant biases. If incorporated into calculations, it may
compromise the accuracy of subsequent results [27]. Hence, this study utilizes the 10th shortwave
band of Landsat 8 TIRS for computation, employing the corresponding K1 and K2 values from the
table for analysis.

When translated into band calculation format, the formula is as follows:

LST, = K, / alog(K, / b1+1)—-273.15

Within this context, bl represents the blackbody radiance image under identical temperature
conditions.

From this, the Celsius temperature band calculation formula for Landsat 5 TM can be derived
as:

LST, =1260.56/ alog(607.76/ b1 +1)-273.15

The Celsius temperature band calculation formula for Landsat 7 ETM+ is as follows:

LST, =1282.71/ alog(666.09 /b1 +1)—273.15

(17)

(18)

(19)
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The Celsius temperature band calculation formula for Landsat 8 TIRS is as follows:

LST, =1321.08/ alog(774.89/ b1 +1)—273.15 (20)

where b1 are the blackbody radiance brightness images for the same temperature conditions.

3.2.5. Calculation of Salinity Index

Salinization, as a form of soil degradation, primarily refers to the phenomenon where salts from
the deep soil layers and groundwater are transported to the surface through tubular pathways,
resulting in the accumulation of salts on the soil surface following the evaporation of saline water.
The occurrence of soil salinization is the outcome of both natural and anthropogenic factors. Natural
factors are influenced by the parent material of soil formation, topography, climate, water quality,
and the level of the underground water table; whereas human factors include unscientific irrigation
and drainage practices, and the excessive application of pesticides and fertilizers. Currently, over 100
countries worldwide are affected by salinized soils, with the global total area exceeding 950 million
hectares, and this area is continuing to expand annually [28,29]. In China, salinized soils are
widespread, with potential large-scale soil salinization changes occurring in the regions of North
China, Northeast China, and Northwest China [30]. For instance, in some agricultural reclamation
areas of the Hulunbuir region in Northeast China, which is characterized by a semi-arid climate with
low precipitation and high evaporation, the long-term use of pesticides and fertilizers in planting
soils is leading to salinization changes. The issue of soil salinization can lead to reduced soil
productivity, thereby decreasing agricultural production efficiency and exacerbating the
deterioration of the agricultural ecological environment, which in turn has adverse effects on the
socio-economic landscape [31,32]. Hence, conducting research on regional soil salinization conditions
to comprehensively identify potential risks is instrumental for the scientific and rational planning of
land resources, which can enhance the intrinsic productivity of the soil and contribute to ecological
improvement [33]. Therefore, by employing certain technical methods to thoroughly understand the
spatial distribution of soil salinization, it is possible to diagnose salinized soils and implement
customized measures to prevent the worsening of soil salinization, improve land use efficiency in
agricultural areas, and achieve the goals of ecological sustainability.

Soil salinity serves as an effective evaluative metric for the degree of soil salinization. Given that
the visible and near-infrared spectral bands of remote sensing exhibit certain responses to soil
salinity, it is feasible to consider the estimation of soil salinity information via remote sensing
techniques. Recently, the inversion research of soil salinity indices using remote sensing spectral
information has garnered increasing attention. This method holds advantages for large-scale
monitoring, offering benefits such as a continuous temporal sequence and strong timeliness of data.
The results of remote sensing inversion estimation can also serve as a reference, providing assistance
for subsequent soil environmental remediation and land reclamation efforts [34]. This paper employs
a pan-salinity index (PSI) that integrates three different remote sensing salinity indices to quantify
the soil salinity index of the study area. The first method of integration is the SI-S method [35], which
utilizes the red, green, blue, and near-infrared spectral bands for the estimation of the soil salinity
index. The calculation formula is as follows:

SI_S= (pNIRXpRed)_(pGreenXpBlue)
(pNIR x pRed) + (pGreen x pBlue)

21)

