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Abstract: The objective was to estimate the correlation between VIs and grain yield and identify the 
optimal timing and VIs for precise corn grain yield estimation. Furthermore, the study aims to 
employ photographic quantification to measure corn ear traits and establish their correlation with 
corn grain yield. Ten corn hybrids were evaluated in CRB with three replications at three locations. 
Vegetation indices and green leaf area were estimated throughout the cycle using an unmanned 
aerial vehicle (UAV) and subsequently correlated with grain productivity. In addition, photographs 
were taken of the corn ear to estimate their length, width and total number of kernels and compare 
these values with manual measurements. The experiments consistently demonstrated significant 
experimental quality across sites, with accuracy ranging from 79.07% to 95.94%. UAV flights carried 
out at the beginning of the crop cycle revealed a positive correlation between grain productivity and 
the evaluated indices (NGRDI, VARI, GLI). Regarding the phenotyping of corn ears, the regression 
coefficients for width, length and TNG were 0.92, 0.88 and 0.62, respectively, indicating an 
association with manual measurements. However, stage V5 in the localities of Lavras and Ijaci and 
stage V8 in the locality of Nazareno showed a positive correlation with productivity. The use of 
images for ear phenotyping is promising as a method for measuring corn components. 

Keywords: crop genetics; biometrics; data acquisition and assimilation 
 

1. Introduction 

In plant breeding programs, the demand for field phenotyping has seen a significant increasing, 
mainly driven by the need to understand genotype-by-environment interactions. Thus, improving 
traits of interest depends on the ability to quantify phenotypes across genotypes replicated over 
multiple environments [23]. Traditionally, field phenotypic data have been obtained manually, a 
labor-intensive and time-consuming process that limits the number of measurable traits. However, 
the expansion of technologies has enabled cost-effective high-throughput phenotyping (HTP) to 
automatically acquire multisource crop data, which can greatly reduce the manual labor and time 
required to obtain crop phenotypic information [13]. 

With HTP, an understanding of crop development is enhanced, bridging the gaps in the 
relationship between genotype and phenotype. Numerous phenotyping platforms are available to 
achieve this goal, with aerial phenotyping in the field being a preferred approach. Aerial phenotyping 
primarily leverages unmanned aerial vehicles (UAVs) equipped with a variety of sensors, including 
visible-light (RGB) cameras, infrared thermal imagers, LiDAR, multispectral cameras, and 
hyperspectral sensors. An essential criterion for these sensors is cost-effectiveness, with RGB cameras 
being a prime example [31]. For instance [39], employed RGB cameras in predicting rice (Oryza 
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sativa) yield, and similar cameras have been used to estimate yield and other traits in crops like wheat 
(Triticum spp.), soybean (Glycine max), maize (Zea mays), barley (Hordeum vulgare), and potatoes 
(Solanum tuberosum) [3-32-12-16-18]. 

After acquiring images through these technologies, a range of traits related to growth, 
development, tolerance, resistance, architecture, physiology, ecology, and yield can be estimated. In 
particular, many studies have employed digital images to derive vegetation indices (VIs), a powerful 
tool for assessing green vegetation. [39] demonstrated the effectiveness of color indices, such as the 
Excess green (ExG) and Visible Atmospherically Resistant Index (VARI) calculated from RGB images, 
in mapping vegetation fractions and their high correlations with rice grain yield. The normalized 
green‒red difference index (NGRDI) derived from RGB images also exhibited strong correlations 
with the aboveground biomass of peas and oats, with R² values ranging from 0.58 to 0.78 [8]. 

In the context of corn crops, the correlation between VIs and yield varies based on growth stage 
and the specific index used, with VARI being one of the top-performing indices. Additionally, canopy 
cover at 47 and 79 days after sowing has shown a strong correlation with corn yield in some corn 
populations. showed a correlation to grain yield of 0.76 and 0.77, respectively [4]. 

