
Review

Not peer-reviewed version

Review of Generative Models in

Generating Synthetic Attack Data for

Cybersecurity

Garima Agrawal

*

 , Amardeep Kaur

*

 , Sowmya Myneni

*

Posted Date: 12 December 2023

doi: 10.20944/preprints202312.0865.v1

Keywords: Cyber Security; GANs; Network Security; Cyber-Attacks; Adversarial Attacks; Generative Models;

Generative Nets, Synthetic Attack Data

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2423782
https://sciprofiles.com/profile/3306899
https://sciprofiles.com/profile/3306900

Review

Review of Generative Models in Generating
Synthetic Attack Data for Cybersecurity

Garima Agrawal 1,* , Amardeep Kaur 2 and Sowmya Myneni 1

1 School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, 85281, USA;

smyneni2@asu.edu (S.M.)
2 School of Physics, Mathematics and Computing, The University of Western Australia, Perth, WA 6009,

Australia; amardeep.kaur@uwa.edu.au (A.K.)

* Correspondence: garima.agrawal@asu.edu (G.A.)

Abstract: The ability of deep learning to process vast data and uncover concealed malicious patterns

has spurred the adoption of deep learning methods within the cybersecurity domain. Nonetheless, a

notable hurdle confronting cybersecurity researchers today is the acquisition of a sufficiently large

dataset to train deep learning models effectively. Privacy and security concerns associated with using

real-world organization data have made cybersecurity researchers seek alternative strategies, notably

focusing on generating synthetic data. Generative Adversarial Networks (GANs) have emerged as a

prominent solution, lauded for their capacity to generate synthetic data spanning diverse domains.

Despite their widespread use, the efficacy of GANs in generating realistic cyber attack data remains a

subject requiring thorough investigation. Moreover, the proficiency of deep learning models trained

on such synthetic data to accurately discern real-world attacks and anomalies poses an additional

challenge that demands exploration. This paper delves into essential aspects of generative learning,

scrutinizing their data generation capabilities, and conducts a comprehensive review to address the

above questions. Through this exploration, we aim to shed light on the potential of synthetic data in

fortifying deep learning models for robust cybersecurity applications.

Keywords: cyber security; GANs; network security; cyber-attacks; adversarial attacks; generative

models; generative nets; synthetic attack data

1. Introduction

The use of machine learning for cyber security has become increasingly prominent over recent

years, as it offers a way to defend against constantly evolving cyber threats. However, one of the

significant challenges of applying machine learning methods in anomaly or intrusion detection systems

is the need for more realistic cyber attack datasets. Given privacy and security concerns, real-world

organizations cannot share their data. Thus, most cybersecurity datasets are created using simulated

attacks conducted by red-blue teams or hackathons. These simulations can provide some attack

data, but the attack scenarios are often limited and specific to the simulation environment. The

attack data must be more diverse and realistic to train models and estimate system security. To

effectively defend against a constantly changing threat landscape, there is a need for automated

methods of generating diverse and realistic attack data without impacting the regular operation of

an organization’s production environment. One possible approach for automating the generation of

diverse and realistic attack data is using generative models to generate synthetic data.

Generative Adversarial Networks (GAN) have been widely used to generate synthetic data,

especially image generation and text manipulation. GANs can fool the defender into believing that

the synthetic data is the actual data [1,2]. The success of adversarial networks in different domains [3]

has intrigued the cybersecurity research community to use GANs in cybersecurity. GANs have been

used in cybersecurity in different ways. The most common application is to improve the intrusion

detection and security of the systems. There is also research to explore how adversarial systems can

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0002-4383-7850
https://doi.org/10.20944/preprints202312.0865.v1
http://creativecommons.org/licenses/by/4.0/

2 of 29

use GANs to spoof security systems like fingerprints, passwords, face detection, etc. [4,5]. GANs

are also used to generate malware, and cyber attack data [6]. While the development of GAN-based

privacy and security methods seems promising and has opened new research avenues [5], the quality

of synthetic attack data generated by GANs needs to be determined. It is still unclear whether the

artificial attack data is realistic as the actual cyber attack data and whether it contains the signature

attack vector. Also, when the intrusion detection systems and deep learning models are trained on

the synthetically generated attack data, there is a need to analyze further whether these models can

detect new or unseen real-world attacks. In this paper, we did a survey and critical analysis on the

application of GANs in generating cyber attack data while making the following contributions:

1. We explored the critical features of generative learning and the capabilities of generative models,

highlighting their effectiveness in creating new data compared to discriminative models [7]. This

comparison is further enriched by a detailed examination of how generative models operate.
2. We provide a concise overview of GANs, focusing on their data generation capabilities and

architecture. It includes examining various models and techniques that generate diverse image

and text data across domains using GANs.
3. Next, we comprehensively review various methods for generating synthetic cyber attack data

using GANs.
4. Finally, we assess the value of synthetically generated attack data by conducting experiments with

the NSL-KDD dataset. Specifically, we examine the characteristics of DoS attacks and gauge how

well GAN-generated data can improve the training of intrusion detection systems for real-world

cyber-attack mitigation.

The paper is organized as follows. The next section discusses the different modeling techniques

and generative models.The GAN architecture is presented in Section 3. Section 4 overviews models

and techniques for generating synthetic data in images and text. In Section 5, we present a detailed

literature survey of methods to generate cyber attack data using GANs. Further, in Section 6, we

present a critical analysis of GANs capability to generate realistic attack data and the usefulness of this

synthetic attack data in training intrusion detection classifiers. Finally, we provide the discussion in

Section 7 and conclude the paper in Section 8.

2. Modeling Techniques

In this section, we will discuss the various modeling techniques, with a specific focus on an

in-depth examination of the crucial facets of generative learning [8]. We also analyze the mechanisms

through which generative models adeptly generate data. The modeling techniques are of two types,

generative and discriminative modeling [9]. The below subsections give a brief overview of each

modeling type.

2.1. Generative models

Generative modeling is a type of modeling that has been widely used in statistics. When

applied to machine learning it has been useful in various fields like natural language processing,

visual recognition, speech recognition and data generation tasks [10]. Naive Bayes [11], Bayesian

networks [12], Markov Random fields [13], Hidden Markov Models [14] and Linear Discriminant

Analysis (LDA) [15] are some of those generative modeling techniques. The advent of Deep

Learning [16] has sparked the development of the deep generative models like Boltzmann

machines [17], Restricted Boltzmann Machines [18], Deep Belief Networks [19], Deep Boltzmann

Machines [20] including graphical models like Sigmoid Belief Networks [21], Differentiable Generator

Networks [22], Variational Autoencoders [23] etc. Generative Adversarial Network [1], popular as

GAN, is a type of generative model that received massive attention in the past few years due to their

remarkable success in generating synthetic data [24].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

https://doi.org/10.20944/preprints202312.0865.v1

3 of 29

2.2. Discriminative models

Discriminative models, as their name indicates, are capable of understanding the boundaries

amongst the given data points using probability estimates, and thus are widely used in classification

approaches. The supervised learning [25] approaches such as Logistic regression [26], Support Vector

Machine [27], Neural networks [28], Nearest Neighbor [29] are based on discriminative modeling.

When provided with sufficient labeled data, these methods have succeeded in classification tasks [30].

They can learn to discriminate between different types of data and output the instance that belongs to

a particular class.

2.3. Difference between Generative and Discriminative Models

The generative and discriminative modeling differs in their approach to solving the learning

tasks [31]. The discriminator plays more of a classifier role by creating the decision boundary between

the different classes. It does not attempt to learn the actual distribution of the data but tries to learn the

mapping between the data vector and the label vector, given enough labeled mapping samples. The

generative family handles it more challenging by modeling the data distribution and suggesting how

likely an example belongs to a distribution. Since the model knows the data and its distribution, it

is generative and can produce new examples. It is also possible for them to model a distribution by

producing convincingly “fake" data that looks like been drawn from that distribution.

Mathematically, any classifier must estimate the function f : x → y, or p(y|x) for a given dataset x

with corresponding labels y. The discriminative models [32] use the conditional probability and model

the posterior p(y|x) directly or learn a direct mapping from input, x to the class labels, y. Whereas, the

generative models [33] learn the distribution of the input x and the label y, or just p(x), if there are

no labels, from the joint probability p(x, y). They estimate the parameters of p(x|y) and p(y) directly

from the training data and make the predictions by using Bayes’ rules to calculate p(y|x) and pick the

most likely label y.

2.4. Why Generative models?

Generative models have a significant role to play. When it comes to tasks like generating new

data examples, determining how likely it is for any event to occur, or handling missing values by

making use of available unlabeled data, or the ability to infer information from related activities, the

discriminative models or the supervised learning algorithms requires a considerable amount of labeled

data to perform such tasks with reasonable accuracy. It is usually tough and expensive to label the

data; in fields like cyber security [34], where the data is limited, it is even harder to train the model.

The most likely approaches used in such situations are the unsupervised [35] and semi-supervised [36]

learning. However, only some have achieved the level of accuracy as the supervised algorithms. The

unsupervised algorithms have to deal with the high dimensionality of random variables. It enforces

both the statistical and computational challenges to generalize the number of configurations and solve

a problem in a tractable way as the number of dimensions grows exponentially. One of the ways

to deal with the high dimensionality of intractable computations is to approximate them or design

them in a way that does not require such computations. Generative modeling techniques have proved

promising [37] in providing the latter design approach.

2.5. How Generative Models work?

Given the training data and the set of parameters, θ, a model can be built to estimate probability

distribution. The likelihood is the probability that a model assigns to the training data for a dataset

containing m samples of x(i),

m

∏
i=1

pmodel(x(i); θ) (1)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

https://doi.org/10.20944/preprints202312.0865.v1

4 of 29

The maximum likelihood provides a way to compute the parameters,θ, that can maximize the

likelihood of the training data. To simplify θ, log is taken in equation (1) to express the probabilities as

a sum rather than the product,

θ
∗ = arg max

θ

m

∑
i=1

logpmodel(x(i); θ) (2)

If pdata lies within the family of distributions of pmodel(x; θ), the model can precisely find the pdata.

In the real world, there is no access to pdata, and only the training data is available for modeling. The

models must define their density function and find the pmodel(x; θ) that maximizes the likelihood. The

generative models which can explicitly represent the probability distribution of the data are called

explicit density models [38]. The Fully Visible Belief Networks (FVBNs) [39] and nonlinear independent

component analysis [40] are a few such explicit density models which can successfully optimize directly

on the log-likelihood of the training dataset. However, their use is limited to solving simple problems

and imposing design restrictions. As the data gets complex and the dimensionality of the data grows,

it gets computationally intractable to find the maximum likelihood. Then approximations are made

on the maximum likelihood, either by using deterministic approximations, as in variational methods

like Variational AutoEncoder (VAE) [23], or by using stochastic approximations such as Monte Carlo

methods [41] The variational autoencoder is one of the popular semi-supervised generative modeling

technique, but it suffers from low-quality samples.

Another family of deep generative nets, called implicit density models [42], do not explicitly

represent the probability distribution over the space where data lies but provide some indirect way

to interact with the probability distribution pmodel . In indirect ways, they can draw samples from the

distribution. One of the methods used by implicit density models is Markov Chain [43] to stochastically

draw samples from pmodel distribution and transform an existing sample to obtain another sample

from the same distribution. Another strategy is to generate the samples in a single step directly from

the distribution represented by the model. The generative model in GANs is based on implicit density

models and uses the latter strategy to generate the samples directly from the distribution represented

by the model.

