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Abstract: Large-scale farms are pivotal sites for the development of the agricultural industry, and 

the quality of the ecological environment is a significant factor affecting the growth of cereal crops. 

Consequently, assessing the ecological quality of large-scale farms is of great importance. This paper 

leverages the advantages of remote sensing imagery for long-term, quantitative, and dynamic 

monitoring of ecological quality over extensive areas. It develops an ecological assessment 

procedure suitable for agricultural regions based on an Improved Remote Sensing Ecological Index 

(IRSEI), which considers the coupling of ecosystem component elements. This procedure introduces 

a Pan-Salinity Index (PSI) tailored to the characteristics of soil salinization in farming areas and 

incorporates an ecological greenness index based on the Normalized Difference Vegetation Index 

(NDVI), an ecological humidity index derived from the K-T transform (WET), an ecological dryness 

index synthesized from the bare soil index and the built-up index (NDBSI), and an ecological heat 

index represented by the Land Surface Temperature (LST) calculated from atmospheric parameter 

models. These five indices are integrated into the ecological assessment system. The experimental 

results visually demonstrate the development and changes of ecological impact factors in the farm 

research area over the past decade, as well as the spatiotemporal variations in the quality of the 

farm's ecological environment. The findings indicate that between 2010 and 2019, the overall trend 

of IRSEI first declined, then rose, and subsequently experienced a slight decrease. Through 

differential analysis, regions and areas with declining ecological quality were identified, providing 

a data reference for the formulation and implementation of future ecological protection and 

management measures for the farm. The proposed IRSEI method offers a rapid and effective new 

monitoring approach for agricultural planting areas with a tendency towards soil salinization. 

Keywords: large-scale farms; ecological environment; remote sensing imagery; remote sensing 

ecological index 

 

1. Introduction 

Large-scale farms bear the critical mission of serving as the "granaries" of society. The quality of 

the farm's ecological environment exerts a significant influence on crop growth. Consequently, 

scientifically evaluating and appropriately adjusting the farm's ecological environment is vital for 

ensuring both high yield and quality of food crops. The ecological environment also constitutes a 

crucial factor affecting the sustainable development of agriculture. At present, challenges to the 

quality of the farm's ecological environment arise from the irrational provision of soil nutrients, 

increased human activities, and the processes of soil salinization due to soil moisture evaporation 

and salt accumulation driven by arid climates. Therefore, a rational understanding of ecological 
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factors on farms and research into the quality of farm ecology are of paramount importance, 

providing data references for decision-making bodies and bearing significant practical significance. 

Currently, methods for assessing the quality of the ecological environment include the 

Ecological Index (EI) approach and the Remote Sensing Ecological Index (RESI) approach [1]. The EI 

method primarily involves the coupling of individual indicators that impact the ecological 

environment, followed by the application of statistical techniques or mathematical models to analyze 

the weights of these indicators, thereby forming a comprehensive evaluation index. This index is used 

to explore and assess the quality of the ecological environment in the study area. For instance, some 

scholars have conducted a secondary classification of land use types into cultivated land and forest 

land, with the former including paddy fields and dry fields, and the latter comprising general forest 

land and shrub land. They have employed fuzzy mathematical methods to assign weights to relevant 

ecological indicators, proposing a regional ecological index based on EI, and quantitatively assessing 

the ecological environment of the study area [2]. In recent years, RESI has been widely applied to 

measure the ecological condition of specific study areas. Specifically, RESI utilizes remote sensing 

technology and mathematical models to acquire certain component indicator data, which are then 

synthesized to evaluate the health of ecosystems and measure the potential for sustainable 

development in the region. RESI can also quantitatively assess the structure, function, and services 

of the ecosystems under study, providing a scientific basis for ecosystem management and 

conservation. As the acquisition of component indicators relies on image data, researchers are 

required to obtain appropriate remote sensing imagery through satellites, aircraft, or other remote 

sensing technology platforms. The remote sensing imagery data obtained include multispectral, 

hyperspectral, and radar data types. Only after data preprocessing procedures such as radiometric 

calibration, atmospheric correction, geometric correction, and noise reduction are completed, can the 

models be used to calculate the relevant indicators. 

The RSEI has been extensively applied in the assessment studies of various land cover types. 

These studies encompass evaluations of urban ecological environment quality [3–5], rural ecological 

environment quality [6,7], forestland ecological environment quality [8], wetland ecological 

environment quality [9,10], island ecological environment quality [11], and arid desert region 

ecological environment quality [12], among others. The widespread application across diverse land 

cover types can be attributed to the RSEI's robust periodicity and its efficient, objective characteristics. 

In agricultural planting areas, such as large farms, RSEI can accurately assess the growth environment 

of crops through remote sensing data in conjunction with relevant models. It can reveal the 

characteristics and dynamics of the farm's ecological environment and provide a scientific basis for 

planting environment management and farmland protection decisions. Consequently, this enhances 

the efficiency of agricultural production and the utilization rate of agricultural resources. 

Research on the RSEI typically integrates four component indicators that represent the quality 

of the ecological environment: greenness, humidity, dryness, and heat. By coupling these component 

indicators, a comprehensive index is formed that can holistically assess the regional ecological 

environment quality. The principle of indicator acquisition should be such that it reflects the 

ecological characteristics and trends of the agricultural ecological environment, thereby providing a 

scientific basis for its evaluation [13]. This paper, addressing the semi-arid characteristics of the study 

area's farms and the environmental feature of soil salinization, incorporates the soil salinity indicator 

into the theoretical framework of the remote sensing ecological index. Consequently, an Improved 

Remote Sensing Ecological Index (IRSEI) model is proposed. This model has been applied to 

ecological detection at the Tenihe Farm in Northeast China, assessing the ecological quality of the 

farm over the past decade and analyzing its changing trends, with the aim of providing scientific data 

references for subsequent ecological protection measures. 
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2. Research Area and Data 

2.1. Introduction to the Research Area 

The Tenihe Farm was established in July 1955 and comprises 11 planting divisions, representing 

an agricultural reclamation enterprise with a modern management level. Geographically situated in 

the northern section of the Daxing'anling mountain area, the eastern and northern parts of the farm 

fall within the stony mid-mountain sub-region of the northern Daxing'anling, while the western and 

southern parts belong to the stony low-mountain sub-region of the northern Daxing'anling's western 

slope [14]. The overall topography is characterized by lower elevations in the west and higher in the 

east, with a regional distribution of rocks, among which granite occupies a significant area. Together 

with other types of igneous rocks, these form a terrain that combines plains with mountainous 

features, thus exhibiting typical riparian geomorphological characteristics [14]. The mountains, 

shaped by long-term weathering and erosion, have gentle slopes. The total area of the farm is 

approximately 1,900 square kilometers, with about 670,000 mu of arable land available for cultivation. 