In this context, p . denotes the reflectance of the near-infrared band; p, , represents the
reflectance of the red band; p_  signifies the reflectance of the green band; p, = corresponds to

reflectance of the blue band.
The second fusion method is the SI-W method [36], which utilizes the red and green bands for
estimating the soil salinity index. The calculation formula is presented below:

S[ - W = (pGreen + pRed) / 2 (22)
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where p,... represents the reflectance of the green band, and p;., denotes the reflectance

of the red band.
The third fusion method is the SI-K method [37], which employs the red band and the near-
infrared band to estimate the soil salinity index. The calculation formula is as follows:

SI-K = (pRed - pNIR) / (pRed + leR) (23)

where Pres TEPTEsents the reflectance of the red band, and p,,, denotes the reflectance of the

near-infrared band.

Fusion is conducted by adding the values and then calculating the mean. Prior to fusion, the
three indices are normalized to constrain the values within the range of 0 to 1. Given that the SI-S
index is negatively correlated with the soil salinity index, a positive correlation transformation is
performed in advance. The resultant PSI exhibits a positive correlation with the soil salinity
conditions, whereby higher values indicate a greater degree of salinity, and lower values suggest
reduced soil salinity. The calculation formula for PSI is as follows:

PSI =(NDSI - S+ NDSI -W + NDSI -K)/3

(24)
=| ND ND,
\/ (Pyir*Pred)~(Preen* Ppiue) (PGreen*Prea)/2
(PNiR* Pred )+ (PéreenPiie)

+ ND(pRed =Pnir) (Prea +Pir)

where NDSI—S represents the normalized value of S7—S after a positive correlation
transformation, NDSI — W denotes the normalized value of SI—W , and NDSI — K indicates
the normalized value of S7—K .

3.3. Calculation of IRSEI

The Principal Component Analysis (PCA) method is employed to perform a principal
component transformation on five indicators. Prior to executing the principal component
transformation, it is imperative to normalize the five component indicators. In the experiment of this
chapter, range normalization method is utilized, standardizing the numerical values of the
component indicators to a uniform scale between 0 and 1. The computational formula for the range
normalization method is as follows:

X-X.

RI, =——"Zmn_
norm Xmax —Xmln (25)

wherein, R/ _ represents the value of the component indicator after standardization; X
represents the numerical value of a single indicator; X represents the maximum value within the
indicator range; and X represents the minimum value within the indicator range.

Subsequent to the principal component transformation, the first principal component often
contributes a substantial proportion and can purely and objectively represent ecological
characteristics. The following second, third, fourth, and five principal components frequently contain
disordered information; indiscriminately incorporating them into calculations may result in a loss of
fairness in the final results. Therefore, the transformed first principal component can represent the
general trend of comprehensive ecological characteristics. The transformed first principal component
PC1 can represent the initial remote sensing ecological index value, denoted as JRSEI,, and its

formulaic expression can be presented as follows:

IRSEI, = F,.,(NDVI,WET,NDBSI, LST) (26)

For the convenience of statistical analysis, it is necessary to standardize [RSEI,, yielding IRSE!

.Hence, IRSEI can be expressed as:
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IRSEI, — IRSEI,

IRSEI,, — IRSEI @7)

Omin

IRSEI =

wherein, IRSEI represents the value after standardization; JRSEI , represents the initial value
of the remote sensing ecological index; [RSEI, , represents the minimum value among the initial

values; and JRSEI

Omax

represents the maximum value among the initial values. The interval of

IRSEI isbetween 0 and 1, where a high value indicates good ecological environment quality and a
low value indicates poorer ecological environment quality.

4. Results

4.1. Results of Component Indicators

To facilitate presentation, this paper has standardized the dimensions, and the results of the five
component indices of the Tenihe Farm IRSEI are displayed using normalized outcomes. The results
of component indices for the farm in the years 2010, 2013, 2016, and 2019 are as follows.

