Pre prints.org

Review Not peer-reviewed version

Review of Generative Models in
Generating Synthetic Attack Data for
Cybersecurity

Garima Agrawal , Amardeep Kaur . , Sowmya Myneni .

Posted Date: 12 December 2023
doi: 10.20944/preprints202312.0865.v1

Keywords: Cyber Security; GANs; Network Security; Cyber-Attacks; Adversarial Attacks; Generative Models;
Generative Nets, Synthetic Attack Data

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2423782
https://sciprofiles.com/profile/3306899
https://sciprofiles.com/profile/3306900

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Review

Review of Generative Models in Generating
Synthetic Attack Data for Cybersecurity

Garima Agrawal 1*{), Amardeep Kaur 2 and Sowmya Myneni !

School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, 85281, USA;
smyneni2@asu.edu (S.M.)

2 School of Physics, Mathematics and Computing, The University of Western Australia, Perth, WA 6009,
Australia; amardeep. kaur@uwa.edu.au (A K.)

Correspondence: garima.agrawal@asu.edu (G.A.)

Abstract: The ability of deep learning to process vast data and uncover concealed malicious patterns
has spurred the adoption of deep learning methods within the cybersecurity domain. Nonetheless, a
notable hurdle confronting cybersecurity researchers today is the acquisition of a sufficiently large
dataset to train deep learning models effectively. Privacy and security concerns associated with using
real-world organization data have made cybersecurity researchers seek alternative strategies, notably
focusing on generating synthetic data. Generative Adversarial Networks (GANs) have emerged as a
prominent solution, lauded for their capacity to generate synthetic data spanning diverse domains.
Despite their widespread use, the efficacy of GANs in generating realistic cyber attack data remains a
subject requiring thorough investigation. Moreover, the proficiency of deep learning models trained
on such synthetic data to accurately discern real-world attacks and anomalies poses an additional
challenge that demands exploration. This paper delves into essential aspects of generative learning,
scrutinizing their data generation capabilities, and conducts a comprehensive review to address the
above questions. Through this exploration, we aim to shed light on the potential of synthetic data in
fortifying deep learning models for robust cybersecurity applications.

Keywords: cyber security; GANSs; network security; cyber-attacks; adversarial attacks; generative
models; generative nets; synthetic attack data

1. Introduction

The use of machine learning for cyber security has become increasingly prominent over recent
years, as it offers a way to defend against constantly evolving cyber threats. However, one of the
significant challenges of applying machine learning methods in anomaly or intrusion detection systems
is the need for more realistic cyber attack datasets. Given privacy and security concerns, real-world
organizations cannot share their data. Thus, most cybersecurity datasets are created using simulated
attacks conducted by red-blue teams or hackathons. These simulations can provide some attack
data, but the attack scenarios are often limited and specific to the simulation environment. The
attack data must be more diverse and realistic to train models and estimate system security. To
effectively defend against a constantly changing threat landscape, there is a need for automated
methods of generating diverse and realistic attack data without impacting the regular operation of
an organization’s production environment. One possible approach for automating the generation of
diverse and realistic attack data is using generative models to generate synthetic data.

Generative Adversarial Networks (GAN) have been widely used to generate synthetic data,
especially image generation and text manipulation. GANs can fool the defender into believing that
the synthetic data is the actual data [1,2]. The success of adversarial networks in different domains [3]
has intrigued the cybersecurity research community to use GANSs in cybersecurity. GANs have been
used in cybersecurity in different ways. The most common application is to improve the intrusion
detection and security of the systems. There is also research to explore how adversarial systems can

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0002-4383-7850
https://doi.org/10.20944/preprints202312.0865.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

2 0f29

use GANSs to spoof security systems like fingerprints, passwords, face detection, etc. [4,5]. GANs
are also used to generate malware, and cyber attack data [6]. While the development of GAN-based
privacy and security methods seems promising and has opened new research avenues [5], the quality
of synthetic attack data generated by GANs needs to be determined. It is still unclear whether the
artificial attack data is realistic as the actual cyber attack data and whether it contains the signature
attack vector. Also, when the intrusion detection systems and deep learning models are trained on
the synthetically generated attack data, there is a need to analyze further whether these models can
detect new or unseen real-world attacks. In this paper, we did a survey and critical analysis on the
application of GANSs in generating cyber attack data while making the following contributions:

1. We explored the critical features of generative learning and the capabilities of generative models,
highlighting their effectiveness in creating new data compared to discriminative models [7]. This
comparison is further enriched by a detailed examination of how generative models operate.

2. We provide a concise overview of GANs, focusing on their data generation capabilities and
architecture. It includes examining various models and techniques that generate diverse image
and text data across domains using GANS.

3. Next, we comprehensively review various methods for generating synthetic cyber attack data
using GANs.

4. Finally, we assess the value of synthetically generated attack data by conducting experiments with
the NSL-KDD dataset. Specifically, we examine the characteristics of DoS attacks and gauge how
well GAN-generated data can improve the training of intrusion detection systems for real-world
cyber-attack mitigation.

The paper is organized as follows. The next section discusses the different modeling techniques
and generative models.The GAN architecture is presented in Section 3. Section 4 overviews models
and techniques for generating synthetic data in images and text. In Section 5, we present a detailed
literature survey of methods to generate cyber attack data using GANSs. Further, in Section 6, we
present a critical analysis of GANs capability to generate realistic attack data and the usefulness of this
synthetic attack data in training intrusion detection classifiers. Finally, we provide the discussion in
Section 7 and conclude the paper in Section 8.

2. Modeling Techniques

In this section, we will discuss the various modeling techniques, with a specific focus on an
in-depth examination of the crucial facets of generative learning [8]. We also analyze the mechanisms
through which generative models adeptly generate data. The modeling techniques are of two types,
generative and discriminative modeling [9]. The below subsections give a brief overview of each
modeling type.

2.1. Generative models

Generative modeling is a type of modeling that has been widely used in statistics. When
applied to machine learning it has been useful in various fields like natural language processing,
visual recognition, speech recognition and data generation tasks [10]. Naive Bayes [11], Bayesian
networks [12], Markov Random fields [13], Hidden Markov Models [14] and Linear Discriminant
Analysis (LDA) [15] are some of those generative modeling techniques. The advent of Deep
Learning [16] has sparked the development of the deep generative models like Boltzmann
machines [17], Restricted Boltzmann Machines [18], Deep Belief Networks [19], Deep Boltzmann
Machines [20] including graphical models like Sigmoid Belief Networks [21], Differentiable Generator
Networks [22], Variational Autoencoders [23] etc. Generative Adversarial Network [1], popular as
GAN, is a type of generative model that received massive attention in the past few years due to their
remarkable success in generating synthetic data [24].

https://doi.org/10.20944/preprints202312.0865.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

30f29

2.2. Discriminative models

Discriminative models, as their name indicates, are capable of understanding the boundaries
amongst the given data points using probability estimates, and thus are widely used in classification
approaches. The supervised learning [25] approaches such as Logistic regression [26], Support Vector
Machine [27], Neural networks [28], Nearest Neighbor [29] are based on discriminative modeling.
When provided with sufficient labeled data, these methods have succeeded in classification tasks [30].
They can learn to discriminate between different types of data and output the instance that belongs to
a particular class.

2.3. Difference between Generative and Discriminative Models

The generative and discriminative modeling differs in their approach to solving the learning
tasks [31]. The discriminator plays more of a classifier role by creating the decision boundary between
the different classes. It does not attempt to learn the actual distribution of the data but tries to learn the
mapping between the data vector and the label vector, given enough labeled mapping samples. The
generative family handles it more challenging by modeling the data distribution and suggesting how
likely an example belongs to a distribution. Since the model knows the data and its distribution, it
is generative and can produce new examples. It is also possible for them to model a distribution by
producing convincingly “fake” data that looks like been drawn from that distribution.

Mathematically, any classifier must estimate the function f : x — y, or p(y|x) for a given dataset x
with corresponding labels y. The discriminative models [32] use the conditional probability and model
the posterior p(y|x) directly or learn a direct mapping from input, x to the class labels, y. Whereas, the
generative models [33] learn the distribution of the input x and the label y, or just p(x), if there are
no labels, from the joint probability p(x,y). They estimate the parameters of p(x|y) and p(y) directly
from the training data and make the predictions by using Bayes’ rules to calculate p(y|x) and pick the
most likely label y.

2.4. Why Generative models?

Generative models have a significant role to play. When it comes to tasks like generating new
data examples, determining how likely it is for any event to occur, or handling missing values by
making use of available unlabeled data, or the ability to infer information from related activities, the
discriminative models or the supervised learning algorithms requires a considerable amount of labeled
data to perform such tasks with reasonable accuracy. It is usually tough and expensive to label the
data; in fields like cyber security [34], where the data is limited, it is even harder to train the model.
The most likely approaches used in such situations are the unsupervised [35] and semi-supervised [36]
learning. However, only some have achieved the level of accuracy as the supervised algorithms. The
unsupervised algorithms have to deal with the high dimensionality of random variables. It enforces
both the statistical and computational challenges to generalize the number of configurations and solve
a problem in a tractable way as the number of dimensions grows exponentially. One of the ways
to deal with the high dimensionality of intractable computations is to approximate them or design
them in a way that does not require such computations. Generative modeling techniques have proved
promising [37] in providing the latter design approach.

2.5. How Generative Models work?

Given the training data and the set of parameters, 6, a model can be built to estimate probability
distribution. The likelihood is the probability that a model assigns to the training data for a dataset
containing m samples of x(),

m .
Hpmodel(x(l)}e) 1)
i=1

https://doi.org/10.20944/preprints202312.0865.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

40f29

The maximum likelihood provides a way to compute the parameters,f, that can maximize the
likelihood of the training data. To simplify 6, log is taken in equation (1) to express the probabilities as
a sum rather than the product,

m .
0* = arg max) 108 P moder (x1); 0))
i=1

If pjatq lies within the family of distributions of p4.1(x; 6), the model can precisely find the pja4,.
In the real world, there is no access to p,;,, and only the training data is available for modeling. The
models must define their density function and find the p,,;4.(x; 6) that maximizes the likelihood. The
generative models which can explicitly represent the probability distribution of the data are called
explicit density models [38]. The Fully Visible Belief Networks (FVBNs) [39] and nonlinear independent
component analysis [40] are a few such explicit density models which can successfully optimize directly
on the log-likelihood of the training dataset. However, their use is limited to solving simple problems
and imposing design restrictions. As the data gets complex and the dimensionality of the data grows,
it gets computationally intractable to find the maximum likelihood. Then approximations are made
on the maximum likelihood, either by using deterministic approximations, as in variational methods
like Variational AutoEncoder (VAE) [23], or by using stochastic approximations such as Monte Carlo
methods [41] The variational autoencoder is one of the popular semi-supervised generative modeling
technique, but it suffers from low-quality samples.

Another family of deep generative nets, called implicit density models [42], do not explicitly
represent the probability distribution over the space where data lies but provide some indirect way
to interact with the probability distribution p,,,4.;. In indirect ways, they can draw samples from the
distribution. One of the methods used by implicit density models is Markov Chain [43] to stochastically
draw samples from p,,,4.; distribution and transform an existing sample to obtain another sample
from the same distribution. Another strategy is to generate the samples in a single step directly from
the distribution represented by the model. The generative model in GANSs is based on implicit density
models and uses the latter strategy to generate the samples directly from the distribution represented
by the model.