It is located between 119°45′-120°60′East longitude and 49°10′-49°55′North latitude, with elevations 

ranging from 628 to 1,064 meters. The cropping system of the farm's agriculture is based on a single 

harvest per year, with land preparation and sowing typically carried out in May, and crop harvesting 

generally completed by October. The water requirements for the crops during the growing season 

are primarily met by natural precipitation. 

The geographical location and basic information of the Tenihe Farm are illustrated in Figure 1 

below: 

 

Figure 1. Overview of Tenihe Farm. 

2.2. Data Preparation 

The experimental data presented in this chapter predominantly consist of Landsat satellite 

imagery spanning approximately a decade, pertinent to the study area. Due to the geographical 

extent of the Tenihe Farm, it was necessary to utilize two separate images to achieve complete 

coverage, resulting in the acquisition of eight remote sensing image datasets. These datasets include 

Landsat TM (Thematic Mapper) imagery from 2010, Landsat ETM (Enhanced Thematic Mapper) 

imagery from 2013, as well as Landsat OLI (Operational Land Imager) imagery from the years 2016 

and 2019. The procurement of the Landsat series imagery was facilitated through the Geospatial Data 

Cloud website (https://www.gscloud.cn/). The selection of the sensor imagery was strategically timed 

to avoid the ice and snow seasons. The extensive presence of ice and snow can obscure a variety of 

surface features, significantly impacting the sensor's ability to accurately detect the true nature of the 
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ground objects. The months in which the imagery was captured ranged from late April to October, a 

period deliberately chosen due to the minimal cloud cover in the images. This timeframe also 

coincides with the growing and harvesting seasons of crops, as well as the peak growth period for 

surrounding vegetation, making it more conducive for ecological detection. Employing the IIRSEI 

method within this context yielded more reliable evaluative results [15]. 

The acquired imagery data necessitates a series of preprocessing steps prior to the computation 

of indices to enhance the accuracy of subsequent spectral band calculations. The rationale for 

preprocessing is attributed to the fact that detectors and other instruments are influenced by factors 

such as atmospheric radiation, the satellite's orientation during flight, the solar zenith angle, and the 

conditions of the Earth's surface coverage. Moreover, the multitude of radiometric information 

obtained through remote sensing methods undergoes physical alterations such as absorption or 

scattering upon interaction with the atmosphere, leading to attenuation of the radiative energy and 

consequently, introducing errors into the spectral information captured. Preprocessing enables the 

correction of distortions in remote sensing imagery, as well as the reduction or elimination of noise 

impacts, thereby ensuring more accurate geometric features of the imagery and information content 

that is more representative of reality. The remote sensing image preprocessing workflow conducted 

in this chapter primarily encompasses radiometric calibration, atmospheric correction, image 

mosaicking, image cropping, and the combination of image bands. The remote sensing imagery of 

the experimental farm area, post-preprocessing, is illustrated in the Figure 2 below: 

 

Figure 2. Remote sensing image data (RGB) of Tenihe Farm, (a–d) correspond to 2010, 2013, 2016 and 

2019, respectively: a comes from Landsat 5 TM; b comes from Landsat 7 ETM+; c and d come from 

Landsat 8 OLI. 

3. Methods 

3.1. Overview 

The experimental procedure of the present study is illustrated in Figure 3. The specific steps are 

as follows: Firstly, preprocessing operations on remote sensing imagery are conducted, which 

primarily involve radiometric calibration and atmospheric correction of the raw remote sensing 

images, followed by mosaicking and cropping of the corrected images to ensure that the cropped 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 December 2023                   doi:10.20944/preprints202312.0988.v1

https://doi.org/10.20944/preprints202312.0988.v1


 5 

 

images are well-suited to the study area's boundaries. Secondly, the computation of the five 

component indices of IRSEI is carried out, with the calculation of these indices referencing several 

literatures. Through the dissection of algorithms, more appropriate expressions are selected, and 

certain algorithmic models are transformed into parameter settings for the computation of remote 

sensing image bands, resulting in the acquisition of specific values and distribution characteristics of 

the component indices. Thirdly, the five component indices—greenness, humidity, dryness, heat, and 

salinity—are standardized and fused, followed by principal component analysis to obtain statistical 

information of each component. Subsequently, the first principal component post-transformation is 

utilized as the representative component encapsulating the primary information of the indices. 

Fourthly, mathematical transformations are applied to determine the spatiotemporal variation 

characteristics of the IRSEI for the farm research area. 

 

Figure 3. IRSEI-based process for evaluating the ecological environment quality of Tenihe Farm. 

3.2. Calculation of Component Indicators 

Prior to the comprehensive computation of IRSEI, it is imperative to explore and calculate the 

component indices within the IRSEI framework. As critical constituents in the assessment of the 

ecological environmental quality of the farm research area, these component indices require precise 

control to provide an accurate data foundation for the subsequent coupling of component indices. 

The theoretical underpinnings and specific calculation methods for the five component indices—

greenness, humidity, dryness, heat, and salinity—are elaborated in detail below. 

3.2.1. Calculation of Greenness Index 

In the context of the IRSEI framework, the greenness index is an important indicator 

representing the quality of the ecological environment. This paper utilizes the normalized difference 

vegetation index (NDVI) for characterizing the greenness index [16]. Vegetation, as a vital component 

of ecosystems, plays an indelible role in the Earth's carbon cycle and climate dynamics. NDVI is a 

commonly used remote sensing index that can also be employed for assessing and monitoring the 

condition and growth of vegetation. Specifically, it reflects the greenness and growth status of 
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vegetation by calculating the difference between the infrared and visible light bands in remote 

sensing images. The formula for calculating NDVI is as follows: 

Re

Re

NIR d

NIR d

NDVI
ρ ρ
ρ ρ

−
=

+
 (1) 

Wherein 
NIRρ  represents the reflectance in the near-infrared band, and 

Redρ  represents the 

reflectance in the visible light red band. The value range of NDVI  is from -1 to 1, with higher 

values indicating more vegetation cover and lower values indicating less.  

The principle of NDVI  is based on the reflective characteristics of vegetation across different 

spectral bands. Vegetation reflects higher in the infrared band and lower in the visible light red band. 

Therefore, NDVI  can reflect the greenness and growth condition of vegetation by calculating the 

difference between the reflectances in the infrared and visible light red bands. A higher NDVI  

value typically indicates more vegetation cover and better growth conditions, while a lower NDVI  

value indicates less vegetation cover and poorer growth conditions. NDVI  finds extensive 

applications in fields such as agriculture, forestry, and environmental monitoring. It can be utilized 

for vegetation monitoring, land use research, drought monitoring, pest and disease early warning, 

providing a crucial index for evaluating and monitoring vegetation status. 