In corn breeding programs, beyond field-based plant phenotyping, the accurate and efficient 
phenotyping of corn ears presents a significant challenge. Traits directly associated with grain yield, 
such as ear length, width, number of rows, and number of grains per ear, are notoriously labor-
intensive to measure, especially when evaluating numerous genotypes in selection processes. 
Moreover, manual phenotyping is vulnerable to inaccuracies due to differences in evaluator 
qualifications, calibration issues with the equipment used, and evaluator fatigue, both physical and 
mental. 

In response, ear phenotyping through image analysis has emerged as a valuable solution. It 
offers a non-destructive, cost-effective, and efficient process, demonstrating a strong correlation with 
manually obtained data. Several studies have showcased the potential of automated ear phenotyping, 
enhancing the accuracy and speed of field data processing, and helping breeders pinpoint desirable 
traits for selecting superior genotypes. This technology is making significant contributions to the 
extraction of information from cereal crops, including corn [14-22-19-1-20-36-10-35]. While some 
methods involve rotating mechanisms to capture images of the entire ear surface, increasing both 
cost and time, others opt for the more straightforward acquisition of a single ear image [35-36]. 

Therefore, this study endeavors to estimate the correlation between VIs and grain yield and 
identify the optimal timing and VIs for precise corn grain yield estimation. Furthermore, the study 
aims to employ photographic quantification to measure corn ear traits and establish their correlation 
with corn grain yield. 

2. Materials and Methods 

The experiments were conducted in three distinct environments located in the southern region 
of the Minas Gerais state. The first was in Lavras, situated at a latitude of 21°14' S, a longitude of 
45°00' W, and an altitude of 918 meters. The second was in Ijaci, with a latitude of 21°09' S, a longitude 
of 44°54' W, and an altitude of 920 meters. The third was in Nazareno, positioned at a latitude of 
21°12' S, a longitude of 44°36' W, and an altitude of 1008 meters. 

In all these environments, the no-till system was employed. The experimental plots consisted of 
two rows, each five meters in length, spaced 0.60 meters apart. The experimental design used was 
randomized complete blocks, with three replications. Sowing took place in the first half of November, 
followed by thinning. Fertilization, pest management, and weed control were carried out in 
accordance with the recommended practices for corn crops in the region [27]. 

The evaluated hybrids were derived from four heterotic groups, selected through the Reciprocal 
Recurrent Selection (RRS) program at the Federal University of Lavras (UFLA). These populations 
were labeled as A, B, C, and D. Populations A and B are of conventional nature, while populations C 
and D incorporate Roundup Ready (RR) and Bacillus thuringiensis (BT) technology. 

The experiments were conducted separately for the AB and CDpopulations. Where AB included 
a total of 10 treatments, six AB hybrids,the original populations A and B, in addition to two 
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commercial hybrids, DEKALB 230 PRO3 and RB 9077 PRO. The same procedure was applied to the 
CD populations, featuring identical commercial checks. 

Grain yield, an important agronomic trait, was determined from the harvested plots. To ensure 
consistency, the grain moisture content was standardized to 13%, and the yield was expressed in 
kilograms per hectare (kg.ha⁻¹). Manual evaluations were performed on three ears from each plot, 
and a millimeter caliper was employed to measure characteristics directly associated with grain yield, 
including: 

Length (L): Measured as the vertical distance from the base to the end of the ear. 
Width (W): Determined as the horizontal distance between the rows of grains at the ear's 

midpoint. 
Total number of grains (TNG). 
For the purpose of correlation studies, RGB digital images of the ears were captured using a 

professional-grade camera, specifically the Canon EOS 60D D750, equipped with a 35 mm DX lens 
featuring a built-in autofocus motor, a 1.8f aperture, and a fixed ISO setting (representing the 
camera's sensitivity to light) at 1200. These images were saved in "JPG" compression format and 
utilized the RGB color system, comprising red, green, and blue channels. 