2.6. How Generative Models generate data?

Any information can be processed if it is represented well. In the case of machine learning tasks,
it is critical to represent the information so that the model can perform subsequent learning tasks
efficiently [44]. The choice of representation varies as per the learning strategy of the model. For
instance, a feedforward network trained using supervised learning criteria learns specific properties at
every hidden layer. The network’s last layer is usually a softmax layer, which is a linear classifier. The
features in the input may not represent linearly separable classes, but they may eventually become
separable until the last hidden layer. Also, the choice of the classifier in the output layer impacts
the properties learned by the last hidden layer. The supervised learning methods do not explicitly
pose any condition on the intermediate features that the network should learn. Whereas, in cases
where the model wants to estimate density, the representation should be designed to make density
estimation easier. In such a case, it may be appropriate to consider the distributed representations,
which are independent and can be easily separated from each other. Representation learning [45] plays
an integral role in the unsupervised and semi-supervised models, which try to learn from unlabeled
data by capturing the shape of the input distribution. A good representation would be one that can
help the learning algorithm identify the different underlying factors causing variations in data and
help them separate these factors from each other. It would result in the different features or directions
in the feature space corresponding to different causes disentangled by the representation. In the
classic case of supervised learning, the label y presented with each observation x is at least one of the
essential factors directly providing variation. In the case of unlabeled data, as in unsupervised and

https://doi.org/10.20944/preprints202312.0865.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

50f29

semi-supervised [46], the representation needs to use other indirect hints about these factors. The
learning algorithm can be designed to represent these hints in the form of implicit prior beliefs to
guide the learner. For a given distribution p(x), let i represent many of the underlying causes of the
observed x and let the output y be one of the most silent causes of x. The p(x) and p(y|x) should be
firmly tied, and a good representation would allow us to compute p(y|x). Once it is possible to obtain
the underlying explanations, i.e., I for the observed v, it is easy to separate the features or directions in
feature space corresponding to the different causes and consequently easier to predict y from h.
The true generative process would be,

p(h,x) = p(x|h)p(h) 3)

and, the marginal probability for data, x, can be computed from the expectation of #, as:

p(x) = Epp(x|h) €

If the representation is made in such a way that it is possible to recover &, then it is easy to predict
y from such representation and by using Bayes’ rule, it is possible to find p(y|x),

pEly)p(y) 5)
p(x)

The marginal probability, p(x), is tied to conditional probability, p(y|x), and the knowledge of

the structure of p(x) would help us learn p(y|x). Here, latent factors are the underlying causes & of the

p(ylx) =

observed x. The latent factors or variables are the variables that are not directly observed but rather
inferred from other variables that are directly measured. The latent variables are meaningful but not
observable. The latent variables can capture the dependencies between different observed variables, x.
They help reduce the dimensionality of data and provide different ways of representing the data. So
they can give a better understanding of the data.

Many probabilistic models, like linear factor models, use latent variables and compute the
marginal probability of data, p(x), as described in equation (4). A linear factor model can be defined as
a stochastic linear decoder function that can generate x by adding noise to a linear transformation of /.
It is possible to find some explanatory independent factors &, which have a similar joint distribution
and are sampled from the given distribution like & p(h), where p(h) is a factorial distribution, with

p(h) = 1p(h) (©)
1
Then the real-valued observable variables can be sampled as,

x = Wh + b + noise (7)

where, W is the weight matrix and noise is Gaussian and diagonal, which means it is independent
of dimensions.

The unsupervised learning algorithm would try to learn a representation that captures all the
underlying factors of variation and then try to disentangle them from each other. A brute force solution
may not be feasible to find all or most of such factors, so a semi-supervised approach can be used to
determine the most relevant factors of variation and encode only those salient factors. The autoencoder
and generative models can be trained to optimize fixed criteria like the mean square error to determine
which "causes’ or factors should be considered salient. For instance, if a group of pixels follows a highly
recognizable or distinct pattern, that pattern could be considered extremely salient. However, the
models trained on mean square error have limited performance and failed to reconstruct the images
completely [47].

Another method to identify features’ salience is using GANs [48]. In this approach, a generative
model is trained to fool a classifier which is a discriminative model. The classifier should recognize

https://doi.org/10.20944/preprints202312.0865.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

6 of 29

all the samples from training data as accurate and the samples from the generative model as fake.
Any structured pattern recognized by the discriminator can be considered salient, which makes the
generative adversarial networks better at finding which factors should be represented.

Thus, summarizing the above discussion, there are two essential aspects that make the generative
way of learning powerful. First, they try to learn the underlying causal factors from cause-effect
relationships via the hidden factors that can explain the data. Secondly, they use the distributed
representations to identify these factors, which are independent and can be set separately from each
other. Each direction in the distributed representation space can correspond to a different underlying
causal factor, helping the system identify the salient features.

The advantage of learning the underlying causal factors [49] is that if the exact generative process
learns to model from x being the effect and y as the cause, then p(x|y) is adaptive to change in p(y).
Also, the causal relationships are invariant to any change in the problem domain, type of tasks, or
any non-stationary temporal variations in the dataset. The learning strategy of generative models
attempting to recover the causal factors, h and p(x|h), is robust and generalizes to any feature changes.
Various regularization strategies have been suggested in the literature to find the underlying factors of
variations [50]. Some of the popular strategies used by different learning algorithms are smoothness,
linearity, multiple explanatory factors, depth or hierarchical organization of explanatory factors, shared
factors across tasks, manifolds, natural clustering, sparsity, simplicity of factor dependencies, temporal
and spatial coherence, etc. but causal factors [51] is most advantageous for the semi-supervised
learning and makes the model more robust to any change in the distribution of underlying causes or
while using the model for a new task [52].

The second advantage of the underlying causal factors is that the distributed representations are
more potent in representing the underlying causal factors than the symbolic factors. The symbolic or
one-hot representations are non-distributed, representing only n mutually exclusive regions, whereas
distributed representations can represent 2" configurations for a vector of n binary features. Each
direction in the representation space can correspond to the value of a different underlying configuration
variable.

Different learning algorithms like k-means clustering [53], k-nearest neighbors [54], decision
trees [55], gaussian mixtures, kernel machine with the gaussian kernel [56], and language or translation
models based on n-grams [57] are based on non-distributed representations. These algorithms break
the input space into different regions with a separate set of parameters for each region. Suppose there
are enough examples in the dataset that represents each different region. In that case, the learning
algorithm can fit the training data set well without solving any complicated optimization problem.
However, these models suffer as the number of dimensions grows and if there are insufficient examples
in the dataset to represent each dimension. They fail miserably if the number of parameters exceeds
the number of examples that explain each region. Also, the non-distributed representation needs a
different degree for each region that does not allow them to generalize to new regions when target
functions are not smooth and may increase or decrease several times in many different regions.

On the other hand, the distributed representations [58] use the shared attributes and introduce
the concept of similarity space by representing the inputs as semantically close if they are close in the
distance. They can compactly represent complicated structures using a small number of parameters
and generalize better over shared attributes. For example, a "truck’ and ‘car’ both have common
attributes like "number_of_tyres" and "has_steering" and many other things that are valid for cars and
generalizations to trucks, as well.

The distributed representation uses separate directions in the representation space to capture the
variations between different underlying factors [59]. These features are discovered automatically by
the network and are not required to be fixed beforehand or labeled. The generative models learn from
the distributed representation to disentangle the various features, even when the model has never
seen the feature before. Each direction or vector represents a new feature. Adding or subtracting these
representation vectors is possible to generate new features. For instance, in the famous example of

https://doi.org/10.20944/preprints202312.0865.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023

doi:10.20944/preprints202312.0865.v1

7 of 29

generating new images using GAN [60], the distributed representation disentangles the concept of
gender from the concept of wearing glasses. Given the image of a man with glasses, if the representation
vector of the man is subtracted and the representation of a woman without glasses is added, it would
give the vector representation of the woman with glasses, and a generative model can correctly
generate the image corresponding to the resulting representation vector. Therefore, it is successfully
able to generate new unseen synthetic data.

Table 1. Comparison between Generative and Discriminative modeling techniques.

Generative Models

Discriminative Models

Learn the underlying data distribution

Learn the decision boundary between different
classes of the data

Model the joint probability distribution
between the input and output data

Model the conditional probability distribution
of the output given the input

Can generate new data from the learned
distribution

Cannot generate new data from the learned
decision boundary

Used for tasks such as image and audio
synthesis, text generation, and anomaly
detection

Used for tasks such as classification, regression,
and object recognition

Make no assumptions about the data

Use prior assumptions about the data

Examples include VAE, GAN, and RBM

Examples include Logistic Regression, SVM,

and Neural Networks

3. Generative Adversarial Networks (GANs)

In this section we give a detailed description of GANSs and their training process. The Generative
Adversarial Networks or GANSs [1] are the type of generative models based on differentiable generator
networks [61]. The differentiable generator networks are the class of networks that either trains only
a generator network or pair a generator network with any other network. For example, variational
autoencoders can have a pair of generators with an inference network. Similarly, in GANSs, there is a
pair of a generator network with a discriminator network, which is a discriminative model.

The two networks in GAN compete like adversaries in a two-player game. The generator network
produces samples that intend to come from the training data distribution. The discriminator tries to
correctly classify if the sample is drawn from the training data or the generator. The generator can win
the game only when it has learned to create samples as if they were drawn from the same distribution
as training data, whereas the discriminator should learn to distinguish if the sample is real or fake.

3.1. Construction of Networks

The generator network is the parameterized generative model designed to generate samples. The
model can be a simple neural network that transforms the sample of latent variables z to training
sample x or to a distribution of training samples over x, using a differentiable function. The network
architecture provides the choice of possible distributions from which samples can be drawn, and the
parameters select the desired distribution from within that family. The network can be represented by
a function, G, which is differentiable for its input z and has parameters 0(G). When z is sampled from
some prior distribution, G(z) yields a sample of x drawn from p,,,4.;. The generator network thus
produces the samples, x = G(z;68(G)) where the dimensions of z are at least as large as the dimensions
of x.

The discriminator network is the traditional supervised classifier, and it can be represented by
a function D that takes input x, parameterized by 8(P). The discriminator outputs a probability
D(x;6P)), which is the probability that x is a real training example rather than a fake sample drawn
from the generator model.

https://doi.org/10.20944/preprints202312.0865.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

8 of 29

3.2. Cost Function

The cost function, | for both networks can be defined in terms of the parameters of each. The
discriminator tries to minimize J(P)(6(P),0(G)) while it can control only its own parameters 8(°). At
the same time, generator tries to minimize J(©)(8(P),6(C)) but has control only over (),

This framework is designed like a zero-sum game where minimax technique is applied, and both
players compete for a fixed and limited pool of total resources. These resources can be denoted by a
value function, V(G, D). Each makes a move such that the player’s best move is disadvantageous for
the opponent. Both the generator and discriminator try to minimize their cost, which depends on the
other’s parameters, while they have no control over it. Both try to improve and make the best move
to win such that at least all the neighboring costs are greater or equal to their cost. One is trying to
minimize the value function, and the other is trying to maximize it. The goal is to make both of them
as good as possible so that both reach their peak ability and there is no winner. This state is called Nash
Equilibrium [62], where each network is at its best for the other. So the Nash equilibrium will be the
tuple (§(P),0(%)) for a local minimum of J(P) with respect to 8(°) and a local minimum of J(©) with
respect to 6(5). After certain epochs, both distributions should gradually converge.

The cost of the discriminator, J(P), here can be computed as the standard cross-entropy cost
minimized for a standard binary classifier with a sigmoid output

1
7D (6(D) 9(G)) = _EEXNWW [log(D(x))]

— %EZNPdeBI [log(1 — D(G(z2)))]

To formulate the zero-sum game for these two players, the generator and discriminator, the sum
of the total cost should be set to zero.
J©©) 4 (P) = ¢ ®)

J© = —® ©

Now, for discriminator, the reward or the pay-off is given by, V(G(D), 9(C)),

V(6P),0(0)) = 1(D)(9(P) 9(C)) (10)

whereas, the generator receives —V (8(P),0(%)) as its pay-off

v(6P),0(0)) = —j(P)(9(P) p(C)y (11)

Each player tries to maximize its pay-off, so using the minimax technique, the solution can be
given by minimizing the generator and maximizing the discriminator value,

p(C)x _ . V(oD g©) 12
arg minmax () (12)

3.3. Training of Networks

Both the generator and discriminator networks can be defined by multi-layer perception neural
networks and trained using backpropagation. There is no constraint on the form that any of the two
networks should take; they do not need to be of the same form. A support vector machine (SVM) [63]
can be used for both the generator and discriminator or SV M for the generator and a neural network
for the discriminator. However, using anything other than neural networks may increase the bias of
the model [64].

https://doi.org/10.20944/preprints202312.0865.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

9 0f29

Say, if stochastic gradient descent (SGD) is performed on mini-batch of m samples of data from
distribution p,,(x) and m samples of noise from distribution p,,,4.;(z) then for every iteration, the
loss functions of generator and discriminator can be defined as below:

The generator is updated by decreasing its gradient,

Lossg = AGg% Y log(1 - D(G(2))) (13)

The discriminator is updated by increasing its gradient,

Loss; = AGd%) [log D(x) +log(1 — D(G(z)))] (14)

Here, the log is again taken as it is numerically more stable and it simplifies the computation.
During training, there can be following scenarios:

¢ False Negative - The input is real but the discriminator gives the output as fake: The real data
is given to the discriminator. The generator is not involved in this step. The discriminator
makes a mistake and classifies the input as fake. This is a training error and the weights of the
discriminator are updated using backpropagation.

® True Negative - The input is fake and the discriminator gives the output as fake: The generator
generates some fake data from random noise in latent space. If the discriminator recognizes this
as fake, there is no need to update the discriminator. The weights of the generator should be
updated using backpropagation using the loss function value.

e False Positive - The input is fake but the discriminator gives the output as real. The discriminator
should be updated. The loss function is used to update the weights of discriminator.

