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Abstract: This research provides a computationally efficient numerical tool for predicting 3-D

turbulent flows over hydrofoils. It addresses a gap in existing numerical methods by extending

the capabilities of the laminar VIScous Vorticity Equation (VISVE) solver to handle 3-D turbulent

flow scenarios. The implementation integrates the k − ω SST model into the 3-D VISVE solver

using the Finite Volume Method (FVM), extending its capability to handle turbulent flows. The

turbulence model is also parallelized to improve computational efficiency. The application of the

newly developed model to 3-D hydrofoil cases expands its scope and serves as preparatory work for

future rotational propeller applications. Rigorous testing includes a convergence analysis concerning

grid numbers and time step sizes, and validation against a Reynolds-Averaged Navier-Stokes

(RANS) solver ensures the reliability and accuracy of the enhanced VISVE solver for turbulent

flow simulations. The turbulent VISVE solver offers advantages such as reduced computational

domain and costs through a vorticity-based approach. Turbulence concentration within boundary

layers and free shear flows does not compromise the advantages of the small computational domain.

The simplified meshing process, automatically generated by denoting the number of panels on the

hydrofoil, makes the solver accessible for researchers and engineers.

Keywords: software development; viscous vorticity equation; turbulence modeling; computational

fluid dynamics; 3-D hydrofoil

1. Introduction

Marine propellers, crucial for ship, boat, and submarine propulsion, face challenges in turbulent

flows affecting thrust, torque, noise, and durability. Accurate prediction and understanding of propeller

behavior in turbulent flows are essential for analysis and design. Developing reliable computational

models becomes crucial for accurately predicting propeller performance in complex flow phenomena.

Foundational understanding from hydrofoils aids in comprehending fluid dynamics and lift generation,

essential for propeller design and advancing propulsion knowledge.

In the realm of marine propeller simulations, challenges arise due to several reasons.

Computational Fluid Dynamics (CFD) simulations face complexities in handling the computational

domain size for these large propellers, impacting cost and time considerations. Turbulence modeling

becomes crucial to accurately capture complex turbulent flow patterns induced by large propellers,

involving separation, vortices, and cavitation. The intricate interactions between propeller blades

and the hull, as well as blade-blade interactions, pose modeling challenges, necessitating specialized

techniques. Mesh generation for complex geometries like large propellers demands time and expertise,

while validation against experimental data is hindered by challenges in achieving high Reynolds

numbers and obtaining reliable data for large-scale flows. These challenges underscore the need for

specialized computational tools in addressing the marine propeller simulations.

The numerical methods for propeller analysis include the Vortex Lattice Method (VLM), Boundary

Element Method (BEM), Computational Fluid Dynamics (CFD), and Viscous/Inviscid Interactive

Method. VLM, a semi-analytical approach, models hydrodynamic surfaces through vortex panels,

proving efficient for inviscid flow analysis due to its computational effectiveness. Its application to
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fully wetted propeller flows evolved into the MPUF-3A code, incorporating features like leading-edge

correction [1–7]. BEM, another semi-analytical method, solves Partial Differential Equations on

boundaries and gained traction in propeller analysis through codes like PROPCAV, allowing for the

study of unsteady cavitating flow [8–14]. Additionally, the boundary layer strip theory simplifies

viscous flow modeling [15–18]. CFD packages such as ANSYS Fluent [19], Siemens Star-CCM+ [20],

and the open-source solution OpenFOAM [21] are widely used.

While conventional linear and potential flow theories offer computational efficiency, they exhibit

limitations in accurately predicting turbulent flows. On the other hand, viscous flow methods, which

can handle turbulence through the incorporation of a turbulence model, often being computationally

intensive.

The primary objective of this research is to develop a computationally efficient viscous numerical

model capable of accurately predicting the 3-D hydrofoil in turbulent flow conditions. The focus of the

research is to extend the VISVE solver, originally designed for laminar flows, to handle turbulent flow

scenarios.

VISVE stands for VIScous Vorticity Equation and it is a numerical solver developed in the Ocean

Engineering Group at the University of Texas at Austin. VISVE focuses on solving the transport

equation for vorticity. In VISVE, the flow variables are represented primarily in terms of vorticity

rather than the traditional velocity and pressure fields, as done in the N-S solver.

VIScous Vorticity Equation (VISVE) has been solved by using a finite volume method ([22,23]).

[23] developed the VISVE solver for laminar flows. Laminar VISVE has been applied on 2-D and

3-D hydrofoils, circular cylinders, and propeller blades (see [22], [24], [25] and [26]). Comprehensive

parallelization using MPI and OpenMP hybrid programs is accomplished by [27]. [28] and [29] consider

the compressibility and implement the laminar cavitating flow for VISVE. [30] derived the vorticity

equation for turbulent compressible flows with variable viscosity. [31] and [32] coupled VISVE with

a turbulence model in OpenFOAM, to solve the turbulent flow around a 2-D hydrofoil and cylinder.

However, this coupling method did not solve for the turbulence in VISVE, and needed to read the

turbulent viscosity from OpenFOAM at every time step, which meant that the VISVE solver could

not solve the turbulent flow independently. This gap is filled by You and Kinnas [33]. The turbulent

k − ω SST model is discretized and solved within the VISVE code, thus solving for turbulent flows

independently [33]. The 2-D turbulent VISVE solver is applied to hydrofoils cases [33] and cylinder

cases [34].

Prior work on VISVE has primarily focused on laminar flows and 2-D turbuelnt flows, it lacks

coverage of 3-D turbulent cases, indicating a notable gap in existing numerical methods.

This research aims to bridge this gap by extending the capabilities of the VISVE solver to handle

3-D turbulent flow scenarios. To achieve this, this paper focuses on the following work:

• Software Development: The k-omega SST model has been successfully integrated into the

3-D VISVE solver based on the Finite Volume Method (FVM). This numerical implementation

extended the solver’s capability to handle turbulent flows.
• Parallelization of the Turbulence Model: Another development involves the parallelization of

the turbulence model within the VISVE solver. This enhanced the computational efficiency for

turbulent flows.
• Application to 3-D Hydrofoil Cases: The implemented model has been applied to 3-D hydrofoil

cases, thereby expanding the solver’s applicability. This application also serves as preparatory

work before its application to rotational propeller.
• Convergence Test and Validation: The newly developed model undergoes a convergence analysis

concerning grid numbers and time step sizes. Results obtained for various angles of attack,

Reynolds numbers, and unsteady and steady states are validated against a RANS solver. This

process ensures the reliability and accuracy of the enhanced VISVE solver for turbulent flow

simulations.
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The development of the turbulent VISVE solver addresses a gap in existing numerical methods,

offering reduced computational cost through a vorticity-based approach. The turbulent VISVE

numerical solver, designed for handling turbulent flows over hydrofoils and propellers, boasts several

advantages.

