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Abstract: The objective was to estimate the correlation between VIs and grain yield and identify the
optimal timing and VlIs for precise corn grain yield estimation. Furthermore, the study aims to
employ photographic quantification to measure corn ear traits and establish their correlation with
corn grain yield. Ten corn hybrids were evaluated in CRB with three replications at three locations.
Vegetation indices and green leaf area were estimated throughout the cycle using an unmanned
aerial vehicle (UAV) and subsequently correlated with grain productivity. In addition, photographs
were taken of the corn ear to estimate their length, width and total number of kernels and compare
these values with manual measurements. The experiments consistently demonstrated significant
experimental quality across sites, with accuracy ranging from 79.07% to 95.94%. UAV flights carried
out at the beginning of the crop cycle revealed a positive correlation between grain productivity and
the evaluated indices (NGRDI, VARI, GLI). Regarding the phenotyping of corn ears, the regression
coefficients for width, length and TNG were 0.92, 0.88 and 0.62, respectively, indicating an
association with manual measurements. However, stage V5 in the localities of Lavras and Jjaci and
stage V8 in the locality of Nazareno showed a positive correlation with productivity. The use of
images for ear phenotyping is promising as a method for measuring corn components.

Keywords: crop genetics; biometrics; data acquisition and assimilation

1. Introduction

In plant breeding programs, the demand for field phenotyping has seen a significant increasing,
mainly driven by the need to understand genotype-by-environment interactions. Thus, improving
traits of interest depends on the ability to quantify phenotypes across genotypes replicated over
multiple environments [23]. Traditionally, field phenotypic data have been obtained manually, a
labor-intensive and time-consuming process that limits the number of measurable traits. However,
the expansion of technologies has enabled cost-effective high-throughput phenotyping (HTP) to
automatically acquire multisource crop data, which can greatly reduce the manual labor and time
required to obtain crop phenotypic information [13].

With HTP, an understanding of crop development is enhanced, bridging the gaps in the
relationship between genotype and phenotype. Numerous phenotyping platforms are available to
achieve this goal, with aerial phenotyping in the field being a preferred approach. Aerial phenotyping
primarily leverages unmanned aerial vehicles (UAVs) equipped with a variety of sensors, including
visible-light (RGB) cameras, infrared thermal imagers, LiDAR, multispectral cameras, and
hyperspectral sensors. An essential criterion for these sensors is cost-effectiveness, with RGB cameras
being a prime example [31]. For instance [39], employed RGB cameras in predicting rice (Oryza
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sativa) yield, and similar cameras have been used to estimate yield and other traits in crops like wheat
(Triticum spp.), soybean (Glycine max), maize (Zea mays), barley (Hordeum vulgare), and potatoes
(Solanum tuberosum) [3-32-12-16-18].

After acquiring images through these technologies, a range of traits related to growth,
development, tolerance, resistance, architecture, physiology, ecology, and yield can be estimated. In
particular, many studies have employed digital images to derive vegetation indices (VIs), a powerful
tool for assessing green vegetation. [39] demonstrated the effectiveness of color indices, such as the
Excess green (ExG) and Visible Atmospherically Resistant Index (VARI) calculated from RGB images,
in mapping vegetation fractions and their high correlations with rice grain yield. The normalized
green—red difference index (NGRDI) derived from RGB images also exhibited strong correlations
with the aboveground biomass of peas and oats, with R? values ranging from 0.58 to 0.78 [8].

In the context of corn crops, the correlation between VIs and yield varies based on growth stage
and the specific index used, with VARI being one of the top-performing indices. Additionally, canopy
cover at 47 and 79 days after sowing has shown a strong correlation with corn yield in some corn
populations. showed a correlation to grain yield of 0.76 and 0.77, respectively [4].

In corn breeding programs, beyond field-based plant phenotyping, the accurate and efficient
phenotyping of corn ears presents a significant challenge. Traits directly associated with grain yield,
such as ear length, width, number of rows, and number of grains per ear, are notoriously labor-
intensive to measure, especially when evaluating numerous genotypes in selection processes.
Moreover, manual phenotyping is vulnerable to inaccuracies due to differences in evaluator
qualifications, calibration issues with the equipment used, and evaluator fatigue, both physical and
mental.

In response, ear phenotyping through image analysis has emerged as a valuable solution. It
offers a non-destructive, cost-effective, and efficient process, demonstrating a strong correlation with
manually obtained data. Several studies have showcased the potential of automated ear phenotyping,
enhancing the accuracy and speed of field data processing, and helping breeders pinpoint desirable
traits for selecting superior genotypes. This technology is making significant contributions to the
extraction of information from cereal crops, including corn [14-22-19-1-20-36-10-35]. While some
methods involve rotating mechanisms to capture images of the entire ear surface, increasing both
cost and time, others opt for the more straightforward acquisition of a single ear image [35-36].