4.1.1. Results of Greenness Index

As can be observed from Figure 5, the remote sensing ecological NDVI results for the Tenihe
Farm have been favorable over the past decade. Although there have been instances of diminished
performance in certain years, the greenness index has remained relatively high for the majority of the
period under consideration. This indicates that the vegetation cover in the study area has maintained
a consistently positive state over an extended duration.
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Figure 5. The greenness index results for the ecological environment assessment of Tenihe Farm: (a—
d) correspond to the results for 2010, 2013, 2016, and 2019, respectively.

4.1.2. Results of Humidity Index

Figure 6 reveals that the ecological WET index for the Tenihe Farm has exhibited a relatively
stable performance over the course of a decade. The ecological moisture index for the entire study
area has demonstrated a favorable condition in recent years, with both soil and surface vegetation
maintaining satisfactory levels of moisture.
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Figure 6. The humidity index results for the ecological environment assessment of Tenihe Farm: (a—
d) correspond to the results for 2010, 2013, 2016, and 2019, respectively.

4.1.3. Results of Dryness Index

Examination of Figure 7 indicates that the ecological NDBSI index for the Tenihe Farm has
undergone some variations over the past decade. For instance, in 2019, the NDBSI index was
observed to be at a low value state, whereas in 2013, the NDBSI value was comparatively higher.
Theoretically, the NDBSI is considered to exert a negative impact on the ecosystem. However, a
comprehensive reflection of the overall ecological index can only be ascertained through an
integrated analysis in conjunction with other component indices.
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Figure 7. The dryness index results for the ecological environment assessment of Tenihe Farm: (a-d)

correspond to the results for 2010, 2013, 2016, and 2019, respectively.

4.1.4. Results of Heat Index

Analysis of Figure 8 reveals that the ecological LST index for the Tenihe Farm has maintained a
relatively stable state over the past decade. This suggests that there has been minimal variation in
surface temperature during the crop growing seasons, indicating conditions that are conducive to

crop growth.
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Figure 8. The heat index results for the ecological environment assessment of Tenihe Farm: (a-d)
correspond to the results for 2010, 2013, 2016, and 2019, respectively.

4.1.5. Results of Salinity Index

The graphical representation in Figure 9 illustrates that the salinity distribution within the
Tenihe Farm in the years 2010, 2013, and 2019 is characterized by lower values in the northeastern
part and higher values in the southwestern part. Conversely, the salinity distribution in 2016 appears
to be more uniform across the region. The peak in overall salinity levels was recorded in 2016, while
the lowest overall salinity levels were observed in 2019.
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Figure 9. The salinity index results for the ecological environment assessment of Tenihe Farm: (a-d)
correspond to the results for 2010, 2013, 2016, and 2019, respectively.

The series of figures presented herein illustrate developmental variations over the course of a
decade in the indices of greenness, humidity, dryness, heat, and salinity at the Tenihe Farm. These
fluctuations indicate that the ecological environment is subject to dynamic transitions. Alterations in
the indicators that affect the ecological environment inevitably precipitate a shift in the overall quality
of the ecological milieu. The mean values and standard deviations of these five component indices
over the ten-year period are depicted in Figure 10.
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Figure 10. The mean and standard deviation of the ecological environment evaluation component
indices of Tenihe Farm in the past decade: (a) is the result of the greenness index; (b) is the result of
the humidity index; (c) is the result of the dryness index; (d) is the result of the heat index; (e) is the
result of the salinity index.

Figure 10 reveals that the five component indices impacting the ecological environment quality
at Tenihe Farm have experienced fluctuations and changes over the past decade, a phenomenon
attributable to the combined effects of natural factors and human activities. Notably, the mean peak
values for the greenness and salinity indices were recorded in 2019, while the humidity, dryness, and
heat indices reached their mean peak values in 2013. The mean minimum values for the greenness,
humidity, and heat indices all occurred in 2016. In contrast, the dryness index presented its mean
minimum value in 2019, and the salinity index did so in 2013.