• Due to the rapid reduction of vorticity away from the wall, this method requires significantly

fewer grids and unknowns compared to velocity-based approaches, enhancing computational

efficiency. Turbulence concentration within boundary layers and free shear flows does not

compromise the advantage of the small computational domain.
• The small computational domain also simplifies the meshing process. Mesh generation is

user-friendly, automatically generated by denoting the number of panels on the hydrofoil,

making it accessible for researchers and engineers.
• The pressure term is eliminated in VISVE. Without coupling the pressure with the velocity,

pressure can be calculated by a post-processing scheme.
• The solver incorporates the influence of the image of the half wing on the key half wing by

considering the vorticity and velocity as identical on both. This approach deviates from periodic

conditions because it ensures validity in both uniform and non-uniform flow conditions.

This paper begins with an introduction highlighting the gap in addressing 3-D turbulent cases

in previous VISVE work. It leads to methodology section, discussing the extension of the VISVE

solver and the implementation of the turbulence model. Application to 3-D hydrofoil cases is detailed,

followed by convergence tests and result validation with a RANS solver. The paper concludes by

summarizing contributions and suggesting future research directions.

2. Methodology and Numerical Implementations

In this section, the methodology and numerical models are presented. In general, the VISVE code

relies on the Finite Volume Method (FVM). It comprises three main components: the vorticity solver,

the velocity solver, and the turbulence solver.

To address turbulent flow, three significant enhancements to the existing laminar VISVE solver

are necessary. Firstly, modifications must be made to the vorticity equation to account for turbulence

effects. Additionally, the k − ω SST turbulence model, comprising a pair of second-order partial

differential equations, should be resolved using the FVM. Furthermore, capturing turbulence features

necessitates small grid resolutions and time scales. Parallelization of the turbulence model becomes

crucial to efficiently handle the computational demands. These three aspects are introduced for the

first time in this paper and have not been addressed in previous research.

2.1. Methodology

This section will elucidate the equations governing the flow. Both the vorticity and velocity solvers

have been modified to account for the inclusion of turbulence effects. In addition, the turbulence

model is newly developed into the 3-D code. The modifications, in comparison to the previous laminar

model, will be highlighted when presenting these models.

2.1.1. 3-D Viscous Vorticity Equation

The viscous vorticity equation was derived by taking curl of the Navier-Stokes Equation. The 3-D

VISVE Equation for variable density and viscosity is derived by [35]:

∂~ω

∂t
+ ~∇× (~ω ×~q) = ~∇×

[

−~∇× (ν~ω) + ~∇ν × ~ω −∇2ν~q + ~∇× (~q × ~∇ν)
]

(1)

where ~ω stands for the vorticity;~q represents the velocity vector; ν is the kinematic viscosity, which

can be taken as the summation of νm + ντ , where νm is the kinematic molecular viscosity and ντ is the

kinematic turbulent viscosity of the fluid.
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For hydrofoil cases, with
∂φ
∂x <<

∂φ
∂z , where φ can represent any variable, Equation (1) can be

simplified as:
∂~ω

∂t
+ ~∇× (~ω ×~q) = ~∇×

[

−~∇× (ν~ω)
]

(2)

In comparison to the vorticity equation for laminar flow, as shown by Equation (3), a notable

distinction in the vorticity equation lies in the inclusion of the kinematic viscosity term (ν) inside the

curl operator. This significant difference can lead to substantial variations in the obtained results.

∂~ω

∂t
+ ~∇× (~ω ×~q) = ν~∇×

[

−~∇× (~ω)
]

(3)

Taking the curl of the N-S equation eliminates the pressure term, simplifying the problem.

It is worth noting that the vorticity equation would be more straightforward if it had only one

unknown—vorticity. However, it also involves the velocity, adding complexity. In the following part,

the strategy to recover the velocity from vorticity will be presented.

2.1.2. Velocity Solver

The fundamental concept behind the velocity solver is to explicitly calculate velocity from the

vorticity obtained through Equation (2). Subsequently, to maintain divergence-free velocity, a potential

correction is applied.

When solving the Navier-Stokes equations numerically, a common approach is to split them into

pressure Poisson equation and velocity equations. The pressure equation is often obtained by taking

the divergence of the momentum equation and imposing the incompressibility condition ∇ · q = 0.

While the Poisson equation itself does not explicitly ensure a divergence-free velocity field, the pressure

field helps correct the velocity field to maintain its divergence-free nature throughout the simulation.

Inspired by the above idea, the same principle can be applied to the Viscous Vorticity (VISVE)

method to maintain divergence-free conditions. Consider an arbitrary velocity field q, where its

vorticity distribution is known as ∇× q = ω. Now, imagine the existence of another vector field w,

where its vorticity field also satisfies ∇× w = ω, thus preserving the same vorticity distribution. Then

the disparity between q and w can be interpreted in terms of a potential field:

q = w +∇ϕ (4)

To enforce continuity equation, which is ∇ · q = 0, we take the divergence of Equation (4):

∇ · q = ∇ · w +∇2 ϕ = 0 (5)

Then, the Poisson’s equation for ϕ is obtained:

∇2 ϕ = −∇ · w (6)

Equation (6) represents the Poisson equation we are addressing to solve for the velocity. The

unknown in this equation is the velocity potential ϕ. The velocity w on the right-hand side of this

equation can be explicitly computed through the relationship between vorticity and velocity, as

detailed in the appendices. The turbulence effect is considered in the velocity solver within the explicit

approach.

Up to this point, we have dealt with the vorticity and velocity. Upon revisiting Equation (2), the

remaining unknown is the turbulent kinematic viscosity. In the context of the Reynolds-Averaged

Navier-Stokes (RANS) problem, a turbulence model is employed to close the unresolved Reynolds

stress. Similarly, in the case of VISVE, a turbulence model is essential for closing the turbulent VISVE

equation.
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2.1.3. k − ω SST Turbulence Model

To incorporate the turbulence effects into the VISVE model, several crucial aspects need to be

addressed. Apart from the modifications in the vorticity transport equation and the vorticity and

velocity solver, one of the most critical considerations is determining the turbulent viscosity. By

employing a suitable turbulence model, it becomes possible to account for the effects of turbulence

and its impact on the flow variables.

k−ω SST model proposed by [36] belongs to a two-equation eddy viscosity model. It is composed

of two transport equations for turbulent kinetic energy k (Equation (7)) and specific dissipation rate ω

(Equation (8)).

∂k

∂t
+ Uj

∂k

∂xj
= P − β∗kω +

∂

∂xj

[

(ν + σkντ)
∂k

∂xj

]

(7)

∂ω
∂t + Uj

∂ω
∂xj

= γ
ντ

P − βω2 + ∂
∂xj

[

(ν + σωντ)
∂ω
∂xj

]

+ 2 (1 − F1) σω2
1
ω

∂k
∂xi

∂ω
∂xi

(8)

where k is the turbulent kinetic energy and ω is the specific dissipation rate. (Note: In this context, ω

refers to the specific dissipation rate from k − ω SST turbulence model, and should be distinguished

from the vorticity ω in the previous VISVE model.) P is the production for turbulent kinetic energy or

dissipation rate:

P = min

(

1

ρ
τij

∂Ui

∂xj
, 10β∗kω

)

(9)

where the Reynolds stress tensor τij = 2µτSij − 2
3 ρkδij. For incompressible flow, P can be written as:

P = 1
ρ τij

∂Ui
∂xj

= 1
ρ τijSij = 2ντSijSij, where, mean rate of strain Sij =

1
2

(

∂Ui
∂xj

+
∂Uj

∂xi

)

.