Therefore, this study endeavors to estimate the correlation between VIs and grain yield and
identify the optimal timing and VIs for precise corn grain yield estimation. Furthermore, the study
aims to employ photographic quantification to measure corn ear traits and establish their correlation
with corn grain yield.

2. Materials and Methods

The experiments were conducted in three distinct environments located in the southern region
of the Minas Gerais state. The first was in Lavras, situated at a latitude of 21°14' S, a longitude of
45°00' W, and an altitude of 918 meters. The second was in Ijaci, with a latitude of 21°09'S, a longitude
of 44°54' W, and an altitude of 920 meters. The third was in Nazareno, positioned at a latitude of
21°12' S, a longitude of 44°36' W, and an altitude of 1008 meters.

In all these environments, the no-till system was employed. The experimental plots consisted of
two rows, each five meters in length, spaced 0.60 meters apart. The experimental design used was
randomized complete blocks, with three replications. Sowing took place in the first half of November,
followed by thinning. Fertilization, pest management, and weed control were carried out in
accordance with the recommended practices for corn crops in the region [27].

The evaluated hybrids were derived from four heterotic groups, selected through the Reciprocal
Recurrent Selection (RRS) program at the Federal University of Lavras (UFLA). These populations
were labeled as A, B, C, and D. Populations A and B are of conventional nature, while populations C
and D incorporate Roundup Ready (RR) and Bacillus thuringiensis (BT) technology.

The experiments were conducted separately for the AB and CDpopulations. Where AB included
a total of 10 treatments, six AB hybrids,the original populations A and B, in addition to two
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commercial hybrids, DEKALB 230 PRO3 and RB 9077 PRO. The same procedure was applied to the
CD populations, featuring identical commercial checks.

Grain yield, an important agronomic trait, was determined from the harvested plots. To ensure
consistency, the grain moisture content was standardized to 13%, and the yield was expressed in
kilograms per hectare (kg.ha™). Manual evaluations were performed on three ears from each plot,
and a millimeter caliper was employed to measure characteristics directly associated with grain yield,
including;:

Length (L): Measured as the vertical distance from the base to the end of the ear.

Width (W): Determined as the horizontal distance between the rows of grains at the ear's
midpoint.

Total number of grains (TNG).

For the purpose of correlation studies, RGB digital images of the ears were captured using a
professional-grade camera, specifically the Canon EOS 60D D750, equipped with a 35 mm DX lens
featuring a built-in autofocus motor, a 1.8f aperture, and a fixed ISO setting (representing the
camera's sensitivity to light) at 1200. These images were saved in "JPG" compression format and
utilized the RGB color system, comprising red, green, and blue channels.

To ensure high-quality images, a wooden box was equipped with overhead artificial lighting,
and a background was employed to provide adequate contrast with the ears to improve image
quality. Subsequently, the ear images were analyzed using the OpenCV and skimage packages within
the Python software environment to extract the relevant information.

Figure 1. Chamber for image capture (A). Ears without the background and grain count (B).

The UAV utilized in this study was a multirotor (Mavic Pro) equipped with an RGB digital
camera. The UAV operations were conducted under favorable weather conditions, characterized by
clear skies and low wind speeds, with flights taking place between 10:00 and 14:00 local time. These
flights were executed at an altitude of 30 meters. Flight plans were crafted using the Pix4D Capture
application program, ensuring 80% longitudinal and 60% lateral overlap for comprehensive image
coverage. The subsequent generation of orthomosaics was accomplished using AgiSoft PhotoScan
Professional Software. For the analysis of the aerial images and the assessment of crop growth, the R
software [25] was employed in conjunction with the FIELDimageR package [20].

In the evaluation and monitoring of crop growth, various vegetation indices were computed.
These indices involve algebraic operations on values derived from distinct spectral bands in the
visible regions, also referred to as spectral bands. Notably, the indices encompass the normalized
green-red difference index (NGRDI), visible atmospherically resistant index (VARI), green leaf index
(GLI), and excess green (ExG COLOR INDEX). [33-5-15-21]. Subsequently, these indices enable the
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correlation with various crop variables, including biomass, canopy cover, chlorophyll content, and
grain yield [29-17].

The flights were performed at different vegetative and reproductive stages to capture the whole
crop development (Table 1).