3.2.2. Calculation of Humidity Index 

The humidity index primarily characterizes the moisture content of vegetation and soil within 

image coverage. This index is extensively employed across various domains, such as ecological 

environment monitoring and evaluation. The humidity index can be represented by the WET 

component of the Tasseled Cap Transform (TCT), also known as the K-T transform. The WET 

component is essentially a feature component generated through the K-T transform [17]. The K-T 

transform can be viewed as a specialized form of principal component analysis (PCA). However, a 

notable distinction is that, unlike conventional PCA, the K-T transform utilizes a fixed transformation 

matrix. The K-T transform introduces a constant matrix into the digitized original remote sensing 

image and translates it into a new feature space, whereby humidity can be aptly transformed to obtain 

results. The transformed components can enhance image information and effectively represent 

spatial moisture content. The transformation formula is as follows: 

B Aλ=  (2) 

Wherein, B   represents the image after the K-T transformation; λ   denotes the matrix 

coefficients of the transformation; A  signifies the original image. To perform a K-T transformation 

on remote sensing images, it is necessary to obtain information about the transformation matrix 

coefficients. The transformation matrix coefficients vary with the different settings of satellite sensors, 

and thus, the coefficient settings of the WET calculation formula are not identical. Through expert 

experience summarization, the humidity calculation formula corresponding to different Landsat 

satellite sensors can be realized through different parameter settings [18,19]. The specific settings of 

the transformation matrix coefficients for the humidity index are shown in Table 1 below: 

Table 1. K-T transformation matrix coefficients of Landsat series satellites. 

    Band 

Sensor 
Blue Green Red NIR SWIR1 SWIR2 

Landsat TM 0.0315 0.2021 0.3102 0.1594 0.6806 0.6109 

Landsat ETM+ 0.1509 0.1973 0.3279 0.3406 0.7112 0.4572 

Landsat OLI 0.1511 0.1973 0.3283 0.3407 0.7117 0.4559 

Through the configuration of different K-T transformation matrix coefficients, various WET 

index calculation formulas for different sensors can be derived, as shown below:  

The WET index calculation formula for Landsat 5 TM is as follows:  
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( ) Re

1 2

0.0315 0.2021 0.3102 0.1594

                0.6806 0.6109

TM Blue Green d NIR

SWIR SWIR

WET ρ ρ ρ ρ

ρ ρ

= + + + −

−
 (3) 

The WET index calculation formula for Landsat 7 ETM+ is as follows:  

( ) Re

1 2

0.1509 0.1973 0.3279 0.3406

                  0.7112 0.4572

ETM Blue Green d NIR

SWIR SWIR

WET ρ ρ ρ ρ

ρ ρ

= + + + −

−
 (4) 

The WET index calculation formula for Landsat 8 OLI is as follows: 

( ) Re

1 2

0.1511 0.1973 0.3283 0.3407

                 0.7117 0.4559

OLI Blue Green d NIR

SWIR SWIR

WET ρ ρ ρ ρ

ρ ρ

= + + + −

−
 (5) 

In the aforementioned three equations, 
Blueρ  represents the reflectance in the blue band; 

Greenρ
denotes the reflectance in the green band; 

Redρ   signifies the reflectance in the red band; 
NIRρ  

corresponds to the reflectance in the near-infrared band; 
1SWIRρ  is indicative of the reflectance in the 

shortwave infrared-1 band; and 
2SWIRρ  stands for the reflectance in the shortwave infrared-2 band. 

A higher WET value suggests increased humidity. 

3.2.3. Calculation of Dryness Index 

Due to the presence of human settlements and construction areas in the study area, as well as 

the existence of bare soil, the aridity index in this chapter is characterized using a composite approach 

combining the Building Index and the Bare Soil Index. These two indices can to some extent reflect 

the condition of soil health, soil aridification phenomena, and consequently, to a certain degree, the 

changes and quality of the local ecological environment. The aridity index, known as the Normalized 

Difference Build and Soil Index (NDBSI) [20], is calculated by adding the Soil Erosion Index (SI) [21] 

and the Index-based Build-up Index (IBI) [22], and then averaging the result. The SI and IBI indices 

can be expressed using different band calculation formulations. The specific formulas are as follows: 

( ) / 2NDBSI SI IBI= +  (6) 

1 Re 1 Re[( ) ( )] / [( ) ( )]SWIR d NIR Blue SWIR d NIR BlueSI ρ ρ ρ ρ ρ ρ ρ ρ= + − + + + +  (7) 

1 1 Re 1

1 1 Re 1

{2 / ( ) [ / ( ) / ( )]} /

          {2 / ( ) [ / ( ) / ( )]}

SWIR SWIR NIR NIR NIR d Green Green SWIR

SWIR SWIR NIR NIR NIR d Green Green SWIR

IBI ρ ρ ρ ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ ρ ρ ρ

= + − + + +

+ + + + +
 (8) 

In this context, 
1SWIRρ represents the reflectance in the shortwave infrared 1 (SWIR1) band; 

Redρ represents the reflectance in the visible red band; 
NIRρ  represents the reflectance in the near-

infrared band; 
Blueρ  represents the reflectance in the visible blue band; and 

Greenρ  represents the 

reflectance in the visible green band. The values of these parameters typically range from -1 to 1. 

Because these indicators characterize two types of content, namely, content that enhances dryness 

and content that reduces dryness, where the enhancing content typically includes buildings and bare 

soil, while content that reduces dryness includes vegetation and water bodies, among others. 

3.2.4. Calculation of Heat Index 

This study investigates the use of land surface temperature (LST) as a representation of heat [23]. 

The thermal infrared bands of the Landsat satellite series are sensitive to the thermal radiation of 

surface coverings, making them extensively utilized in monitoring LST variations [24]. Regarding 

LST computation, there are two conventional methodologies: the single-channel algorithm and the 

multi-channel algorithm. The single-channel algorithm encompasses methods such as atmospheric 

correction (also referred to as the radiative transfer equation), the universal single-channel method, 
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and the single-window algorithm. The multi-channel algorithm primarily includes the split-window 

algorithm and the temperature emissivity separation algorithm. In this chapter, the atmospheric 

correction method is adopted for LST inversion. The principle of calculating surface temperature 

using the atmospheric correction method involves initially aggregating the total thermal radiation 

detected by the satellite sensor. Subsequently, various techniques are employed to simulate and 

quantify the atmospheric influence on surface thermal radiation. The total thermal radiation is then 

reduced by the radiation amount consumed by atmospheric effects, yielding the actual thermal 

radiation at the surface. This genuine surface thermal radiation undergoes mathematical 

transformation to derive the inverted surface temperature. The process of calculating surface 

temperature using the atmospheric correction method can be illustrated as shown in the following 

Figure 4: 

 

Figure 4. Calculation process of land surface temperature. 

From Figure 4, it is discernible that the computation of surface temperature necessitates several 

intermediary steps for realization, involving the acquisition of remote sensing imagery and some 

preprocessing routines, as well as the calculation of certain indices and parameter retrieval. The 

specific intermediary processes and steps are elaborated in detail in the following text. 