The improved performance of the k − ω SST model is achieved through modifications in the eddy

viscosity, primarily in the computation of the blending functions F1 and F2, as well as the inclusion

of an additional cross-diffusion term. These blending functions can transform the standard k − ω

model near the wall, to a high Reynolds number version of the k − ǫ model in the outer portion of the

boundary layer.

F1 = tanh







{

min

[

max

( √
k

β∗ωy
,

500ν

y2ω

)

,
4σω2k

CDkωy2

]}4






(10)

F2 = tanh





[

max

(

2
√

k

β∗ωy
,

500ν

y2ω

)]2


 (11)

CDkω = max

(

2ρσω2
1

ω

∂k

∂xi

∂ω

∂xi
, 10−10

)

(12)

where y is the distance from the wall. Let φ1 be the constants in the k − ω model; φ2 be the constants in

the k − ǫ model, and φ is the corresponding constants of the k − ω SST model (φ can be γ, β, σ and α).

The relation between them is:

φ = φ1F1 + φ2 (1 − F1) (13)

The representations for the coefficients are: κ = 0.41, α1 = 5
9 , α2 = 0.44, β1 = 3

40 , β2 = 0.0828,

β∗ = 9
100 , σk1 = 0.85, σk2 = 1, σω1 = 0.5, σω2 = 0.856.γ1 = β1

β∗ −
σω1κ2√

β∗
, γ2 = β2

β∗ −
σω2κ2√

β∗
.

After solving Equation (7) and Equation (8), the kinematic turbulent viscosity can be obtained in

the following way:

ντ =
a1k

max (a1ω, SF2)
(14)

where S =
√

2SijSij.
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After solving the turbulence model, the turbulent kinematic viscosity is incorporated into both

the vorticity solver and velocity solver to account for turbulence effects.

2.1.4. Boundary Conditions

Different regions in the near-wall flow are defined with respect to y+. In the viscous wall region,

where y+ < 50, the shear stress is directly influenced by molecular viscosity. In the outer layer where

y+ > 50, the direct effect of viscosity becomes negligible. In the viscous sublayer, where y+ < 5, the

Reynolds shear stress is negligible compared to the viscous stress. The non-dimensional wall distance

y+ for a wall-bounded flow is defined as follows:

y+ =
yUτ

ν
(15)

where Uτ is the friction velocity at the nearest wall, and is defined as Uτ =
√

τw
ρ , with wall shear stress

being τw = ρν dU
dy |y=0. y is the absolute distance from the wall.

Within the viscous sublayer, where y+ <5, the Reynolds shear stress is negligible compared to

the viscous stress, resulting in νTwall = 0. At a no-slip wall, all turbulent quantities, except ω, are set to

zero ([37]). The boundary conditions for the k − ω SST model are:











kwall = 0

νTwall = 0

ωwall = 10 6ν

β1(∆d1)
2

(16)

where ∆d1 is the distance to the next point away from the wall. This boundary condition can only be

applied when ∆y+1 < 3.

The freestream values k∞ = 10−10 , ω∞ = 3 have been chosen based on the following

recommendations:










ω∞ = (1 → 10)U∞
L

νt∞ = 10−(2−5)ν∞

k∞ = νt∞ω∞

(17)

where L is the approximate length of the computational domain; the subscript ∞ represents the

freestream values of each quantity.

2.2. Numerical Implementations

None of the above governing equations can be easily solved, necessitating a numerical approach.

Instead of a continuous solution, numerical methods discretize the equations, yielding discrete

solutions at computational points.

Both Stokes’ theorem and the Gaussian divergence theorem are powerful tools in vector calculus

as they provide a connection between quantities inside a closed region and the behavior on the

boundary of that region. In a sense, the Gaussian divergence theorem describes the divergence or

spreading out of a vector field, whereas Stokes’ theorem describes the curl or rotation of a vector field.

The numerical treatments are based on the features of the governing equations. Indeed, from the

vorticity equation in 3-D, one can observe that certain terms have the curl operator in front of them.

This observation allows us to apply Stokes’ theorem to those terms. For the 3-D turbulence model, it

can be rewritten in a perfectly conservative form, which has the divergence operator ahead of each

term, making it easy to apply the Gaussian divergence theorem.

2.2.1. Stokes’s Theorem Applied to 3-D Vorticity Equation

For the Navier-Stokes equation, it is unnecessary to provide a redundant description for 3-D since

the difference between its 2-D and 3-D versions primarily involves the addition of another coordinate.
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However, in the case of VISVE, due to the presence of a stretching term in the 3-D version, requiring

different numerical strategies compared to the 2-D counterpart.

By applying Stokes’ theorem to Equation (2), Equation (18) is obtained.

A
∂ω · n

∂t
+ ∑

∂A

(ω × q) · ∆l = −∑
∂A

(∇× νω) · ∆l (18)

Figure 11 visually explains the concept of staggered grids and their suitability for Stokes’ theorem.

Staggered grids are utilized to discretize flow variables at different locations within the computational

domain, and this arrangement is shown in the figure. The depiction of Stokes’ theorem in the same

context highlights the compatibility of staggered grids with it. The figure aids in understanding how

the use of staggered grids is appropriate and advantageous for the application of Stokes’ theorem in

the VISVE case.

#!
Δ%"

Δ%#$Δ%#$

Δ%#%

Δ%#%

&&&&

&'

&'

', ), * − 1

', ), *

' + 1, ), * − 1

Figure 1. Staggered grids and Stokes theorem, adapted from [23].

Employing staggered arrangement of variables, for component ω3, we have:

(

A3
∂ω3
∂t

)

i+ 1
2 ,j+ 1

2 ,k

+ [(ω × q) · ∆l1]i+ 1
2 ,j,k − [(ω × q) · ∆l1]i+ 1

2 ,j+1,k

− [(ω × q) · ∆l2]i,j+ 1
2 ,k + [(ω × q) · ∆l2]i+1,j+ 1

2 ,k

= − [(∇× νω) · ∆l1]i+ 1
2 ,j,k + [(∇× νω) · ∆l1]i+ 1

2 ,j+1,k

+ [(∇× νω) · ∆l2]i,j+ 1
2 ,k − [(∇× νω) · ∆l2]i+1,j+ 1

2 ,k

(19)

2.2.2. Gaussian Divergence Theorem Applied to k − ω sst model

The 3-D k − ω sst model was discretized numerically based on the FVM method. The FVM

divides the domain into small control volumes, computes the fluxes of the conserved quantities across

the boundaries of these volumes, and then updates the values within each volume based on these

fluxes. A detailed derivation can be found in the appendix.