2.6. How Generative Models generate data?

Any information can be processed if it is represented well. In the case of machine learning tasks,

it is critical to represent the information so that the model can perform subsequent learning tasks

efficiently [44]. The choice of representation varies as per the learning strategy of the model. For

instance, a feedforward network trained using supervised learning criteria learns specific properties at

every hidden layer. The network’s last layer is usually a softmax layer, which is a linear classifier. The

features in the input may not represent linearly separable classes, but they may eventually become

separable until the last hidden layer. Also, the choice of the classifier in the output layer impacts

the properties learned by the last hidden layer. The supervised learning methods do not explicitly

pose any condition on the intermediate features that the network should learn. Whereas, in cases

where the model wants to estimate density, the representation should be designed to make density

estimation easier. In such a case, it may be appropriate to consider the distributed representations,

which are independent and can be easily separated from each other. Representation learning [45] plays

an integral role in the unsupervised and semi-supervised models, which try to learn from unlabeled

data by capturing the shape of the input distribution. A good representation would be one that can

help the learning algorithm identify the different underlying factors causing variations in data and

help them separate these factors from each other. It would result in the different features or directions

in the feature space corresponding to different causes disentangled by the representation. In the

classic case of supervised learning, the label y presented with each observation x is at least one of the

essential factors directly providing variation. In the case of unlabeled data, as in unsupervised and

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

https://doi.org/10.20944/preprints202312.0865.v1

5 of 29

semi-supervised [46], the representation needs to use other indirect hints about these factors. The

learning algorithm can be designed to represent these hints in the form of implicit prior beliefs to

guide the learner. For a given distribution p(x), let h represent many of the underlying causes of the

observed x and let the output y be one of the most silent causes of x. The p(x) and p(y|x) should be

firmly tied, and a good representation would allow us to compute p(y|x). Once it is possible to obtain

the underlying explanations, i.e., h for the observed x, it is easy to separate the features or directions in

feature space corresponding to the different causes and consequently easier to predict y from h.

The true generative process would be,

p(h, x) = p(x|h)p(h) (3)

and, the marginal probability for data, x, can be computed from the expectation of h, as:

p(x) = Eh p(x|h) (4)

If the representation is made in such a way that it is possible to recover h, then it is easy to predict

y from such representation and by using Bayes’ rule, it is possible to find p(y|x),

p(y|x) =
p(x|y)p(y)

p(x)
(5)

The marginal probability, p(x), is tied to conditional probability, p(y|x), and the knowledge of

the structure of p(x) would help us learn p(y|x). Here, latent factors are the underlying causes h of the

observed x. The latent factors or variables are the variables that are not directly observed but rather

inferred from other variables that are directly measured. The latent variables are meaningful but not

observable. The latent variables can capture the dependencies between different observed variables, x.

They help reduce the dimensionality of data and provide different ways of representing the data. So

they can give a better understanding of the data.

Many probabilistic models, like linear factor models, use latent variables and compute the

marginal probability of data, p(x), as described in equation (4). A linear factor model can be defined as

a stochastic linear decoder function that can generate x by adding noise to a linear transformation of h.

It is possible to find some explanatory independent factors h, which have a similar joint distribution

and are sampled from the given distribution like h p(h), where p(h) is a factorial distribution, with

p(h) = ∏
i

p(hi) (6)

Then the real-valued observable variables can be sampled as,

x = Wh + b + noise (7)

where, W is the weight matrix and noise is Gaussian and diagonal, which means it is independent

of dimensions.

The unsupervised learning algorithm would try to learn a representation that captures all the

underlying factors of variation and then try to disentangle them from each other. A brute force solution

may not be feasible to find all or most of such factors, so a semi-supervised approach can be used to

determine the most relevant factors of variation and encode only those salient factors. The autoencoder

and generative models can be trained to optimize fixed criteria like the mean square error to determine

which ’causes’ or factors should be considered salient. For instance, if a group of pixels follows a highly

recognizable or distinct pattern, that pattern could be considered extremely salient. However, the

models trained on mean square error have limited performance and failed to reconstruct the images

completely [47].

Another method to identify features’ salience is using GANs [48]. In this approach, a generative

model is trained to fool a classifier which is a discriminative model. The classifier should recognize

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

https://doi.org/10.20944/preprints202312.0865.v1

6 of 29

all the samples from training data as accurate and the samples from the generative model as fake.

Any structured pattern recognized by the discriminator can be considered salient, which makes the

generative adversarial networks better at finding which factors should be represented.

Thus, summarizing the above discussion, there are two essential aspects that make the generative

way of learning powerful. First, they try to learn the underlying causal factors from cause-effect

relationships via the hidden factors that can explain the data. Secondly, they use the distributed

representations to identify these factors, which are independent and can be set separately from each

other. Each direction in the distributed representation space can correspond to a different underlying

causal factor, helping the system identify the salient features.

The advantage of learning the underlying causal factors [49] is that if the exact generative process

learns to model from x being the effect and y as the cause, then p(x|y) is adaptive to change in p(y).

Also, the causal relationships are invariant to any change in the problem domain, type of tasks, or

any non-stationary temporal variations in the dataset. The learning strategy of generative models

attempting to recover the causal factors, h and p(x|h), is robust and generalizes to any feature changes.

Various regularization strategies have been suggested in the literature to find the underlying factors of

variations [50]. Some of the popular strategies used by different learning algorithms are smoothness,

linearity, multiple explanatory factors, depth or hierarchical organization of explanatory factors, shared

factors across tasks, manifolds, natural clustering, sparsity, simplicity of factor dependencies, temporal

and spatial coherence, etc. but causal factors [51] is most advantageous for the semi-supervised

learning and makes the model more robust to any change in the distribution of underlying causes or

while using the model for a new task [52].

The second advantage of the underlying causal factors is that the distributed representations are

more potent in representing the underlying causal factors than the symbolic factors. The symbolic or

one-hot representations are non-distributed, representing only n mutually exclusive regions, whereas

distributed representations can represent 2n configurations for a vector of n binary features. Each

direction in the representation space can correspond to the value of a different underlying configuration

variable.

Different learning algorithms like k-means clustering [53], k-nearest neighbors [54], decision

trees [55], gaussian mixtures, kernel machine with the gaussian kernel [56], and language or translation

models based on n-grams [57] are based on non-distributed representations. These algorithms break

the input space into different regions with a separate set of parameters for each region. Suppose there

are enough examples in the dataset that represents each different region. In that case, the learning

algorithm can fit the training data set well without solving any complicated optimization problem.

However, these models suffer as the number of dimensions grows and if there are insufficient examples

in the dataset to represent each dimension. They fail miserably if the number of parameters exceeds

the number of examples that explain each region. Also, the non-distributed representation needs a

different degree for each region that does not allow them to generalize to new regions when target

functions are not smooth and may increase or decrease several times in many different regions.

On the other hand, the distributed representations [58] use the shared attributes and introduce

the concept of similarity space by representing the inputs as semantically close if they are close in the

distance. They can compactly represent complicated structures using a small number of parameters

and generalize better over shared attributes. For example, a ’truck’ and ’car’ both have common

attributes like "number_o f _tyres" and "has_steering" and many other things that are valid for cars and

generalizations to trucks, as well.

The distributed representation uses separate directions in the representation space to capture the

variations between different underlying factors [59]. These features are discovered automatically by

the network and are not required to be fixed beforehand or labeled. The generative models learn from

the distributed representation to disentangle the various features, even when the model has never

seen the feature before. Each direction or vector represents a new feature. Adding or subtracting these

representation vectors is possible to generate new features. For instance, in the famous example of

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

https://doi.org/10.20944/preprints202312.0865.v1

7 of 29

generating new images using GAN [60], the distributed representation disentangles the concept of

gender from the concept of wearing glasses. Given the image of a man with glasses, if the representation

vector of the man is subtracted and the representation of a woman without glasses is added, it would

give the vector representation of the woman with glasses, and a generative model can correctly

generate the image corresponding to the resulting representation vector. Therefore, it is successfully

able to generate new unseen synthetic data.

Table 1. Comparison between Generative and Discriminative modeling techniques.

Generative Models Discriminative Models

Learn the underlying data distribution Learn the decision boundary between different
classes of the data

Model the joint probability distribution
between the input and output data

Model the conditional probability distribution
of the output given the input

Can generate new data from the learned
distribution

Cannot generate new data from the learned
decision boundary

Used for tasks such as image and audio
synthesis, text generation, and anomaly
detection

Used for tasks such as classification, regression,
and object recognition

Make no assumptions about the data Use prior assumptions about the data

Examples include VAE, GAN, and RBM Examples include Logistic Regression, SVM,
and Neural Networks

3. Generative Adversarial Networks (GANs)

In this section we give a detailed description of GANs and their training process. The Generative

Adversarial Networks or GANs [1] are the type of generative models based on differentiable generator

networks [61]. The differentiable generator networks are the class of networks that either trains only

a generator network or pair a generator network with any other network. For example, variational

autoencoders can have a pair of generators with an inference network. Similarly, in GANs, there is a

pair of a generator network with a discriminator network, which is a discriminative model.

The two networks in GAN compete like adversaries in a two-player game. The generator network

produces samples that intend to come from the training data distribution. The discriminator tries to

correctly classify if the sample is drawn from the training data or the generator. The generator can win

the game only when it has learned to create samples as if they were drawn from the same distribution

as training data, whereas the discriminator should learn to distinguish if the sample is real or fake.

3.1. Construction of Networks

The generator network is the parameterized generative model designed to generate samples. The

model can be a simple neural network that transforms the sample of latent variables z to training

sample x or to a distribution of training samples over x, using a differentiable function. The network

architecture provides the choice of possible distributions from which samples can be drawn, and the

parameters select the desired distribution from within that family. The network can be represented by

a function, G, which is differentiable for its input z and has parameters θ
(G). When z is sampled from

some prior distribution, G(z) yields a sample of x drawn from pmodel . The generator network thus

produces the samples, x = G(z; θ
(G)) where the dimensions of z are at least as large as the dimensions

of x.

The discriminator network is the traditional supervised classifier, and it can be represented by

a function D that takes input x, parameterized by θ
(D). The discriminator outputs a probability

D(x; θ
(D)), which is the probability that x is a real training example rather than a fake sample drawn

from the generator model.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

https://doi.org/10.20944/preprints202312.0865.v1

8 of 29

3.2. Cost Function

The cost function, J for both networks can be defined in terms of the parameters of each. The

discriminator tries to minimize J(D)(θ(D), θ
(G)) while it can control only its own parameters θ

(D). At

the same time, generator tries to minimize J(G)(θ(D), θ
(G)) but has control only over θ

(G).

This framework is designed like a zero-sum game where minimax technique is applied, and both

players compete for a fixed and limited pool of total resources. These resources can be denoted by a

value function, V(G, D). Each makes a move such that the player’s best move is disadvantageous for

the opponent. Both the generator and discriminator try to minimize their cost, which depends on the

other’s parameters, while they have no control over it. Both try to improve and make the best move

to win such that at least all the neighboring costs are greater or equal to their cost. One is trying to

minimize the value function, and the other is trying to maximize it. The goal is to make both of them

as good as possible so that both reach their peak ability and there is no winner. This state is called Nash

Equilibrium [62], where each network is at its best for the other. So the Nash equilibrium will be the

tuple (θ(D), θ
(G)) for a local minimum of J(D) with respect to θ

(D) and a local minimum of J(G) with

respect to θ
(G). After certain epochs, both distributions should gradually converge.

The cost of the discriminator, J(D), here can be computed as the standard cross-entropy cost

minimized for a standard binary classifier with a sigmoid output

J(D)(θ(D), θ
(G)) = −

1

2
Ex∼pdata

[log(D(x))]

−
1

2
Ez∼pmodel

[log(1 − D(G(z)))]

To formulate the zero-sum game for these two players, the generator and discriminator, the sum

of the total cost should be set to zero.

J(G) + J(D) = 0 (8)

J(G) = −J(D) (9)

Now, for discriminator, the reward or the pay-off is given by, V(θ(D), θ
(G)),

V(θ(D), θ
(G)) = J(D)(θ(D), θ

(G)) (10)

whereas, the generator receives −V(θ(D), θ
(G)) as its pay-off

V(θ(D), θ
(G)) = −J(D)(θ(D), θ

(G)) (11)

Each player tries to maximize its pay-off, so using the minimax technique, the solution can be

given by minimizing the generator and maximizing the discriminator value,

θ
(G)∗ = arg min

θ(G)
max
θ(D)

V(θ(D), θ
(G)) (12)

3.3. Training of Networks

Both the generator and discriminator networks can be defined by multi-layer perception neural

networks and trained using backpropagation. There is no constraint on the form that any of the two

networks should take; they do not need to be of the same form. A support vector machine (SVM) [63]

can be used for both the generator and discriminator or SVM for the generator and a neural network

for the discriminator. However, using anything other than neural networks may increase the bias of

the model [64].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

https://doi.org/10.20944/preprints202312.0865.v1

9 of 29

Say, if stochastic gradient descent (SGD) is performed on mini-batch of m samples of data from

distribution pdata(x) and m samples of noise from distribution pmodel(z) then for every iteration, the

loss functions of generator and discriminator can be defined as below:

The generator is updated by decreasing its gradient,

Lossg = ∆θg
1

m ∑ log(1 − D(G(z))) (13)

The discriminator is updated by increasing its gradient,

Lossd = ∆θd
1

m ∑[log D(x) + log(1 − D(G(z)))] (14)

Here, the log is again taken as it is numerically more stable and it simplifies the computation.