The generator produces the fake distribution p,;e4.(x), and the actual distribution from the
sample data p;,s,(x) is known. There is an associated divergence between the two because they are
not identical distributions, so our loss function is non-zero. This divergence can be computed by
minimizing either the Jensen-Shannon [65] or KL (Kullback-Leibler)-divergence) [66], between the data
and the model distribution, and updating the policy of both the players till they reach convergence.

The discriminator training aims to estimate the ratio of densities at every point x. When the
discriminator gets the input from the generated and the true distribution, if it can classify correctly, the
loss function value is propagated to the generator, and the generator weights are updated. However, if
the discriminator cannot correctly distinguish between the two distributions, then the discriminator
weights are updated.

Pdata (x) (15)
Pmodel (x)

At a time, only one of the networks is trained. Although the two compete as adversaries, they
can also be seen as cooperative since the discriminator shares the estimated ratio with the generator,
allowing it to improve. Both the networks continue till the generated distribution gets close to the true
distribution, and the networks reach the NASH equilibrium.

4. Generating Data using GANs

The goal of unsupervised learning is not to provide a mapping between the inputs and targeted
output but rather to learn the structure of the input data. Most of the unsupervised methods do that to
make use of the unlabeled data to improve the accuracy of supervised learning methods.

GAN:Ss are one such generative networks that can discover the structure of the data and generate
realistic samples. As discussed in Section 2, the generative models use cause-effect relationships via
the latent factors and distributed representations to disentangle the independent features to discover
the data structure. GANSs can exploit these properties of generative models to identify the salient

https://doi.org/10.20944/preprints202312.0865.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

10 of 29

features and learn the representations. They can represent the learned features as vectors which can be
manipulated using vector arithmetic to generate new data samples with different semantics.

4.1. Different techniques in GAN for generating data

GANs have made a significant impact in generating synthetic data, especially in the field of
computer vision. They have also been successful in generating tabular and structured data. This
section discusses the various techniques and frameworks used to generate different data types. The
process of generating synthetic data in GAN models is illustrated in Figure 1.

; Updaie D
i *
Training |
Data ‘ Classifier
Samples ‘
i
Generated ;
Discriminator (D, !
) Samples i
F;kc
|
= % Noise E
% |:£|> Latent variable ;
v cause-effect «---Update G----4
o relationship D.':enrang!ed .
4 r"—"""—""""] eatures I i
Text Embeddings | \ Synthetic
' = Daia — | Evaluate | | < Realistic? - No>
[Latent Code Distributed Samples
! Representations 1 11 Discard
| (Mutual Information| | - ; b
| [Label as Condition : Generator (G) e 7
| A Tt
L rig_ _a_o.-: 1! Generative Adversarial Networks (GANs) @
Use generated data to
train Supervised model

Figure 1. Synthetic Data Generation Process in GANs.

4.2. Generating images

GANSs were able to produce realistic images [1,67]. The framework, Deep Convolution generative
adversarial networks (DCGAN) [60] demonstrated the capability of GANs to learn reusable feature
representations of an image. In DCGAN, both the generator and discriminator were able to learn the
hierarchy of feature representations. GAN can be first used to build any image representation, while
the discriminator does the classification task, parts of generator and discriminator can act as feature
extractors. The convolution GANs were trained to build a good image representation for unlabeled
data. It used salient features or filters learnt by the generator to draw specific objects. In DCGAN,
vector arithmetic manipulation was applied to the latent space results to generate new images and to
transfer styles between images by adding or removing new objects.

While GANSs could generate synthetic images, the images” quality may sometimes be low. It may
take a long time to map the complex relationship between the latent space and generated images, often
resulting in low-quality images. As the generator begins from random noise, it may start generating a
random image from a domain. Sometimes, the generator needs help exploring the possible solution
space to find the real solution. It is one of the limitations of basic GANs, called mode collapse [1]. To
improve the training stability of GANSs, conditional generative adversarial networks (CGANSs) [68]
were introduced as an extension of GANs. They suggested that instead of randomly generating
samples from noise with no control over the data mode, applying a condition on the generator and
discriminator by feeding some additional information, y, to the network is possible. This conditioning
could be based on any auxiliary information, such as class labels or data from other modalities.
In the generator, the prior input noise p;(z) and y are combined in joint hidden representation as
log(1 — D(G(z|y))), whereas, in the discriminator, the x and y are given as inputs to the discriminative

https://doi.org/10.20944/preprints202312.0865.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

11 of 29

function, log(D(x|y)). CGANs have been widely used in improving the quality of new examples, but
they could be used only for labeled datasets.

Different variants of GANs have been proposed lately, especially in computer vision, to improve
image quality. LAPGAN [69] was a kind of conditional GAN which used the laplacian pyramid
framework to produce high-resolution image samples. The laplacian pyramid [70] is a technique
for image encoding equivalent to sampling the image with laplacian operators of many scales. In
LAPGAN, a series of generative convolution network models were used. At each level of the Laplacian
pyramid, a separate generative convnet was trained using conditional GAN. Each level would capture
the image structure at a particular scale of the laplacian pyramid, generating samples coarse-to-fine,
commencing on a low-frequency residual image. LAPGAN breaks the original problem into a sequence
of more manageable stages, each subsequent stage conditioning the output from the previous scale
on the sampled residual until the final level is reached. They successfully generated high-resolution,
realistic images of CIFAR10 [71] and Large-scale Scene Understanding (LSUN) [72] datasets. The
generated images were evaluated by estimating log-likelihoods which were high on both datasets.
Also, sample images were drawn from the model, and they were found to be slightly sharper than the
original images. The human-user study did a quantitative measure of the quality of samples to see
if participants could distinguish the samples from real images and were also compared against the
images generated by the standard GANs [1]. The results from the study showed that the LAPGAN
models produced images far more realistic than the standard GANs.

Similarly, the Progressive Growing of GANs (PGGAN) [67] was suggested to produce high-quality
synthetic images. The PGGAN starts with low-resolution images and adds new layers to the generator
and the discriminator as training progresses. The resolution increases as the growing network models
the fine details. This kind of architecture allows the network to learn the large-scale structure of the
image distribution and then gradually focus on finer-scale details instead of learning all the scales
at once. PGGAN proved to be a more stable and balanced network regarding training speed and
output concerning quality and variations in generated images. The experiments were conducted
on CIFAR10 and CelebA [73] datasets, and the quality of images generated was evaluated using
multi-scale statistical similarity [74] to see if the local image structure of the generated image is similar
to the training set over all scales. PGGANSs were also used in augmenting training data to derive
synthetic images similar to actual images in the field of medical imaging [75].

RenderGAN [76] was proposed to generate realistic labeled data to eliminate the need for cost
and time extensive manual labeling. The framework was used in the BeesBook project [77] to analyze
the social behavior of honeybees. A barcode-like marker is used to identify honeybees with limited
labeled data, and it is hard to annotate the new barcode markers. The labeled data generated from
RenderGAN was of high quality. It was used to train a supervised deep convolution neural network
(DCNN) to predict the labels from input data. A 3D model which can generate a simple image of
the tag based on position, orientation, configuration, etc., was embedded into the generator network
of RenderGAN to produce samples from corresponding input labels. Now, the generated samples
may lack many factors of the actual data, such as blurring, lighting, background, etc., so a series of
augmentation functions were introduced for the generator to adapt and learn the image characteristics
from unlabeled data. Five million tags were generated using the RenderGAN framework, which was
indistinguishable from actual data for a human observer.

StackGANSs [78] was another type of GANs proposed to generate images from a text description.
The StackGAN synthesized high-quality photo-realistic images conditioned on a text description.
They used two stages. The first stage sketches the primary object’s shape and colors based on the
text description and produces low-resolution images. The second stage takes the results of the first
stage and the given text description as input and generates high-resolution images with realistic
photo details. The text description is first encoded by an encoder, giving a text embedding [79]. The
text embedding needs to be transformed to generate latent conditioning variables as input of the
generator. The latent space for text embedding may grow into a high dimensional space, so conditional

https://doi.org/10.20944/preprints202312.0865.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

12 of 29

augmentation was used to produce an additional conditioning variable, ¢, which supports a smooth
latent data manifold by using a small number of image-text pairs and generates images from a linearly
interpolated sentence embedding. The noise vector, z, is fixed, so the generated image is only inferred
from the given text description. The StackGAN framework was used to generate images for CUB [80],
COCO [81], and Oxford-102 [82] datasets to generate the images of birds species using the five to ten
text descriptions given for each. The generated images were evaluated using inception score (IS) [83],
a metric commonly used to assess the quality of images produced by GANs. The IS measures the
diversity and quality of generated images by comparing their predicted class probabilities to those
of real images using a pre-trained image classifier, such as Inception-v3 [84]. The IS is obtained
by calculating the KL divergence between the two distributions and then exponentiating the result.
Human evaluation was also conducted, and their observations correlated with the IS.

Another exciting variant, InfoGAN [85], was suggested to improve the interpretation and
representations learned by a regular GAN. InfoGAN used the mutual information between a small
subset of latent variables and the observations to disentangle the feature representations in an
unsupervised manner. The latent information or latent code, ¢, was provided to the network to
give some semantically meaningful information about the factors of variation. For example, when
generating images from MNIST digits (0-9) dataset [86], two continuous variables that represent
the digit’s angle and thickness of the digit’s stroke were used; pose information for CelebA; and
background digits for housing number images, Street View House Number(SVHN) dataset [87], were
used as a latent code. The mutual information, I, between the noise, z, and the latent code, ¢, was
maximized; the generator becomes a function of G(z,c), and the mutual information, I(c; G(z,c))
should be high. The images generated by InfoGAN showed that this modification in the architecture
helped the generator to disentangle variations like the presence or absence of glasses, hairstyles, and
emotions, demonstrating that the model acquired a certain level of visual understanding without any
supervision.

4.3. Generating tabular synthetic data

The above discussion shows that various frameworks of GANs, with or without some
modifications, could successfully generate realistic image data. Though in many real-world business
applications, the data combine categorical and numerical features with missing or unknown values,
making it more challenging to use GANs. Different approaches were proposed to adapt to such data
types and generate realistic synthetic data, which can be used to train a supervised classifier. Two of
the popular approaches are discussed below:

4.3.1. Airline Passenger Name Record (PNR) generation

The passenger name records (PNR) airlines store traveler information. They can be a good data
source for building commercial business applications such as client segmentation and adaptive product
pricing [88]. The paper on airlines PNR generation [89] showed that the passenger record data could
be synthetically generated using GANs and used this data to predict clients and nationality. Access
to PNR data is limited, as it contains personally identifiable information (PII), and it falls under EU
General Data Protection Regulation (GDPR) [90] strict data privacy regulations. In this situation,
synthetic data, which has the original data structure and follows the same distribution, should be
sufficient to train the supervised classifier.

A variant of GANS, called Cramer GANs [91] with a generator/critic architecture that combines
feedforward layers with the Cross-Net architecture [92] was used. Cramer GANSs were suggested as
an improvement over original GANSs [1] and Wasserstein GANs (WGANSs) [93]. The original GAN
model used Jensen-Shannon divergence (JSD) or KL-divergence, which finds the similarity between
the probability distributions of data and the model. It keeps updating the generator and discriminator
till they converge. The Wasserstein GANs (WGANSs) use the Wasserstein distance, which is the Earth
Mover (EM) distance, and it computes the distance between two probability distributions. It produces

https://doi.org/10.20944/preprints202312.0865.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

13 of 29

better sample quality than the original GANs. When batch training uses stochastic gradient descent
(SGD) based methods, WGANS suffer from biased gradients [94]. They may converge to the wrong
minimum while estimating Wasserstein distance from batch samples. To overcome this problem and
provide unbiased sample gradients, the Cramer Distance [95], which measures the energy distance
between the two distributions, is used to build the GAN networks. In the Cramer GANs [91], the
discriminator, also called critic, has a trainable loss function, which combines the energy distance
with the transformation function to map the input space to the hyper-parameter space. The critic or
discriminator seeks to maximize the energy. In contrast, the generator tries to minimize the energy of
the transformed variables and is designed to penalize the functions with a high gradient.

The PNR data contains numerical, categorical, and date data. It has missing or NaN values.
The input embedding layer was used to process the categorical features in PNR data. In GANS,
the generator is differentiable, so it cannot generate discrete data such as one-hot encoded values
or character representations [1]. Either the discrete or categorical columns need to be encoded
into numerical columns [1] or represented as continuous vectors [96]. The latter method is called
embedding. It reduces the dimensionality of categorical variables and meaningfully represents the
categories in the transformed space. The weighted average of the embedded representation was
used, and the embedding layer was shared between the generator and the discriminator, ensuring a
fully-differentiable process. The embedding layers increase the representational power, so different
layers were used per each categorical feature.