Flight 1 Flight 2 Flight 3 Flight 4

Ijaci V5 VT R3 R5
Lavras V5 V10 VT R3
Nazareno V8 VT R4 R6

Individual analyses for all traits were carried out using the statistical model as follows:

yij = p + hi + bj + eij

Where:

yij: observed value for the plot that received hybrid i in block j.

u: constant associated with every observation.

hi: effect of hybrid i.

bj: effect of block j.

eij: error associated with hybrid i in block j.

Furthermore, joint analyses for all traits were performed using the statistical model as follows:

yijk = u +hi + bj(k) + 1k + h*lik + eijk

Where:

yijk: observed value for the plot that received hybrid i in block j at location 1.

: constant associated with every observation.

hi: effect of hybrid i.

bj: effect of block j in location k.

lk: effect of location k.

h*lik: effect of hybrid-by-location interaction.

eijk: error associated with hybrid i in block j at location k.

Experimental precision plays a vital role in ensuring the quality and reliability of trials. Accurate
experiments yield more dependable estimates, leading to more precise recommendations. The
precision of an experiment is closely tied to its capacity to reproduce results consistently. In this
study, the Coefficient of Variation (CV) was employed. The CV considers both the residual variation
and the experimental mean. The accuracy of the results depends on the extent of the residual
variation, the number of repetitions, and the balance between genetic and residual variations
associated with the specific trait being evaluated [28].

To assess experimental precision, the coefficient of variation and accuracy were estimated.
Accuracy was determined using the following estimator [28].

A 2 1
ro9="[1-()
where:

F (from Snedecor) is the value of the variance ratio for the effects of treatments (hybrids),
associated with the analysis of variance (ANOVA);
The coefficient of variation was estimated using the following estimator:
2
vV Og

X

CcV =

where:
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oZ: residual variation;

x: hybrid means.

Analysis of phenotypic Pearson's correlation between field data (grain yield) and aerial images
obtained via UAV was calculated. For digital ear images, the correlation between manual and
photographic measurements for width, length, and total number of grains (TNG) traits was
performed. To verify the efficiency of phenotyping through digital images and its agreement with
manual phenotyping, some reliability measures described in the literature were estimated for these
characteristics with the software GENES [2] and R [25].

Reliability measures used:

Coefficient of determination (R?) of simple linear regression without i intercept (model: Y = X
+ e, where Y is the value obtained from the analysis of images, 3 is the angular coefficient and X the
value obtained with manual measurement.

Person (r) correlation (Equation 1), according to the classification proposed by Hopkins (2000).

=X - X« (¥ - 1)

. \/Z’?:l(Xi —X)?x \/Z?=1(Yi -¥)?

where X corresponds to the i-th value obtained with manual measurement, Y; represents the
i-th value observed from the image analysis, X; is the mean of the values obtained by manual
measurement and Y; is the mean of the values observed from the image analysis.

The Huber M-estimation method (Robust Fit) was used to test the regression. Huber M-
estimation finds parameter estimates that minimize the Huber loss function:

)= ) pleD

Where:

1
Eez if le| <k
p(e) = 1
Klel = SKif lel = k

ei refers to the residuals
The Huber loss function penalizes outliers and increases as a quadratic for small errors and
linearly for large errors [6-7].

3. Results and discussion

Individual variance analysis revealed significant differences in grain yield among hybrids in
both populations and all three locations. Experimental precision, assessed using the coefficient of
variation (CV) and accuracy (rgg?), demonstrated high experimental precision with CVs consistently
within the low to medium range. Accuracy was also consistently high, ranging from 79.07% to 95.94%
across all trials.

Joint variance analysis indicated significant differences between genetic treatments,
environments, and hybrid-by-environment interactions for grain yield. Grain yield means varied
from 6739 to 12156 kg/ha for the AB population and from 6236 to 12930 kg/ha for the CD population.
The Scott-Knott test [30] categorized hybrids into two groups for both populations (Table 2). In the
AB trials, RB 9077 and DKB 230 hybrids demonstrated the highest grain yield performance, while the
lowest performance was observed in the AB and CD hybrids. For the CD population, RB 9077, DKB
230, HybridCD 1, and Hybrid AB hybrids exhibited the highest grain yield performance.
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Table 2. Comparing the grain yield means (kg/ha) of the 10 AB and CD maize hybrids in three
different environments using the Scott-Knott test.

Hybrids AB AB Mean Hybrids CD CD Mean
RB 9077 12156a RB 9077 12930a
DKB 230 10623a DKB 230 11151a

HybridAB 2 9707b HybridCD 2 7445b

HybridAB 1 9559b HybridCD 1 10235a

HybridAB 4 9468b HybridCD 4 8242b

HybridAB 5 9466b HybridCD 5 8711b

HybridAB 6 9363b HybridCD 6 6236b

HybridAB 3 8868b HybridCD 3 8732b

Hybrid AB 8306b Hybrid AB 10108a

Hybrid CD 6739b Hybrid CD 7525b

Means followed by the same letter in the columns belong to the same group by the [30] to the
level of 5% probability.