∂k

∂t

∣

∣

∣

∣

P

Ω = −∑
f

−→q f · −→n f k f s f + ∑
f

(v + σkvT) f

∂k

∂n

∣

∣

∣

∣

∣

f

s f + S̄
∣

∣

P
Ω (20)

2.2.3. PARDISO matrix solver

After discretizing partial differential equations, the nonlinear equations transform into a set of

linear equations, which can be solved using matrix solvers.
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In numerical analysis, direct solvers like Gaussian elimination and LU decomposition are suitable

for small to medium-sized problems. Indirect solvers, such as Jacobi iteration and the conjugate

gradient method, are suited for large-scale problems with sparse matrices.

The matrices of the vorticity solver and the turbulence solver are solved by employing PARDISO

(PARallel DIrect SOlver), an Intel-developed direct solver specifically designed for large sparse linear

systems. It utilizes the multifrontal method that partitions the matrix into smaller dense submatrices,

which can be solved more efficiently using a direct solver.

The parameters employed in PARDISO are detailed in Table 1. PARDISO begins with matrix

analysis to establish the structure and sparsity pattern of the problem. Subsequent matrix reordering

reduces fill-in and optimizes the sparsity structure, enhancing the efficiency of the factorization phase.

PARDISO employs direct LU factorization methods. This process uses pivoting strategies to handle

ill-conditioned matrices. After factorization, PARDISO efficiently solves the linear system for multiple

right-hand sides and may employ iterative refinement for higher solution accuracy. Please note that

only a subset of these parameters is listed, with the unmentioned parameters using their default values.

For more detail, refer to the user guide [38].

Table 1. PARDISO Solver Parameters

Parameter Description

iparm(1)=1 No default value is used.
iparm(2)=2 Fill-in reordering from METIS.
iparm(3)=24 Numbers of processors.
iparm(4)=0 No iterative-direct algorithm is used.
iparm(5)=0 No user fill-in reducing permutation.
iparm(8)=9 Number of iterative refinement steps.

iparm(10)=13 Perturb the pivot elements with 1 × 10−13.
iparm(11)=1 Use nonsymmetric permutation and scaling.
iparm(13)=1 Maximum weighted matching algorithm is switched on.
iparm(18)=-1 Output: number of nonzeros in the factor LU.
iparm(27)=1 Check the input matrix.

2.2.4. Parallelization

Parallelizing numerical simulations is crucial when incorporating turbulence effects into models

due to the time demands of simulating turbulent flows.

In order to achieve optimal performance on multi-core and multi-processor systems, it is crucial

to fully utilize the features of parallelism and efficiently manage the memory hierarchy.

MPI (Message Passing Interface) applications can facilitate scalability across multiple SMP

(Symmetric Multiprocessing) nodes. OpenMP applications can improve the efficient utilization of

shared memory on SMP nodes. By incorporating MPI and OpenMP during the coding process,

efficiency, performance, and scaling can be maximized. Hybridization refers to a method of employing

different parallelization models to leverage the advantages of each.

2.2.5. A summary of the numerical model for 3-D turbulent flow

Figure 2 provides a summary of the numerical models employed in the VISVE method for 3D

turbulent flow simulations. The figure outlines the sequential steps involved in the simulation process:

• Initialization Procedure: The simulation starts with an initialization procedure for both vorticity

and velocity fields. This step sets the initial conditions for the fluid flow simulation.
• Poisson Solver: The Poisson solver is used to compute the velocity field based on the initial

vorticity and velocity distributions. It solves the Poisson equation to obtain the velocity field.
• Turbulence Solver: The turbulence solver then takes the velocity field obtained from the Poisson

solver and calculates the turbulent viscosity within the flow domain.
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• Turbulent VISVE solver: Turbulent viscosity is considered in addition to the molecular viscosity,

allowing the model to capture the effects of turbulence more accurately. Using the computed

turbulent viscosity, the turbulent VISVE solver updates the overall viscosity of the fluid.
• BEM Solver: A Boundary Element Method (BEM) solver is applied to correct the vorticity

distribution at the boundary to satisfy the boundary conditions. Additionally, the BEM solver

includes "images" to account for infinite geometries like hydrofoils, hubs, and other blades in the

flow domain.

START

Run BEM, initialization

Initialize !!, "!

Calculate the #" $ % on the 

outer boundary

Pressure calculation

Turbulent VISVE Solver

!" → !"#$∗

Calculate ""#$∗

Poisson Solver:

'&( = −' $ ""#$∗

#"#$∗ = ""#$∗ + '(

Calculate #"#$∗ $ %
on the outer boundary and on 

the wall

BEM: 
'(

'"
= −#"#$∗ $ %

Vorticity Creation

,) = −#*
"#$∗ − '*-

!"#$∗ → !"#$

""#$∗ → ""#$

N= .+,- ?

END

Yes

Poisson Solver:

'&( = −' $ ""

#" = "" + '(

No

K-/ sst Turbulence Model : 

Turbulent kinetic energy: k

Specific dissipation rate:/

Turbulent kinematic viscosity: nt

Figure 2. A summary of the numerical models employed in VISVE for 3-D turbulent flow.

3. Application and Results

Turbulence is not a feature of fluids but of fluid flows. Since the equations of motion are nonlinear,

each individual flow pattern has certain unique characteristics that are associated with its initial and

boundary conditions. No general solutions are available to turbulent flows. The characteristics of

turbulence depend on its environment. Because of this, turbulence theory does not attempt to deal

with all kinds and types of flows in a general way. Similarly, the developed numerical model should

be applied to specific scenarios.

In this section, the 3-D wing is characterized by its maximum chord length c. The Reynolds

number, Re = ρU∞c/µ, is defined in terms of the density of the fluid ρ, the inflow velocity U∞, the

chord length of the hydrofoil c, and the dynamic viscosity of the fluid µ. The time step size used in this

section is dt = 0.0001 s.

3.1. Geometry of the Rectangular Wing

A rectangular wing featuring a NACA (National Advisory Committee for Aeronautics) 4-digit

section profile is utilized to perform testing on the newly developed model. The 4-digit designation

refers to a specific series of numbers that determine the airfoil’s shape, thickness, and camber. As

illustrated in Figure 3, the wing has a rectangular planform with a specified length as 1m and width as

1m. It has a constant chord length c as 1 m and a closed tip. The section with the maximum thickness

is located at y = 0 along the span, where it has a NACA0008 profile. The first two digits represent the

camber line of the airfoil. In the case of "00", it suggests a symmetric foil. The last two digits denote the

thickness-to-chord ratio of the foil at a particular location along the chord. For "08", the thickness is 8%

at 30% of the chord length. Moving towards the wingtip, the thickness of the other sections decreases

linearly until it reaches zero.
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As shown in Figure 3, the foil is discretized in the spanwise direction using a cosine spacing.

Cosine spacing can concentrate more grid points in areas of higher curvature or significant flow

variations, such as the leading and trailing edges. It allocates fewer points to regions with lower

curvature or relatively uniform flow, optimizing grid resolution for computational efficiency.

Y

X

Z

Figure 3. The rectangular wing.