All the missing values in numerical features were filled by some random value taken from the
same column. For all the categorical features, the missing values were replaced with a dummy new
level, 'UNK.” Then, a new binary column was added, whose values are 1 for all the filled-in rows
and 0 otherwise. One such column was added per numerical column with missing values. These
auxiliary binary columns were treated as categorical columns and encoded using the embedding
process. Multiple feed-forward neural networks were used to learn the complex feature interactions.
Both the generator and discriminator were composed of fully connected layers, and N cross-layers
were stacked [92] to automatically compute up to N-degree cross-feature interactions.

The quality of synthetic data generated was evaluated by computing the multivariate measure
using Jensen-Shannon divergence (JSD) to see how the two empirical distributions of actual and
synthetic data differ. Then a classifier was trained to discriminate the difference between the real and
the generated samples, labeling the actual samples 0 and the synthetic ones 1. Also, the Euclidean
distance between each generated point and its nearest neighbor in the training and test data was
calculated to determine if the generative model is learning the original distribution and not simply
memorizing and reproducing the training data. The distribution of distances was compared using the
Kolmogorov-Smirnov (KS) [97] two-sample test to determine if they differ. The results [89] showed
that the models trained on synthetic data could successfully classify for both the business cases, client
segmentation, and product pricing.

4.3.2. Synthesizing fake tables

Tabular data is the most common structured data type, which can be clearly defined using rows
and columns and conforms to the data for models. Some of the tabular data sets like employee,
hospital, or travel datasets contain private information, like social security numbers (SSN), salary,
health conditions, or other personally identifiable information (PII), which may raise a security
concern, if data is shared with partners or made publicly available to train the models. Anonymization
techniques can be used to remove sensitive information. However, they are prone to attacks and can
be recovered by adversaries if they possess other users” background information. Secondly, these
modifications negatively impact the usability of data.

To overcome these challenges, table-GANs [98] were proposed to synthetically generate fake
tables statistically similar to the original table structure. Four types of datasets from different domains,
LACity dataset [99] containing records of Los Angeles government employees (salary, departments,

https://doi.org/10.20944/preprints202312.0865.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

14 of 29

etc.), Adult dataset [100] with personal records (nationality, education level, occupation, etc.), Health
dataset [101] with information such as blood test results, diabetes, etc., and Airline dataset [102] with
passenger travel information, were considered. All these datasets contain categorical, discrete, and
continuous values.

The table-GANs were designed to have three convolutional neural networks (CNN), compared
to two networks in original GANSs, a discriminator to distinguish between the actual and synthetic
records, a generator to generate realistic records, and a classifier to increase the semantic integrity of
synthetic records. The classifier was added to determine if the synthetic records were correct and close
to the real-world scenario. For example, a person with a low cholesterol level may not be diagnosed
with diabetes, and there will be no such record in the original table. The classifier discards all such
records generated by the generator.

In addition to the original GAN objective loss function, two other additional loss functions,
information loss and classification loss, were computed. The information loss finds the discrepancy
between the statistical characteristics, the mean, and the standard deviation of synthetic and original
record features by using the L-2 norm or Euclidean distance. Suppose the value of this difference
is zero. In that case, the actual and synthetic records have statistically the same features, and the
discriminator may not be able to distinguish whether the inputs are from training data or synthetically
generated. The classification loss is used to check the semantic integrity and balance the privacy and
usability of synthetic data generated. It finds the discrepancy between the label of a generated record
and the label predicted by the classifier for that record and will remove the semantically incorrect
records.

The security and privacy concerns were addressed as the entire table was generated synthetically
by the table-GANSs, and none of the actual records were directly disclosed. These synthetic tables are
strong against the re-identification attack and attribute disclosure issues, as attackers can not reveal
any original identification.

The adversary’s access may be limited to black-box queries that return the model’s output
on a given input. The adversary may train many attack models as shadow models based on the
generator’s behavior by making inferences about the members of the synthetic tables. This attack
is called membership inference attack [103]. The table-GAN was attacked with various hinge-loss
configurations to evaluate the impact of the membership attack. Hinge loss slightly disturbs the
training process of table-GAN, so it converges to the point that balances synthesis quality and the
possibility of being attacked. The paper showed that the attack performance decreased by increasing
the hinge loss. Finally, model compatibility, which is the difference in the performance of data trained
on actual and synthetic data, was used to assess the quality of the generated data. The models trained
using the synthetic tables exhibited similar performance to those trained using the original table.

The Table 2 gives a summary of different techniques and methods used to generate image and
tabular data.

https://doi.org/10.20944/preprints202312.0865.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023

doi:10.20944/preprints202312.0865.v1

Table 2. Different models used to generate image and tabular synthetic data using GAN

15 of 29

Data Type Model Method Generated Data Quality
DCGAN [60] Vector Arithmetic Low, suffers from Mode
Manipulation Collapse
CGAN [68] Label as condition Improved Quality
LAPGAN [69] Conditional GAN with High-resolution Realistic
Images . .
Laplacian Pyramid Images
PGGAN) [67] Focus on finer-scale details High quality = Synthetic
Images
RenderGAN [76] Image Augmentation Realistic Labeled Images
StackGANSs [78] Generate images from a Good quality images,
text description using Text evaluated using Inception
Embedding Score
InfoGAN [85] Use Mutual Information as Model can disentangle
condition variations, improved
generated images
PNR generation [89] Use Cramer GAN [91] Evaluated using
Jensen-Shannon divergence
(JsD), Realistic data
Tabular generated
Table-GANs [98] Use 3 CNNs, additional Models trained using
classifier to increase synthetic ~ synthetic data performed
records integrity well

5. Generating Cyber Attack data using GAN

Cyber security is one of the major business concerns today for the organizations world-wide.
With systems being internet-connected and Internet of Things (10T) emerging as the latest technology,
there is a need to protect the networks, systems and programs, from the digital attacks. Every industry
like telecommunication, manufacturing, healthcare, education, finance, government etc., are being
exposed to cyber attacks. These cyber attacks are usually designed to access, change or destroy
sensitive information; to extort money from users; or disrupt usual business processes. There are
different ways of attacking a system. For instance, a Denial of Service (DoS) attack attempts to restrict the
access of resources for the host or prevent the utilization of resources. Other attacks like vulnerability
exploitation obtain privileged access to a host network by taking advantage of known vulnerabilities.
The unauthorized attempt or threat to deliberately access or manipulate information, or disable the
system is defined as intrusions, and the methods used to monitor and detect this aberration, are called
as intrusion detection systems (IDS) [104].

The IDS tries to find exceptional patterns in network traffic that do not conform to the expected
normal behavior. These non-conforming patterns are usually referred to as anomalies or outliers. The
IDS monitors the network for such malicious acts or security protocol violations, and raises an alarm
or sends an alert to the administrator if any anomaly is detected. Though the IDS may not necessarily
take any other action. There are two types of IDS, Network Intrusion Detection Systems (NIDS), which
monitor network packets moving in and out of the network, and Host Intrusion Detection Systems
(HIDS), which monitor the activities of a single host such as a computer or clients connected to that
computer. The IDS algorithms are classified based on their detection approach, with signature-based
detection and anomaly-based detection being the two main categories.

https://doi.org/10.20944/preprints202312.0865.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

16 of 29

Signature-based detection is a traditional method that relies on a pre-programmed list of known
attack behaviors. It uses a database of previously identified bad patterns to report an attack and is
only as effective as its database of known signatures. On the other hand, anomaly-based detection
techniques use statistical and machine learning methods to detect malicious behaviors that deviate
from known normal behaviors. These approaches have gained widespread attention from researchers
over the past decade, and several models have been proposed in literature to detect intrusions into
the network [105-107]. However, the increasing complexity of attacks and attackers’ skills have made
these models only as good as the datasets on which they were developed. Obtaining a complete and
real dataset is challenging in the realm of cybersecurity, as the information needed to develop models
is held in various logs and network traffic of an organization that faced a cyber attack. Additionally,
these logs and network traffic carry private information of the organization and cannot be released
to the public. Even when a realistic dataset is obtained, it captures only one of the several possible
attacks for that organization’s topology and is therefore incomplete.

Alternative approaches to creating a dataset have been proposed in literature, including
semi-synthetic and synthetic data generation techniques. In the semi-synthetic data generation
approach, a network is set up, simulating a realistic network topology, and human penetration
testers penetrate into the network. The dataset is then built by capturing the normal user behavior
and the simulated attack behavior, followed by appropriately labeling those behaviors for developing
statistical and machine learning models. Synthetic data generation techniques do not require any
humans to penetrate into the network; rather, the attack data is simulated by models that learn how
attacks can be performed. Synthetic data generation approaches, specifically using GANs, have been
gaining increasing attention over the past few years due to their applicability to different types of
topologies and the possibility of creating a dataset that can represent different attack sets on a given
topology.

Various approaches, including supervised, semi-supervised, and unsupervised learning, have
been used for anomaly detection [108]. In semi-supervised techniques, the model is trained using only
the normal training dataset, and the likelihood of the test dataset is compared against the learned
model. However, these algorithms assume that normal instances are more frequent than anomalies in
the test data, which can lead to false alarms or blocking of normal data packets as anomalies. Moreover,
these methods may not be suitable for dynamic and sequential responses to new or deformed cyber
threats.

On the other hand, supervised anomaly classifiers learn from labeled datasets that contain normal
or anomaly classes. In network systems, the dataset consists of recorded samples with pre-assigned
labels in the form of a feature vector of network features. The supervised learning algorithm’s goal is to
learn from the labeled dataset and predict whether a new instance is normal or an anomaly, and to raise
an alert when an anomaly is detected. Although state-of-the-art supervised algorithms can be applied
well to solve this type of problem, they face several challenges. The datasets are highly imbalanced,
with a low number of anomalous packets, and prediction accuracy is generally reported to be low,
while training time is very high. In addition, large datasets with high variance are required to train
these algorithms to build robust intrusion detection systems. The available datasets are often limited
and outdated, or they may have missing ground truth values. The manual labeling of real networks
containing millions to billions of flows is also a challenging task for security experts. Additionally,
most organizations do not want to disclose their network traffic and attack data information, making it
difficult to collect or label such datasets.

Unsupervised learning methods, on the other hand, do not require labeled data for training,
making them suitable for anomaly detection when labeled data is scarce. However, they have some
limitations in the context of cybersecurity. Unsupervised methods are based on the assumption that
anomalies are rare events and can be identified as deviations from normal data distribution. However,
in cybersecurity, it is often challenging to define what is normal behavior, as cyber threats are constantly
evolving and changing. Moreover, unsupervised methods may not be able to completely exploit the

https://doi.org/10.20944/preprints202312.0865.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

17 of 29

spatial-temporal correlation and multiple variable dependencies, which are essential for accurately
detecting anomalies in complex cyber systems. Ideally, it would be best if such datasets could be
synthetically generated, as explained in Section 4. In this situation, GAN can be of great use for
anomaly detection. Section 2 illustrates how GANSs have been used recently to generate synthetic data
in variety of domains. In this section, we discussed the different methods proposed by researchers for
generating various type of cyber attacks using GANS.

5.1. Flow-based Network Traffic Generation

To develop, analyze, and evaluate secure networks and cyber monitoring systems like IDS,
network traffic flows are essential. However, obtaining real network traffic that is appropriate for such
purposes is challenging due to privacy and security concerns. Publicly available real traffic is often
inconsistent, insufficient, or incomplete, making it less useful. Therefore, synthetic traffic generation
techniques have been developed [109-111]. These techniques involve extracting key features from real
traffic and using them to create similar network traffic flows. Various traffic generation techniques
have been developed over time and GANs have emerged as a promising approach in synthetic traffic
generation.