During training, there can be following scenarios:

• False Negative - The input is real but the discriminator gives the output as fake: The real data

is given to the discriminator. The generator is not involved in this step. The discriminator

makes a mistake and classifies the input as fake. This is a training error and the weights of the

discriminator are updated using backpropagation.
• True Negative - The input is fake and the discriminator gives the output as fake: The generator

generates some fake data from random noise in latent space. If the discriminator recognizes this

as fake, there is no need to update the discriminator. The weights of the generator should be

updated using backpropagation using the loss function value.
• False Positive - The input is fake but the discriminator gives the output as real. The discriminator

should be updated. The loss function is used to update the weights of discriminator.

The generator produces the fake distribution pmodel(x), and the actual distribution from the

sample data pdata(x) is known. There is an associated divergence between the two because they are

not identical distributions, so our loss function is non-zero. This divergence can be computed by

minimizing either the Jensen-Shannon [65] or KL (Kullback-Leibler)-divergence) [66], between the data

and the model distribution, and updating the policy of both the players till they reach convergence.

The discriminator training aims to estimate the ratio of densities at every point x. When the

discriminator gets the input from the generated and the true distribution, if it can classify correctly, the

loss function value is propagated to the generator, and the generator weights are updated. However, if

the discriminator cannot correctly distinguish between the two distributions, then the discriminator

weights are updated.

pdata(x)

pmodel(x)
(15)

At a time, only one of the networks is trained. Although the two compete as adversaries, they

can also be seen as cooperative since the discriminator shares the estimated ratio with the generator,

allowing it to improve. Both the networks continue till the generated distribution gets close to the true

distribution, and the networks reach the NASH equilibrium.

4. Generating Data using GANs

The goal of unsupervised learning is not to provide a mapping between the inputs and targeted

output but rather to learn the structure of the input data. Most of the unsupervised methods do that to

make use of the unlabeled data to improve the accuracy of supervised learning methods.

GANs are one such generative networks that can discover the structure of the data and generate

realistic samples. As discussed in Section 2, the generative models use cause-effect relationships via

the latent factors and distributed representations to disentangle the independent features to discover

the data structure. GANs can exploit these properties of generative models to identify the salient

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

https://doi.org/10.20944/preprints202312.0865.v1

10 of 29

features and learn the representations. They can represent the learned features as vectors which can be

manipulated using vector arithmetic to generate new data samples with different semantics.

4.1. Different techniques in GAN for generating data

GANs have made a significant impact in generating synthetic data, especially in the field of

computer vision. They have also been successful in generating tabular and structured data. This

section discusses the various techniques and frameworks used to generate different data types. The

process of generating synthetic data in GAN models is illustrated in Figure 1.

Figure 1. Synthetic Data Generation Process in GANs.

4.2. Generating images

GANs were able to produce realistic images [1,67]. The framework, Deep Convolution generative

adversarial networks (DCGAN) [60] demonstrated the capability of GANs to learn reusable feature

representations of an image. In DCGAN, both the generator and discriminator were able to learn the

hierarchy of feature representations. GAN can be first used to build any image representation, while

the discriminator does the classification task, parts of generator and discriminator can act as feature

extractors. The convolution GANs were trained to build a good image representation for unlabeled

data. It used salient features or filters learnt by the generator to draw specific objects. In DCGAN,

vector arithmetic manipulation was applied to the latent space results to generate new images and to

transfer styles between images by adding or removing new objects.

While GANs could generate synthetic images, the images’ quality may sometimes be low. It may

take a long time to map the complex relationship between the latent space and generated images, often

resulting in low-quality images. As the generator begins from random noise, it may start generating a

random image from a domain. Sometimes, the generator needs help exploring the possible solution

space to find the real solution. It is one of the limitations of basic GANs, called mode collapse [1]. To

improve the training stability of GANs, conditional generative adversarial networks (CGANs) [68]

were introduced as an extension of GANs. They suggested that instead of randomly generating

samples from noise with no control over the data mode, applying a condition on the generator and

discriminator by feeding some additional information, y, to the network is possible. This conditioning

could be based on any auxiliary information, such as class labels or data from other modalities.

In the generator, the prior input noise pz(z) and y are combined in joint hidden representation as

log(1 − D(G(z|y))), whereas, in the discriminator, the x and y are given as inputs to the discriminative

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

https://doi.org/10.20944/preprints202312.0865.v1

11 of 29

function, log(D(x|y)). CGANs have been widely used in improving the quality of new examples, but

they could be used only for labeled datasets.

Different variants of GANs have been proposed lately, especially in computer vision, to improve

image quality. LAPGAN [69] was a kind of conditional GAN which used the laplacian pyramid

framework to produce high-resolution image samples. The laplacian pyramid [70] is a technique

for image encoding equivalent to sampling the image with laplacian operators of many scales. In

LAPGAN, a series of generative convolution network models were used. At each level of the Laplacian

pyramid, a separate generative convnet was trained using conditional GAN. Each level would capture

the image structure at a particular scale of the laplacian pyramid, generating samples coarse-to-fine,

commencing on a low-frequency residual image. LAPGAN breaks the original problem into a sequence

of more manageable stages, each subsequent stage conditioning the output from the previous scale

on the sampled residual until the final level is reached. They successfully generated high-resolution,

realistic images of CIFAR10 [71] and Large-scale Scene Understanding (LSUN) [72] datasets. The

generated images were evaluated by estimating log-likelihoods which were high on both datasets.

Also, sample images were drawn from the model, and they were found to be slightly sharper than the

original images. The human-user study did a quantitative measure of the quality of samples to see

if participants could distinguish the samples from real images and were also compared against the

images generated by the standard GANs [1]. The results from the study showed that the LAPGAN

models produced images far more realistic than the standard GANs.

Similarly, the Progressive Growing of GANs (PGGAN) [67] was suggested to produce high-quality

synthetic images. The PGGAN starts with low-resolution images and adds new layers to the generator

and the discriminator as training progresses. The resolution increases as the growing network models

the fine details. This kind of architecture allows the network to learn the large-scale structure of the

image distribution and then gradually focus on finer-scale details instead of learning all the scales

at once. PGGAN proved to be a more stable and balanced network regarding training speed and

output concerning quality and variations in generated images. The experiments were conducted

on CIFAR10 and CelebA [73] datasets, and the quality of images generated was evaluated using

multi-scale statistical similarity [74] to see if the local image structure of the generated image is similar

to the training set over all scales. PGGANs were also used in augmenting training data to derive

synthetic images similar to actual images in the field of medical imaging [75].

RenderGAN [76] was proposed to generate realistic labeled data to eliminate the need for cost

and time extensive manual labeling. The framework was used in the BeesBook project [77] to analyze

the social behavior of honeybees. A barcode-like marker is used to identify honeybees with limited

labeled data, and it is hard to annotate the new barcode markers. The labeled data generated from

RenderGAN was of high quality. It was used to train a supervised deep convolution neural network

(DCNN) to predict the labels from input data. A 3D model which can generate a simple image of

the tag based on position, orientation, configuration, etc., was embedded into the generator network

of RenderGAN to produce samples from corresponding input labels. Now, the generated samples

may lack many factors of the actual data, such as blurring, lighting, background, etc., so a series of

augmentation functions were introduced for the generator to adapt and learn the image characteristics

from unlabeled data. Five million tags were generated using the RenderGAN framework, which was

indistinguishable from actual data for a human observer.

StackGANs [78] was another type of GANs proposed to generate images from a text description.

The StackGAN synthesized high-quality photo-realistic images conditioned on a text description.

They used two stages. The first stage sketches the primary object’s shape and colors based on the

text description and produces low-resolution images. The second stage takes the results of the first

stage and the given text description as input and generates high-resolution images with realistic

photo details. The text description is first encoded by an encoder, giving a text embedding [79]. The

text embedding needs to be transformed to generate latent conditioning variables as input of the

generator. The latent space for text embedding may grow into a high dimensional space, so conditional

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

https://doi.org/10.20944/preprints202312.0865.v1

12 of 29

augmentation was used to produce an additional conditioning variable, ĉ, which supports a smooth

latent data manifold by using a small number of image-text pairs and generates images from a linearly

interpolated sentence embedding. The noise vector, z, is fixed, so the generated image is only inferred

from the given text description. The StackGAN framework was used to generate images for CUB [80],

COCO [81], and Oxford-102 [82] datasets to generate the images of birds species using the five to ten

text descriptions given for each. The generated images were evaluated using inception score (IS) [83],

a metric commonly used to assess the quality of images produced by GANs. The IS measures the

diversity and quality of generated images by comparing their predicted class probabilities to those

of real images using a pre-trained image classifier, such as Inception-v3 [84]. The IS is obtained

by calculating the KL divergence between the two distributions and then exponentiating the result.

Human evaluation was also conducted, and their observations correlated with the IS.

Another exciting variant, InfoGAN [85], was suggested to improve the interpretation and

representations learned by a regular GAN. InfoGAN used the mutual information between a small

subset of latent variables and the observations to disentangle the feature representations in an

unsupervised manner. The latent information or latent code, c, was provided to the network to

give some semantically meaningful information about the factors of variation. For example, when

generating images from MNIST digits (0-9) dataset [86], two continuous variables that represent

the digit’s angle and thickness of the digit’s stroke were used; pose information for CelebA; and

background digits for housing number images, Street View House Number(SVHN) dataset [87], were

used as a latent code. The mutual information, I, between the noise, z, and the latent code, c, was

maximized; the generator becomes a function of G(z, c), and the mutual information, I(c; G(z, c))

should be high. The images generated by InfoGAN showed that this modification in the architecture

helped the generator to disentangle variations like the presence or absence of glasses, hairstyles, and

emotions, demonstrating that the model acquired a certain level of visual understanding without any

supervision.

4.3. Generating tabular synthetic data

The above discussion shows that various frameworks of GANs, with or without some

modifications, could successfully generate realistic image data. Though in many real-world business

applications, the data combine categorical and numerical features with missing or unknown values,

making it more challenging to use GANs. Different approaches were proposed to adapt to such data

types and generate realistic synthetic data, which can be used to train a supervised classifier. Two of

the popular approaches are discussed below:

4.3.1. Airline Passenger Name Record (PNR) generation

The passenger name records (PNR) airlines store traveler information. They can be a good data

source for building commercial business applications such as client segmentation and adaptive product

pricing [88]. The paper on airlines PNR generation [89] showed that the passenger record data could

be synthetically generated using GANs and used this data to predict clients and nationality. Access

to PNR data is limited, as it contains personally identifiable information (PII), and it falls under EU

General Data Protection Regulation (GDPR) [90] strict data privacy regulations. In this situation,

synthetic data, which has the original data structure and follows the same distribution, should be

sufficient to train the supervised classifier.

A variant of GANs, called Cramer GANs [91] with a generator/critic architecture that combines

feedforward layers with the Cross-Net architecture [92] was used. Cramer GANs were suggested as

an improvement over original GANs [1] and Wasserstein GANs (WGANs) [93]. The original GAN

model used Jensen-Shannon divergence (JSD) or KL-divergence, which finds the similarity between

the probability distributions of data and the model. It keeps updating the generator and discriminator

till they converge. The Wasserstein GANs (WGANs) use the Wasserstein distance, which is the Earth

Mover (EM) distance, and it computes the distance between two probability distributions. It produces

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

https://doi.org/10.20944/preprints202312.0865.v1

13 of 29

better sample quality than the original GANs. When batch training uses stochastic gradient descent

(SGD) based methods, WGANs suffer from biased gradients [94]. They may converge to the wrong

minimum while estimating Wasserstein distance from batch samples. To overcome this problem and

provide unbiased sample gradients, the Cramer Distance [95], which measures the energy distance

between the two distributions, is used to build the GAN networks. In the Cramer GANs [91], the

discriminator, also called critic, has a trainable loss function, which combines the energy distance

with the transformation function to map the input space to the hyper-parameter space. The critic or

discriminator seeks to maximize the energy. In contrast, the generator tries to minimize the energy of

the transformed variables and is designed to penalize the functions with a high gradient.