(1) Radiometric calibration  

Utilizing atmospheric correction, an initial step involves conducting radiometric calibration on 

the thermal infrared band to obtain radiance imagery. It is noteworthy that the thermal infrared 

bands of Landsat 7 and Landsat 8 sensors are not identical; Landsat 7 operates in the sixth band, 

while Landsat 8 operates in the tenth and eleventh bands, with the tenth band being employed for 

operations in this study. 

(2) NDVI calculation  

The calculation of the NDVI is synonymous with the computation of the greenness index, as 

seen in Equation 1. 

(3) Vegetation cover calculation  

Vegetation cover is primarily calculated by comparing the vertical projection area of vegetation 

on the surface to the overall area of the study region, including branches, stems, and leaves in the 

projection. Numerous studies focus on estimating vegetation cover using remote sensing methods, 

among which the utilization of vegetation indices is a frequently applied approach. A commonly 

used vegetation index is expressed through NDVI . The vegetation cover in this chapter's experiment 
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is mainly calculated through NDVI . In the imagery, areas with and without vegetation cover, as 

well as purely vegetated areas, are present. Vegetation cover is characterized by calculating the ratio 

of the difference between NDVI  and the non-vegetated area to the difference between purely 

vegetated and non-vegetated areas. The formula can be expressed as follows: 

( ) / ( )S V SFV NDVI NDVI NDVI NDVI= − −  (9) 

Herein, FV  represents the magnitude of vegetation coverage; 
SNDVI  denotes the NDVI  

value for areas devoid of vegetation coverage; and 
VNDVI  signifies the NDVI  value for purely 

vegetated areas. In the experiments of this chapter, based on empirical evidence, 
SNDVI  and 

VNDVI  are set to 0.05 and 0.7, respectively. This implies that when the value of NDVI  within a 

pixel exceeds 0.7, the value of FV  is set to 1; when the value of NDVI  within a pixel is less than 

0.05, the value of FV  is set to 0 [25]. 

By integrating the formula for vegetation coverage with the set parameters for 
VNDVI  and 

SNDVI , the formula can be transformed into a band calculation method. The band calculation 

formula is as follows: 

( 1  0.7)*1 ( 1  0.05)*0 ( 1  0.05  1  0.7)*(( 1 0.05) /

         (0.7 0.05))

FV b gt b lt b ge and b le b= + + −
−  

(10) 

Herein， 1b  is the result of NDVI . 

(1) Calculation of Surface Emissivity (SE)  

Based on prior research, remote sensing images are categorized into three types: water bodies, 

urban areas, and natural surfaces [26]. In this chapter, the following methodology is adopted to 

compute the surface emissivity for the study area: the emissivity value for water body pixels is set at 

0.995, while the emissivity estimates for natural surface pixels and urban pixels are represented by 

surfaceε  and 
buildingε , respectively [25,26]. The specific formulae are as follows: 

20.9625 0.0614 0.0461ε = + −
surface

FV FV  (11) 

ε 20.9589 0.086 0.0671
building

FV FV    (12) 

Incorporating the parameters allows for the transformation of the equation into a band 

calculation method. The formula for band calculation is as follows:  

( 1  0)*0.995 ( 1  0  1  0.7)*

  

ES b le b gt and b lt= + （0. 9589+0. 086*b2-

0. 0671*b2*b2）+( b1 ge 0. 7) * ( 0. 9625+0. 0614*b2- 0. 0461*b2*b2)  (13) 

where 
ES  denotes the surface reflectance ratio; 1b  represents the value of NDVI ; and 2b  

signifies the vegetation cover fraction FV . 

(2) Calculation of blackbody radiance values under identical temperature conditions 

The computation of radiance values involves three types of radiative signals received by the 

detector from the Landsat satellite. The first signal pertains to the atmospheric transmittance in the 

thermal infrared band, which represents the portion of ground-level radiance that, after being filtered 

by the atmosphere, is captured by the satellite sensor ( t ). The second signal is the upward 

atmospheric radiance (
uL ). The third signal is the energy reflected back after being radiated 

downwards by the atmosphere and received by the detector (
dL ). These three sets of data can be 

accessed from the website published by NASA (http://atmcorr.gsfc.nasa.gov/). It's noteworthy that 

during the query, one needs to provide the imaging time, the central latitude and longitude of the 

image, and other relevant parameters. For ease of calculation, the radiance value parameters for four 

remote sensing images from the experimental area are presented in Table 2: 
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Table 2. Parametric statistics of radiance values of remote sensing images of Tenihe Farm. 

Year t Lu Ld 

2010 0.82 1.28 2.13 

2013 0.83 1.16 1.96 

2016 0.96 0.23 0.44 

2019 0.95 0.27 0.48 

Upon acquiring the values of t , 
uL , and 

dL , the formula for calculating the brightness value 

(L) of thermal infrared radiation received by the satellite can be expressed as follows:  

[ (1 ) ]E T E d uL S B S L t L= + − +  (14) 

where T  represents the true surface temperature; 
ES  denotes the surface emissivity; t  

signifies the atmospheric transmittance under thermal infrared conditions; and 
TB  stands for the 

blackbody brightness value of thermal radiation. 

From the aforementioned equation, the brightness value 
TB  of the blackbody radiation in the 

thermal infrared band at temperature T  can be derived, and the formula is presented as follows: 

[ (1 ) ] /T u E d EB L L t S L tS= − − −  (15) 

Through the intervention of the inverse function of Planck's Law, the surface temperature can 

be obtained. It is noteworthy that the actual surface temperature obtained at this point is expressed 

in Kelvin (K), not the Celsius (℃) unit commonly used in general contexts. Consequently, a 

conversion of temperature units is requisite. Converting Kelvin to Celsius merely necessitates 

subtracting 273.15 from the original temperature. Hence, the expression for LST is as follows: 

2 1/ ln / ( 1) 273.15TLST K K B= + −  (16) 

In this context, 
1K  and 

2K  represent predefined constants prior to the satellite launch. The 

settings for 
1K  and 

2K  for different sensor types of Landsat satellites are presented in Table 3. 

Table 3. Setting of K1 and K2 under different sensor types. 

Sensor Types K1 K2 

Landsat 5 TM (band 6) 607.76 1260.56 

Landsat 7 ETM+ (band 6) 666.09 1282.71 

Landsat 8 TIRS (band 10) 774.89 1321.08 

Landsat 8 TIRS (band 11) 480.89 1201.14 

Due to the susceptibility of the 11th band of Landsat 8 TIRS to interference from stray light and 

other noise, calibration can introduce significant biases. If incorporated into calculations, it may 

compromise the accuracy of subsequent results [27]. Hence, this study utilizes the 10th shortwave 

band of Landsat 8 TIRS for computation, employing the corresponding K1 and K2 values from the 

table for analysis.  