Ring et. al. [112] proposed a GAN model to generate synthetic flow-based network traffic
to evaluate an NIDS. The Wasserstein GANs (WGANSs) [93] were used to generate the synthetic
flow-based network data based on CIDDS-001 [113] dataset. The flow-based network traffic contains
header information about the network connections between two end-point devices like servers,
workstation computers or mobile phones. Each flow is an aggregated information containing source IP
address, source port, destination IP address, destination port and transport protocols of the transmitted
network packets. Most of these attributes like IP address, ports and transport protocols are categorical
and can not be processed by GANSs, since the generator is differentiable [1]. These attributes need
to be encoded into numerical or continuous vectors. IP2Vec [114], based on Word2Vec method [115],
was used to transform IP addresses into a continuous feature space such that the standard similarity
measures can be applied. IP2Vec was extended to learn the embeddings for other attributes, like ports,
transport protocols, duration, bytes and packets and a neural network based on backpropagation
was used to train the embedding layer. For preprocessing of these attributes, other alternatives such
as numeric and binary transformations were also experimented. The results showed that although
numeric transformations were straightforward and easy to implement but they were not able to truly
represent the distributions and capture the similarities. The binary transformation of these categorical
and numerical attributes of flow-based data did pretty well and were able to capture the internal
structure of the traffic and subnet, except a few cases. On an average, the embeddings based on IP2Vec
transformations gave the best results.

To evaluate the quality of data generated by GAN, approaches like Inception Score (IS) can not be
used for flow-based data, as inception score is based on Inception Net v3 [84] and can classify only the
images. There is no standard method to evaluate the quality of network traffic so different methods
were proposed to assess the quality from different views. To evaluate the diversity and distribution of
the generated data, the temporal distributions of generated flows for each week’s traffic were visually
analysed to see if they represented the internal structure of the original traffic and subnets. Secondly,
the distribution of the generated and real traffic data in each attribute, was compared independently by
computing the euclidean distance between the probability distributions of the generated and weekly
traffic input for each attribute. Thirdly, the domain knowledge checks were used to assess the intrinsic
quality of the generated data. Some heuristics based on the properties of flow-based network data
were tested to check the sanity and see if the generated data is realistic or not. For instance, if the
transport protocol is UDP, then the flow must not have any TCP flags; if the multi-or broadcast IP
address appears in the flow, then it must be the destination IP address. The flows generated by both
the binary and IP2Vec embeddings transformation were realistic and showed good results for all the
evaluation methods.

https://doi.org/10.20944/preprints202312.0865.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

18 of 29

Cheng et al. [116] proposed and developed a novel GAN model called PAC-GAN, which generates
realistic network traffic at the IP packet level. PAC-GAN encodes each network packet into a grey
scale image and generates IP packets using CNN GANs. The network traffic generator uses an
encoding scheme that converts and maps network traffic data into images using image-based matrix
representations. By learning and manipulating the byte values of data packets, the PAC-GAN can
generate realistic variants of different types of network traffic, such as ICMP pings, DNS queries, and
HTTP get requests, that can be transmitted through real networks.

Shahid et al. [117] proposed a method for generating synthetic traffic sequences that closely
resemble actual bidirectional flows in IoT networks. They combined an autoencoder with a Wasserstein
GAN to learn latent vectors that can be decoded into realistic sequences of packet sizes. The generated
bidirectional flows mimic the characteristics of genuine ones, which can deceive anomaly detectors
into identifying them as real. However, the quality of synthetic traffic sequences depends heavily
on the training data used. During the training phase, the generator can only reproduce sequences
that were observed in the training data. The authors tested their model using a small amount of data,
which may have led to overfitting. Yin et al. [118] have developed an end-to-end framework, NetShare
for generating test traffic using GANs which focus on tackling the fidelity, scalability, and privacy
challenges and tradeoffs in existing GAN based approaches [110].

5.2. Cyber Intrusion Alert Data Synthesis

Cyber intrusion alert data plays an important role in detecting and profiling anomalous activities
and behaviors, as well as identifying network vulnerabilities. However, the cyber attack data is highly
imbalanced as the intrusions are rare events and often hard to identify [119]. Moreover, the absence
of ground truth and organizations’ reluctance to share such data further hinder experimentation and
research . Additionally, these datasets exhibit non-homogeneous characteristics, further complicating
the analysis and development of effective defense mechanisms. Given the complex and dynamic
nature of cyber attacks, innovative approaches are required to generate realistic and diverse data that
accurately captures the intricacies of real-world intrusions.

GANSs have demonstrated their capacity to learn intricate data distributions, aiming to generate
data that is progressively more realistic and aligns with the underlying patterns and characteristics
of real intrusion alerts [120]. The generator part of the GAN learns to generate synthetic intrusion
alerts, while the discriminator part evaluates the authenticity of the generated alerts. Using GANs
to generate synthetic cyber intrusion alerts helps address the challenges posed by imbalanced and
non-homogeneous data in cybersecurity. These generated alerts not only aid in characterizing intrusion
features but also complement the existing data, ensuring a more diverse and representative dataset for
robust analysis and defense against cyber threats.

Recent work by Sweet et al. [120,121] have investigated the effectiveness of GANSs in generating
synthetic intrusion alerts by learning the sparsely distributed categorical features from samples of
malicious network intrusions. Their proposed framework for synthetic cyber-intrusion alert data
utilizes Wasserstein GAN models [93] with some modifications. Two variants were investigated:
WGAN with Gradient Penalty (WGAN-GP) [122] and WPGAN-MI [123], which integrates gradient
penalty with Mutual Information constraint. WGAN-GP incorporates a gradient penalty term in
the discriminator loss function, enhancing the utility of gradients and improving training stability.
WPGAN-M]I, on the other hand, introduces a mutual information term in the generator’s loss, aiming
to approximate the mutual information between the generator’s noise input and the generated
output samples. To estimate mutual information, a neural network is employed to compute
the Donsker-Varadhan (DV) representation of KL-divergence. As discussed in section 1V, the
InfoGANs s [85] also used the mutual information constraint, which helped the generator to explore the
full domain of the data while generating new samples.

To evaluate their framework, Sweet et al. [120] utilized datasets from the National Collegiate
Penetration Testing Competition (CPTC) [124] held in 2017 and 2018. These datasets encompassed

https://doi.org/10.20944/preprints202312.0865.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

19 of 29

malicious actions performed by participating teams as they attempted to compromise the target
networks. The features included source and destination IP addresses, port numbers, attack categories,
attack signatures, and alerts. The alerts were categorized based on the destination IP address, capturing
unique attack behaviors for each target. The fidelity of the generated data was assessed using
Histogram Intersection and Conditional Entropy measures, both demonstrating the potential of
GAN s to generate diverse artificial attack data reflective of the behaviors observed in the ground truth
dataset. The GAN models were trained to learn the distribution of input data on a per-target IP basis.
The evaluation utilized the histogram intersection score between the ground truth and generated alerts
to assess the GANs’ ability to capture the latent behavior and feature dependencies of the dataset.
The analysis revealed that WPGAN-GPMI, with its mutual information constraint, outperformed the
WGAN-GP model by synthesizing alerts pertaining to more attack stages and accurately recreating the
target-based cyber-alert data from the malicious alert datasets.

5.3. Generating Attack Data using Adversarial Examples

Machine learning models are commonly employed for detecting spams, malware, anomalies,
network intrusions, and other illegal activities. However, ML models including Deep Neural Networks
(DNN’s) have recently been found to be vulnerable to adversarial attacks, which compromises their
robustness [125-127]. This vulnerability poses a significant threat to the reliability of machine learning
in security-sensitive domains. Adversarial attacks involve the deliberate creation of malicious inputs
by adversaries with the aim of deceiving the system. These inputs, known as adversarial examples,
are carefully crafted to manipulate the predictions made by the machine learning model, resulting in
erroneous outputs. Even a minor modification to the input can cause the neural network to misclassify
the data, and these alterations are often imperceptible to the human eye [125].

GAN:S’s have been employed to generate synthetic cyber attacks that can bypass security defenses
or exploit vulnerabilities in systems, such as intrusion detection systems or malware detection models.
In this setup, the generator network is trained to produce adversarial examples capable of deceiving or
evading the target system’s defenses, while the discriminator network learns to differentiate between
real and adversarial examples. GANs play a crucial role in assessing the robustness and effectiveness
of security systems, as well as in developing improved defenses against cyber attacks.

Adversarial attacks can be classified into two types: white box attacks and black box attacks. In
white box attacks [128], the adversary has complete knowledge of the model architecture, learning
algorithms, parameters, and access to the training dataset. This allows them to manipulate the feature
vector in the test dataset to cause misclassification. On the other hand, in black box attacks [127], the
adversary has no knowledge of the model architecture, learning parameters, or access to the training
dataset. In this scenario, the attacker can only observe the labels or class outputs of the model when
interacting with it remotely, such as through an APL By continually modifying the input and observing
the corresponding output, the attacker establishes a relationship between the changes in inputs and
outputs. The remote DNN model that the adversary is observing is commonly referred to as an
'Oracle’.

To overcome the lack of knowledge in black box attacks, the adversary can train a local substitute
DNNs with a synthetic dataset. The inputs are synthetic and generated by the adversary, whereas the
outputs are the labels assigned by the Oracle or remote DNN when the adversary was querying the
DNN with their synthetic inputs. The substitute model is designed with similar decision boundaries,
and the adversary crafts the adversarial examples to misclassify the substitute model. These same
adversarial examples can then be used to misclassify the target DNN. Two models, MalGAN [129] and
IDSGAN [130] were proposed to use GANs to generate the synthetic adversarial examples against the
detection system. In this context, we further explore the construction and evaluation of the capabilities
of these models in generating realistic adversarial attack examples.

https://doi.org/10.20944/preprints202312.0865.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

20 of 29

5.3.1. MalGAN: Generating Malware Adversarial Examples using GAN

MalGAN, proposed by Hu et al. [129], focuses on creating adversarial examples for malware
detection systems. These detection systems are like black boxes to attackers, meaning they don’t know
their internal workings. So, the attackers can only perform black-box attacks to understand the features
used by the malware detection algorithm. The key idea behind MalGAN is to trick the malware
detection system into misclassifying benign programs as malware. It uses a dataset of programs
with API features represented as binary vectors. MalGAN incorporates a black-box detection model
(Oracle) in the discriminator and generator. The generator creates adversarial examples, while the
discriminator tries to imitate the Oracle. The adversarial examples successfully bypass the black-box
detector, showing transferability [131] across different classifiers. However, when the detector is
retrained with adversarial examples, it becomes more robust against these attacks.

The advantage of MalGAN is that it can generate new adversarial malware examples, making
the detector more robust without needing to collect a large number of actual malware samples and
label them manually. This makes the malware detection system more effective and helps improve its
performance against adversarial attacks.

5.3.2. IDSGAN: Generating Adversarial Examples against Intrusion Detection System

IDSGAN [130] another GAN model proposed to create adversarial attacks that deceive and
evade the IDS. Similar to MalGAN, IDSGAN treats the IDS as a black box and aims to deceive it
with adversarial attacks. The IDS is built using a classifier like DNN or SVM on a cyber security
dataset like NSL-KDD. IDSGAN uses a generator and discriminator, where the discriminator emulates
the behavior of the black-box IDS. The generator produces adversarial examples by applying small
perturbations only to non-functional features of the attack data. IDSGAN successfully generates
adversarial examples that bypass the black-box IDS, leading to lower detection rates and higher
evasion rates. This indicates that the generated adversarial examples can effectively fool the IDS.

The main difference between MalGAN and IDSGAN lies in the types of attacks they generate,
the features of their respective datasets (binary feature vector for MalGAN and a sequence of features
for IDSGAN), and the treatment of constructing adversarial examples. IDSGAN’s dataset includes
both numeric and non-numeric discrete features, which are categorized into four sets: intrinsic,
content, time-based, and host-based features. When creating adversarial examples, IDSGAN applies
random noise only to the non-functional features of each attack, while keeping the functional features
unchanged to maintain the attack’s nature. This ensures the attack remains intact and doesn’t break
during perturbation.

MalGAN used malware API dataset consisting of binary feature vector, the NSL-KDD dataset
used in IDSGAN, is a sequence of 41 features describing the normal and the malicious network traffic
records. There are 9 discrete and 32 continuous features. The non numeric discrete features are one-hot
encoded to do numeric conversion. As per the meaning of the features, they are categorized into four
sets. The features, like duration, protocoltype, service, flag, sourcebytes, destinationbytes are 'intrinsic’
as they show the characteristics of connection in a network. Similarly, the ‘content’ features are the
ones which mark the content of connections and show the behavior related to attack if it exist in the
traffic. The ‘time-based’ features check for the connections which have the same destination host
or same service as the current, in past 2 seconds. The "host-based’ traffic features monitor similar
connections in the past 100 connections. The malicious data consists of four type of attacks, probe,
U2R, DoS and R2L. Each category of the attack has some functional features which represents the basic
function of the attack.