The PNR data contains numerical, categorical, and date data. It has missing or NaN values.

The input embedding layer was used to process the categorical features in PNR data. In GANs,

the generator is differentiable, so it cannot generate discrete data such as one-hot encoded values

or character representations [1]. Either the discrete or categorical columns need to be encoded

into numerical columns [1] or represented as continuous vectors [96]. The latter method is called

embedding. It reduces the dimensionality of categorical variables and meaningfully represents the

categories in the transformed space. The weighted average of the embedded representation was

used, and the embedding layer was shared between the generator and the discriminator, ensuring a

fully-differentiable process. The embedding layers increase the representational power, so different

layers were used per each categorical feature.

All the missing values in numerical features were filled by some random value taken from the

same column. For all the categorical features, the missing values were replaced with a dummy new

level, ’UNK.’ Then, a new binary column was added, whose values are 1 for all the filled-in rows

and 0 otherwise. One such column was added per numerical column with missing values. These

auxiliary binary columns were treated as categorical columns and encoded using the embedding

process. Multiple feed-forward neural networks were used to learn the complex feature interactions.

Both the generator and discriminator were composed of fully connected layers, and N cross-layers

were stacked [92] to automatically compute up to N-degree cross-feature interactions.

The quality of synthetic data generated was evaluated by computing the multivariate measure

using Jensen-Shannon divergence (JSD) to see how the two empirical distributions of actual and

synthetic data differ. Then a classifier was trained to discriminate the difference between the real and

the generated samples, labeling the actual samples 0 and the synthetic ones 1. Also, the Euclidean

distance between each generated point and its nearest neighbor in the training and test data was

calculated to determine if the generative model is learning the original distribution and not simply

memorizing and reproducing the training data. The distribution of distances was compared using the

Kolmogorov-Smirnov (KS) [97] two-sample test to determine if they differ. The results [89] showed

that the models trained on synthetic data could successfully classify for both the business cases, client

segmentation, and product pricing.

4.3.2. Synthesizing fake tables

Tabular data is the most common structured data type, which can be clearly defined using rows

and columns and conforms to the data for models. Some of the tabular data sets like employee,

hospital, or travel datasets contain private information, like social security numbers (SSN), salary,

health conditions, or other personally identifiable information (PII), which may raise a security

concern, if data is shared with partners or made publicly available to train the models. Anonymization

techniques can be used to remove sensitive information. However, they are prone to attacks and can

be recovered by adversaries if they possess other users’ background information. Secondly, these

modifications negatively impact the usability of data.

To overcome these challenges, table-GANs [98] were proposed to synthetically generate fake

tables statistically similar to the original table structure. Four types of datasets from different domains,

LACity dataset [99] containing records of Los Angeles government employees (salary, departments,

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

https://doi.org/10.20944/preprints202312.0865.v1

14 of 29

etc.), Adult dataset [100] with personal records (nationality, education level, occupation, etc.), Health

dataset [101] with information such as blood test results, diabetes, etc., and Airline dataset [102] with

passenger travel information, were considered. All these datasets contain categorical, discrete, and

continuous values.

The table-GANs were designed to have three convolutional neural networks (CNN), compared

to two networks in original GANs, a discriminator to distinguish between the actual and synthetic

records, a generator to generate realistic records, and a classifier to increase the semantic integrity of

synthetic records. The classifier was added to determine if the synthetic records were correct and close

to the real-world scenario. For example, a person with a low cholesterol level may not be diagnosed

with diabetes, and there will be no such record in the original table. The classifier discards all such

records generated by the generator.

In addition to the original GAN objective loss function, two other additional loss functions,

information loss and classification loss, were computed. The information loss finds the discrepancy

between the statistical characteristics, the mean, and the standard deviation of synthetic and original

record features by using the L-2 norm or Euclidean distance. Suppose the value of this difference

is zero. In that case, the actual and synthetic records have statistically the same features, and the

discriminator may not be able to distinguish whether the inputs are from training data or synthetically

generated. The classification loss is used to check the semantic integrity and balance the privacy and

usability of synthetic data generated. It finds the discrepancy between the label of a generated record

and the label predicted by the classifier for that record and will remove the semantically incorrect

records.

The security and privacy concerns were addressed as the entire table was generated synthetically

by the table-GANs, and none of the actual records were directly disclosed. These synthetic tables are

strong against the re-identification attack and attribute disclosure issues, as attackers can not reveal

any original identification.

The adversary’s access may be limited to black-box queries that return the model’s output

on a given input. The adversary may train many attack models as shadow models based on the

generator’s behavior by making inferences about the members of the synthetic tables. This attack

is called membership inference attack [103]. The table-GAN was attacked with various hinge-loss

configurations to evaluate the impact of the membership attack. Hinge loss slightly disturbs the

training process of table-GAN, so it converges to the point that balances synthesis quality and the

possibility of being attacked. The paper showed that the attack performance decreased by increasing

the hinge loss. Finally, model compatibility, which is the difference in the performance of data trained

on actual and synthetic data, was used to assess the quality of the generated data. The models trained

using the synthetic tables exhibited similar performance to those trained using the original table.

The Table 2 gives a summary of different techniques and methods used to generate image and

tabular data.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

https://doi.org/10.20944/preprints202312.0865.v1

15 of 29

Table 2. Different models used to generate image and tabular synthetic data using GAN

Data Type Model Method Generated Data Quality

Images

DCGAN [60] Vector Arithmetic
Manipulation

Low, suffers from Mode
Collapse

CGAN [68] Label as condition Improved Quality

LAPGAN [69] Conditional GAN with
Laplacian Pyramid

High-resolution Realistic
Images

PGGAN) [67] Focus on finer-scale details High quality Synthetic
Images

RenderGAN [76] Image Augmentation Realistic Labeled Images

StackGANs [78] Generate images from a
text description using Text
Embedding

Good quality images,
evaluated using Inception
Score

InfoGAN [85] Use Mutual Information as
condition

Model can disentangle
variations, improved
generated images

Tabular

PNR generation [89] Use Cramer GAN [91] Evaluated using
Jensen-Shannon divergence
(JSD), Realistic data
generated

Table-GANs [98] Use 3 CNNs, additional
classifier to increase synthetic
records integrity

Models trained using
synthetic data performed
well

5. Generating Cyber Attack data using GAN

Cyber security is one of the major business concerns today for the organizations world-wide.

With systems being internet-connected and Internet of Things (IoT) emerging as the latest technology,

there is a need to protect the networks, systems and programs, from the digital attacks. Every industry

like telecommunication, manufacturing, healthcare, education, finance, government etc., are being

exposed to cyber attacks. These cyber attacks are usually designed to access, change or destroy

sensitive information; to extort money from users; or disrupt usual business processes. There are

different ways of attacking a system. For instance, a Denial of Service (DoS) attack attempts to restrict the

access of resources for the host or prevent the utilization of resources. Other attacks like vulnerability

exploitation obtain privileged access to a host network by taking advantage of known vulnerabilities.

The unauthorized attempt or threat to deliberately access or manipulate information, or disable the

system is defined as intrusions, and the methods used to monitor and detect this aberration, are called

as intrusion detection systems (IDS) [104].

The IDS tries to find exceptional patterns in network traffic that do not conform to the expected

normal behavior. These non-conforming patterns are usually referred to as anomalies or outliers. The

IDS monitors the network for such malicious acts or security protocol violations, and raises an alarm

or sends an alert to the administrator if any anomaly is detected. Though the IDS may not necessarily

take any other action. There are two types of IDS, Network Intrusion Detection Systems (NIDS), which

monitor network packets moving in and out of the network, and Host Intrusion Detection Systems

(HIDS), which monitor the activities of a single host such as a computer or clients connected to that

computer. The IDS algorithms are classified based on their detection approach, with signature-based

detection and anomaly-based detection being the two main categories.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

https://doi.org/10.20944/preprints202312.0865.v1

16 of 29

Signature-based detection is a traditional method that relies on a pre-programmed list of known

attack behaviors. It uses a database of previously identified bad patterns to report an attack and is

only as effective as its database of known signatures. On the other hand, anomaly-based detection

techniques use statistical and machine learning methods to detect malicious behaviors that deviate

from known normal behaviors. These approaches have gained widespread attention from researchers

over the past decade, and several models have been proposed in literature to detect intrusions into

the network [105–107]. However, the increasing complexity of attacks and attackers’ skills have made

these models only as good as the datasets on which they were developed. Obtaining a complete and

real dataset is challenging in the realm of cybersecurity, as the information needed to develop models

is held in various logs and network traffic of an organization that faced a cyber attack. Additionally,

these logs and network traffic carry private information of the organization and cannot be released

to the public. Even when a realistic dataset is obtained, it captures only one of the several possible

attacks for that organization’s topology and is therefore incomplete.

Alternative approaches to creating a dataset have been proposed in literature, including

semi-synthetic and synthetic data generation techniques. In the semi-synthetic data generation

approach, a network is set up, simulating a realistic network topology, and human penetration

testers penetrate into the network. The dataset is then built by capturing the normal user behavior

and the simulated attack behavior, followed by appropriately labeling those behaviors for developing

statistical and machine learning models. Synthetic data generation techniques do not require any

humans to penetrate into the network; rather, the attack data is simulated by models that learn how

attacks can be performed. Synthetic data generation approaches, specifically using GANs, have been

gaining increasing attention over the past few years due to their applicability to different types of

topologies and the possibility of creating a dataset that can represent different attack sets on a given

topology.

Various approaches, including supervised, semi-supervised, and unsupervised learning, have

been used for anomaly detection [108]. In semi-supervised techniques, the model is trained using only

the normal training dataset, and the likelihood of the test dataset is compared against the learned

model. However, these algorithms assume that normal instances are more frequent than anomalies in

the test data, which can lead to false alarms or blocking of normal data packets as anomalies. Moreover,

these methods may not be suitable for dynamic and sequential responses to new or deformed cyber

threats.

On the other hand, supervised anomaly classifiers learn from labeled datasets that contain normal

or anomaly classes. In network systems, the dataset consists of recorded samples with pre-assigned

labels in the form of a feature vector of network features. The supervised learning algorithm’s goal is to

learn from the labeled dataset and predict whether a new instance is normal or an anomaly, and to raise

an alert when an anomaly is detected. Although state-of-the-art supervised algorithms can be applied

well to solve this type of problem, they face several challenges. The datasets are highly imbalanced,

with a low number of anomalous packets, and prediction accuracy is generally reported to be low,

while training time is very high. In addition, large datasets with high variance are required to train

these algorithms to build robust intrusion detection systems. The available datasets are often limited

and outdated, or they may have missing ground truth values. The manual labeling of real networks

containing millions to billions of flows is also a challenging task for security experts. Additionally,

most organizations do not want to disclose their network traffic and attack data information, making it

difficult to collect or label such datasets.

Unsupervised learning methods, on the other hand, do not require labeled data for training,

making them suitable for anomaly detection when labeled data is scarce. However, they have some

limitations in the context of cybersecurity. Unsupervised methods are based on the assumption that

anomalies are rare events and can be identified as deviations from normal data distribution. However,

in cybersecurity, it is often challenging to define what is normal behavior, as cyber threats are constantly

evolving and changing. Moreover, unsupervised methods may not be able to completely exploit the

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

https://doi.org/10.20944/preprints202312.0865.v1

17 of 29

spatial-temporal correlation and multiple variable dependencies, which are essential for accurately

detecting anomalies in complex cyber systems. Ideally, it would be best if such datasets could be

synthetically generated, as explained in Section 4. In this situation, GAN can be of great use for

anomaly detection. Section 2 illustrates how GANs have been used recently to generate synthetic data

in variety of domains. In this section, we discussed the different methods proposed by researchers for

generating various type of cyber attacks using GANs.