When translated into band calculation format, the formula is as follows: 

2 1/ log( / 1 1) 273.15bLST K a K b= + −  (17) 

Within this context, b1 represents the blackbody radiance image under identical temperature 

conditions.  

From this, the Celsius temperature band calculation formula for Landsat 5 TM can be derived 

as:  

5 1260.56 / log(607.76 / 1 1) 273.15LST a b= + −  (18) 

The Celsius temperature band calculation formula for Landsat 7 ETM+ is as follows: 

7 1282.71/ log(666.09 / 1 1) 273.15LST a b= + −  (19) 
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The Celsius temperature band calculation formula for Landsat 8 TIRS is as follows: 

8 1321.08 / log(774.89 / 1 1) 273.15LST a b= + −  (20) 

where b1 are the blackbody radiance brightness images for the same temperature conditions. 

3.2.5. Calculation of Salinity Index 

Salinization, as a form of soil degradation, primarily refers to the phenomenon where salts from 

the deep soil layers and groundwater are transported to the surface through tubular pathways, 

resulting in the accumulation of salts on the soil surface following the evaporation of saline water. 

The occurrence of soil salinization is the outcome of both natural and anthropogenic factors. Natural 

factors are influenced by the parent material of soil formation, topography, climate, water quality, 

and the level of the underground water table; whereas human factors include unscientific irrigation 

and drainage practices, and the excessive application of pesticides and fertilizers. Currently, over 100 

countries worldwide are affected by salinized soils, with the global total area exceeding 950 million 

hectares, and this area is continuing to expand annually [28,29]. In China, salinized soils are 

widespread, with potential large-scale soil salinization changes occurring in the regions of North 

China, Northeast China, and Northwest China [30]. For instance, in some agricultural reclamation 

areas of the Hulunbuir region in Northeast China, which is characterized by a semi-arid climate with 

low precipitation and high evaporation, the long-term use of pesticides and fertilizers in planting 

soils is leading to salinization changes. The issue of soil salinization can lead to reduced soil 

productivity, thereby decreasing agricultural production efficiency and exacerbating the 

deterioration of the agricultural ecological environment, which in turn has adverse effects on the 

socio-economic landscape [31,32]. Hence, conducting research on regional soil salinization conditions 

to comprehensively identify potential risks is instrumental for the scientific and rational planning of 

land resources, which can enhance the intrinsic productivity of the soil and contribute to ecological 

improvement [33]. Therefore, by employing certain technical methods to thoroughly understand the 

spatial distribution of soil salinization, it is possible to diagnose salinized soils and implement 

customized measures to prevent the worsening of soil salinization, improve land use efficiency in 

agricultural areas, and achieve the goals of ecological sustainability. 

Soil salinity serves as an effective evaluative metric for the degree of soil salinization. Given that 

the visible and near-infrared spectral bands of remote sensing exhibit certain responses to soil 

salinity, it is feasible to consider the estimation of soil salinity information via remote sensing 

techniques. Recently, the inversion research of soil salinity indices using remote sensing spectral 

information has garnered increasing attention. This method holds advantages for large-scale 

monitoring, offering benefits such as a continuous temporal sequence and strong timeliness of data. 

The results of remote sensing inversion estimation can also serve as a reference, providing assistance 

for subsequent soil environmental remediation and land reclamation efforts [34]. This paper employs 

a pan-salinity index (PSI) that integrates three different remote sensing salinity indices to quantify 

the soil salinity index of the study area. The first method of integration is the SI-S method [35], which 

utilizes the red, green, blue, and near-infrared spectral bands for the estimation of the soil salinity 

index. The calculation formula is as follows: 

Re

Re

( ) ( )

( ) ( )

NIR d Green Blue

NIR d Green Blue

SI S
ρ ρ ρ ρ
ρ ρ ρ ρ

× − ×
− =

× + ×
 (21) 

In this context, 
NIRρ  denotes the reflectance of the near-infrared band; 

Redρ  represents the 

reflectance of the red band; 
Greenρ  signifies the reflectance of the green band; 

Blueρ  corresponds to 

reflectance of the blue band. 

The second fusion method is the SI-W method [36], which utilizes the red and green bands for 

estimating the soil salinity index. The calculation formula is presented below:  

Re( ) / 2Green dSI W ρ ρ− = +  (22) 
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where 
Greenρ  represents the reflectance of the green band, and 

Redρ  denotes the reflectance 

of the red band.  

The third fusion method is the SI-K method [37], which employs the red band and the near-

infrared band to estimate the soil salinity index. The calculation formula is as follows: 

Re Re( ) / ( )d NIR d NIRSI K ρ ρ ρ ρ− = − +  (23) 

where 
Redρ  represents the reflectance of the red band, and 

NIRρ  denotes the reflectance of the 

near-infrared band. 

Fusion is conducted by adding the values and then calculating the mean. Prior to fusion, the 

three indices are normalized to constrain the values within the range of 0 to 1. Given that the SI-S 

index is negatively correlated with the soil salinity index, a positive correlation transformation is 

performed in advance. The resultant PSI exhibits a positive correlation with the soil salinity 

conditions, whereby higher values indicate a greater degree of salinity, and lower values suggest 

reduced soil salinity. The calculation formula for PSI is as follows:  

Re Re ReRe

Re

( )/2 ( )/( )( ) ( )

( ) ( )

( ) / 3

/ 3
Green d d NIR d NIRNIR d Green Blue

NIR d Green Blue

PSI NDSI S NDSI W NDSI K

ND ND NDρ ρ ρ ρ ρ ρρ ρ ρ ρ
ρ ρ ρ ρ

+ − +× − ×
× + ×

= − + − + −

 
 = + +
 
 

 (24) 

where NDSI S−  represents the normalized value of SI S−  after a positive correlation 

transformation, NDSI W−  denotes the normalized value of SI W− , and NDSI K−  indicates 

the normalized value of SI K− . 

3.3. Calculation of IRSEI 

The Principal Component Analysis (PCA) method is employed to perform a principal 

component transformation on five indicators. Prior to executing the principal component 

transformation, it is imperative to normalize the five component indicators. In the experiment of this 

chapter, range normalization method is utilized, standardizing the numerical values of the 

component indicators to a uniform scale between 0 and 1. The computational formula for the range 

normalization method is as follows:  

min

max min

norm

X X
RI

X X

−
=

−
 (25) 

wherein, 
normRI  represents the value of the component indicator after standardization;  X

represents the numerical value of a single indicator; 
maxX  represents the maximum value within the 

indicator range; and 
minX  represents the minimum value within the indicator range. 