While making small perturbations, no change is made in the functional features of each attack.
Otherwise, the attack will be broken. The random noise is added only to the nonfunctional features to
generate adversarial examples. The generator is a simple neural network with five linear layers and
the update to the parameters of the network is made based on the feedback from the discriminator.

https://doi.org/10.20944/preprints202312.0865.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

21 of 29

Here various machine learning algorithms like, Support Vector Machine (SVM), Logistic
Regression (LR), Multilayer Perceptron (MLP), K-Nearest Neighbor (KNN), Random Forest, Decision
Trees, were used to train the black-box IDS to test the transferability of the adversarial samples. To show
the robustness of IDS model, detection rate was measured. The detection rate gives the proportion
of correctly detected malicious traffic records to the total attack records detected by the black-box
IDS. The original detection rate and the adversarial detection rates were computed. To show the
ability of IDS, another metrics, called the evasion increase rate was used. It is the rate of increase in
the undetected adversarial malicious traffic by the IDS as compared to the original malicious traffic
examples. IDSGAN model showed lower detection rate and high evasion rate which means more
malicious traffic could evade the IDS, showing that the adversarial examples generated by IDSGAN
are realistic and the generator was able to successfully fool the black-box IDS.

Yang et al. [132] introduced a novel technique for identifying previously unknown attacks by
utilizing a GAN-based approach to learn the hidden distribution of original data. Their method
involves using a DNN for classification and evaluating performance metrics on two distinct datasets.
Meanwhile, Lee and Park [133] addressed the negative impact of imbalanced data on attack
classification by generating new virtual data that is similar to the existing data using GAN. They were
able to achieve better results with RandomForest using the newly generated data compared to the
original data. Huang and Lei [134] presented a three-step approach to overcome the negative effects of
labeled imbalanced data in datasets. They first performed feature extraction using FeedForward neural
network (FNN), then generated virtual data using GAN, and evaluated the classification performance
of the resulting data on three different datasets using CNN. Shahriar et al. [135] proposed attack
detection in cyber physical systems (CPS) and suggested a fix for imbalanced and missing data using
the generative adversarial network (GAN) based intrusion detection system (G-IDS), where GAN
generates synthetic samples, and IDS gets trained on them along with the original ones.

6. Analysis of GAN generated Synthetic Attack Data

The effectiveness of GAN-generated data in cybersecurity remains an open question. Real-world
cyber-attacks often involve complex contexts, such as the timing of Distributed Denial of Service
(DDoS) attacks or the intricate patterns of lateral movements in system breaches. These attacks usually
exhibit signatures across multiple traffic units, presenting a significant challenge for GANs to replicate
accurately. Nonetheless, more straightforward, isolated attack vectors like SQL Injection, Application
Scanning, and Port Scanning have distinct network flow signatures that GANs can potentially mimic.
While GAN-generated data can augment Intrusion Detection System (IDS) training datasets or aid in
creating simulated attack scenarios, it often includes considerable noise. This noise can lead to trained
models under performing in real-world situations.

In this section, we delve into an analysis to evaluate the fidelity of GAN-generated cyber-attack
data. Our study focuses on three key aspects: the similarity of GAN-generated attack data features to
actual attacks, whether GANSs preserve the original data distribution, and the response of classifiers
trained on authentic data when exposed to a mix of original and GAN-generated data. This
comprehensive approach provides insights into the potential and limitations of using GANs for
cybersecurity. We have chosen a DoS attack from the NSL-KDD dataset for our analysis. Table 3
presents the different attack categories the NSL-KDD dataset has. With 41 features, of which 9 are
discrete values, and 32 are continuous values, the dataset has both normal and malicious traffic. Using
domain knowledge and the information given by the dataset as depicted in Table 3, we first identified
features that are reflective of a DoS attack, followed by performing statistical analysis to obtain the
range and standard deviation of those identified features across various DoS and normal traffic.

Figure 2 shows the features we identify corresponding to various attack categories in the
NSL-KDD dataset. We then performed statistical analysis to find a correlation between those different
features using Pearson’s coefficient. GAN-generated attack traffic can represent DoS traffic only if
the distribution of the data in those identified features and the correlation among those features is

https://doi.org/10.20944/preprints202312.0865.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

22 of 29

preserved. To this end, we built a conditional GAN model where the discriminator was trained only
on the attack samples. At the same time, the generator was set to challenge the discriminator until the
discriminator could identify the attack traffic accurately. To evaluate the generated attack data, we
built a 1) white-box-model, supervised model using FNN (Feed-forward neural network) trained on
NSL-KDD dataset’s train data constituting both normal and attack data and 2) anomaly-detector: a
semi-supervised model that is trained only on the normal data within the NSL-KDD’s train data and 3)
performed a Statistical Analysis: We calculated the expected standard deviation (SD) of the features
identified in our feature analysis that are reflecting a DoS attack. We then tested the performance of
the resulting white-box model and the anomaly detector against the NSL-KDD dataset’s test data
to ensure its performance meets the accuracy requirements. As expected, the accuracy prediction
obtained was over 99% on the white-box model’s test data, and the anomaly-detector model could
distinguish between normal and attack traffic with an accuracy of over 81%.

Table 3. Attack Categories of NSL-KDD

DoS ‘ R2L U2R Probe

back ftp_write buffer_overflow | ipsweep

land guess_passwd loadmodule nmap

pod imap perl portsweep

smurf multihop rootkit satan
teardrop phf
Spy
warezclient
warezmaster
Attack Type
| Type Features | Description Value DoS Probe U2R R2L
duration Length(number of seconds) of connections Continuous
protocol_type type of protocol, UDP, TCP, ICMP Discrete
service network service on the destination eg http, telnet Discrete
src_bytes number of data bytes from source to destination Continuous
Intrinsic | dst_bytes number of data bytes from destination to source Continuous Yes Yes Yes Yes
flag normal or error status of the connection Discrete
land connection is from/to the same host/port:1; else:0 Discrete
wrong_fragment Number of wrong fragments Continuous
urgent number of urgent packets Continuous
count Number of connections to same host as current in past 2 sec Continuous
serror_rate % of connections that have same-host 'SYN' errors Continuous
rerror_rate % of connections that have same-host 'REJ' errors Continuous
same_srv_rate % of connections to the same service Continuous
Time diff_srv_rate % of connections to the different services Continuous Yes Yes
srv_count Number of connections to same service as current in past 2 sec Continuous
srv_serror_rate % of connections that have same service 'SYN' errors Continuous
srv_rerror_rate % of connections that have same service 'REJ' errors Continuous
srv_diff_host_rate % of connections to different hosts Continuous
dst_host_count Number of connections to same host as current in past 100 sec Continuous
dst_host_srv_count Number of connections to same service as current in past 100 sec Continuous
dst_host_same_srv_rate % of connections to the same service Continuous
dst_host_diff_srv_rate % of connections to the different services Continuous
Host dst_host_same_src_port_rate % of connections to the same service Continuous Yes
dst_host_srv_diff_host_rate | % of connections to different hosts Continuous
dst_host_serror_rate % of connections that have same-host 'SYN' errors Continuous
dst_host_srv_serror_rate % of connections that have same service 'SYN' errors Continuous
dst_host_rerror_rate % of connections that have same-host 'RE) errors Continuous
dst_host_srv_rerror_rate % of connections that have same service 'REJ' errors Continuous
hot Number of 'hot indicators' Continuous
num_failed_logins Number of failed login attempts Continuous
logged_in Successful login: 1; else:0 Discrete
num_compromised Number of "Compromised conditions" Continuous
root_shell root shell is obtained: 1, else:0 Discrete
su_attempted su root command atempted:1; else:0 Discrete
Content | num_root number of root logins Continuous Yes Yes

num_file_creations number of file creation operations Continuous
num_access_files number of write/delete/create operations on access control files Continuous
num_outbound_cmds number of outbound commands in a ftp session Continuous
is_guest_login' login is guest/anonymous:1; else:0 Discrete
is_host_login login is by host/root/admin :1; else:0 Discrete
num_shells' number of shell prompts Continuous

Figure 2. Feature Mapping of NSL-KDD to Intrusion Patterns

We then used the white-box model to detect the normal and attack traffic in our GAN-generated
attack data. The white box could report the GAN-generated attack data as not normal accurately;
however, it classified the attack data into one of the attack categories in Table 3. The anomaly-detector
model accurately reported the GAN-generated attack data as not normal as part of static analysis in our

https://doi.org/10.20944/preprints202312.0865.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

23 of 29

evaluation. We measured the Euclidean distance between the standard deviation of the feature values
from the NSL-KDD dataset and the standard deviation of the same features from GAN-generated
attack data. We found most of the generated samples to have inconsistent feature values that neither
correspond to normal traffic nor DoS traffic. Henceforth, our analysis and evaluation have concluded
that while most of the GAN-generated attack data was not normal, it did not correspond to expected
DoS traffic. Our static analysis of the features points out that those GAN-generated attacks reported as
not normal by the trained models are neither normal nor attack traffic units as the expected feature
correlations are missing and thus the data represents mere noise. Many solutions have claimed
the ability of their GANSs to generate attack data based on their white-box models or their anomaly
detectors reporting them as not normal. However, we would like to point out that not-normal does not
mean attack data; instead, as we provided evidence above, it is often mere noise and not an unknown
attack or a new attack. We believe our analysis helps researchers continue developing GAN-based
attack generation models capable of generating attack data that represents real-world attacks and thus
address the concerns associated with obtaining real-world attack data due to privacy issues.

7. Discussion

GAN:s, with their unique architecture of a generator and discriminator working in tandem, have
demonstrated remarkable proficiency in generating data that closely mimics real-world patterns. This
capability is particularly advantageous in cybersecurity, where the availability of diverse and extensive
datasets is paramount for the practical training of models. However, analyzing the authenticity of
synthetic data generated by GANs in the context of cyber attacks is essential. While GANs can produce
data statistically similar to real-world datasets, it is crucial to study this synthetic data adequately
to analyze if it represents the complexities and nuances of cyber threats. Also, the reliability of deep
learning models trained solely on synthetic data is still being determined. These models may not
perform well when exposed to real-world attack scenarios, leading to potential vulnerabilities.

Our analysis of synthetic data generated for DoS attacks shows that while GAN-generated
attack data often deviates from normal traffic, it does not align with typical DoS traffic patterns.
Static analysis reveals that this data, flagged as abnormal by trained models, lacks the expected
feature correlations, indicating it is neither normal nor genuine attack traffic but relatively just noise.
Recognizing that abnormal data does not necessarily signify an attack; in many cases, it may be simply
noise. Our work underscores the need to analyze the GAN-based models further to generate data that
accurately reflects real-world attacks. Other works like Attack trees [136], popular graphical models
to represent cyberattack scenarios, pose challenges for organizations due to the need for advanced
security expertise and stakeholder engagement [137]. Current automation methods from system
models or attack pattern libraries need more maturity for practical use [138]. Large Language Models
(LLMs) like PAC-GPT [139] provide a potential solution by aiding in the automated synthesis of attack
trees, leveraging their natural language generation capabilities [140].

8. Conclusion

This comprehensive review of generative models, particularly GANs, in generating synthetic
attack data for cybersecurity underscores the potential and challenges of this approach. GANs have
emerged as a powerful tool in addressing the scarcity of large, diverse datasets, crucial for training
robust deep learning models in cybersecurity. The ability of these models to generate data that
mirrors real-world scenarios can significantly enhance the training process, leading to more effective
cybersecurity solutions. However, the effectiveness of models trained on synthetic data in accurately
detecting and responding to real-world cyber threats is an area that requires further investigation.
The findings of this review suggest a need for a balanced approach, combining both natural and
synthetic data, to ensure the robustness and reliability of cybersecurity models. Moreover, the ethical
and privacy considerations associated with using synthetic data in cybersecurity should be considered.

https://doi.org/10.20944/preprints202312.0865.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

24 of 29

Future research should address these challenges, ensuring that the development and deployment of
these technologies are done responsibly and with due consideration of potential consequences.

References

1. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.
Generative adversarial nets. Advances in neural information processing systems, 2014, pp. 2672-2680.

2. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.
Generative adversarial networks. Communications of the ACM 2020, 63, 139-144.

3. Shahriar, S. GAN computers generate arts? a survey on visual arts, music, and literary text generation using
generative adversarial network. Displays 2022, p. 102237.

4. Yinka-Banjo, C.; Ugot, O.A. A review of generative adversarial networks and its application in cybersecurity.
Artificial Intelligence Review 2020, 53, 1721-1736.

5. Cai, Z.; Xiong, Z.; Xu, H.; Wang, P; Li, W.; Pan, Y. Generative adversarial networks: A survey toward private
and secure applications. ACM Computing Surveys (CSUR) 2021, 54, 1-38.