5.1. Flow-based Network Traffic Generation

To develop, analyze, and evaluate secure networks and cyber monitoring systems like IDS,

network traffic flows are essential. However, obtaining real network traffic that is appropriate for such

purposes is challenging due to privacy and security concerns. Publicly available real traffic is often

inconsistent, insufficient, or incomplete, making it less useful. Therefore, synthetic traffic generation

techniques have been developed [109–111]. These techniques involve extracting key features from real

traffic and using them to create similar network traffic flows. Various traffic generation techniques

have been developed over time and GANs have emerged as a promising approach in synthetic traffic

generation.

Ring et. al. [112] proposed a GAN model to generate synthetic flow-based network traffic

to evaluate an NIDS. The Wasserstein GANs (WGANs) [93] were used to generate the synthetic

flow-based network data based on CIDDS-001 [113] dataset. The flow-based network traffic contains

header information about the network connections between two end-point devices like servers,

workstation computers or mobile phones. Each flow is an aggregated information containing source IP

address, source port, destination IP address, destination port and transport protocols of the transmitted

network packets. Most of these attributes like IP address, ports and transport protocols are categorical

and can not be processed by GANs, since the generator is differentiable [1]. These attributes need

to be encoded into numerical or continuous vectors. IP2Vec [114], based on Word2Vec method [115],

was used to transform IP addresses into a continuous feature space such that the standard similarity

measures can be applied. IP2Vec was extended to learn the embeddings for other attributes, like ports,

transport protocols, duration, bytes and packets and a neural network based on backpropagation

was used to train the embedding layer. For preprocessing of these attributes, other alternatives such

as numeric and binary transformations were also experimented. The results showed that although

numeric transformations were straightforward and easy to implement but they were not able to truly

represent the distributions and capture the similarities. The binary transformation of these categorical

and numerical attributes of flow-based data did pretty well and were able to capture the internal

structure of the traffic and subnet, except a few cases. On an average, the embeddings based on IP2Vec

transformations gave the best results.

To evaluate the quality of data generated by GAN, approaches like Inception Score (IS) can not be

used for flow-based data, as inception score is based on Inception Net v3 [84] and can classify only the

images. There is no standard method to evaluate the quality of network traffic so different methods

were proposed to assess the quality from different views. To evaluate the diversity and distribution of

the generated data, the temporal distributions of generated flows for each week’s traffic were visually

analysed to see if they represented the internal structure of the original traffic and subnets. Secondly,

the distribution of the generated and real traffic data in each attribute, was compared independently by

computing the euclidean distance between the probability distributions of the generated and weekly

traffic input for each attribute. Thirdly, the domain knowledge checks were used to assess the intrinsic

quality of the generated data. Some heuristics based on the properties of flow-based network data

were tested to check the sanity and see if the generated data is realistic or not. For instance, if the

transport protocol is UDP, then the flow must not have any TCP flags; if the multi-or broadcast IP

address appears in the flow, then it must be the destination IP address. The flows generated by both

the binary and IP2Vec embeddings transformation were realistic and showed good results for all the

evaluation methods.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

https://doi.org/10.20944/preprints202312.0865.v1

18 of 29

Cheng et al. [116] proposed and developed a novel GAN model called PAC-GAN, which generates

realistic network traffic at the IP packet level. PAC-GAN encodes each network packet into a grey

scale image and generates IP packets using CNN GANs. The network traffic generator uses an

encoding scheme that converts and maps network traffic data into images using image-based matrix

representations. By learning and manipulating the byte values of data packets, the PAC-GAN can

generate realistic variants of different types of network traffic, such as ICMP pings, DNS queries, and

HTTP get requests, that can be transmitted through real networks.

Shahid et al. [117] proposed a method for generating synthetic traffic sequences that closely

resemble actual bidirectional flows in IoT networks. They combined an autoencoder with a Wasserstein

GAN to learn latent vectors that can be decoded into realistic sequences of packet sizes. The generated

bidirectional flows mimic the characteristics of genuine ones, which can deceive anomaly detectors

into identifying them as real. However, the quality of synthetic traffic sequences depends heavily

on the training data used. During the training phase, the generator can only reproduce sequences

that were observed in the training data. The authors tested their model using a small amount of data,

which may have led to overfitting. Yin et al. [118] have developed an end-to-end framework, NetShare

for generating test traffic using GANs which focus on tackling the fidelity, scalability, and privacy

challenges and tradeoffs in existing GAN based approaches [110].

5.2. Cyber Intrusion Alert Data Synthesis

Cyber intrusion alert data plays an important role in detecting and profiling anomalous activities

and behaviors, as well as identifying network vulnerabilities. However, the cyber attack data is highly

imbalanced as the intrusions are rare events and often hard to identify [119]. Moreover, the absence

of ground truth and organizations’ reluctance to share such data further hinder experimentation and

research . Additionally, these datasets exhibit non-homogeneous characteristics, further complicating

the analysis and development of effective defense mechanisms. Given the complex and dynamic

nature of cyber attacks, innovative approaches are required to generate realistic and diverse data that

accurately captures the intricacies of real-world intrusions.

GANs have demonstrated their capacity to learn intricate data distributions, aiming to generate

data that is progressively more realistic and aligns with the underlying patterns and characteristics

of real intrusion alerts [120]. The generator part of the GAN learns to generate synthetic intrusion

alerts, while the discriminator part evaluates the authenticity of the generated alerts. Using GANs

to generate synthetic cyber intrusion alerts helps address the challenges posed by imbalanced and

non-homogeneous data in cybersecurity. These generated alerts not only aid in characterizing intrusion

features but also complement the existing data, ensuring a more diverse and representative dataset for

robust analysis and defense against cyber threats.

Recent work by Sweet et al. [120,121] have investigated the effectiveness of GANs in generating

synthetic intrusion alerts by learning the sparsely distributed categorical features from samples of

malicious network intrusions. Their proposed framework for synthetic cyber-intrusion alert data

utilizes Wasserstein GAN models [93] with some modifications. Two variants were investigated:

WGAN with Gradient Penalty (WGAN-GP) [122] and WPGAN-MI [123], which integrates gradient

penalty with Mutual Information constraint. WGAN-GP incorporates a gradient penalty term in

the discriminator loss function, enhancing the utility of gradients and improving training stability.

WPGAN-MI, on the other hand, introduces a mutual information term in the generator’s loss, aiming

to approximate the mutual information between the generator’s noise input and the generated

output samples. To estimate mutual information, a neural network is employed to compute

the Donsker-Varadhan (DV) representation of KL-divergence. As discussed in section IV, the

InfoGANs [85] also used the mutual information constraint, which helped the generator to explore the

full domain of the data while generating new samples.

To evaluate their framework, Sweet et al. [120] utilized datasets from the National Collegiate

Penetration Testing Competition (CPTC) [124] held in 2017 and 2018. These datasets encompassed

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

https://doi.org/10.20944/preprints202312.0865.v1

19 of 29

malicious actions performed by participating teams as they attempted to compromise the target

networks. The features included source and destination IP addresses, port numbers, attack categories,

attack signatures, and alerts. The alerts were categorized based on the destination IP address, capturing

unique attack behaviors for each target. The fidelity of the generated data was assessed using

Histogram Intersection and Conditional Entropy measures, both demonstrating the potential of

GANs to generate diverse artificial attack data reflective of the behaviors observed in the ground truth

dataset. The GAN models were trained to learn the distribution of input data on a per-target IP basis.

The evaluation utilized the histogram intersection score between the ground truth and generated alerts

to assess the GANs’ ability to capture the latent behavior and feature dependencies of the dataset.

The analysis revealed that WPGAN-GPMI, with its mutual information constraint, outperformed the

WGAN-GP model by synthesizing alerts pertaining to more attack stages and accurately recreating the

target-based cyber-alert data from the malicious alert datasets.

5.3. Generating Attack Data using Adversarial Examples

Machine learning models are commonly employed for detecting spams, malware, anomalies,

network intrusions, and other illegal activities. However, ML models including Deep Neural Networks

(DNNs) have recently been found to be vulnerable to adversarial attacks, which compromises their

robustness [125–127]. This vulnerability poses a significant threat to the reliability of machine learning

in security-sensitive domains. Adversarial attacks involve the deliberate creation of malicious inputs

by adversaries with the aim of deceiving the system. These inputs, known as adversarial examples,

are carefully crafted to manipulate the predictions made by the machine learning model, resulting in

erroneous outputs. Even a minor modification to the input can cause the neural network to misclassify

the data, and these alterations are often imperceptible to the human eye [125].

GANs have been employed to generate synthetic cyber attacks that can bypass security defenses

or exploit vulnerabilities in systems, such as intrusion detection systems or malware detection models.

In this setup, the generator network is trained to produce adversarial examples capable of deceiving or

evading the target system’s defenses, while the discriminator network learns to differentiate between

real and adversarial examples. GANs play a crucial role in assessing the robustness and effectiveness

of security systems, as well as in developing improved defenses against cyber attacks.

Adversarial attacks can be classified into two types: white box attacks and black box attacks. In

white box attacks [128], the adversary has complete knowledge of the model architecture, learning

algorithms, parameters, and access to the training dataset. This allows them to manipulate the feature

vector in the test dataset to cause misclassification. On the other hand, in black box attacks [127], the

adversary has no knowledge of the model architecture, learning parameters, or access to the training

dataset. In this scenario, the attacker can only observe the labels or class outputs of the model when

interacting with it remotely, such as through an API. By continually modifying the input and observing

the corresponding output, the attacker establishes a relationship between the changes in inputs and

outputs. The remote DNN model that the adversary is observing is commonly referred to as an
′Oracle′.

To overcome the lack of knowledge in black box attacks, the adversary can train a local substitute

DNNs with a synthetic dataset. The inputs are synthetic and generated by the adversary, whereas the

outputs are the labels assigned by the Oracle or remote DNN when the adversary was querying the

DNN with their synthetic inputs. The substitute model is designed with similar decision boundaries,

and the adversary crafts the adversarial examples to misclassify the substitute model. These same

adversarial examples can then be used to misclassify the target DNN. Two models, MalGAN [129] and

IDSGAN [130] were proposed to use GANs to generate the synthetic adversarial examples against the

detection system. In this context, we further explore the construction and evaluation of the capabilities

of these models in generating realistic adversarial attack examples.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

https://doi.org/10.20944/preprints202312.0865.v1

20 of 29

5.3.1. MalGAN: Generating Malware Adversarial Examples using GAN

MalGAN, proposed by Hu et al. [129], focuses on creating adversarial examples for malware

detection systems. These detection systems are like black boxes to attackers, meaning they don’t know

their internal workings. So, the attackers can only perform black-box attacks to understand the features

used by the malware detection algorithm. The key idea behind MalGAN is to trick the malware

detection system into misclassifying benign programs as malware. It uses a dataset of programs

with API features represented as binary vectors. MalGAN incorporates a black-box detection model

(Oracle) in the discriminator and generator. The generator creates adversarial examples, while the

discriminator tries to imitate the Oracle. The adversarial examples successfully bypass the black-box

detector, showing transferability [131] across different classifiers. However, when the detector is

retrained with adversarial examples, it becomes more robust against these attacks.

The advantage of MalGAN is that it can generate new adversarial malware examples, making

the detector more robust without needing to collect a large number of actual malware samples and

label them manually. This makes the malware detection system more effective and helps improve its

performance against adversarial attacks.

5.3.2. IDSGAN: Generating Adversarial Examples against Intrusion Detection System

IDSGAN [130] another GAN model proposed to create adversarial attacks that deceive and

evade the IDS. Similar to MalGAN, IDSGAN treats the IDS as a black box and aims to deceive it

with adversarial attacks. The IDS is built using a classifier like DNN or SVM on a cyber security

dataset like NSL-KDD. IDSGAN uses a generator and discriminator, where the discriminator emulates

the behavior of the black-box IDS. The generator produces adversarial examples by applying small

perturbations only to non-functional features of the attack data. IDSGAN successfully generates

adversarial examples that bypass the black-box IDS, leading to lower detection rates and higher

evasion rates. This indicates that the generated adversarial examples can effectively fool the IDS.