4.2. Results of IRSEI

4.2.1. Validity Analysis of IRSEI

The component indices were normalized and subsequently transformed through PCA, resulting
in a remote sensing image that integrates a novel spectral combination of five principal components.
This image constitutes the new representative layer for the IRSEI model, and the eigenvalues for each
principal component were ascertained. The eigenvalues and corresponding contribution percentages
of the five principal components, PC1, PC2, PC3, PC4, and PC5 post,-transformation, offer a more
precise delineation of the outcomes derived from the PCA. Within the IRSEI framework for the
Tenihe Farm experimental zone, the eigenvalues and contribution percentages of the five newly
derived principal components, subsequent to the PCA of the five component indices—NDVI, WET,
NDBSI, LST, and PSI—are shown in Table 4.

Table 4. Results of PCA (eigenvalues and contributions).

Year Index PC1 PC2 PC3 PC4 PC5
2010 Eigenvalue 0.1214 0.0209 0.0102 0.0019 0.0000
Contribution 0.7861 0.1355 0.0660 0.0122 0.0002
2013 Eigenvalue 0.1689 0.0282 0.0071 0.0024 0.0003
Contribution 0.8162 0.1365 0.0342 0.0115 0.0016
2016 Eigenvalue 0.0788 0.0223 0.0024 0.0016 0.0000

Contribution 0.7491 0.2124 0.0225 0.0156 0.0004
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2019 Eigenvalue 0.1094 0.0253 0.0117 0.0017 0.0001
Contribution 0.7385 0.1706 0.0792 0.0113 0.0004

The table above illustrates that, over the past decade, the contribution of the first principal
component (PC1) following the principal component transformation of the IRSEI component indices
for the Tenihe Farm's remote sensing imagery consistently exceeds 73%. This suggests that PC1 can
essentially represent the condition of the farm's IRSEI. As previously discussed, since PC2, PC3, PC4,
and PC5 often contain noisy information, it is not prudent to indiscriminately combine principal
components. Unscientific merging may lead to deviations or even inaccuracies in the results.

To further substantiate the validity of the experimental outcomes, an analysis of data quality
was conducted. Typically, indices of greenness and humidity tend to exert a positive influence on the
ecological environment, enhancing its condition, whereas indices of dryness, heat, and salinity are
likely to have a deleterious impact, diminishing the quality of the ecological environment.
Consequently, when conducting a correlation analysis between these indices and the IRSEI, one
would expect to obtain disparate results indicative of both positive and negative correlations. This
study employs the Pearson correlation coefficient (PCC) method for the quantitative analysis of the
correlation between component indices and IRSEIL. The PCC method is a classical approach for
calculating correlation coefficients, primarily used to characterize linear correlations. It operates
under the assumption that the two variables in question are normally distributed and possess non-
zero standard deviations. The calculation formula enables the condensation of values into a range
between -1 and 1. The closer the absolute value of the PCC is to 1, the higher the degree of correlation
between the two variables, indicating greater similarity. The formula for calculating the PCC is as
follows:

Yo (w0 y)n
V- 2 )

In this context, PCC denotes the computed result of the correlation coefficient; i signifies the
index of the variable; n represents the total number of variables; x, and y correspond

PCC=

(28)

respectively to the values of variable x and variable , atindex i;while x and ) respectively
denote the mean values of variable x and variable ;.

The correlation calculation results of the PCC between the IRSEI outcomes of the Tenihe Farm
across different years and the component indicators are presented in the following Table 5:

Table 5. Correlation analysis between IRSEI results and component indicators over the past decade
at Tenihe Farm.

Year NDVI WET NDBSI LST PSI Average Correlation
2010 0.914 0.920 -0.027 -0.899 -0.907 0.733
2013 0.939 0.977 -0.976 -0.829 -0.928 0.930
2016 0.363 0.801 -0.434 -0.915 -0.313 0.565
2019 0.669 0.947 -0.008 -0.914 -0.617 0.631
Mean value 0.721 0.911 -0.361 -0.889 -0.691 p<0.01