The wing is aligned with a specified periodic direction, indicating that flow and other

characteristics on one side mirror those on the opposite side. Figure 4 illustrates this by depicting half

of the wing with the NACA 4-digit section profile. The periodic boundary condition presumes the

existence of the complementary wing half, introducing virtual symmetry in the flow. The total width

of the wing is equal to twice the chord length. The flow domain of the image and that of the key foil

are symmetric with respect to the plane y = 0.

Y

X

Z

Key Foil

Image Model

Figure 4. The image model of a 3-D wing with one periodic direction.

3.2. Computational Settings

3.2.1. Computational settings in VISVE

The mesh of the wing is shown in Figure 5. The grid is comprised of sixteen blocks, which are

highlighted in sixteen different colors. The normal height of the grid is only 20% of the chord length,

and the length of the wake region is about 20% of the chord length. A total number of 306,176 cells

were used in the mesh. The results obtained from the current method are presented together with

those from RANS simulations.

In this case, the Reynolds number Re is 4 ×106, with incoming velocity U∞ being 4.0 m/s and the

molecular kinematic viscosity being 10−6 s−1.
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Y

X

Z

Figure 5. The VISVE grid used for the flow past the rectangular wing.

3.2.2. Computational settings in RANS

Ansys-Fluent (Release 20.2) was used to conduct the RANS simulations. The size of the RANS

domain is given in Figure 6. Overall, about 3 million hexahedral cells were used to discretize the RANS

computational domain.

The computational domain used in a RANS simulation needs to be sufficiently large. External

flows often require substantial domain size to accommodate appropriate inflow and outflow conditions.

A larger domain helps to minimize the impact of boundary effects on the region of interest. Typically,

a recommended practice is to have a computational domain that extends at least five times the

characteristic length of the object upstream and ten times downstream.

Table 2 summarizes the key computational settings implemented in Fluent for the study. The

solver is configured for pressure-based, segregated flow, utilizing the k-ω SST turbulence model. A

second-order upwind numerical scheme is adopted, and the pressure-velocity coupling is managed

through the SIMPLE algorithm. The time step is set at 10−4 seconds, with a stringent convergence

criterion of residuals less than 10−6. Initialization is performed from the inlet, and the boundary

conditions include velocity inlet, pressure outlet, non-slip at the wall, and symmetry at midchord. The

mesh is structured, and manual grid refinement is applied. These settings form the foundation of the

computational model for the subsequent simulations.

Table 2. Computational Settings in Fluent

Setting Value/Description

Solver Pressure-Based, Segregated Flow

Turbulence Model k-ω SST

Numerical Scheme Second Order Upwind

Pressure-Velocity Coupling SIMPLE

Time Step 1e-4 s

Convergence Criteria Residuals < 1e-6

Initialization Method Initialize from Inlet

Boundary Conditions
Velocity inlet; Pressure outlet;

Non-slip at wall; Symmetric at midchord
Mesh Type Structured

Grid Refinement Manual

In Figure 6, a comparison is presented between the computational domains of the VISVE and

RANS solvers. The red mesh represents the domain utilized by VISVE, while the black domain

corresponds to the RANS calculations. Notably, the VISVE domain is significantly more compact in

contrast to the RANS domain. The expansiveness of the RANS domain is necessary to address the

requirements of external flow problems. Conversely, VISVE exhibits a more localized influence, with

vorticity concentrated in a small region near the wall.
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X
Y

Z

RANS

VISVE

Figure 6. Comparison of the computational domains between VISVE and RANS for the rectangular

wing.

Table 3 illustrates a comparison on the number of grids and the computational time required per

iteration between the VISVE and RANS models. With 40 CPUs allocated to both cases, the VISVE

method exhibits four times the speed of the RANS method.

Table 3. Comparison of the mesh and the computational time between VISVE and RANS for the

rectangular wing.

VISVE RANS

Mesh 199,680 2,342,640

Computational time/iter 5.7 s 22 s

No. of CPUs 40 40

3.3. Convergence Test

Convergence testing is an essential step in computational fluid dynamics (CFD), monitoring the

convergence behavior of key solution variables to ensure that they approach a stable and consistent

solution. Convergence testing typically involves varying certain parameters, such as the grid resolution

or time step size, and observing the convergence of solution variables of interest.

The simulation is first run with a coarse grid or a relatively large time step to obtain an initial

solution. Then, the parameters are systematically refined or adjusted, and the simulation is rerun with

each refinement.

Table 4 presents data related to the grids used in the convergence test for the wing case. It includes

the corresponding grid numbers in the x, y, and z directions on the wing, as well as the total number

of grids for each configuration. Each row represents a specific grid configuration.
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Table 4. Grids employed for the convergence test in the wing case.

Grid x y z Total grids

1 64 20 30 199,680
2 64 20 46 306,176
3 84 20 46 365,056
4 44 20 46 247,296
5 64 15 46 258,336
6 64 30 46 401,856

Table 5 provides an overview of the different time step sizes used in the convergence test for the

wing case.

Table 5. Time steps employed for the convergence test in the wing case.

Case Time step dt

1 0.00005 s

2 0.0001 s

3 0.0002 s

Figures 7 and 8 display the results of the grid convergence test for velocity profiles in different

chordwise and spanwise directions. The results of the convergence test indicate that Grid 4 and 5

diverged from the other grids, and time step dt = 0.0002 s also diverged from the other time steps.

Those data did not converge as expected compared to the rest of the grids and time steps. Other

meshes and time steps are converged well.

Therefore, it is recommended to use grid sizes greater than 20 in the spanwise direction, while a

grid size of 64 is considered a suitable choice for the x direction. Additionally, both grid sizes of 30 and

46 work well in the z direction. A time step no greater than dt = 0.0001s is recommended.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 December 2023                   doi:10.20944/preprints202312.0891.v1

https://doi.org/10.20944/preprints202312.0891.v1


14 of 37

U(m/s)

Z
/c

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.02

0.04

0.06

0.08

0.1

0.12

grid1

grid2

grid3

grid4

grid5

grid6

(a) x/c=0.2

U(m/s)

Z
/c

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.02

0.04

0.06

0.08

0.1

0.12

grid1

grid2

grid3

grid4

grid5

grid6

(b) x/c=0.5

U(m/s)

Z
/c

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.02

0.04

0.06

0.08

0.1

0.12

grid1

grid2

grid3

grid4

grid5

grid6

(c) x/c=0.8

Figure 7. Grid convergence test for velocity profiles in different chordwise directions, y/c = 0.2, AOA

= 0◦, Re = 4 × 106.
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Figure 8. Grid convergence test for velocity profiles in different spanwise directions, x/c = 0.5, AOA =

0◦, Re = 4 × 106.
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In addition to the grid resolution around the hydrofoil, convergence tests are also conducted for

the wake length. The wake region is a critical area when studying flow around hydrofoils. The flow

in the wake region is often complex and can significantly impact the overall flow patterns, pressure

distribution, and forces acting on the hydrofoil.