The main difference between MalGAN and IDSGAN lies in the types of attacks they generate,

the features of their respective datasets (binary feature vector for MalGAN and a sequence of features

for IDSGAN), and the treatment of constructing adversarial examples. IDSGAN’s dataset includes

both numeric and non-numeric discrete features, which are categorized into four sets: intrinsic,

content, time-based, and host-based features. When creating adversarial examples, IDSGAN applies

random noise only to the non-functional features of each attack, while keeping the functional features

unchanged to maintain the attack’s nature. This ensures the attack remains intact and doesn’t break

during perturbation.

MalGAN used malware API dataset consisting of binary feature vector, the NSL-KDD dataset

used in IDSGAN, is a sequence of 41 features describing the normal and the malicious network traffic

records. There are 9 discrete and 32 continuous features. The non numeric discrete features are one-hot

encoded to do numeric conversion. As per the meaning of the features, they are categorized into four

sets. The features, like duration, protocoltype, service, f lag, sourcebytes, destinationbytes are ’intrinsic’

as they show the characteristics of connection in a network. Similarly, the ’content’ features are the

ones which mark the content of connections and show the behavior related to attack if it exist in the

traffic. The ’time-based’ features check for the connections which have the same destination host

or same service as the current, in past 2 seconds. The ’host-based’ traffic features monitor similar

connections in the past 100 connections. The malicious data consists of four type of attacks, probe,

U2R, DoS and R2L. Each category of the attack has some functional features which represents the basic

function of the attack.

While making small perturbations, no change is made in the functional features of each attack.

Otherwise, the attack will be broken. The random noise is added only to the nonfunctional features to

generate adversarial examples. The generator is a simple neural network with five linear layers and

the update to the parameters of the network is made based on the feedback from the discriminator.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

https://doi.org/10.20944/preprints202312.0865.v1

21 of 29

Here various machine learning algorithms like, Support Vector Machine (SVM), Logistic

Regression (LR), Multilayer Perceptron (MLP), K-Nearest Neighbor (KNN), Random Forest, Decision

Trees, were used to train the black-box IDS to test the transferability of the adversarial samples. To show

the robustness of IDS model, detection rate was measured. The detection rate gives the proportion

of correctly detected malicious traffic records to the total attack records detected by the black-box

IDS. The original detection rate and the adversarial detection rates were computed. To show the

ability of IDS, another metrics, called the evasion increase rate was used. It is the rate of increase in

the undetected adversarial malicious traffic by the IDS as compared to the original malicious traffic

examples. IDSGAN model showed lower detection rate and high evasion rate which means more

malicious traffic could evade the IDS, showing that the adversarial examples generated by IDSGAN

are realistic and the generator was able to successfully fool the black-box IDS.

Yang et al. [132] introduced a novel technique for identifying previously unknown attacks by

utilizing a GAN-based approach to learn the hidden distribution of original data. Their method

involves using a DNN for classification and evaluating performance metrics on two distinct datasets.

Meanwhile, Lee and Park [133] addressed the negative impact of imbalanced data on attack

classification by generating new virtual data that is similar to the existing data using GAN. They were

able to achieve better results with RandomForest using the newly generated data compared to the

original data. Huang and Lei [134] presented a three-step approach to overcome the negative effects of

labeled imbalanced data in datasets. They first performed feature extraction using FeedForward neural

network (FNN), then generated virtual data using GAN, and evaluated the classification performance

of the resulting data on three different datasets using CNN. Shahriar et al. [135] proposed attack

detection in cyber physical systems (CPS) and suggested a fix for imbalanced and missing data using

the generative adversarial network (GAN) based intrusion detection system (G-IDS), where GAN

generates synthetic samples, and IDS gets trained on them along with the original ones.

6. Analysis of GAN generated Synthetic Attack Data

The effectiveness of GAN-generated data in cybersecurity remains an open question. Real-world

cyber-attacks often involve complex contexts, such as the timing of Distributed Denial of Service

(DDoS) attacks or the intricate patterns of lateral movements in system breaches. These attacks usually

exhibit signatures across multiple traffic units, presenting a significant challenge for GANs to replicate

accurately. Nonetheless, more straightforward, isolated attack vectors like SQL Injection, Application

Scanning, and Port Scanning have distinct network flow signatures that GANs can potentially mimic.

While GAN-generated data can augment Intrusion Detection System (IDS) training datasets or aid in

creating simulated attack scenarios, it often includes considerable noise. This noise can lead to trained

models under performing in real-world situations.

In this section, we delve into an analysis to evaluate the fidelity of GAN-generated cyber-attack

data. Our study focuses on three key aspects: the similarity of GAN-generated attack data features to

actual attacks, whether GANs preserve the original data distribution, and the response of classifiers

trained on authentic data when exposed to a mix of original and GAN-generated data. This

comprehensive approach provides insights into the potential and limitations of using GANs for

cybersecurity. We have chosen a DoS attack from the NSL-KDD dataset for our analysis. Table 3

presents the different attack categories the NSL-KDD dataset has. With 41 features, of which 9 are

discrete values, and 32 are continuous values, the dataset has both normal and malicious traffic. Using

domain knowledge and the information given by the dataset as depicted in Table 3, we first identified

features that are reflective of a DoS attack, followed by performing statistical analysis to obtain the

range and standard deviation of those identified features across various DoS and normal traffic.

Figure 2 shows the features we identify corresponding to various attack categories in the

NSL-KDD dataset. We then performed statistical analysis to find a correlation between those different

features using Pearson’s coefficient. GAN-generated attack traffic can represent DoS traffic only if

the distribution of the data in those identified features and the correlation among those features is

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

https://doi.org/10.20944/preprints202312.0865.v1

22 of 29

preserved. To this end, we built a conditional GAN model where the discriminator was trained only

on the attack samples. At the same time, the generator was set to challenge the discriminator until the

discriminator could identify the attack traffic accurately. To evaluate the generated attack data, we

built a 1) white-box-model, supervised model using FNN (Feed-forward neural network) trained on

NSL-KDD dataset’s train data constituting both normal and attack data and 2) anomaly-detector: a

semi-supervised model that is trained only on the normal data within the NSL-KDD’s train data and 3)

performed a Statistical Analysis: We calculated the expected standard deviation (SD) of the features

identified in our feature analysis that are reflecting a DoS attack. We then tested the performance of

the resulting white-box model and the anomaly detector against the NSL-KDD dataset’s test data

to ensure its performance meets the accuracy requirements. As expected, the accuracy prediction

obtained was over 99% on the white-box model’s test data, and the anomaly-detector model could

distinguish between normal and attack traffic with an accuracy of over 81%.

Table 3. Attack Categories of NSL-KDD

DoS R2L U2R Probe

back ftp_write buffer_overflow ipsweep

land guess_passwd loadmodule nmap

pod imap perl portsweep

smurf multihop rootkit satan

teardrop phf

spy

warezclient

warezmaster

Figure 2. Feature Mapping of NSL-KDD to Intrusion Patterns

We then used the white-box model to detect the normal and attack traffic in our GAN-generated

attack data. The white box could report the GAN-generated attack data as not normal accurately;

however, it classified the attack data into one of the attack categories in Table 3. The anomaly-detector

model accurately reported the GAN-generated attack data as not normal as part of static analysis in our

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

https://doi.org/10.20944/preprints202312.0865.v1

23 of 29

evaluation. We measured the Euclidean distance between the standard deviation of the feature values

from the NSL-KDD dataset and the standard deviation of the same features from GAN-generated

attack data. We found most of the generated samples to have inconsistent feature values that neither

correspond to normal traffic nor DoS traffic. Henceforth, our analysis and evaluation have concluded

that while most of the GAN-generated attack data was not normal, it did not correspond to expected

DoS traffic. Our static analysis of the features points out that those GAN-generated attacks reported as

not normal by the trained models are neither normal nor attack traffic units as the expected feature

correlations are missing and thus the data represents mere noise. Many solutions have claimed

the ability of their GANs to generate attack data based on their white-box models or their anomaly

detectors reporting them as not normal. However, we would like to point out that not-normal does not

mean attack data; instead, as we provided evidence above, it is often mere noise and not an unknown

attack or a new attack. We believe our analysis helps researchers continue developing GAN-based

attack generation models capable of generating attack data that represents real-world attacks and thus

address the concerns associated with obtaining real-world attack data due to privacy issues.

7. Discussion

GANs, with their unique architecture of a generator and discriminator working in tandem, have

demonstrated remarkable proficiency in generating data that closely mimics real-world patterns. This

capability is particularly advantageous in cybersecurity, where the availability of diverse and extensive

datasets is paramount for the practical training of models. However, analyzing the authenticity of

synthetic data generated by GANs in the context of cyber attacks is essential. While GANs can produce

data statistically similar to real-world datasets, it is crucial to study this synthetic data adequately

to analyze if it represents the complexities and nuances of cyber threats. Also, the reliability of deep

learning models trained solely on synthetic data is still being determined. These models may not

perform well when exposed to real-world attack scenarios, leading to potential vulnerabilities.

Our analysis of synthetic data generated for DoS attacks shows that while GAN-generated

attack data often deviates from normal traffic, it does not align with typical DoS traffic patterns.

Static analysis reveals that this data, flagged as abnormal by trained models, lacks the expected

feature correlations, indicating it is neither normal nor genuine attack traffic but relatively just noise.

Recognizing that abnormal data does not necessarily signify an attack; in many cases, it may be simply

noise. Our work underscores the need to analyze the GAN-based models further to generate data that

accurately reflects real-world attacks. Other works like Attack trees [136], popular graphical models

to represent cyberattack scenarios, pose challenges for organizations due to the need for advanced

security expertise and stakeholder engagement [137]. Current automation methods from system

models or attack pattern libraries need more maturity for practical use [138]. Large Language Models

(LLMs) like PAC-GPT [139] provide a potential solution by aiding in the automated synthesis of attack

trees, leveraging their natural language generation capabilities [140].

8. Conclusion

This comprehensive review of generative models, particularly GANs, in generating synthetic

attack data for cybersecurity underscores the potential and challenges of this approach. GANs have

emerged as a powerful tool in addressing the scarcity of large, diverse datasets, crucial for training

robust deep learning models in cybersecurity. The ability of these models to generate data that

mirrors real-world scenarios can significantly enhance the training process, leading to more effective

cybersecurity solutions. However, the effectiveness of models trained on synthetic data in accurately

detecting and responding to real-world cyber threats is an area that requires further investigation.

The findings of this review suggest a need for a balanced approach, combining both natural and

synthetic data, to ensure the robustness and reliability of cybersecurity models. Moreover, the ethical

and privacy considerations associated with using synthetic data in cybersecurity should be considered.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

https://doi.org/10.20944/preprints202312.0865.v1

24 of 29

Future research should address these challenges, ensuring that the development and deployment of

these technologies are done responsibly and with due consideration of potential consequences.

References

1. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.

Generative adversarial nets. Advances in neural information processing systems, 2014, pp. 2672–2680.

2. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.

Generative adversarial networks. Communications of the ACM 2020, 63, 139–144.

3. Shahriar, S. GAN computers generate arts? a survey on visual arts, music, and literary text generation using

generative adversarial network. Displays 2022, p. 102237.

4. Yinka-Banjo, C.; Ugot, O.A. A review of generative adversarial networks and its application in cybersecurity.

Artificial Intelligence Review 2020, 53, 1721–1736.

5. Cai, Z.; Xiong, Z.; Xu, H.; Wang, P.; Li, W.; Pan, Y. Generative adversarial networks: A survey toward private

and secure applications. ACM Computing Surveys (CSUR) 2021, 54, 1–38.

6. Hu, W.; Tan, Y. Generating adversarial malware examples for black-box attacks based on GAN. Data Mining

and Big Data: 7th International Conference, DMBD 2022, Beijing, China, November 21–24, 2022, Proceedings,

Part II. Springer, 2023, pp. 409–423.

7. Jordan, A.; others. On discriminative vs. generative classifiers: A comparison of logistic regression and

naive bayes. Advances in neural information processing systems 2002, 14, 841.

8. Lee, H.W.; Lim, K.Y.; Grabowski, B.L. Generative learning: Principles and implications for making meaning.

In Handbook of research on educational communications and technology; Routledge, 2008; pp. 111–124.