The Table 5 reveals that the correlation coefficients between different annual component
indicators and the IRSEI display both positive and negative values, yet they follow a discernible
pattern. Specifically, the NDVI and WET indicators are positively correlated with the IRSEI, whereas
the NDBSI, LST, and PSI exhibit negative correlations with the IRSEIL. The p-values associated with
these correlation calculations are all less than 0.01, indicating statistically significant correlations.
Notably, the component indicators for the year 2013 show the strongest average correlation with the
IRSEI, reaching a value of 0.930, while other years also demonstrate high correlation values. The mean
values of the five indicators across different years also maintain high levels, with the highest absolute
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value of correlation in the four years being for WET, at 0.911. This suggests that humidity conditions
have a substantial impact on the ecosystem, while other indicators such as heat, greenness, salinity,
and dryness are similarly closely linked to the quality of the ecological environment.

4.2.2. Analysis of Spatial and Temporal Variations

The spatial statistical analysis and cartographic representation of the IRSEI results post-principal
component transformation reveal a clear temporal and spatial variation in IRSEI gradation. The
grading standard employs an interval of 0.2 to divide the values into five categorical levels, namely:
excellent (0.8 <RSEI < 1.0), good (0.6 < RSEI < 0.8), moderate (0.4 < RSEI < 0.6), poor (0.2 <RSEI <0.4),
and inferior (0 < RSEI £ 0.2). The grading results are shown in Figure 11 below:
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Figure 11. The IRSEI results for the ecological environment assessment of Tenihe Farm: (a-d)
correspond to the results for 2010, 2013, 2016, and 2019, respectively.

The graphical representation clearly indicates that the numerical changes and distribution of the
IRSEI at the Tenihe Farm have varied over the past decade. This variability can be attributed to the
differential impact of various component indices each year, as well as the discrepancies inherent in
the representation methods of PCA. The cartographic outcomes suggest that the overall value of
IRSEL is in a relatively favorable state. A detailed quantitative analysis of these results is provided in
the subsequent statistical summary.

Upon statistical examination, the mean and standard deviation of the IRSEI for the Tenihe Farm
experimental zone over the past ten years are presented in Table 6. The data reveals a remarkable
stability in the standard deviation values over the decade, indicating the effectiveness and
consistency of the statistical measurements. Specifically, the peak value of the IRSEI mean occurred
in 2016, while the lowest value was recorded in 2013. Although the mean IRSEI for 2013 was 0.534, it
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still falls within the moderate range (0.4 < IRSEI < 0.6), whereas the mean values for other years
approached the higher end of this interval. This suggests that the ecological quality of the Tenihe
Farm has maintained a commendable condition throughout the recent decade.

Table 6. Changes in mean and standard deviation of IRSEI at Tenihe Farm over the past decade.

Year 2010 2013 2016 2019
Mean 0.589 0.534 0.598 0.573
Standard deviation 0.220 0.235 0.216 0.244

The subsequent categorization and area statistics of the IRSEI results across different years are
presented in the Table 7 below. The table reveals that for the Tenihe Farm, the ecological environment
quality in 2010 had the highest area proportion at a 'Moderate' level, followed by 'Poor’, 'Good',
'Excellent’, and 'Inferior'. In 2013, the most prevalent category for the farm's ecological environment
quality was 'Moderate', succeeded by Poor’, 'Good', 'Inferior', and 'Excellent’. In 2016, the Poor’
category dominated in terms of area proportion, with the remaining categories following in the order
of 'Moderate', 'Good', 'Inferior', and 'Excellent'. For the year 2019, the category with the highest area
proportion remained 'Moderate', with the subsequent categories being 'Poor’, 'Good', 'Excellent’, and
'Inferior'. Considering the mean results of the aforementioned years, it can be inferred that within
certain graded intervals of area proportion, there should be subtle shifts, such as the IRSEI values
within the Poor' interval, which are slightly lower than 'Moderate', tending towards the "Moderate'
level, while the IRSEI values within the 'Good' interval, which are higher than 'Moderate’, likely
exhibit a trend of clustering towards the higher values within the interval.

Table 7. Grading statistics of IRSEI area by year at Tenihe Farm.