Figure 9 shows a comparison of two different computational domains used in the convergence

tests. The long wake configuration shows a wake region that extends 2 meters behind the hydrofoil,

while the short wake configuration shows a wake region of only 0.2 meters in length.

X
Y

Z

(a) Computational domain with a short wake

X
Y

Z

(b) Computational domain with a long wake

Figure 9. Computational domain with different length of wake.

Figures 10–14 shows the comparisons of velocity and vorticity, between the long wake and

short wake configurations. The main objective of using an AOA of 0 degrees was to investigate the

convergence behavior in a symmetric flow scenario. The symmetric flow condition serves as a reference

case, allowing to focus on the influence of wake length on the convergence behavior. The observed

convergence for different wake lengths in the symmetric flow suggests that the simulation results are

grid-independent for the range of wake lengths tested.
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Figure 10. Grid convergence test with respect to different length of wake, x/c = 0.2, y/c = 0.5, AOA =

0◦, Re = 4 × 106.
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Figure 11. Grid convergence test with respect to different length of wake, x/c = 0.5, y/c = 0.5, AOA =

0◦, Re = 4 × 106.
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Figure 12. Grid convergence test with respect to different length of wake, x/c = 0.8, y/c = 0.5, AOA =

0◦, Re = 4 × 106.
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Figure 13. Grid convergence test with respect to different length of wake, x/c = 0.5, y/c = 0.2, AOA =

0◦, Re = 4 × 106.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 December 2023                   doi:10.20944/preprints202312.0891.v1

https://doi.org/10.20944/preprints202312.0891.v1


18 of 37

U (m/s)

Z
/c

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.02

0.04

0.06

0.08

0.1

Short wake

Long wake

RANS

(a) Velocity

Vorticity(s
-1
)

Z
/c

0 2000 4000 6000
0

0.02

0.04

0.06

0.08

0.1

Short wake
Long wake

RANS

(b) Vorticity

Figure 14. Grid convergence test with respect to different length of wake, x/c = 0.5, y/c = 0.8, AOA =

0◦, Re = 4 × 106.

Investigating the convergence test with respect to different wake lengths while considering the

Angle Of Attack (AOA) is of significant importance. The AOA plays a crucial role in altering the

behavior of vorticity, resulting in asymmetric flow patterns. Figures 15–19 present velocity and vorticity

profiles at different boundary layer locations, while maintaining a constant Angle Of Attack (AOA) as

2 degrees. The numerical solutions remain relatively consistent and independent of the specific length

of the wake in this particular study. It enables the identification of the optimal grid resolution needed

to capture the wake length and AOA effects accurately. One can use a short wake configuration in this

case to increase computational speed while performing numerical simulations.

U (m/s)

Z
/c

1 1.5 2 2.5 3 3.5 4 4.5
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Short wake

Long wake

RANS

(a) Velocity

Vorticity (s
-1
)

Z
/c

0 5000 10000
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Short wake
Long wake
RANS

(b) Vorticity

Figure 15. Grid convergence test with respect to different length of wake, x/c = 0.2, y/c = 0.5, AOA =

2◦, Re = 4 × 106.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 December 2023                   doi:10.20944/preprints202312.0891.v1

https://doi.org/10.20944/preprints202312.0891.v1


19 of 37

U (m/s)

Z
/c

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.02

0.04

0.06

0.08

0.1

0.12

Short wake

Long wake

RANS

(a) Velocity

Vorticity (s
-1
)

Z
/c

0 2000 4000 6000
0

0.02

0.04

0.06

0.08

0.1

0.12

Short wake
Long wake
RANS

(b) Vorticity

Figure 16. Grid convergence test with respect to different length of wake, x/c = 0.5, y/c = 0.5, AOA =

2◦, Re = 4 × 106.
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Figure 17. Grid convergence test with respect to different length of wake, x/c = 0.8, y/c = 0.5, AOA =

2◦, Re = 4 × 106.
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Figure 18. Grid convergence test with respect to different length of wake, x/c = 0.5, y/c = 0.2, AOA =

2◦, Re = 4 × 106.
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Figure 19. Grid convergence test with respect to different length of wake, x/c = 0.5, y/c = 0.8, AOA =

2◦, Re = 4 × 106.
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Figure 20. Time step convergence test for velocity profiles in different chordwise directions, y/c = 0.2,

AOA = 0◦, Re = 4 × 106.
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Figure 21. Time step convergence test for velocity profiles in different spanwise directions, x/c = 0.5 ,

AOA = 0◦, Re = 4 × 106.
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3.4. Comparison between VISVE and RANS Results

In this section, computational experiments will be conducted at two different angles of attack.

This analysis involves examining a symmetric flow at a 0-degree angle of attack and an asymmetric

flow with a 2-degree angle of attack (AOA). While the cases are designed to be steady, they will be

simulated in an unsteady manner, gradually converging to a steady state. The results obtained during

both the unsteady and steady states will be compared. Comprehensive qualitative and quantitative

comparisons will be executed, entailing a detailed assessment of contours and profiles in relation to

results obtained from the RANS solver. Various properties, including vorticity, velocity, and pressure,

will be scrutinized through a comparative analysis.

3.4.1. Unsteady state

By comparing the VISVE results with RANS results taken at different time instances, one can

evaluate how well the VISVE model predicts the changes in flow behavior over time. It provides

insight into the ability of the simulation to capture the dynamic nature of the fluid flow. It also serves

as preliminary investigation for time-dependent phenomena such as vortex shedding, oscillations, or

transitional behaviors.

The results obtained from the current method are presented together with those from RANS

simulations. Figure 22 shows the comparisons of velocity contour between 3-D turbulent VISVE and

RANS at different span-wise cross-sections. Figure 23 presents the comparison of velocity profiles

between VISVE and RANS at zero angle of attack. Figure 24 shows a similar comparison as in Figure 23,

but have an unsymmetrical flow with an AOA = 2◦.
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(a) 3-D Turbulent VISVE 
(b) RANS

Figure 22. Comparison of the velocity contours between 3-D Turbulent VISVE and RANS. Re= 106,

AOA=0◦, t = 0.01 s.

 

(a) Suction Side

 

(b) Pressure Side

Figure 23. Velocity profiles along x/c=0.5, y/c=0.2, 0.5, 0.8. Re=106, AOA=0◦, # of time steps = 100.
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(b) Pressure Side

Figure 24. Velocity profiles along x/c=0.5, y/c=0.2, 0.5, 0.8. Re=106, AOA=2◦, # of time steps = 100.
3.4.2. Steady state

Figures 25 and 26 depict the comparison of velocity and vorticity contours between the 3-D

Turbulent VISVE method and RANS simulations. Five spanwise locations are examined, ranging

from y/c = 0.1 to 0.9 towards the tip. Despite the different underlying principles and computational

approaches, the two methods yield comparable predictions of the flow characteristics. The similarity

between RANS and VISVE suggests that the 3-D Turbulent VISVE method is capable of accurately

capturing the flow features. By examining multiple spanwise locations, the study provides a

comprehensive analysis of the agreement between RANS and VISVE simulations. The consistency

observed across different spanwise locations enhances the confidence in the accuracy and reliability of

the 3-D Turbulent VISVE method.