Considering the field phenotyping, the estimation of vegetation indices demonstrated good
experimental precision, as indicated by the accuracy and coefficient of variation (data not shown).
The precision of these parameters reflects the quality of the trials at the time when the images were
captured. Higher precision tends to result in a stronger correlation between yield and the vegetation
index, as observed in flights 1, 2, and 3.

Conversely, in flight 4 in the Nazareno location, especially when the trials were assessed at the
end of the crop cycles, lower precision was noted. This decrease in precision was attributed to the
emergence of weeds after the corn plants began to dry out. Conse

quently, this led to a negative correlation between vegetation indices and yield, with a negative
regression slope. A similar observation was made by [37], confirming the impact of weed interference
in such situations.

For the joint analysis of all traits, it was found that Location and Flight had statistical
significance. Consequently, separate regression analyses were conducted for these traits. Flight 1,
during which the plants were in the V5 stage in Lavras and Jjaci and in the V8 stage in Nazareno,
exhibited strong R-Square values in relation to grain yield for both populations and all vegetation
indices and green leaf areas. In general, the highest R? values were observed for the GLI and ExG
indices (Table 3). And in the Figure 2 shows the regression slope for each flight in each location.

Table 3. RSquare between four vegetation indices and green leaf area with grain yield (YD) for each
of the three locations and each flight.

Flight 1 Flight 2
NGRDI VARI GLI ExG Area NGRDI VARI GLI ExG Area
Lavras  0.07* 005 009* 009* 002 009 009 007° 0.07* 0.09*

Tjaci 0.03 0.01  0.19* 0.19*  0.01 0.14*  0.14* 0.08* 0.06* 0.15**
Nazareno  0.04 0.03 0.02  0.04* 0.11* 0.07*  0.06* 0.07* 0.07* 0.09**
Flight 3 Flight 4

NGRDI VARI GLI ExG Area NGRDI VARI GLI ExG Area

Lavras 0.08**  0.10**  0.03 0.03 0.05 0.003 0.004 0.001 0.001 0.0003
Ijaci 0.08* 0.07*  0.12** 0.13*  0.06 0.02 0.01 0.06* 0.06* 0.00
Nazareno 0.04 0.03 0.03 0.03 0.02 0.12** 0.12** 0.05 0.05 0.001

RSquare coefficient, ** (p<0.01), * (p<0.05), without asterisk sign nonsignificant according to the Robust Fit test,
Huber M-estimation method.
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FLIGHT 1
FUIGHT 2

FUGHT 4

Lavras.

Ijaci

Figure 2. Dispersion graph from the vegetation index and area versus yield for the four Flights and
the tree locations and the equation for each the regression graphs.

Recent analyses of durum wheat in Spain have shown RGB picture vegetation indices to
consistently outperform multispectral indices such as NDVI in both yield prediction and disease.
RGB indices at the canopy level were strongly related to GY and GY losses (R? = 0.581; R? = 0.536,
respectively) associated with disease presence, whereas NDVI was considerably less accurate (R? =
0.261; R?=0.277, respectively), especially in the late stage [9]. In the case of corn, the same pattern can
be seen. Regarding crop monitoring, RGB vegetation indices derived from canopy pictures were the
best parameters for predicting grain yield throughout the nitrogen fertilization treatments (R?2=0.721)
and outperformed both aerial and ground NDVI (R? = 0.689; R? = 0.293; R? = 0.287, respectively) [9].

Some crops showed a relatively high correlation between the Vegetation Index (VI) and yield; it
has been shown that the normalized NGRDI is positively and significantly correlated with the
aboveground biomass of peas and oats, with R? ranging from 0.58 to 0.78 [8]. However, in the corn
crop, the correlation between the VI and yield varied according to the stage and to the index used,
where VARI and NGRDI were 0.52 and 0.47, respectively [4]. The same rate was observed in this
study. In addition to the VI, the canopy has been reported as a good predictor for corn yield, and
canopy cover at 47 and 79 days after sowing showed a correlation to grain yield of 0.76 and 0.77,
respectively [4]. According to [34], the precise correlation between yield potential levels in maize with
the NDVIindex was in the V3 and V8 growth stages, and the highest correlation was in V8; the same
was observed in this study.

