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Abstract: Leaf area estimation is a critical component in the study of plant growth and productivity within 
agricultural systems. This research introduces the LeafArea package, a specialized tool designed to calculate 
the leaf area of six distinct Andean fruit species: S. quitoense, S. betaceum, P. peruviana, R. fruticosus, P. ligularis 
and P. edulis. Leveraging response variables such as species type, leaf length and width, the package employs 
advanced machine learning algorithms to estimate leaf area accurately. The primary focus of the study is to 
identify the most effective model for describing the relationship between leaf width, length, and area for each 
plant species. Currently, the LeafArea package utilizes four different machine learning algorithms, namely 
generalized linear model (GLM), generalized linear mixed model (GLMM), Random Forest and XGBoost. 
Among these, XGBoost stands out as a top-performing algorithm, exhibiting exceptional predictive accuracy. 
The evaluation metrics employed in the program provide valuable insights for researchers, aiding in informed 
decision-making. Specifically, XGBoost demonstrates significantly lower prediction errors and approaches a 
near-perfect R2 value, emphasizing its potential to enhance predictive accuracy. These results underscore the 
efficacy of machine learning techniques, as a compelling choice for researchers seeking precise and robust 
predictions in leaf area estimation. The LeafArea package thus represents a valuable tool for advancing our 
understanding of plant growth dynamics, resource allocation, and overall productivity within agricultural 
ecosystems. 
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1. Introduction 

Leaf area estimation serves as a vital parameter in various agricultural practices, including crop 
management, yield prediction, and the optimization of resource utilization [1]. Recognizing this 
significance, our study introduces the LeafArea package available on GitHub 
(https://github.com/velasquez-vasconez/LeafArea), a sophisticated tool tailored for the precise 
calculation of leaf area in six distinct Andean fruit species: Solanum quitoense, Solanum betaceum, 

Physalis peruviana, Rubus fruticosus, Passiflora ligularis and Passiflora edulis.  
This prominent fruit species play important roles in the economy and traditional culture of the 

Andean region. These fruits are not only integral to the ecological diversity of the Andean region but 
also play pivotal roles in the local economy and cultural traditions [2]. Their cultivation and 
utilization have been deeply intertwined with the livelihoods of Andean communities for 
generations. 
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Andean fruit species have gained global recognition for their nutritional value, unique flavors, 
and potential health benefits [2–4]. Exotic fruits continue to grow worldwide, understanding the 
growth and productivity of these species becomes increasingly relevant. Accurate leaf area 
estimation, as studied in this research, provides a crucial foundation for optimizing cultivation 
practices, resource allocation, and ultimately enhancing the yield and quality of these valuable fruits 
[5]. By delving into the intricate relationships between leaf traits and area, this study not only 
contributes to the scientific understanding of plant growth but also offers practical insights that can 
benefit both farmers and researchers working to maximize the potential of Andean fruit species. 

Our primary objective centers on identifying the most effective model for elucidating the 
intricate relationship between leaf width, length, and area specific to each plant species. The LeafArea 
package computes leaf area using the best GLM and GLMM described in this study. Additionally, it 
incorporates two robust machine learning algorithms, namely Random Forest and XGBoost, 
demonstrating its potential to revolutionize leaf area estimation practices. 

Accurate and reliable models for estimating leaf area based on easily measurable leaf traits are 
invaluable tools for both researchers and farmers. This innovative approach not only ensures accurate 
leaf area estimations but also propels the study into the forefront of modern research methodologies 
in plant science. The LeafArea package emerges as a transformative tool, facilitating advancements 
in our understanding of Andean fruit plants growth and provides valuable tools for researchers and 
farmers to optimize plant breeding practices and enhance productivity in the region. 