To ensure high-quality images, a wooden box was equipped with overhead artificial lighting, 
and a background was employed to provide adequate contrast with the ears to improve image 
quality. Subsequently, the ear images were analyzed using the OpenCV and skimage packages within 
the Python software environment to extract the relevant information. 

 

Figure 1. Chamber for image capture (A). Ears without the background and grain count (B). 

The UAV utilized in this study was a multirotor (Mavic Pro) equipped with an RGB digital 
camera. The UAV operations were conducted under favorable weather conditions, characterized by 
clear skies and low wind speeds, with flights taking place between 10:00 and 14:00 local time. These 
flights were executed at an altitude of 30 meters. Flight plans were crafted using the Pix4D Capture 
application program, ensuring 80% longitudinal and 60% lateral overlap for comprehensive image 
coverage. The subsequent generation of orthomosaics was accomplished using AgiSoft PhotoScan 
Professional Software. For the analysis of the aerial images and the assessment of crop growth, the R 
software [25] was employed in conjunction with the FIELDimageR package [20]. 

In the evaluation and monitoring of crop growth, various vegetation indices were computed. 
These indices involve algebraic operations on values derived from distinct spectral bands in the 
visible regions, also referred to as spectral bands. Notably, the indices encompass the normalized 
green-red difference index (NGRDI), visible atmospherically resistant index (VARI), green leaf index 
(GLI), and excess green (ExG COLOR INDEX). [33-5-15-21]. Subsequently, these indices enable the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 December 2023                   doi:10.20944/preprints202312.0815.v1

https://doi.org/10.20944/preprints202312.0815.v1


 4 

 

correlation with various crop variables, including biomass, canopy cover, chlorophyll content, and 
grain yield [29-17]. 

The flights were performed at different vegetative and reproductive stages to capture the whole 
crop development (Table 1). 

 Flight 1 Flight 2 Flight 3 Flight 4 

Ijaci V5 VT R3 R5 

Lavras V5 V10 VT R3 

Nazareno V8 VT R4 R6 

Individual analyses for all traits were carried out using the statistical model as follows: 
yij = µ + hi + bj + eij 

Where: 
yij: observed value for the plot that received hybrid i in block j. 
µ: constant associated with every observation. 
hi: effect of hybrid i. 
bj: effect of block j. 
eij: error associated with hybrid i in block j. 
Furthermore, joint analyses for all traits were performed using the statistical model as follows: 

yijk = µ + hi + bj(k) + lk + h*lik + eijk 
Where: 
yijk: observed value for the plot that received hybrid i in block j at location l. 
µ: constant associated with every observation. 
hi: effect of hybrid i. 
bj: effect of block j in location k. 
lk: effect of location k. 
h*lik: effect of hybrid-by-location interaction. 
eijk: error associated with hybrid i in block j at location k. 
Experimental precision plays a vital role in ensuring the quality and reliability of trials. Accurate 

experiments yield more dependable estimates, leading to more precise recommendations. The 
precision of an experiment is closely tied to its capacity to reproduce results consistently. In this 
study, the Coefficient of Variation (CV) was employed. The CV considers both the residual variation 
and the experimental mean. The accuracy of the results depends on the extent of the residual 
variation, the number of repetitions, and the balance between genetic and residual variations 
associated with the specific trait being evaluated [28]. 

To assess experimental precision, the coefficient of variation and accuracy were estimated. 
Accuracy was determined using the following estimator [28]. 𝑟𝑔̂𝑔 = √1 − (1F)2

 

where: 
F (from Snedecor) is the value of the variance ratio for the effects of treatments (hybrids), 

associated with the analysis of variance (ANOVA); 
The coefficient of variation was estimated using the following estimator: 𝐶𝑉 = √𝜎𝐸2𝑥̄  

where: 
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𝜎𝐸2: residual variation; 𝑥̄: hybrid means. 
Analysis of phenotypic Pearson's correlation between field data (grain yield) and aerial images 

obtained via UAV was calculated. For digital ear images, the correlation between manual and 
photographic measurements for width, length, and total number of grains (TNG) traits was 
performed. To verify the efficiency of phenotyping through digital images and its agreement with 
manual phenotyping, some reliability measures described in the literature were estimated for these 
characteristics with the software GENES [2] and R [25]. 