6. Hu, W, Tan, Y. Generating adversarial malware examples for black-box attacks based on GAN. Data Mining
and Big Data: 7th International Conference, DMBD 2022, Beijing, China, November 21-24, 2022, Proceedings,
Part II. Springer, 2023, pp. 409-423.

7. Jordan, A.; others. On discriminative vs. generative classifiers: A comparison of logistic regression and
naive bayes. Advances in neural information processing systems 2002, 14, 841.

8. Lee, HW.; Lim, K.Y.; Grabowski, B.L. Generative learning: Principles and implications for making meaning.
In Handbook of research on educational communications and technology; Routledge, 2008; pp. 111-124.

9. Nallapati, R. Discriminative models for information retrieval. Proceedings of the 27th annual international
ACM SIGIR conference on Research and development in information retrieval, 2004, pp. 64-71.

10. Oussidi, A.; Elhassouny, A. Deep generative models: Survey. 2018 International Conference on Intelligent
Systems and Computer Vision (ISCV), 2018, pp. 1-8. doi:10.1109/ISACV.2018.8354080.

11. Webb, G.I. Naive Bayes. Encyclopedia of machine learning 2010, 15, 713-714.

12. Pearl,]. Bayesian networks; UCLA: Department of Statistics, UCLA, 2011.

13. Clifford, P. Markov random fields in statistics. Disorder in physical systems: A volume in honour of John M.
Hammersley 1990, pp. 19-32.

14. Eddy, S.R. Hidden markov models. Current opinion in structural biology 1996, 6, 361-365.

15. Izenman, A.J. Linear discriminant analysis. In Modern multivariate statistical techniques; Springer, 2013; pp.
237-280.

16. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. nature 2015, 521, 436—444.

17. Fahlman, S.E.; Hinton, G.E.; Sejnowski, T.J. Massively parallel architectures for Al: NETL, Thistle, and
Boltzmann machines. National Conference on Artificial Intelligence, AAAI, 1983.

18. Fischer, A.; Igel, C. An introduction to restricted Boltzmann machines. Iberoamerican congress on pattern
recognition. Springer, 2012, pp. 14-36.

19. Hinton, G.E. Deep belief networks. Scholarpedia 2009, 4, 5947.

20. Salakhutdinov, R.; Hinton, G. Deep boltzmann machines. Artificial intelligence and statistics. PMLR, 2009,
pp- 448-455.

21. Sutskever, I.; Hinton, G.E. Deep, narrow sigmoid belief networks are universal approximators. Neural
computation 2008, 20, 2629-2636.

22. Bontrager, P; Togelius, J. Fully differentiable procedural content generation through generative playing
networks. arXiv preprint arXiv:2002.05259 2020.

23. Kingma, D.P; Welling, M.; others. An introduction to variational autoencoders. Foundations and Trends® in
Machine Learning 2019, 12, 307-392.

24. Nikolenko, S.I. Synthetic data for deep learning; Vol. 174, Springer, 2021.

25. Caruana, R; Niculescu-Mizil, A. An empirical comparison of supervised learning algorithms. Proceedings
of the 23rd international conference on Machine learning, 2006, pp. 161-168.

26. Wright, R.E. Logistic regression. Reading and Understanding Multivariate Statistics 1995, pp. 217-244.

27. Joachims, T. Svmlight: Support vector machine. SVM-Light Support Vector Machine http://sumlight. joachims.
org/, University of Dortmund 1999, 19.

https://doi.org/10.1109/ISACV.2018.8354080
https://doi.org/10.20944/preprints202312.0865.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

25 of 29

28. Krose, B.; Krose, B.; van der Smagt, P.; Smagt, P. An introduction to neural networks; The University of
Amsterdam, 1993.

29. Peterson, L.E. K-nearest neighbor. Scholarpedia 2009, 4, 1883.

30. Phyu, TN. Survey of classification techniques in data mining. Proceedings of the international
multiconference of engineers and computer scientists, 2009, Vol. 1.

31. Bernardo, J.; Bayarri, M.; Berger, J.; Dawid, A.; Heckerman, D.; Smith, A.; West, M. Generative or
discriminative? getting the best of both worlds. Bayesian statistics 2007, 8, 3-24.

32. Minka, T. Discriminative models, not discriminative training. Technical report, Technical Report
MSR-TR-2005-144, Microsoft Research, 2005.

33. Theis, L.; Oord, A.v.d.; Bethge, M. A note on the evaluation of generative models. arXiv preprint
arXiv:1511.01844 2015.

34. Amit, I; Matherly,], Hewlett, W.; Xu, Z.; Meshi, Y.; Weinberger, Y. Machine learning in
cyber-security-problems, challenges and data sets. arXiv preprint arXiv:1812.07858 2018.

35. Barlow, H.B. Unsupervised learning. Neural computation 1989, 1, 295-311.

36. Zhu, X.; Goldberg, A.B. Introduction to semi-supervised learning. Synthesis lectures on artificial intelligence
and machine learning 2009, 3, 1-130.

37. Khosravi, P; Choi, Y.; Liang, Y.; Vergari, A.; Broeck, G.V.d. On tractable computation of expected predictions.
arXiv preprint arXiv:1910.02182 2019.

38. Huang, C.W,; Touati, A.; Dinh, L.; Drozdzal, M.; Havaei, M.; Charlin, L.; Courville, A. Learnable explicit
density for continuous latent space and variational inference. arXiv preprint arXiv:1710.02248 2017.

39. Frey, BJ,; Hinton, G.E.; Dayan, P.; others. Does the wake-sleep algorithm produce good density estimators?
Advances in neural information processing systems. Citeseer, 1996, pp. 661-670.

40. Karhunen, J. Nonlinear independent component analysis. ICA: Principles and Practice 2001, pp. 113-134.

41. Hammersley, J. Monte carlo methods; Springer Science & Business Media, 2013.

42. Tran, D.; Ranganath, R; Blei, D. Hierarchical implicit models and likelihood-free variational inference.
Advances in Neural Information Processing Systems 2017, 30.

43. Ching, WK ; Ng, M.K. Markov chains. Models, algorithms and applications 2006.

44. Wang, H; Lei, Z.; Zhang, X.; Zhou, B.; Peng,]. Machine learning basics. Deep learning 2016, pp. 98-164.

45. Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE
transactions on pattern analysis and machine intelligence 2013, 35, 1798-1828.

46. Arora, S.; Khandeparkar, H.; Khodak, M.; Plevrakis, O.; Saunshi, N. A theoretical analysis of contrastive
unsupervised representation learning. arXiv preprint arXiv:1902.09229 2019.

47. Hodson, T.O.; Over, TM.; Foks, S.S. Mean squared error, deconstructed. Journal of Advances in Modeling Earth
Systems 2021, 13, e2021MS002681.

48. Jiang, B.; Zhou, Z.; Wang, X.; Tang, J.; Luo, B. CmSalGAN: RGB-D salient object detection with cross-view
generative adversarial networks. IEEE Transactions on Multimedia 2020, 23, 1343-1353.

49. Goudet, O.; Kalainathan, D.; Caillou, P.; Guyon, L; Lopez-Paz, D.; Sebag, M. Causal generative neural
networks. arXiv preprint arXiv:1711.08936 2017.

50. Zhou, G; Yao, L.; Xu, X.; Wang, C.; Zhu, L.; Zhang, K. On the opportunity of causal deep generative models:
A survey and future directions. arXiv preprint arXiv:2301.12351 2023.

51. Kiigelgen, J.; Mey, A.; Loog, M.; Scholkopf, B. Semi-supervised learning, causality, and the conditional
cluster assumption. Conference on Uncertainty in Artificial Intelligence. PMLR, 2020, pp. 1-10.

52. Han, T,; Tu, WW.,; Li, Y.E. Explanation consistency training: Facilitating consistency-based semi-supervised
learning with interpretability. Proceedings of the AAAI conference on artificial intelligence, 2021, Vol. 35, pp.
7639-7646.

53. Kanungo, T.; Mount, D.M.; Netanyahu, N.S.; Piatko, C.; Silverman, R.; Wu, A.Y. The analysis of a simple
k-means clustering algorithm. Proceedings of the sixteenth annual symposium on Computational geometry,
2000, pp. 100-109.

54. Kramer, O.; Kramer, O. K-nearest neighbors. Dimensionality reduction with unsupervised nearest neighbors 2013,
pp- 13-23.

55. De Ville, B. Decision trees. Wiley Interdisciplinary Reviews: Computational Statistics 2013, 5, 448-455.

56. Cho, Y,; Saul, L. Kernel methods for deep learning. Advances in neural information processing systems 2009, 22.

https://doi.org/10.20944/preprints202312.0865.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

26 of 29

57. Sennrich, R. Modelling and optimizing on syntactic n-grams for statistical machine translation. Transactions
of the Association for Computational Linguistics 2015, 3, 169-182.

58. Hinton, G.E. Distributed representations 1984.

59. Hinton, G.E.; Ghahramani, Z. Generative models for discovering sparse distributed representations.
Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 1997, 352, 1177-1190.

60. Radford, A ; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434 2015.

61. Li, T.; Ortiz, .M. Generative Adversarial Network 1011.

62. Ratliff, L.J.; Burden, S.A.; Sastry, S.S. Characterization and computation of local Nash equilibria in continuous
games. 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE,
2013, pp. 917-924.

63. Sun, E; Xie, X. Deep non-parallel hyperplane support vector machine for classification. IEEE Access 2023.

64. Zhang, X.Y.; Xie, G.S.; Li, X.; Mei, T.; Liu, C.L. A Survey on Learning to Reject. Proceedings of the IEEE 2023,
111, 185-215.

65. Chen, L.; Deng, Y.; Cheong, K.H. Permutation Jensen-Shannon divergence for Random Permutation Set.
Engineering Applications of Artificial Intelligence 2023, 119, 105701.

66. Wildberger, J.; Guo, S.; Bhattacharyya, A.; Schélkopf, B. On the Interventional Kullback-Leibler Divergence.
arXiv preprint arXiv:2302.05380 2023.

67. Karras, T; Aila, T.; Laine, S.; Lehtinen, J. Progressive growing of gans for improved quality, stability, and
variation. arXiv preprint arXiv:1710.10196 2017.

68. Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 2014.

69. Denton, E.L.; Chintala, S.; Fergus, R.; others. Deep generative image models using a laplacian pyramid of
adversarial networks. Advances in neural information processing systems, 2015, pp. 1486-1494.

70. Burt, P.; Adelson, E. The Laplacian pyramid as a compact image code. IEEE Transactions on communications
1983, 31, 532-540.

71. Krizhevsky, A.; Nair, V.; Hinton, G. Cifar-10 (canadian institute for advanced research). URL http://www. cs.
toronto. edu/kriz/cifar. html 2010, 5.

72. Song, EY.Y.Z.S; Xiao, A.S.J. LSUN: Construction of a Large-scale Image Dataset using Deep Learning with
Humans in the Loop. arXiv preprint arXiv:1506.03365 2015.

73. Liu, Z.; Luo, P; Wang, X.; Tang, X. Deep learning face attributes in the wild. Proceedings of the IEEE
international conference on computer vision, 2015, pp. 3730-3738.

74. Wang, Z.; Simoncelli, E.P; Bovik, A.C. Multiscale structural similarity for image quality assessment.
The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003. Ieee, 2003, Vol. 2, pp.
1398-1402.

75. Bowles, C.; Chen, L.; Guerrero, R.; Bentley, P; Gunn, R.; Hammers, A.; Dickie, D.A.; Herndndez, M.V.;
Wardlaw, J.; Rueckert, D. Gan augmentation: Augmenting training data using generative adversarial
networks. arXiv preprint arXiv:1810.10863 2018.

76. Sixt, L.; Wild, B.; Landgraf, T. Rendergan: Generating realistic labeled data. Frontiers in Robotics and Al 2018,
5, 66.

77. Wario, F; Wild, B.; Couvillon, M.].; Rojas, R.; Landgraf, T. Automatic methods for long-term tracking and
the detection and decoding of communication dances in honeybees. Frontiers in Ecology and Evolution 2015,
3,103.

78. Zhang, H.; Xu, T; Li, H.; Zhang, S.; Wang, X.; Huang, X.; Metaxas, D.N. Stackgan: Text to photo-realistic
image synthesis with stacked generative adversarial networks. Proceedings of the IEEE international
conference on computer vision, 2017, pp. 5907-5915.

79. Reed, S.E.; Akata, Z.; Mohan, S; Tenka, S.; Schiele, B.; Lee, H. Learning what and where to draw. Advances
in neural information processing systems, 2016, pp. 217-225.