9. Nallapati, R. Discriminative models for information retrieval. Proceedings of the 27th annual international

ACM SIGIR conference on Research and development in information retrieval, 2004, pp. 64–71.

10. Oussidi, A.; Elhassouny, A. Deep generative models: Survey. 2018 International Conference on Intelligent

Systems and Computer Vision (ISCV), 2018, pp. 1–8. doi:10.1109/ISACV.2018.8354080.

11. Webb, G.I. Naïve Bayes. Encyclopedia of machine learning 2010, 15, 713–714.

12. Pearl, J. Bayesian networks; UCLA: Department of Statistics, UCLA, 2011.

13. Clifford, P. Markov random fields in statistics. Disorder in physical systems: A volume in honour of John M.

Hammersley 1990, pp. 19–32.

14. Eddy, S.R. Hidden markov models. Current opinion in structural biology 1996, 6, 361–365.

15. Izenman, A.J. Linear discriminant analysis. In Modern multivariate statistical techniques; Springer, 2013; pp.

237–280.

16. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. nature 2015, 521, 436–444.

17. Fahlman, S.E.; Hinton, G.E.; Sejnowski, T.J. Massively parallel architectures for Al: NETL, Thistle, and

Boltzmann machines. National Conference on Artificial Intelligence, AAAI, 1983.

18. Fischer, A.; Igel, C. An introduction to restricted Boltzmann machines. Iberoamerican congress on pattern

recognition. Springer, 2012, pp. 14–36.

19. Hinton, G.E. Deep belief networks. Scholarpedia 2009, 4, 5947.

20. Salakhutdinov, R.; Hinton, G. Deep boltzmann machines. Artificial intelligence and statistics. PMLR, 2009,

pp. 448–455.

21. Sutskever, I.; Hinton, G.E. Deep, narrow sigmoid belief networks are universal approximators. Neural

computation 2008, 20, 2629–2636.

22. Bontrager, P.; Togelius, J. Fully differentiable procedural content generation through generative playing

networks. arXiv preprint arXiv:2002.05259 2020.

23. Kingma, D.P.; Welling, M.; others. An introduction to variational autoencoders. Foundations and Trends® in

Machine Learning 2019, 12, 307–392.

24. Nikolenko, S.I. Synthetic data for deep learning; Vol. 174, Springer, 2021.

25. Caruana, R.; Niculescu-Mizil, A. An empirical comparison of supervised learning algorithms. Proceedings

of the 23rd international conference on Machine learning, 2006, pp. 161–168.

26. Wright, R.E. Logistic regression. Reading and Understanding Multivariate Statistics 1995, pp. 217–244.

27. Joachims, T. Svmlight: Support vector machine. SVM-Light Support Vector Machine http://svmlight. joachims.

org/, University of Dortmund 1999, 19.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

https://doi.org/10.1109/ISACV.2018.8354080
https://doi.org/10.20944/preprints202312.0865.v1

25 of 29

28. Kröse, B.; Krose, B.; van der Smagt, P.; Smagt, P. An introduction to neural networks; The University of

Amsterdam, 1993.

29. Peterson, L.E. K-nearest neighbor. Scholarpedia 2009, 4, 1883.

30. Phyu, T.N. Survey of classification techniques in data mining. Proceedings of the international

multiconference of engineers and computer scientists, 2009, Vol. 1.

31. Bernardo, J.; Bayarri, M.; Berger, J.; Dawid, A.; Heckerman, D.; Smith, A.; West, M. Generative or

discriminative? getting the best of both worlds. Bayesian statistics 2007, 8, 3–24.

32. Minka, T. Discriminative models, not discriminative training. Technical report, Technical Report

MSR-TR-2005-144, Microsoft Research, 2005.

33. Theis, L.; Oord, A.v.d.; Bethge, M. A note on the evaluation of generative models. arXiv preprint

arXiv:1511.01844 2015.

34. Amit, I.; Matherly, J.; Hewlett, W.; Xu, Z.; Meshi, Y.; Weinberger, Y. Machine learning in

cyber-security-problems, challenges and data sets. arXiv preprint arXiv:1812.07858 2018.

35. Barlow, H.B. Unsupervised learning. Neural computation 1989, 1, 295–311.

36. Zhu, X.; Goldberg, A.B. Introduction to semi-supervised learning. Synthesis lectures on artificial intelligence

and machine learning 2009, 3, 1–130.

37. Khosravi, P.; Choi, Y.; Liang, Y.; Vergari, A.; Broeck, G.V.d. On tractable computation of expected predictions.

arXiv preprint arXiv:1910.02182 2019.

38. Huang, C.W.; Touati, A.; Dinh, L.; Drozdzal, M.; Havaei, M.; Charlin, L.; Courville, A. Learnable explicit

density for continuous latent space and variational inference. arXiv preprint arXiv:1710.02248 2017.

39. Frey, B.J.; Hinton, G.E.; Dayan, P.; others. Does the wake-sleep algorithm produce good density estimators?

Advances in neural information processing systems. Citeseer, 1996, pp. 661–670.

40. Karhunen, J. Nonlinear independent component analysis. ICA: Principles and Practice 2001, pp. 113–134.

41. Hammersley, J. Monte carlo methods; Springer Science & Business Media, 2013.

42. Tran, D.; Ranganath, R.; Blei, D. Hierarchical implicit models and likelihood-free variational inference.

Advances in Neural Information Processing Systems 2017, 30.

43. Ching, W.K.; Ng, M.K. Markov chains. Models, algorithms and applications 2006.

44. Wang, H.; Lei, Z.; Zhang, X.; Zhou, B.; Peng, J. Machine learning basics. Deep learning 2016, pp. 98–164.

45. Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE

transactions on pattern analysis and machine intelligence 2013, 35, 1798–1828.

46. Arora, S.; Khandeparkar, H.; Khodak, M.; Plevrakis, O.; Saunshi, N. A theoretical analysis of contrastive

unsupervised representation learning. arXiv preprint arXiv:1902.09229 2019.

47. Hodson, T.O.; Over, T.M.; Foks, S.S. Mean squared error, deconstructed. Journal of Advances in Modeling Earth

Systems 2021, 13, e2021MS002681.

48. Jiang, B.; Zhou, Z.; Wang, X.; Tang, J.; Luo, B. CmSalGAN: RGB-D salient object detection with cross-view

generative adversarial networks. IEEE Transactions on Multimedia 2020, 23, 1343–1353.

49. Goudet, O.; Kalainathan, D.; Caillou, P.; Guyon, I.; Lopez-Paz, D.; Sebag, M. Causal generative neural

networks. arXiv preprint arXiv:1711.08936 2017.

50. Zhou, G.; Yao, L.; Xu, X.; Wang, C.; Zhu, L.; Zhang, K. On the opportunity of causal deep generative models:

A survey and future directions. arXiv preprint arXiv:2301.12351 2023.

51. Kügelgen, J.; Mey, A.; Loog, M.; Schölkopf, B. Semi-supervised learning, causality, and the conditional

cluster assumption. Conference on Uncertainty in Artificial Intelligence. PMLR, 2020, pp. 1–10.

52. Han, T.; Tu, W.W.; Li, Y.F. Explanation consistency training: Facilitating consistency-based semi-supervised

learning with interpretability. Proceedings of the AAAI conference on artificial intelligence, 2021, Vol. 35, pp.

7639–7646.

53. Kanungo, T.; Mount, D.M.; Netanyahu, N.S.; Piatko, C.; Silverman, R.; Wu, A.Y. The analysis of a simple

k-means clustering algorithm. Proceedings of the sixteenth annual symposium on Computational geometry,

2000, pp. 100–109.

54. Kramer, O.; Kramer, O. K-nearest neighbors. Dimensionality reduction with unsupervised nearest neighbors 2013,

pp. 13–23.

55. De Ville, B. Decision trees. Wiley Interdisciplinary Reviews: Computational Statistics 2013, 5, 448–455.

56. Cho, Y.; Saul, L. Kernel methods for deep learning. Advances in neural information processing systems 2009, 22.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

https://doi.org/10.20944/preprints202312.0865.v1

26 of 29

57. Sennrich, R. Modelling and optimizing on syntactic n-grams for statistical machine translation. Transactions

of the Association for Computational Linguistics 2015, 3, 169–182.

58. Hinton, G.E. Distributed representations 1984.

59. Hinton, G.E.; Ghahramani, Z. Generative models for discovering sparse distributed representations.

Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 1997, 352, 1177–1190.

60. Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative

adversarial networks. arXiv preprint arXiv:1511.06434 2015.

61. Li, T.; Ortiz, J.M. Generative Adversarial Network 1011.

62. Ratliff, L.J.; Burden, S.A.; Sastry, S.S. Characterization and computation of local Nash equilibria in continuous

games. 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE,

2013, pp. 917–924.

63. Sun, F.; Xie, X. Deep non-parallel hyperplane support vector machine for classification. IEEE Access 2023.

64. Zhang, X.Y.; Xie, G.S.; Li, X.; Mei, T.; Liu, C.L. A Survey on Learning to Reject. Proceedings of the IEEE 2023,

111, 185–215.

65. Chen, L.; Deng, Y.; Cheong, K.H. Permutation Jensen–Shannon divergence for Random Permutation Set.

Engineering Applications of Artificial Intelligence 2023, 119, 105701.

66. Wildberger, J.; Guo, S.; Bhattacharyya, A.; Schölkopf, B. On the Interventional Kullback-Leibler Divergence.

arXiv preprint arXiv:2302.05380 2023.

67. Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive growing of gans for improved quality, stability, and

variation. arXiv preprint arXiv:1710.10196 2017.

68. Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 2014.

69. Denton, E.L.; Chintala, S.; Fergus, R.; others. Deep generative image models using a laplacian pyramid of

adversarial networks. Advances in neural information processing systems, 2015, pp. 1486–1494.

70. Burt, P.; Adelson, E. The Laplacian pyramid as a compact image code. IEEE Transactions on communications

1983, 31, 532–540.

71. Krizhevsky, A.; Nair, V.; Hinton, G. Cifar-10 (canadian institute for advanced research). URL http://www. cs.

toronto. edu/kriz/cifar. html 2010, 5.

72. Song, F.Y.Y.Z.S.; Xiao, A.S.J. LSUN: Construction of a Large-scale Image Dataset using Deep Learning with

Humans in the Loop. arXiv preprint arXiv:1506.03365 2015.

73. Liu, Z.; Luo, P.; Wang, X.; Tang, X. Deep learning face attributes in the wild. Proceedings of the IEEE

international conference on computer vision, 2015, pp. 3730–3738.

74. Wang, Z.; Simoncelli, E.P.; Bovik, A.C. Multiscale structural similarity for image quality assessment.

The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003. Ieee, 2003, Vol. 2, pp.

1398–1402.

75. Bowles, C.; Chen, L.; Guerrero, R.; Bentley, P.; Gunn, R.; Hammers, A.; Dickie, D.A.; Hernández, M.V.;

Wardlaw, J.; Rueckert, D. Gan augmentation: Augmenting training data using generative adversarial

networks. arXiv preprint arXiv:1810.10863 2018.

76. Sixt, L.; Wild, B.; Landgraf, T. Rendergan: Generating realistic labeled data. Frontiers in Robotics and AI 2018,

5, 66.

77. Wario, F.; Wild, B.; Couvillon, M.J.; Rojas, R.; Landgraf, T. Automatic methods for long-term tracking and

the detection and decoding of communication dances in honeybees. Frontiers in Ecology and Evolution 2015,

3, 103.

78. Zhang, H.; Xu, T.; Li, H.; Zhang, S.; Wang, X.; Huang, X.; Metaxas, D.N. Stackgan: Text to photo-realistic

image synthesis with stacked generative adversarial networks. Proceedings of the IEEE international

conference on computer vision, 2017, pp. 5907–5915.

79. Reed, S.E.; Akata, Z.; Mohan, S.; Tenka, S.; Schiele, B.; Lee, H. Learning what and where to draw. Advances

in neural information processing systems, 2016, pp. 217–225.

80. Wah, C.; Branson, S.; Welinder, P.; Perona, P.; Belongie, S. The caltech-ucsd birds-200-2011 dataset, 2011.

81. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco:

Common objects in context. European conference on computer vision. Springer, 2014, pp. 740–755.