Figures 27 and 28 display the velocity and vorticity contours at AOA=2◦. An angle of attack

(AOA) is the angle between the chord line of a foil and the oncoming flow direction. The AOA affects

the formation and structure of vortices and the wake behind the hydrofoil.

(a) 3-D Turbulent VISVE (b) RANS

Figure 25. Comparison of the velocity contours between 3-D Turbulent VISVE and RANS. Re= 106,

AOA=0◦.
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(a) 3-D Turbulent VISVE (b) RANS

Figure 26. Comparison of the vorticity contours between 3-D Turbulent VISVE and RANS. Re= 106,

AOA=0◦.

(a) 3-D Turbulent VISVE (b) RANS

Figure 27. Comparison of the velocity contours between 3-D Turbulent VISVE and RANS. Re= 106,

AOA=2◦.
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(a) 3-D Turbulent VISVE (b) RANS

Figure 28. Comparison of the vorticity contours between 3-D Turbulent VISVE and RANS. Re= 106,

AOA=2◦.
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Figure 29. Velocity profiles at different spanwise direction y/c=0.3, 0.5, 0.7. Re=4 × 106, AOA=0◦.
.
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Figure 30. Vorticity profiles at different spanwise direction y/c=0.3, 0.5, 0.7. Re=4 × 106, AOA=0◦.
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Figure 31. Velocity profiles at different spanwise direction y/c=0.3, 0.5, 0.7. Re=4 × 106, AOA=2◦.
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Figure 32. Vorticity profiles at different spanwise direction y/c=0.3, 0.5, 0.7. Re=4 × 106, AOA=2◦.

Once fluid properties like velocity and vorticity are assessed in a steady state, attention turns

to exploring hydrodynamics. Figure 33 displays pressure distribution on the wing across various

spanwise sections. Agreement with RANS is noted at most chordwise and spanwise positions, except

in the vicinity of the leading edge. Differences at the leading edge when predicting pressure can arise

due to several reasons. Future investigation will be carried on the velocity of the leading edge.
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Figure 33. Pressure distribution on the hydrofoil along different spanwise direction y/c=0.3, 0.5, 0.7,

0.9. Re=4 × 106, AOA=2◦, steady.
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4. Conclusions

The research successfully developed an efficient numerical solver, based on the 3-D VIScous

Vorticity Equation (VISVE) model, capable of simulating turbulent flows around hydrofoils. This study

implemented the k − ω SST turbulence model within the 3-D VISVE solver, extending its applicability

to turbulent flow scenarios. The adoption of a hybrid OpenMP/MPI parallelization strategy allowed

for the efficient utilization of High-Performance Computing (HPC) resources, enhancing the solver’s

computational efficiency. The conducted convergence tests and the analysis of a 3-D hydrofoil

showcased the solver’s consistency with results obtained from a Reynolds-Averaged Navier-Stokes

(RANS) solver, highlighting its accuracy and reliability in turbulent flow simulations. The research

showcased significant reductions in computational domain, unknowns, and computation time for the

hydrofoil case.

Overall, this research contributes to the development of a robust and efficient numerical solver for

simulating turbulent flows around hydrofoils. Having successfully assessed the stability and reliability

of the presented developed 3-D turbulent VISVE solver, the subsequent phase includes an examination

of the rotational turbulent flow and the practical application to a rotational propeller.
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Appendix A. Numerical implementation of the 3-D k − ω SST model

This appendix presents the newly developed 3-D turbulence model, highlighting the incorporation

of turbulence effects.

To numerically solve the k − ω SST turbulence model, as described in Section 2.1.3, a Finite

Volume Method (FVM) is employed. By applying the Gaussian divergence theorem, Equation (A1) is

obtained.
∂k

∂t

∣

∣

∣

∣

P

Ω = −∑
f

−→q f · −→n f k f s f + ∑
f

(v + σkvT) f

∂k

∂n

∣

∣

∣

∣

∣

f

s f + S̄
∣

∣

P
Ω (A1)

Appendix A.1. Convective term

First, we examine the convective term.

[

(Askq · ns1)i+1/2,j,k − (Askq · ns1)i−1/2,j,k

∑
f

−→q f · −→n f k f s f =+ (Askq · ns2)i,j+1/2,k − (Askq · ns2)i,j−1/2,k

+ (Askq · ns3)i,j,k+1/2 − (Askq · ns3)i,j,k−1/2

]

(A2)
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The k value at the face can be represented by the k at the centroid:

ki+ 1
2 ,j,k =

ki+1,j,k + ki,j,k

2
+ O

(

∆l2
)

ki− 1
2 ,j,k =

ki−1,j,k + ki,j,k

2
+ O

(

∆l2
)

ki,j+ 1
2 ,k =

ki,j+1,k + ki,j,k

2
+ O

(

∆l2
)

ki,j− 1
2 ,k =

ki,j−1,k + ki,j,k

2
+ O

(

∆l2
)

ki,j,k+ 1
2
=

ki,j,k+1 + ki,j,k

2
+ O

(

∆l2
)

ki,j,k− 1
2
=
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2
+ O

(

∆l2
)

(A3)

Substitute Equation (A3) into Equation (A2), yielding:

∑
f

−→q f · −→n f k f s f =
ki+1,j,k + ki,j,k

2
(Asq · ns1)i+ 1

2 ,j,k −
ki−1,j,k + ki,j,k

2
(Asq · ns1)i− 1

2 ,j,k

+
ki,j+1,k + ki,j,k

2
(Asq · ns2)i,j+ 1

2 ,k −
ki,j−1,k + ki,j,k

2
(Asq · ns2)i,j− 1

2 ,k

+
ki,j,k+1 + ki,j,k

2
(Asq · ns3)i,j,k+ 1

2
−

ki,j,k−1 + ki,j,k

2
(Asq · ns3)i,j,k− 1

2

(A4)

In Figure A1, the coordinates and indices are shown for the 3-D turbulence model after the process

of discretization.

(i,  j, k) (i+1,  j, k)(i-1,  j, k)

(i,  j, k-1)

(i,  j, k+1)

(i,  j+1, k)

(i,  j-1, k)

x

y

Figure A1. Indices for the 3-D turbulence model

Appendix A.2. Diffusive term

The diffusive term can also be expressed as the sum of six faces over each control volume.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 December 2023                   doi:10.20944/preprints202312.0891.v1

https://doi.org/10.20944/preprints202312.0891.v1


32 of 37

∑
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(v + σkvT) f
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Equation (A5) can be written as:

∑
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(A7)

Appendix A.3. Source term

When dealing with structured orthogonal grids, calculating the gradient of a scalar at a control

volume centroid is straightforward using the definition of derivatives. However, for general

unstructured grids, the process becomes more complex. In such cases, the Green-Gauss theorem
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is commonly used as a numerical method. This theorem relates the surface integral of a scalar function

to the volume integral of the gradient of the scalar function.