80. Wah, C,; Branson, S.; Welinder, P.; Perona, P.; Belongie, S. The caltech-ucsd birds-200-2011 dataset, 2011.

81. Lin, T.Y,; Maire, M.; Belongie, S.; Hays,].; Perona, P.; Ramanan, D.; Dollar, P.; Zitnick, C.L. Microsoft coco:
Common objects in context. European conference on computer vision. Springer, 2014, pp. 740-755.

82. Nilsback, M.E.; Zisserman, A. Automated flower classification over a large number of classes. 2008 Sixth
Indian Conference on Computer Vision, Graphics & Image Processing. IEEE, 2008, pp. 722-729.

https://doi.org/10.20944/preprints202312.0865.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

27 of 29

83. Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X. Improved techniques for
training gans. Advances in neural information processing systems, 2016, pp. 2234-2242.

84. Szegedy, C.; Vanhoucke, V,; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer
vision. Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2818-2826.

85. Chen, X.; Duan, Y.; Houthooft, R.; Schulman, J.; Sutskever, I.; Abbeel, P. Infogan: Interpretable representation
learning by information maximizing generative adversarial nets. Advances in neural information processing
systems, 2016, pp. 2172-2180.

86. LeCun, Y,; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.
Proceedings of the IEEE 1998, 86, 2278-2324.

87. Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; Ng, A.Y. Reading digits in natural images with
unsupervised feature learning. NIPS workshop on deep learning and unsupervised feature Learning, 2011.

88. Vinod, B. The continuing evolution: Customer-centric revenue management. Journal of Revenue and Pricing
Management 2008, 7, 27-39.

89. Mottini, A.; Lheritier, A.; Acuna-Agost, R. Airline passenger name record generation using generative
adversarial networks. arXiv preprint arXiv:1807.06657 2018.

90. Voigt, P; Von dem Bussche, A. The eu general data protection regulation (gdpr). A Practical Guide, 1st Ed.,
Cham: Springer International Publishing 2017.

91. Bellemare, M.G.; Danihelka, I.; Dabney, W.; Mohamed, S.; Lakshminarayanan, B.; Hoyer, S.; Munos, R. The
cramer distance as a solution to biased wasserstein gradients. arXiv preprint arXiv:1705.10743 2017.

92. Wang, R.; Fu, B.; Fu, G.; Wang, M. Deep & cross network for ad click predictions. In Proceedings of the
ADKDD’17;2017; pp. 1-7.

93. Arjovsky, M.,; Chintala, S.; Bottou, L. Wasserstein gan. arXiv preprint arXiv:1701.07875 2017.

94. Ajalloeian, A.; Stich, S.U. Analysis of SGD with Biased Gradient Estimators. arXiv preprint arXiv:2008.00051
2020.

95. Székely, G.J. E-statistics: The energy of statistical samples. Bowling Green State University, Department of
Mathematics and Statistics Technical Report 2003, 3, 1-18.

96. Guo, C.; Berkhahn, F. Entity embeddings of categorical variables. arXiv preprint arXiv:1604.06737 2016.

97. Lilliefors, H.W. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Journal
of the American statistical Association 1967, 62, 399-402.

98. Park, N.; Mohammadi, M.; Gorde, K,; Jajodia, S.; Park, H.; Kim, Y. Data synthesis based on generative
adversarial networks. arXiv preprint arXiv:1806.03384 2018.

99. LA.

100. Adult. UCI Machine Learning Repository, 1996. DOI: 10.24432 /C5XW20.

101. Health.

102. Airline.

103. Shokri, R.; Stronati, M.; Song, C.; Shmatikov, V. Membership inference attacks against machine learning
models. 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017, pp. 3-18.

104. Bhuyan, M.H.; Bhattacharyya, D.K,; Kalita,].K. Network anomaly detection: methods, systems and tools.
leee communications surveys & tutorials 2013, 16, 303-336.

105. Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J. Survey of intrusion detection systems: techniques,
datasets and challenges. Cybersecurity 2019, 2, 1-22.

106. Ahmad, Z.; Shahid Khan, A.; Wai Shiang, C.; Abdullah, J.; Ahmad, F. Network intrusion detection
system: A systematic study of machine learning and deep learning approaches. Transactions on Emerging
Telecommunications Technologies 2021, 32, e4150.

107. Yang, Z.; Liu, X,; Li, T.; Wu, D.; Wang, J.; Zhao, Y.; Han, H. A systematic literature review of methods and
datasets for anomaly-based network intrusion detection. Computers & Security 2022, p. 102675.

108. Bulusu, S.; Kailkhura, B.; Li, B.; Varshney, PK.; Song, D. Anomalous Instance Detection in Deep Learning: A
Survey. arXiv preprint arXiv:2003.06979 2020.

109. Zhang, J.; Tang, J.; Zhang, X.; Ouyang, W.; Wang, D. A survey of network traffic generation 2015.

110. Lin, Z,; Jain, A.; Wang, C.; Fanti, G.; Sekar, V. Using GANSs for sharing networked time series data: Challenges,
initial promise, and open questions. Proceedings of the ACM Internet Measurement Conference, 2020, pp.
464-483.

10.24432/C5XW20
https://doi.org/10.20944/preprints202312.0865.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

28 of 29

111. Xu, S.; Marwah, M.; Arlitt, M.; Ramakrishnan, N. Stan: Synthetic network traffic generation with generative
neural models. Deployable Machine Learning for Security Defense: Second International Workshop, MLHat
2021, Virtual Event, August 15, 2021, Proceedings 2. Springer, 2021, pp. 3-29.

112. Ring, M.; Schlér, D.; Landes, D.; Hotho, A. Flow-based network traffic generation using generative
adversarial networks. Computers & Security 2019, 82, 156-172.

113. Ring, M.; Wunderlich, S.; Griidl, D.; Landes, D.; Hotho, A. Flow-based benchmark data sets for intrusion
detection. Proceedings of the 16th European conference on cyber warfare and security, 2017, pp. 361-369.

114. Ring, M.; Dallmann, A.; Landes, D.; Hotho, A. Ip2vec: Learning similarities between ip addresses. 2017
IEEE International Conference on Data Mining Workshops (ICDMW). IEEE, 2017, pp. 657-666.

115. Mikolov, T.; Chen, K.; Corrado, G.; Dean,]. Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781 2013.

116. Cheng, A. PAC-GAN: Packet Generation of Network Traffic using Generative Adversarial Networks. 2019
IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference IEMCON).
IEEE, 2019, pp. 0728-0734.

117. Shahid, M.R.; Blanc, G.; Jmila, H.; Zhang, Z.; Debar, H. Generative deep learning for Internet of Things
network traffic generation. 2020 IEEE 25th Pacific Rim International Symposium on Dependable Computing
(PRDC). IEEE, 2020, pp. 70-79.

118. Yin, Y,; Lin, Z.; Jin, M.; Fanti, G.; Sekar, V. Practical gan-based synthetic ip header trace generation using
netshare. Proceedings of the ACM SIGCOMM 2022 Conference, 2022, pp. 458—472.

119. Myneni, S.; Chowdhary, A.; Sabur, A.; Sengupta, S.; Agrawal, G.; Huang, D.; Kang, M. DAPT
2020-constructing a benchmark dataset for advanced persistent threats. Deployable Machine Learning
for Security Defense: First International Workshop, MLHat 2020, San Diego, CA, USA, August 24, 2020,
Proceedings 1. Springer, 2020, pp. 138-163.

120. Sweet, C.; Moskal, S.; Yang, S.J. On the Variety and Veracity of Cyber Intrusion Alerts Synthesized by
Generative Adversarial Networks. ACM Transactions on Management Information Systems (TMIS) 2020,
11,1-21.

121. Sweet, C.; Moskal, S.; Yang, S.J. Synthetic intrusion alert generation through generative adversarial networks.
MILCOM 2019-2019 IEEE Military Communications Conference (MILCOM). IEEE, 2019, pp. 1-6.

122. Gulrajani, I.; Ahmed, F,; Arjovsky, M.; Dumoulin, V.; Courville, A.C. Improved training of wasserstein gans.
Advances in neural information processing systems, 2017, pp. 5767-5777.

123. Belghazi, M.L; Baratin, A.; Rajeswar, S.; Ozair, S.; Bengio, Y.; Courville, A.; Hjelm, R.D. Mine: mutual
information neural estimation. arXiv preprint arXiv:1801.04062 2018.

124. Munaiah, N.; Pelletier, J.; Su, S.H.; Yang, S.].; Meneely, A. A Cybersecurity Dataset Derived from the National
Collegiate Penetration Testing Competition. HICSS Symposium on Cybersecurity Big Data Analytics, 2019.

125. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties
of neural networks. arXiv preprint arXiv:1312.6199 2013.

126. Papernot, N.; McDaniel, P; Jha, S.; Fredrikson, M.; Celik, Z.B.; Swami, A. The limitations of deep learning in
adversarial settings. 2016 IEEE European symposium on security and privacy (EuroS&P). IEEE, 2016, pp.
372-387.

127. Papernot, N.; McDaniel, P.; Goodfellow, L; Jha, S.; Celik, Z.B.; Swami, A. Practical black-box attacks against
machine learning. Proceedings of the 2017 ACM on Asia conference on computer and communications
security, 2017, pp. 506-519.

128. Goodfellow, L].; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572 2014.

129. Hu, W,; Tan, Y. Generating adversarial malware examples for black-box attacks based on gan. arXiv preprint
arXiv:1702.05983 2017.

130. Lin, Z.; Shi, Y.; Xue, Z. Idsgan: Generative adversarial networks for attack generation against intrusion
detection. arXiv preprint arXiv:1809.02077 2018.

131. Papernot, N.; McDaniel, P.; Goodfellow, I. Transferability in machine learning: from phenomena to black-box
attacks using adversarial samples. arXiv preprint arXiv:1605.07277 2016.

132. Yang, Y.; Zheng, K.; Wu, B,; Yang, Y.; Wang, X. Network intrusion detection based on supervised adversarial
variational auto-encoder with regularization. IEEE Access 2020, 8, 42169—-42184.

https://doi.org/10.20944/preprints202312.0865.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0865.v1

29 of 29

133. Lee, J.; Park, K. GAN-based imbalanced data intrusion detection system. Personal and Ubiquitous Computing
2021, 25, 121-128.

134. Huang, S.; Lei, K. IGAN-IDS: An imbalanced generative adversarial network towards intrusion detection
system in ad-hoc networks. Ad Hoc Networks 2020, 105, 102177.

135. Shahriar, M.H.; Haque, N.I.; Rahman, M.A.; Alonso, M. G-ids: Generative adversarial networks assisted
intrusion detection system. 2020 IEEE 44th Annual Computers, Software, and Applications Conference
(COMPSACQ). IEEE, 2020, pp. 376-385.

136. Schneier, B. Attack trees. Dr. Dobb’s journal 1999, 24, 21-29.

137. Gadyatskaya, O.; Trujillo-Rasua, R. New directions in attack tree research: catching up with industrial needs.
Graphical Models for Security: 4th International Workshop, GraMSec 2017, Santa Barbara, CA, USA, August
21, 2017, Revised Selected Papers 4. Springer, 2018, pp. 115-126.

138. Widet, W.; Audinot, M,; Fila, B.; Pinchinat, S. Beyond 2014: Formal Methods for Attack Tree-based Security
Modeling. ACM Computing Surveys (CSUR) 2019, 52, 1-36.

139. Kholgh, D .K.; Kostakos, P. PAC-GPT: A novel approach to generating synthetic network traffic with GPT-3.
IEEE Access 2023.

140. Gadyatskaya, O.; Papuc, D. ChatGPT Knows Your Attacks: Synthesizing Attack Trees Using LLMs.
International Conference on Data Science and Artificial Intelligence. Springer, 2023, pp. 245-260.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and /or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

https://doi.org/10.20944/preprints202312.0865.v1

	Introduction
	Modeling Techniques
	Generative models
	Discriminative models
	Difference between Generative and Discriminative Models
	Why Generative models?
	How Generative Models work?
	How Generative Models generate data?

	Generative Adversarial Networks (GANs)
	Construction of Networks
	Cost Function
	Training of Networks

	Generating Data using GANs
	Different techniques in GAN for generating data
	Generating images
	Generating tabular synthetic data
	Airline Passenger Name Record (PNR) generation
	Synthesizing fake tables

	Generating Cyber Attack data using GAN
	Flow-based Network Traffic Generation
	Cyber Intrusion Alert Data Synthesis
	Generating Attack Data using Adversarial Examples
	MalGAN: Generating Malware Adversarial Examples using GAN
	IDSGAN: Generating Adversarial Examples against Intrusion Detection System

	Analysis of GAN generated Synthetic Attack Data
	Discussion
	Conclusion
	References