Subsequent to the principal component transformation, the first principal component often 

contributes a substantial proportion and can purely and objectively represent ecological 

characteristics. The following second, third, fourth, and five principal components frequently contain 

disordered information; indiscriminately incorporating them into calculations may result in a loss of 

fairness in the final results. Therefore, the transformed first principal component can represent the 

general trend of comprehensive ecological characteristics. The transformed first principal component 

1PC  can represent the initial remote sensing ecological index value, denoted as 
0IRSEI , and its 

formulaic expression can be presented as follows: 

0 1( , , , )PCIRSEI F NDVI WET NDBSI LST=  (26) 

For the convenience of statistical analysis, it is necessary to standardize 
0IRSEI , yielding IRSEI

. Hence, IRSEI  can be expressed as:  
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0 0min

0max 0min

IRSEI IRSEI
IRSEI

IRSEI IRSEI

−
=

−
 (27) 

wherein, IRSEI  represents the value after standardization; 
0IRSEI  represents the initial value 

of the remote sensing ecological index; 
0minIRSEI  represents the minimum value among the initial 

values; and 
0maxIRSEI  represents the maximum value among the initial values. The interval of 

IRSEI  is between 0 and 1, where a high value indicates good ecological environment quality and a 

low value indicates poorer ecological environment quality. 

4. Results 

4.1. Results of Component Indicators 

To facilitate presentation, this paper has standardized the dimensions, and the results of the five 

component indices of the Tenihe Farm IRSEI are displayed using normalized outcomes. The results 

of component indices for the farm in the years 2010, 2013, 2016, and 2019 are as follows. 

4.1.1. Results of Greenness Index 

As can be observed from Figure 5, the remote sensing ecological NDVI results for the Tenihe 

Farm have been favorable over the past decade. Although there have been instances of diminished 

performance in certain years, the greenness index has remained relatively high for the majority of the 

period under consideration. This indicates that the vegetation cover in the study area has maintained 

a consistently positive state over an extended duration. 
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Figure 5. The greenness index results for the ecological environment assessment of Tenihe Farm: (a–

d) correspond to the results for 2010, 2013, 2016, and 2019, respectively. 

4.1.2. Results of Humidity Index 

Figure 6 reveals that the ecological WET index for the Tenihe Farm has exhibited a relatively 

stable performance over the course of a decade. The ecological moisture index for the entire study 

area has demonstrated a favorable condition in recent years, with both soil and surface vegetation 

maintaining satisfactory levels of moisture. 

 

Figure 6. The humidity index results for the ecological environment assessment of Tenihe Farm: (a–

d) correspond to the results for 2010, 2013, 2016, and 2019, respectively. 

4.1.3. Results of Dryness Index 

Examination of Figure 7 indicates that the ecological NDBSI index for the Tenihe Farm has 

undergone some variations over the past decade. For instance, in 2019, the NDBSI index was 

observed to be at a low value state, whereas in 2013, the NDBSI value was comparatively higher. 

Theoretically, the NDBSI is considered to exert a negative impact on the ecosystem. However, a 

comprehensive reflection of the overall ecological index can only be ascertained through an 

integrated analysis in conjunction with other component indices. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 December 2023                   doi:10.20944/preprints202312.0988.v1

https://doi.org/10.20944/preprints202312.0988.v1


 15 

 

 

Figure 7. The dryness index results for the ecological environment assessment of Tenihe Farm: (a–d) 

correspond to the results for 2010, 2013, 2016, and 2019, respectively. 

4.1.4. Results of Heat Index 

Analysis of Figure 8 reveals that the ecological LST index for the Tenihe Farm has maintained a 

relatively stable state over the past decade. This suggests that there has been minimal variation in 

surface temperature during the crop growing seasons, indicating conditions that are conducive to 

crop growth. 
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Figure 8. The heat index results for the ecological environment assessment of Tenihe Farm: (a–d) 

correspond to the results for 2010, 2013, 2016, and 2019, respectively. 

4.1.5. Results of Salinity Index 

The graphical representation in Figure 9 illustrates that the salinity distribution within the 

Tenihe Farm in the years 2010, 2013, and 2019 is characterized by lower values in the northeastern 

part and higher values in the southwestern part. Conversely, the salinity distribution in 2016 appears 

to be more uniform across the region. The peak in overall salinity levels was recorded in 2016, while 

the lowest overall salinity levels were observed in 2019. 
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Figure 9. The salinity index results for the ecological environment assessment of Tenihe Farm: (a–d) 

correspond to the results for 2010, 2013, 2016, and 2019, respectively. 

The series of figures presented herein illustrate developmental variations over the course of a 

decade in the indices of greenness, humidity, dryness, heat, and salinity at the Tenihe Farm. These 

fluctuations indicate that the ecological environment is subject to dynamic transitions. Alterations in 

the indicators that affect the ecological environment inevitably precipitate a shift in the overall quality 

of the ecological milieu. The mean values and standard deviations of these five component indices 

over the ten-year period are depicted in Figure 10. 
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Figure 10. The mean and standard deviation of the ecological environment evaluation component 

indices of Tenihe Farm in the past decade: (a) is the result of the greenness index; (b) is the result of 

the humidity index; (c) is the result of the dryness index; (d) is the result of the heat index; (e) is the 

result of the salinity index. 

Figure 10 reveals that the five component indices impacting the ecological environment quality 

at Tenihe Farm have experienced fluctuations and changes over the past decade, a phenomenon 

attributable to the combined effects of natural factors and human activities. Notably, the mean peak 

values for the greenness and salinity indices were recorded in 2019, while the humidity, dryness, and 

heat indices reached their mean peak values in 2013. The mean minimum values for the greenness, 

humidity, and heat indices all occurred in 2016. In contrast, the dryness index presented its mean 

minimum value in 2019, and the salinity index did so in 2013. 

4.2. Results of IRSEI 

4.2.1. Validity Analysis of IRSEI 

The component indices were normalized and subsequently transformed through PCA, resulting 

in a remote sensing image that integrates a novel spectral combination of five principal components. 

This image constitutes the new representative layer for the IRSEI model, and the eigenvalues for each 

principal component were ascertained. The eigenvalues and corresponding contribution percentages 

of the five principal components, PC1, PC2, PC3, PC4, and PC5 post,-transformation, offer a more 

precise delineation of the outcomes derived from the PCA. Within the IRSEI framework for the 

Tenihe Farm experimental zone, the eigenvalues and contribution percentages of the five newly 

derived principal components, subsequent to the PCA of the five component indices—NDVI, WET, 

NDBSI, LST, and PSI—are shown in Table 4. 

Table 4. Results of PCA (eigenvalues and contributions). 

Year Index PC1 PC2 PC3 PC4 PC5 

2010 
Eigenvalue 0.1214 0.0209 0.0102 0.0019 0.0000 

Contribution 0.7861 0.1355 0.0660 0.0122 0.0002 

2013 
Eigenvalue 0.1689 0.0282 0.0071 0.0024 0.0003 

Contribution 0.8162 0.1365 0.0342 0.0115 0.0016 

2016 
Eigenvalue 0.0788 0.0223 0.0024 0.0016 0.0000 

Contribution 0.7491 0.2124 0.0225 0.0156 0.0004 
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2019 
Eigenvalue 0.1094 0.0253 0.0117 0.0017 0.0001 

Contribution 0.7385 0.1706 0.0792 0.0113 0.0004 

The table above illustrates that, over the past decade, the contribution of the first principal 

component (PC1) following the principal component transformation of the IRSEI component indices 

for the Tenihe Farm's remote sensing imagery consistently exceeds 73%. This suggests that PC1 can 

essentially represent the condition of the farm's IRSEI. As previously discussed, since PC2, PC3, PC4, 

and PC5 often contain noisy information, it is not prudent to indiscriminately combine principal 

components. Unscientific merging may lead to deviations or even inaccuracies in the results. 