The Green-Gauss method is employed for calculating gradients in Finite Volume Methods (FVM).

It is considered an attractive method due to its adherence to the principles of FVM discretization for

other partial differential terms. This method has been shown to outperform the least-squares (LS)

gradient method in simulating aerodynamic boundary layer flows over curved surfaces, as analyzed

by Syrakos et al. [39]. Additionally, the Green-Gauss method is not restricted algorithmically to a

specific grid cell geometry and can be applied to cells with an arbitrary number of faces. This flexibility

is particularly important as unstructured grids have become a standard practice in simulating complex

engineering processes in recent years.

The rate of stain term in production:

Sij =







Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz






(A8)

where, the components of the Sij are:

Sxx = ∂U
∂x

Syy = ∂V
∂y

Szz =
∂W
∂z

Sxy = Syx = 1
2

[

∂U
∂y + ∂V

∂x

]

Sxz = Szx = 1
2

[

∂U
∂z + ∂W

∂x

]

Syz = Szy = 1
2

[

∂V
∂z + ∂W

∂y

]

(A9)

Appendix B. Vorticity Solver

This appendix demonstrates the integration of turbulent viscosity into the vorticity transport

equation. For the vorticity solver, the modification due to turbulence effect mainly focus on the

diffusive term. The convective term remains unchanged from the laminar case, and thus, it will be

omitted here. For details on addressing the convective term, please refer to [27].

This is the vorticity equation for 3-D turbulent flow.

A
∂ω · n

∂t
+ ∑

∂A

(ω × q) · ∆l = −∑
∂A

(∇× νω) · ∆l (A10)

After applying Stokes’s theorem, we obtain the discretized form, taking ω3 for example:

(

A3
∂ω3
∂t

)

i+ 1
2 ,j+ 1

2 ,k

+ [(ω × q) · ∆l1]i+ 1
2 ,j,k − [(ω × q) · ∆l1]i+ 1

2 ,j+1,k

− [(ω × q) · ∆l2]i,j+ 1
2 ,k + [(ω × q) · ∆l2]i+1,j+ 1

2 ,k

= − [(∇× νω) · ∆l1]i+ 1
2 ,j,k + [(∇× νω) · ∆l1]i+ 1

2 ,j+1,k

+ [(∇× νω) · ∆l2]i,j+ 1
2 ,k − [(∇× νω) · ∆l2]i+1,j+ 1

2 ,k

(A11)
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The diffusive terms encompass the turbulent viscosity. Applying Stokes’s theorem once again to

the diffusive term involves taking the curl off. The turbulent viscosity is located from the face centroid

to the edges after this operation.

[(∇× νω) · ∆l2]i+1,j+ 1
2 ,k

=
(

∆l2
As

)

i+1,j+ 1
2 ,k

[
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2 ,k

]

+
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2
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(A12)
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∆l1
As

)

i+ 1
2 ,j+1,k

[

(ν∆l2ω2)i+ 1
2 ,j+1,k− 1

2
− (ν∆l2ω2)i+ 1

2 ,j+1,k+ 1
2

]

(A13)

The discretized form for all of the terms would be:

(

A3
∂ω3
∂t

)

i+ 1
2 ,j+ 1

2 ,k

+
{

∆l1
|n2×n3| [(q · n2)ω3 − (q · n3)ω2]

}

i+ 1
2 ,j+1,k

−
{

∆l1
|n2×n3| [(q · n2)ω3 − (q · n3)ω2

]}

i+ 1
2 ,j,k

−
{

∆l2
|n1×n3| [(q · n1)ω3 − (q · n3)ω1

]}

i,j+ 1
2 ,k

+
{

∆l2
|n1×n3| [ (q · n1)ω3 − (q · n3)ω1]

}

i+1,j+ 1
2 ,k

= −
(

∆l1
As

)

i+ 1
2 ,j,k

[

(ν∆l3ω3)i+ 1
2 ,j+ 1

2 ,k − (ν∆l3ω3)i+ 1
2 ,j− 1

2 ,k

]

−
(

∆l1
As

)

i+ 1
2 ,j,k

[

(ν∆l2ω2)i+ 1
2 ,j,k− 1

2
− (ν∆l2ω2)i+ 1

2 ,j,k+ 1
2

]

+
(

∆l1
As

)

i+ 1
2 ,j+1,k

[

(ν∆l3ω3)i+ 1
2 ,j+ 3

2 ,k − (ν∆l3ω3)i+ 1
2 ,j+ 1

2 ,k

]

+
(

∆l1
As

)

i+ 1
2 ,j+1,k

[

(ν∆l2ω2)i+ 1
2 ,j+1,k− 1

2
− (ν∆l2ω2)i+ 1

2 ,j+1,k+ 1
2

]

+
(

∆l2
As

)

i,j+ 1
2 ,k

[

(ν∆l3ω3)i− 1
2 ,j+ 1

2 ,k − (ν∆l3ω3)i+ 1
2 ,j+ 1

2 ,k

]

+
(

∆l2
As

)

i,j+ 1
2 ,k

[

(ν∆l1ω1)i,j+ 1
2 ,k+ 1

2
− (ν∆l1ω1)i,j+ 1

2 ,k− 1
2

]

−
(

∆l2
As

)

i+1,j+ 1
2 ,k

[

(ν∆l3ω3)i+ 1
2 ,j+ 1

2 ,k − (ν∆l3ω3)i+ 3
2 ,j+ 1

2 ,k

]

−
(

∆l2
As

)

i+1,j+ 1
2 ,k

[

(ν∆l1ω1)i+1,j+ 1
2 ,k+ 1

2
− (ν∆l1ω1)i+1,j+ 1

2 ,k− 1
2

]

(A14)

where, ν = νT + νm.

The turbulent viscosity calculated from the turbulence model is located at the centroid. To

integrate it into the vorticity solver, interpolation from the centroid to the edges is required. Figure A2

illustrates the indexing scheme used for nodes, faces, and edges in a computational mesh.
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Figure A2. Index at nodes, faces and edges

Appendix C. Velocity Solver

This appendix illustrates how the vorticity-preserving velocity field wn+1 is determined explicitly

under turbulent flow.

Consider the requirement of wn+1,

Aω
n+1 · n = ∑

∂A

wn+1 · ∆l (A15)

Handling the unsteady term with an explicit time method, we can obtain:

Aω
n+1 · n = ∆t ∑

∂A

[

−
(

ω
n+1 × qn

)

+∇× νω
n+1
]

· ∆l + Aω
n · n (A16)

and

Aω
n · n = ∑

∂A

qn · ∆l (A17)

Comparing Equations (A15), (A16) and (A17), we have

wn+1 = ∆t
[

−
(

ω
n+1 × qn

)

+∇× νω
n+1
]

+ qn (A18)

Equation (A18) is explicit, because all the terms in the RHS are known once ω
n+1 is known.

After solving ω
n+1, the Poisson equation for velocity can be solved via a Finite Volume Method

(FVM). This part will not be presented here as it is the same as the laminar solver. For further details,

please refer to [27].
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