82. Nilsback, M.E.; Zisserman, A. Automated flower classification over a large number of classes. 2008 Sixth

Indian Conference on Computer Vision, Graphics & Image Processing. IEEE, 2008, pp. 722–729.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

https://doi.org/10.20944/preprints202312.0865.v1

27 of 29

83. Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X. Improved techniques for

training gans. Advances in neural information processing systems, 2016, pp. 2234–2242.

84. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer

vision. Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2818–2826.

85. Chen, X.; Duan, Y.; Houthooft, R.; Schulman, J.; Sutskever, I.; Abbeel, P. Infogan: Interpretable representation

learning by information maximizing generative adversarial nets. Advances in neural information processing

systems, 2016, pp. 2172–2180.

86. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.

Proceedings of the IEEE 1998, 86, 2278–2324.

87. Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; Ng, A.Y. Reading digits in natural images with

unsupervised feature learning. NIPS workshop on deep learning and unsupervised feature Learning, 2011.

88. Vinod, B. The continuing evolution: Customer-centric revenue management. Journal of Revenue and Pricing

Management 2008, 7, 27–39.

89. Mottini, A.; Lheritier, A.; Acuna-Agost, R. Airline passenger name record generation using generative

adversarial networks. arXiv preprint arXiv:1807.06657 2018.

90. Voigt, P.; Von dem Bussche, A. The eu general data protection regulation (gdpr). A Practical Guide, 1st Ed.,

Cham: Springer International Publishing 2017.

91. Bellemare, M.G.; Danihelka, I.; Dabney, W.; Mohamed, S.; Lakshminarayanan, B.; Hoyer, S.; Munos, R. The

cramer distance as a solution to biased wasserstein gradients. arXiv preprint arXiv:1705.10743 2017.

92. Wang, R.; Fu, B.; Fu, G.; Wang, M. Deep & cross network for ad click predictions. In Proceedings of the

ADKDD’17; 2017; pp. 1–7.

93. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein gan. arXiv preprint arXiv:1701.07875 2017.

94. Ajalloeian, A.; Stich, S.U. Analysis of SGD with Biased Gradient Estimators. arXiv preprint arXiv:2008.00051

2020.

95. Székely, G.J. E-statistics: The energy of statistical samples. Bowling Green State University, Department of

Mathematics and Statistics Technical Report 2003, 3, 1–18.

96. Guo, C.; Berkhahn, F. Entity embeddings of categorical variables. arXiv preprint arXiv:1604.06737 2016.

97. Lilliefors, H.W. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Journal

of the American statistical Association 1967, 62, 399–402.

98. Park, N.; Mohammadi, M.; Gorde, K.; Jajodia, S.; Park, H.; Kim, Y. Data synthesis based on generative

adversarial networks. arXiv preprint arXiv:1806.03384 2018.

99. LA.

100. Adult. UCI Machine Learning Repository, 1996. DOI: 10.24432/C5XW20.

101. Health.

102. Airline.

103. Shokri, R.; Stronati, M.; Song, C.; Shmatikov, V. Membership inference attacks against machine learning

models. 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017, pp. 3–18.

104. Bhuyan, M.H.; Bhattacharyya, D.K.; Kalita, J.K. Network anomaly detection: methods, systems and tools.

Ieee communications surveys & tutorials 2013, 16, 303–336.

105. Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J. Survey of intrusion detection systems: techniques,

datasets and challenges. Cybersecurity 2019, 2, 1–22.

106. Ahmad, Z.; Shahid Khan, A.; Wai Shiang, C.; Abdullah, J.; Ahmad, F. Network intrusion detection

system: A systematic study of machine learning and deep learning approaches. Transactions on Emerging

Telecommunications Technologies 2021, 32, e4150.

107. Yang, Z.; Liu, X.; Li, T.; Wu, D.; Wang, J.; Zhao, Y.; Han, H. A systematic literature review of methods and

datasets for anomaly-based network intrusion detection. Computers & Security 2022, p. 102675.

108. Bulusu, S.; Kailkhura, B.; Li, B.; Varshney, P.K.; Song, D. Anomalous Instance Detection in Deep Learning: A

Survey. arXiv preprint arXiv:2003.06979 2020.

109. Zhang, J.; Tang, J.; Zhang, X.; Ouyang, W.; Wang, D. A survey of network traffic generation 2015.

110. Lin, Z.; Jain, A.; Wang, C.; Fanti, G.; Sekar, V. Using GANs for sharing networked time series data: Challenges,

initial promise, and open questions. Proceedings of the ACM Internet Measurement Conference, 2020, pp.

464–483.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

10.24432/C5XW20
https://doi.org/10.20944/preprints202312.0865.v1

28 of 29

111. Xu, S.; Marwah, M.; Arlitt, M.; Ramakrishnan, N. Stan: Synthetic network traffic generation with generative

neural models. Deployable Machine Learning for Security Defense: Second International Workshop, MLHat

2021, Virtual Event, August 15, 2021, Proceedings 2. Springer, 2021, pp. 3–29.

112. Ring, M.; Schlör, D.; Landes, D.; Hotho, A. Flow-based network traffic generation using generative

adversarial networks. Computers & Security 2019, 82, 156–172.

113. Ring, M.; Wunderlich, S.; Grüdl, D.; Landes, D.; Hotho, A. Flow-based benchmark data sets for intrusion

detection. Proceedings of the 16th European conference on cyber warfare and security, 2017, pp. 361–369.

114. Ring, M.; Dallmann, A.; Landes, D.; Hotho, A. Ip2vec: Learning similarities between ip addresses. 2017

IEEE International Conference on Data Mining Workshops (ICDMW). IEEE, 2017, pp. 657–666.

115. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space.

arXiv preprint arXiv:1301.3781 2013.

116. Cheng, A. PAC-GAN: Packet Generation of Network Traffic using Generative Adversarial Networks. 2019

IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON).

IEEE, 2019, pp. 0728–0734.

117. Shahid, M.R.; Blanc, G.; Jmila, H.; Zhang, Z.; Debar, H. Generative deep learning for Internet of Things

network traffic generation. 2020 IEEE 25th Pacific Rim International Symposium on Dependable Computing

(PRDC). IEEE, 2020, pp. 70–79.

118. Yin, Y.; Lin, Z.; Jin, M.; Fanti, G.; Sekar, V. Practical gan-based synthetic ip header trace generation using

netshare. Proceedings of the ACM SIGCOMM 2022 Conference, 2022, pp. 458–472.

119. Myneni, S.; Chowdhary, A.; Sabur, A.; Sengupta, S.; Agrawal, G.; Huang, D.; Kang, M. DAPT

2020-constructing a benchmark dataset for advanced persistent threats. Deployable Machine Learning

for Security Defense: First International Workshop, MLHat 2020, San Diego, CA, USA, August 24, 2020,

Proceedings 1. Springer, 2020, pp. 138–163.

120. Sweet, C.; Moskal, S.; Yang, S.J. On the Variety and Veracity of Cyber Intrusion Alerts Synthesized by

Generative Adversarial Networks. ACM Transactions on Management Information Systems (TMIS) 2020,

11, 1–21.

121. Sweet, C.; Moskal, S.; Yang, S.J. Synthetic intrusion alert generation through generative adversarial networks.

MILCOM 2019-2019 IEEE Military Communications Conference (MILCOM). IEEE, 2019, pp. 1–6.

122. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A.C. Improved training of wasserstein gans.

Advances in neural information processing systems, 2017, pp. 5767–5777.

123. Belghazi, M.I.; Baratin, A.; Rajeswar, S.; Ozair, S.; Bengio, Y.; Courville, A.; Hjelm, R.D. Mine: mutual

information neural estimation. arXiv preprint arXiv:1801.04062 2018.

124. Munaiah, N.; Pelletier, J.; Su, S.H.; Yang, S.J.; Meneely, A. A Cybersecurity Dataset Derived from the National

Collegiate Penetration Testing Competition. HICSS Symposium on Cybersecurity Big Data Analytics, 2019.

125. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties

of neural networks. arXiv preprint arXiv:1312.6199 2013.

126. Papernot, N.; McDaniel, P.; Jha, S.; Fredrikson, M.; Celik, Z.B.; Swami, A. The limitations of deep learning in

adversarial settings. 2016 IEEE European symposium on security and privacy (EuroS&P). IEEE, 2016, pp.

372–387.

127. Papernot, N.; McDaniel, P.; Goodfellow, I.; Jha, S.; Celik, Z.B.; Swami, A. Practical black-box attacks against

machine learning. Proceedings of the 2017 ACM on Asia conference on computer and communications

security, 2017, pp. 506–519.

128. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv preprint

arXiv:1412.6572 2014.

129. Hu, W.; Tan, Y. Generating adversarial malware examples for black-box attacks based on gan. arXiv preprint

arXiv:1702.05983 2017.

130. Lin, Z.; Shi, Y.; Xue, Z. Idsgan: Generative adversarial networks for attack generation against intrusion

detection. arXiv preprint arXiv:1809.02077 2018.

131. Papernot, N.; McDaniel, P.; Goodfellow, I. Transferability in machine learning: from phenomena to black-box

attacks using adversarial samples. arXiv preprint arXiv:1605.07277 2016.

132. Yang, Y.; Zheng, K.; Wu, B.; Yang, Y.; Wang, X. Network intrusion detection based on supervised adversarial

variational auto-encoder with regularization. IEEE Access 2020, 8, 42169–42184.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

https://doi.org/10.20944/preprints202312.0865.v1

29 of 29

133. Lee, J.; Park, K. GAN-based imbalanced data intrusion detection system. Personal and Ubiquitous Computing

2021, 25, 121–128.

134. Huang, S.; Lei, K. IGAN-IDS: An imbalanced generative adversarial network towards intrusion detection

system in ad-hoc networks. Ad Hoc Networks 2020, 105, 102177.

135. Shahriar, M.H.; Haque, N.I.; Rahman, M.A.; Alonso, M. G-ids: Generative adversarial networks assisted

intrusion detection system. 2020 IEEE 44th Annual Computers, Software, and Applications Conference

(COMPSAC). IEEE, 2020, pp. 376–385.

136. Schneier, B. Attack trees. Dr. Dobb’s journal 1999, 24, 21–29.

137. Gadyatskaya, O.; Trujillo-Rasua, R. New directions in attack tree research: catching up with industrial needs.

Graphical Models for Security: 4th International Workshop, GraMSec 2017, Santa Barbara, CA, USA, August

21, 2017, Revised Selected Papers 4. Springer, 2018, pp. 115–126.

138. Wideł, W.; Audinot, M.; Fila, B.; Pinchinat, S. Beyond 2014: Formal Methods for Attack Tree–based Security

Modeling. ACM Computing Surveys (CSUR) 2019, 52, 1–36.

139. Kholgh, D.K.; Kostakos, P. PAC-GPT: A novel approach to generating synthetic network traffic with GPT-3.

IEEE Access 2023.

140. Gadyatskaya, O.; Papuc, D. ChatGPT Knows Your Attacks: Synthesizing Attack Trees Using LLMs.

International Conference on Data Science and Artificial Intelligence. Springer, 2023, pp. 245–260.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

https://doi.org/10.20944/preprints202312.0865.v1

	Introduction
	Modeling Techniques
	Generative models
	Discriminative models
	Difference between Generative and Discriminative Models
	Why Generative models?
	How Generative Models work?
	How Generative Models generate data?

	Generative Adversarial Networks (GANs)
	Construction of Networks
	Cost Function
	Training of Networks

	Generating Data using GANs
	Different techniques in GAN for generating data
	Generating images
	Generating tabular synthetic data
	Airline Passenger Name Record (PNR) generation
	Synthesizing fake tables

	Generating Cyber Attack data using GAN
	Flow-based Network Traffic Generation
	Cyber Intrusion Alert Data Synthesis
	Generating Attack Data using Adversarial Examples
	MalGAN: Generating Malware Adversarial Examples using GAN
	IDSGAN: Generating Adversarial Examples against Intrusion Detection System

	Analysis of GAN generated Synthetic Attack Data
	Discussion
	Conclusion
	References