2. Materials and Methods 

This The growth patterns of leaves from various plant species were evaluated, including 
blackberry (R. fruticosus), tamarillo (S. betaceum), sweet granadilla (P. ligularis), lulo (S. quitoense), 
goldenberry (P. peruviana) and passion fruit (P. edulis). The plants were planted in experimental plots 
that were established in six municipalities of the department of Nariño such as Arboleda, Sandoná, 
La Florida, El Peñol, Providencia and Ipiales. To calculate plant leaf area using the ImageJ program 
v1.4.3 [6]. Digital images of the plant leaves were captured under proper scale and lighting. 
Subsequently, these images were imported into ImageJ, where the user selects the region of interest 
by tracing the outline of each leaf. ImageJ then calculates the area of the selected the region of interest, 
providing an accurate measurement of the leaf area in pixels. To convert this measurement to a 
physical unit, such as square centimeters, a scale calibration was performed using a reference object 
of known dimensions within the image. Finally, the software provides the calculated leaf area in the 
desired unit, allowing for precise and efficient analysis of plant leaf size. We initiated our analysis by 
conducting a pairwise scatter plot matrix, which provided insights into the relationships between 
leaf area, leaf length, and leaf width. To address the observed non-linear relationship between leaf 
area and its predictors, we employed a square root transformation (sqrt) on the response variable. 
This transformation was applied to enhance the functional form of the variable and to achieve better 
data symmetry. A high degree of correlation between the leaf length and width variables indicated 
the presence of multicollinearity issues. Variance inflation factors (vif) exceeded 15 for the leaf 
dimension variables, suggesting potential problems in statistical analysis. To mitigate these issues, 
we adopted a common practice of retaining the predictor variable that demonstrated the best model 
fit. Subsequently, we decided to eliminate the leaf width variable, which reduced multicollinearity in 
the final model. As an additional strategy, we introduced a synthetic variable, denoted as 
‘Length_width’, which was computed as the square root of the product of leaf length and width. In 
addition to deterministic models, we assessed machine learning techniques such as Random Forest 
and XGBoost. These methods provided a holistic perspective on predictive capabilities, revealing a 
hierarchy of predictive power. The data was then split into training and testing sets with a random 
seed set to ensure reproducibility. The split ratio was 80:20 for training and testing sets, respectively. 
The Random Forest and XGBoost model was implemented using the ‘rf’  and ‘xgbTree’ method, 
respectively, from the ‘caret’ package [7]. The performance of four models was evaluated on the test 
and training sets. Metrics such as RMSE, MAE, MAPE, and R2 were calculated and reported for each 
model. Finally, the best models were implemented in the LeafArea package to predict the LeafArea 
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for the entire dataset, and the predictions were added as new variables to the original dataset. All 
statistical procedures were performed using the R software v4.2.3 [8]. 

Results and discussion 

Pairwise scatter plot matrix revealed that leaf area revealed a significant positive correlation 
(p<0.001) with both leaf length and width (Figure 1). As expected, the expansion of the leaf surface 
demonstrates exponential growth in relation to the independent variables (Figure 1). The leaf 
continues to grow, especially in terms of both width and length, the rate at which its area increases 
accelerate significantly. To address the observed non-linear relationship between leaf area and its 
predictors, we applied a square root transformation (sqrt) to the response variable. The square root 
transformation improved the functional form of the variable and the symmetry of the data, as evident 
from the distribution of points and the boxplots (Figure 1). Furthermore, the correlation coefficient 
with the predictor variables improved by up to four points (Figure 1). This statistical technique is 
effective in cases where the data exhibits a right-skewed distribution or when the relationship 
between variables is curvilinear, meaning that the rate of change is not constant [9]. The square root 
transformation is one of the power transformations used to stabilize variances and linearize 
relationships [10]. 

 

Figure 1. Pairwise scatter plot matrix and correlation analysis between the variables. The leaf area 
exhibits a significant positive correlation (p<0.001) with both leaf length and width. The leaf area was 
subjected to a square root transformation (sqrt) in response to the observed non-linear relationship. 
A synthetic variable was created by the square root of the product of the leaf length and width. 

The high degree of correlation between the variables Leaf length and width indicated the 
presence of multicollinearity problems. Variance inflated (vif) values were found to be greater than 
15 for the leaf dimension variables (Figure S1). Multicollinearity can create problems in statistical 
analysis, as it becomes challenging to disentangle the unique contributions of each predictor variable 
to the dependent variable [11–13]. To mitigate the multicollinearity problems, a common practice is 
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to retain the predictor variable that demonstrated the best model fit and the lowest RMSE values. It 
was decided to eliminate the leaf width variable that generated the models with the lowest fit to 
reduce multicollinearity in the final model. As an additional strategy, we introduced a synthetic 
variable, denoted as ‘Length_width’, which was computed as the square root of the product of the 
leaf length and width. The composed variable was identified as the most suitable representation of 
leaf expansion and played an important role in producing the most effective GLM and GLMM models 
(Figure 2), as suggested by Favero [14] and Freedman [15]. 

 

Figure 2. Comparing Log-likelihood between generalized linear models (GLMs) and generalized 
linear mixed models (GLMMs). The parameter ‘Length_width’ represents the composed variable 
obtained from SQRT(Length * Width). 

The GLMM models are better suited for data with hierarchical or clustered structures, where 
observations are not necessarily independent [16]. The highest Log-likelihood value was from the 
GLM3 model provides the best overall fit among the GLM and GLMM models (Figure 2). Among the 
GLM models, GLM3 has the highest Log-likelihood value. The obtained results emphasize the 
significance of the synthetic variable ‘Length_width’ as a more predictive factor compared to the 
individual variables that were independently evaluated. Synthetic variables are often created by 
combining or transforming multiple individual variables to better represent complex underlying 
relationships in the data [17]. On the other hand, GLMMs were better suited to capture the intricate 
relationships often encountered in real-world datasets (Figure 3). By doing so, they enhance 
predictive accuracy and model performance [18]. This collective evidence underscores the 
importance of adopting comprehensive modeling approaches, such as GLMMs and composite 
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variables, when seeking a deeper understanding of complex datasets and striving for more robust 
predictive capabilities.  