To further substantiate the validity of the experimental outcomes, an analysis of data quality 

was conducted. Typically, indices of greenness and humidity tend to exert a positive influence on the 

ecological environment, enhancing its condition, whereas indices of dryness, heat, and salinity are 

likely to have a deleterious impact, diminishing the quality of the ecological environment. 

Consequently, when conducting a correlation analysis between these indices and the IRSEI, one 

would expect to obtain disparate results indicative of both positive and negative correlations. This 

study employs the Pearson correlation coefficient (PCC) method for the quantitative analysis of the 

correlation between component indices and IRSEI. The PCC method is a classical approach for 

calculating correlation coefficients, primarily used to characterize linear correlations. It operates 

under the assumption that the two variables in question are normally distributed and possess non-

zero standard deviations. The calculation formula enables the condensation of values into a range 

between -1 and 1. The closer the absolute value of the PCC is to 1, the higher the degree of correlation 

between the two variables, indicating greater similarity. The formula for calculating the PCC is as 

follows: 

( )( )
( ) ( )

1

2 2

1 1

n

i ii

n n

i ii i

x x y y n
PCC

x x y y

=

= =

− −
=

− −

∑
∑ ∑

 
(28) 

In this context, PCC  denotes the computed result of the correlation coefficient; i  signifies the 

index of the variable; n  represents the total number of variables; 
ix  and 

iy  correspond 

respectively to the values of variable x  and variable y  at index i ; while x  and y  respectively 

denote the mean values of variable x  and variable y . 

The correlation calculation results of the PCC between the IRSEI outcomes of the Tenihe Farm 

across different years and the component indicators are presented in the following Table 5: 

Table 5. Correlation analysis between IRSEI results and component indicators over the past decade 

at Tenihe Farm. 

Year NDVI WET NDBSI LST PSI Average Correlation 

2010 0.914 0.920 -0.027 -0.899 -0.907 0.733 

2013 0.939 0.977 -0.976 -0.829 -0.928 0.930 

2016 0.363 0.801 -0.434 -0.915 -0.313 0.565 

2019 0.669 0.947 -0.008 -0.914 -0.617 0.631 

Mean value 0.721 0.911 -0.361 -0.889 -0.691 p<0.01 

The Table 5 reveals that the correlation coefficients between different annual component 

indicators and the IRSEI display both positive and negative values, yet they follow a discernible 

pattern. Specifically, the NDVI and WET indicators are positively correlated with the IRSEI, whereas 

the NDBSI, LST, and PSI exhibit negative correlations with the IRSEI. The p-values associated with 

these correlation calculations are all less than 0.01, indicating statistically significant correlations. 

Notably, the component indicators for the year 2013 show the strongest average correlation with the 

IRSEI, reaching a value of 0.930, while other years also demonstrate high correlation values. The mean 

values of the five indicators across different years also maintain high levels, with the highest absolute 
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value of correlation in the four years being for WET, at 0.911. This suggests that humidity conditions 

have a substantial impact on the ecosystem, while other indicators such as heat, greenness, salinity, 

and dryness are similarly closely linked to the quality of the ecological environment. 

4.2.2. Analysis of Spatial and Temporal Variations 

The spatial statistical analysis and cartographic representation of the IRSEI results post-principal 

component transformation reveal a clear temporal and spatial variation in IRSEI gradation. The 

grading standard employs an interval of 0.2 to divide the values into five categorical levels, namely: 

excellent (0.8 < RSEI ≤ 1.0), good (0.6 < RSEI ≤ 0.8), moderate (0.4 < RSEI ≤ 0.6), poor (0.2 < RSEI ≤ 0.4), 

and inferior (0 < RSEI ≤ 0.2). The grading results are shown in Figure 11 below: 

 

Figure 11. The IRSEI results for the ecological environment assessment of Tenihe Farm: (a–d) 

correspond to the results for 2010, 2013, 2016, and 2019, respectively. 

The graphical representation clearly indicates that the numerical changes and distribution of the 

IRSEI at the Tenihe Farm have varied over the past decade. This variability can be attributed to the 

differential impact of various component indices each year, as well as the discrepancies inherent in 

the representation methods of PCA. The cartographic outcomes suggest that the overall value of 

IRSEI is in a relatively favorable state. A detailed quantitative analysis of these results is provided in 

the subsequent statistical summary. 

Upon statistical examination, the mean and standard deviation of the IRSEI for the Tenihe Farm 

experimental zone over the past ten years are presented in Table 6. The data reveals a remarkable 

stability in the standard deviation values over the decade, indicating the effectiveness and 

consistency of the statistical measurements. Specifically, the peak value of the IRSEI mean occurred 

in 2016, while the lowest value was recorded in 2013. Although the mean IRSEI for 2013 was 0.534, it 
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still falls within the moderate range (0.4 < IRSEI ≤ 0.6), whereas the mean values for other years 

approached the higher end of this interval. This suggests that the ecological quality of the Tenihe 

Farm has maintained a commendable condition throughout the recent decade. 

Table 6. Changes in mean and standard deviation of IRSEI at Tenihe Farm over the past decade. 

Year 2010 2013 2016 2019 

Mean 0.589 0.534 0.598 0.573 

Standard deviation 0.220 0.235 0.216 0.244 

The subsequent categorization and area statistics of the IRSEI results across different years are 

presented in the Table 7 below. The table reveals that for the Tenihe Farm, the ecological environment 

quality in 2010 had the highest area proportion at a 'Moderate' level, followed by 'Poor', 'Good', 

'Excellent', and 'Inferior'. In 2013, the most prevalent category for the farm's ecological environment 

quality was 'Moderate', succeeded by 'Poor', 'Good', 'Inferior', and 'Excellent'. In 2016, the 'Poor' 

category dominated in terms of area proportion, with the remaining categories following in the order 

of 'Moderate', 'Good', 'Inferior', and 'Excellent'. For the year 2019, the category with the highest area 

proportion remained 'Moderate', with the subsequent categories being 'Poor', 'Good', 'Excellent', and 

'Inferior'. Considering the mean results of the aforementioned years, it can be inferred that within 

certain graded intervals of area proportion, there should be subtle shifts, such as the IRSEI values 

within the 'Poor' interval, which are slightly lower than 'Moderate', tending towards the 'Moderate' 

level, while the IRSEI values within the 'Good' interval, which are higher than 'Moderate', likely 

exhibit a trend of clustering towards the higher values within the interval. 