2010 2013 2016 2019
Level Proportion/  Area/ Proportion/ Area/ Proportion/ Area/ Proportion/  Area/
% km? % km? % km? % km?

Inferior 4.61 90.99 14.61 288.37 7.81 154.18 6.27 123.82
Poor 27.25 537.80 18.97 374.34 38.66 76291 34.31 677.07
Moderate 47.89 945.08 47.87 944.62 37.07 731.58 36.29 716.09
Good 13.61 268.67 14.85 292.97 13.22 260.83 14.05 277.37
Excellent 6.64 130.97 3.71 73.21 3.24 64.01 9.08 179.16

To further investigate the spatiotemporal variations of the IRSEI at the Tenihe Farm, differential
calculations for various years were conducted, followed by stratified statistical analysis. The
classification comprises five intervals, which are delineated as follows: significantly deteriorated [-1,
-0.1), moderately deteriorated [-0.1, -0.05), essentially unchanged [-0.05, 0.05), moderately improved
[0.05, 0.1), and significantly improved [0.1, 1]. The visualization of the results is presented in the
Figure 12 below. It is evident from the Figure 12 that over the course of a decade, there have been
alterations in the IRSEI, with some regions experiencing improvements in ecological environmental
quality, while others have witnessed a decline. These changes sometimes alternate as the time series
progresses.


https://doi.org/10.20944/preprints202312.0988.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 December 2023 doi:10.20944/preprints202312.0988.v1

22
120° 0'E 120° 30'E 120° O'E 120" 30°E
\ a \ b
N
= =
= = "2 =
i = = =
£} <+ o -
L . B
o =1}
-+ -
5 IRSEI change ] = IRSET change [
5 (- 1_EEeE =
o |2 -0.1 - -0.05 8. | -0 - 005 |
2 e 8 = 2 N
=[] -0.05 - 0,08 R < g T[] 005 - 005 Ex
[ 0.05 - 0.1 o Km [ 0.05 - 0.1 ol ™
0.1 -1 0 6 12 18 24 - 0 6 12 18 24
120° O'E 120° 30'E 121° 0'E 120° O'E 120° 30°E 121° O'E
120° 0'F 120° 30'E 120° 0'E 120 30"E
W & 45 %) 18 {
= ¥ ) =
= =0 =
) = e -+
@ 0. B s
= =23 = {=2]
- -
2Hy ol 5,
Ben P
E;ﬁ .
= IRSEI change ",l-.";': i — |IRSEI change (48
S (- - o Z2 |- - o =
o, [ 0.1 - -0.05 S. |01 - 005 ]
e, . . 05 e, . .05 ‘
] 005 - 0.0 £ ] 005 - 0.08 Jter et &
[ o.05- 0.1 - km [Jo0s-01 &% i
o 0 6 12 18 24 o - 0 6 12 18 24
120" O'E 120" 30°E 121° 0 120° O'E 120° 30'E 121° 0'E

Figure 12. The IRSEI change results for ten years in the ecological environment assessment of Tenihe
Farm: (a—d) correspond to the IRSEI change results from 2010 to 2013, 2013 to 2016, 2016 to 2019, and
2010 to 2019, respectively.