 

Figure 3. Relationship between square root of leaf area and Leaf Length in a generalized linear mixed 
model across six fruit species. 

In addition to deterministic models, we evaluated machine learning techniques such as Random 
Forest and XGBoost. The evaluation of performance metrics offered a holistic perspective on their 
predictive capabilities (Table 1). Notably, the results revealed a clear hierarchy of predictive power 
(Table 1). Among the GLMs and GLMMs, GLM3 and GLMM3 emerged as the strongest contenders, 
showcasing lower prediction errors and higher R2 values. However, the machine learning models, 
particularly XGBoost, surpassed all others, exhibiting remarkably lower RMSE, MAE, MAPE, and 
highest R2. This outcome underscores the remarkable potential of machine learning techniques in 
enhancing predictive accuracy and highlights XGBoost as a standout performer, making it a 
compelling choice for tasks that demand precise and robust predictions. 

Table 1. Comparison of performance metrics across generalized linear models (GLMs) and 
generalized linear mixed models (GLMMs). 

Models RMSE MAE MAPE R2 

GLM1 1.8141 1.3980 22.0732 0.9053 

GLM2 1.5440 1.0946 18.5890 0.9314 

GLM3 1.4840 1.0651 16.7689 0.9366 

GLMM1 1.6140 1.1470 16.0398 0.9240 

GLMM2 1.4316 1.0130 15.7745 0.9390 

GLMM3 1.3946 0.9614 13.7895 0.9410 

Random Forest 1.2099 0.9578 10.7773 0.9655 

XGBoost  0.3043 0.1801 1.4751 0.9990 

The comparison of performance metrics across various modeling techniques reveals a striking 
contrast, particularly with the introduction of machine learning methods like Random Forest and 
XGBoost into the analysis. While the traditional GLMs and GLMMs offer reasonably good predictive 
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performance, it becomes evident that these models have certain limitations when striving for highly 
accurate predictions. However, with the advent of machine learning techniques, we observe a 
significant leap in predictive power. This remarkable outcome underscores the transformative 
potential of machine learning in enhancing predictive accuracy. XGBoost precision and robustness 
position it as a standout performer, making it an exceptionally compelling choice for tasks 
demanding the utmost accuracy and reliability in predictions [19]. These results not only validate the 
effectiveness of machine learning but also emphasize the importance of selecting the right modeling 
approach to achieve superior predictive outcomes, particularly when working with complex or high-
dimensional data. 

The LeafArea package has undergone a meticulous model selection process, resulting in the 
identification of the optimal GLM and GLMM for calculating leaf area across six distinct species of 
fruit plants. These selected models have been incorporated into a dedicated function within the 
package, ensuring accurate and reliable leaf area predictions (calculate_LeafArea_glm and 
calculate_LeafArea_glmm, respectively). Moreover, specialized functions have been developed to 
compute leaf area using state-of-the-art machine learning techniques, specifically XGBoost and 
Random Forest models (calculate_LeafArea_rf and calculate_LeafArea_xgb, respectively). The four 
functions not only provide leaf area estimates but also furnish comprehensive predictive power 
evaluation metrics. These metrics empower users to make informed decisions by comparing and 
selecting the model that best aligns with their specific requirements, thus enhancing the versatility 
and usability of the LeafArea package. 

The four functions have been implemented in the R package LeafArea to calculate leaf area, 
currently for six plant species. We encourage researchers to provide sufficient data to expand both 
the number of species and the number of observations, thereby continually enhancing the predictive 
power of our models. This includes broadening the range of plant species that can be studied. The 
LeafArea package is open-source (https://github.com/velasquez-vasconez/LeafArea), and any 
contributions to the database or code will be greatly appreciated. 

Conclusions 

The LeafArea package introduces four invaluable functions for precise leaf area estimation in six 
Andean fruit species. It incorporates the optimal GLM and GLMM models, alongside the powerful 
Random Forest and XGBoost algorithms, resulting in a robust and versatile approach. The 
exceptional performance of XGBoost underscores its potential to revolutionize leaf area estimation 
practices, exhibiting outstanding predictive accuracy. GLMMs prove effective in capturing complex 
relationships, while machine learning techniques, particularly XGBoost, surpass all models, offering 
superior predictive accuracy. The LeafArea package actively encourages collaborative contributions 
to its database and code, fostering a collective effort to advance our comprehension of plant growth 
dynamics and productivity.  
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