Corn yield is influenced by multiple factors related to the environment. In addition, maize yield
per unit of area is related not only to yield per plant but also to multiple traits, including tolerance to
biotic and abiotic stresses, adaptability to the climate and weather, tolerance to planting density, and
lodging resistance; these traits create complexities and difficulties for direct correlations between
yield and simple traits [38].

Although plant area and VI are associated with yield for maize varieties, yield per plant is largely
determined by yield per ear, which is determined by grain number (GN) and grain weight (GW); GN
can be decomposed into ear row number (ERN) and GN per row (GNPR). Decomposition of maize
yield would facilitate in-depth genetic and molecular studies of maize yield [38].

For corn ear phenotyping, a total of 530 ears displayed substantial phenotypic variation for all
descriptors assessed. This diversity was crucial for validating the proposed methodologies as it
included various ear patterns. The ear length ranged from 11.8 to 22.6 centimeters, while the width
ranged from 3.83 to 6.12 centimeters. The estimate of the regression coefficient (R?) for width was 0.92
(Figure 3 A), and for length, it was 0.88 (Figure 3 B). These high R? values indicated a strong
association between the values obtained through manual phenotyping and those extracted from
imaging.
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1anUAIWiGU=0.7322047+0 8289854 Photowidth 1 ManualLengtn = -0.515915+1.0295024"Photo Length
R=0.88

Photografic width mesuare (cm)
Photografic length mesuare (¢m)

Manual width mesuare (cm) Manual length mesuare (cm)

| ManuaINGT = 231.46836 + 0,5258664°Photo NGT 1 EarYielotkg)=0.1080222 + 0.0004761°NGT
RI=084 Ri=0.41

Photografic NTG mesuare
Photografic NTG mesuare

Manual NTG mesuare Ear Yr‘eld (kg)

Figure 3. Dispersion graph from manual versus photographic measurements for the traits width (A),
length (B), TNG (C), and corn ear yield with photographic TNG measurement (D) and multiple R-
squared (R?).

Width measurements were conducted with a digital pachymeter, ensuring higher precision,
while length measurements were taken using a ruler. The validity of these results is further supported
by the Pearson’s correlation coefficient when calculated separately for different populations and
locations (Table 4).

The correlation for TNG ranged from 0.65 in population AB in Jjaci to 0.80 in population CD in
Lavras, with an R? of 0.62, indicating a strong association with the measurements (Figure 3 C). These
graphs confirm the precise estimation of the number of grains, as they demonstrate a strong
correlation between TNG and ear yield (Figure 3 D). Generally, manual estimations exhibited lower
accuracy for all the assessed traits compared to photographic measurements (Table 4). Phenotyping
using images to estimate the number of grains offers significant advantages, including automation,
cost-effectiveness, enhanced accuracy in estimations, and reduced time and labor requirements. In
contrast, manual measurements are highly subjective and influenced by human factors [14-11-22-19-
1-35-36].

Table 4. Accuracy for manual and photographic width, length, TNG and correlation between manual
and photographic measurements in the AB and CD populations in Ijaci, Lavras and Nazareno.

Ph hi
Manual Accuracy otographic Correlation
Accuracy
Width Length TNG Width Length TNG Width Length TNG
Jjaci AB 68.95 6794 8456 7712 7285 8458 0.90*  0.95**  0.65**

Tjaci CD 85.55 7448 76.00 82.58 7327 87.86 0.96* 098  0.70**
Lavras AB 65.99 7254  65.26 81.96 7520 8331 0.95*  0.95%  0.79**
Lavras CD 92.39 17.78  78.82  93.66 69.47  83.77 0.98*  0.83*  0.80**

Nazareno AB  57.02 80.58 83.73 71.58 79.97 93.52 097**  0.97**  0.75*
NazarenoCD  79.78 8220 5123 78.62 80.78 6496 0.98* 0977  0.71**

Pearson’s correlation coefficient ** (p<0.01), * (p<0.05), without asterisk sign nonsignificant correlation according
to the T test.

The methodology presented for estimating length and width demonstrated remarkable
consistency. Consequently, its adoption in breeding programs has the potential to enhance the
efficiency of ear phenotyping while reducing the time required and minimizing human errors in data
collection.
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These findings align with existing literature, where high concordance indices, approaching
unity, were observed in the estimation of leaf area through digital images. Previous studies have
similarly concluded that image analysis can effectively replace manual phenotyping by providing
more precise measurements of the relevant descriptors [26].

4. Conclusions

The best index related to yield varied due to flight and location. The best time for image
collection was between V5 to VT stage. Ear phenotyping based on digital images represents a
promising alternative to measure corn yield components. This technique provided greater efficiency
and high correlation with manual evaluations.
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