Table 7. Grading statistics of IRSEI area by year at Tenihe Farm. 

Level 

2010 2013 2016 2019 

Proportion/

% 

Area/ 

km2 

Proportion/

% 

Area/ 

km2 

Proportion/

% 

Area/ 

km2 

Proportion/

% 

Area/ 

km2 

Inferior 4.61 90.99 14.61 288.37 7.81 154.18 6.27 123.82 

Poor 27.25 537.80 18.97 374.34 38.66 762.91 34.31 677.07 

Moderate 47.89 945.08 47.87 944.62 37.07 731.58 36.29 716.09 

Good 13.61 268.67 14.85 292.97 13.22 260.83 14.05 277.37 

Excellent 6.64 130.97 3.71 73.21 3.24 64.01 9.08 179.16 

To further investigate the spatiotemporal variations of the IRSEI at the Tenihe Farm, differential 

calculations for various years were conducted, followed by stratified statistical analysis. The 

classification comprises five intervals, which are delineated as follows: significantly deteriorated [-1, 

-0.1), moderately deteriorated [-0.1, -0.05), essentially unchanged [-0.05, 0.05), moderately improved 

[0.05, 0.1), and significantly improved [0.1, 1]. The visualization of the results is presented in the 

Figure 12 below. It is evident from the Figure 12 that over the course of a decade, there have been 

alterations in the IRSEI, with some regions experiencing improvements in ecological environmental 

quality, while others have witnessed a decline. These changes sometimes alternate as the time series 

progresses. 
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Figure 12. The IRSEI change results for ten years in the ecological environment assessment of Tenihe 

Farm: (a–d) correspond to the IRSEI change results from 2010 to 2013, 2013 to 2016, 2016 to 2019, and 

2010 to 2019, respectively. 

The quantitative results of the temporal differentiation of the IRSEI at the Tenihe Farm are 

presented in the Table 8 below. The Table 8 reveals that over a decade, the changes in IRSEI at the 

Tenihe Farm primarily fell into three categories: essentially unchanged, significantly deteriorated, 

and significantly improved. For instance, between 2010 and 2013, the largest percentage change in 

IRSEI area was a significant deterioration, accounting for 33.74%, followed by essentially unchanged 

at 27.42%, and then significantly improved, moderately deteriorated, and moderately improved, at 

17.62%, 11.13%, and 10.09% respectively. From 2013 to 2016, the IRSEI area changes in descending 

order of magnitude were significantly deteriorated, significantly improved, essentially unchanged, 

moderately deteriorated, and moderately improved, with proportions of 38.72%, 25.69%, 17.96%, 

9.80%, and 7.83% respectively. During the period from 2016 to 2019, the IRSEI area changes from 

largest to smallest were significantly improved, significantly deteriorated, essentially unchanged, 

moderately improved, and moderately deteriorated, with respective shares of 35.60%, 22.70%, 

21.92%, 11.44%, and 8.34%. Over the period from 2010 to 2019, the ecological environmental quality 

of the Tenihe Farm largely remained stable, with the area proportion of significantly improved 

regions being 18.94% and that of significantly deteriorated regions being 23.98%. The mean IRSEI 

value was 0.589 in 2010 and 0.573 in 2019, indicating a slight decline of 0.016, which suggests a minor 

trend towards ecological environmental quality deterioration over the ten-year span. 
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Table 8. Analysis of changes in IRSEI over a ten-year period at Tenihe Farm. 

Changes 

2010-2013 2013-2016 2016-2019 2010-2019 

Proportion/

% 

Area/ 

km2 

Proportion/

% 

Area/ 

km2 

Proportion/

% 

Area/ 

km2 

Proportion/

% 

Area/ 

km2 

[-1, -0.1） 33.74 665.85 38.72 764.13 22.70 448.03 23.98 473.19 

[-0.1, -0.05) 11.13 219.60 9.80 193.49 8.34 164.54 16.02 316.16 

[-0.05, 0.05) 27.42 541.18 17.96 354.43 21.92 432.64 30.94 610.69 

[0.05, 0.1) 10.09 199.19 7.83 154.46 11.44 225.83 10.12 199.64 

[0.1, 1] 17.62 347.68 25.69 507.00 35.60 225.83 18.94 373.83 

5. Discussion and Conclusions 

This paper initiates from the perspective of the ecological and environmental characteristics of 

semi-arid agricultural planting regions, establishing the IRSEI model to assess the temporal sequence 

of ecological environment quality in the farm study area. The model addresses the current status of 

soil salinization in the study area by proposing the PSI, which is a composite salinity indicator 

derived from the integration of three salinity indices. It employs the NDVI to represent the greenness 

component of the study area; the humidity component is characterized using the WET from the 

Tasseled Cap Transformation; the dryness component is indicated by the NDBSI, a synthesis of the 

SI and the IBI; and the LST is utilized to denote the heat component. Through principal component 

transformation for the integration of component indicators, the normalized first principal 

component's contribution rate exceeds 73%, effectively integrating the valid characteristic 

information of each indicator. Consequently, the generated IRSEI results proficiently represent the 

changes in the ecological environment quality of the farm within the study area. 

To ensure the reliability of data quality, a correlation analysis was conducted on indices such as 

NDVI, WET, NDBSI, LST, and PSI with IRSEI. The analysis yielded positive correlations between the 

greenness and humidity indices with IRSEI, as well as negative correlations between the indices of 

dryness, heat, and salinity with IRSEI. These results are consistent with the characteristic influences 

of ecological environmental factors and also serve to validate the integrity of the data quality. 

The quality of the ecological environment in farming areas is a crucial component of food 

security. Only by ensuring the ecological integrity of farm regions can the sustainability of agriculture 

be guaranteed. In turn, sustainable agriculture can provide a green and healthy food source for 

human habitation. It can be argued that the quality of the ecological environment in crop cultivation 

areas is a vital foundation for the stable and healthy operation of the economy and society. Therefore, 

the assessment of farm ecological environment quality based on IRSEI holds significant importance. 

Given that this method incorporates the PSI and considers the semi-arid climate attributes of 

agricultural planting areas and the salinization characteristics of the soil, it has potential applicability 

and expansion potential in agricultural planting regions with arid climate features and soil 

salinization characteristics. 

This study addresses the need for dynamic monitoring of the ecological environment over time 

in semi-arid agricultural planting areas by proposing an IRSEI. It employs objective remote sensing 

data to spatially measure and analyze the temporal evolution of the ecological environment quality 

in the experimental area of the Tenihe Farm. In future research, consideration will be given to various 

other factors that contribute to changes in ecological environment quality, such as atmospheric 

conditions, precipitation, biodiversity, and human activities, to more comprehensively assess the 

ecological environment quality of agricultural planting areas. 
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