The quantitative results of the temporal differentiation of the IRSEI at the Tenihe Farm are
presented in the Table 8 below. The Table 8 reveals that over a decade, the changes in IRSEI at the
Tenihe Farm primarily fell into three categories: essentially unchanged, significantly deteriorated,
and significantly improved. For instance, between 2010 and 2013, the largest percentage change in
IRSEI area was a significant deterioration, accounting for 33.74%, followed by essentially unchanged
at 27.42%, and then significantly improved, moderately deteriorated, and moderately improved, at
17.62%, 11.13%, and 10.09% respectively. From 2013 to 2016, the IRSEI area changes in descending
order of magnitude were significantly deteriorated, significantly improved, essentially unchanged,
moderately deteriorated, and moderately improved, with proportions of 38.72%, 25.69%, 17.96%,
9.80%, and 7.83% respectively. During the period from 2016 to 2019, the IRSEI area changes from
largest to smallest were significantly improved, significantly deteriorated, essentially unchanged,
moderately improved, and moderately deteriorated, with respective shares of 35.60%, 22.70%,
21.92%, 11.44%, and 8.34%. Over the period from 2010 to 2019, the ecological environmental quality
of the Tenihe Farm largely remained stable, with the area proportion of significantly improved
regions being 18.94% and that of significantly deteriorated regions being 23.98%. The mean IRSEI
value was 0.589 in 2010 and 0.573 in 2019, indicating a slight decline of 0.016, which suggests a minor
trend towards ecological environmental quality deterioration over the ten-year span.
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Table 8. Analysis of changes in IRSEI over a ten-year period at Tenihe Farm.
2010-2013 2013-2016 2016-2019 2010-2019
Changes Proportion/  Area/ Proportion/ Area/ Proportion/ Area/ Proportion/ Area/
% km? % km? % km? % km?

[-1,-0.1) 33.74 665.85 38.72 764.13 22.70 448.03 23.98 473.19
[-0.1, -0.05) 11.13 219.60 9.80 193.49 8.34 164.54 16.02 316.16
[-0.05, 0.05) 27.42 541.18 17.96 354.43 21.92 432.64 30.94 610.69
[0.05,0.1) 10.09 199.19 7.83 154.46 11.44 225.83 10.12 199.64
[0.1, 1] 17.62 347.68 25.69 507.00 35.60 225.83 18.94 373.83

5. Discussion and Conclusions

This paper initiates from the perspective of the ecological and environmental characteristics of
semi-arid agricultural planting regions, establishing the IRSEI model to assess the temporal sequence
of ecological environment quality in the farm study area. The model addresses the current status of
soil salinization in the study area by proposing the PSI, which is a composite salinity indicator
derived from the integration of three salinity indices. It employs the NDVI to represent the greenness
component of the study area; the humidity component is characterized using the WET from the
Tasseled Cap Transformation; the dryness component is indicated by the NDBSI, a synthesis of the
SI and the IBI; and the LST is utilized to denote the heat component. Through principal component
transformation for the integration of component indicators, the normalized first principal
component's contribution rate exceeds 73%, effectively integrating the valid characteristic
information of each indicator. Consequently, the generated IRSEI results proficiently represent the
changes in the ecological environment quality of the farm within the study area.

To ensure the reliability of data quality, a correlation analysis was conducted on indices such as
NDVI, WET, NDBSI, LST, and PSI with IRSEL The analysis yielded positive correlations between the
greenness and humidity indices with IRSEI, as well as negative correlations between the indices of
dryness, heat, and salinity with IRSEIL These results are consistent with the characteristic influences
of ecological environmental factors and also serve to validate the integrity of the data quality.

The quality of the ecological environment in farming areas is a crucial component of food
security. Only by ensuring the ecological integrity of farm regions can the sustainability of agriculture
be guaranteed. In turn, sustainable agriculture can provide a green and healthy food source for
human habitation. It can be argued that the quality of the ecological environment in crop cultivation
areas is a vital foundation for the stable and healthy operation of the economy and society. Therefore,
the assessment of farm ecological environment quality based on IRSEI holds significant importance.
Given that this method incorporates the PSI and considers the semi-arid climate attributes of
agricultural planting areas and the salinization characteristics of the soil, it has potential applicability
and expansion potential in agricultural planting regions with arid climate features and soil
salinization characteristics.

This study addresses the need for dynamic monitoring of the ecological environment over time
in semi-arid agricultural planting areas by proposing an IRSEIL It employs objective remote sensing
data to spatially measure and analyze the temporal evolution of the ecological environment quality
in the experimental area of the Tenihe Farm. In future research, consideration will be given to various
other factors that contribute to changes in ecological environment quality, such as atmospheric
conditions, precipitation, biodiversity, and human activities, to more comprehensively assess the
ecological environment quality of agricultural planting areas.
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