Reliability measures used: 
Coefficient of determination (R²) of simple linear regression without i intercept (model: Y = βX 

+ e, where Y is the value obtained from the analysis of images, β is the angular coefficient and X the 
value obtained with manual measurement. 

Person (r) correlation (Equation 1), according to the classification proposed by Hopkins (2000). 𝑟 =  ∑ (𝑋𝑖 − 𝑋̅𝑛𝑖=1 ) ∗ (𝑌𝑖 − 𝑌̅)√∑ (𝑋𝑖 − 𝑋̅)2𝑛𝑖=1 ∗ √∑ (𝑌𝑖 − 𝑌̅)2𝑛𝑖=1  

where 𝑋𝑖 corresponds to the i-th value obtained with manual measurement, 𝑌𝑖 represents the 
i-th value observed from the image analysis, 𝑋𝑖 is the mean of the values obtained by manual 
measurement and 𝑌𝑖 is the mean of the values observed from the image analysis. 

The Huber M-estimation method (Robust Fit) was used to test the regression. Huber M-
estimation finds parameter estimates that minimize the Huber loss function: 𝑙(𝑒) =  ∑ 𝑝(𝑒𝑖 𝑖 ) 

Where: 

𝑝 (𝑒) = { 12 𝑒2 𝑖𝑓 |𝑒| < 𝑘𝑘|𝑒| − 12𝑘2𝑖𝑓  |𝑒| ≥ 𝑘 

ei refers to the residuals 
The Huber loss function penalizes outliers and increases as a quadratic for small errors and 

linearly for large errors [6-7]. 

3. Results and discussion 

Individual variance analysis revealed significant differences in grain yield among hybrids in 
both populations and all three locations. Experimental precision, assessed using the coefficient of 
variation (CV) and accuracy (𝑟𝑔 𝑔²), demonstrated high experimental precision with CVs consistently 
within the low to medium range. Accuracy was also consistently high, ranging from 79.07% to 95.94% 
across all trials. 

Joint variance analysis indicated significant differences between genetic treatments, 
environments, and hybrid-by-environment interactions for grain yield. Grain yield means varied 
from 6739 to 12156 kg/ha for the AB population and from 6236 to 12930 kg/ha for the CD population. 
The Scott‒Knott test [30] categorized hybrids into two groups for both populations (Table 2). In the 
AB trials, RB 9077 and DKB 230 hybrids demonstrated the highest grain yield performance, while the 
lowest performance was observed in the AB and CD hybrids. For the CD population, RB 9077, DKB 
230, HybridCD 1, and Hybrid AB hybrids exhibited the highest grain yield performance. 
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Table 2. Comparing the grain yield means (kg/ha) of the 10 AB and CD maize hybrids in three 
different environments using the Scott‒Knott test. 

Hybrids AB AB Mean Hybrids CD CD Mean 

RB 9077 12156a RB 9077 12930a 
DKB 230 10623a DKB 230 11151a 

HybridAB 2 9707b HybridCD 2 7445b 
HybridAB 1 9559b HybridCD 1 10235a 
HybridAB 4 9468b HybridCD 4 8242b 
HybridAB 5 9466b HybridCD 5 8711b 
HybridAB 6 9363b HybridCD 6 6236b 
HybridAB 3 8868b HybridCD 3 8732b 
Hybrid AB 8306b Hybrid AB 10108a 
Hybrid CD 6739b Hybrid CD 7525b 

Means followed by the same letter in the columns belong to the same group by the [30] to the 
level of 5% probability. 

Considering the field phenotyping, the estimation of vegetation indices demonstrated good 
experimental precision, as indicated by the accuracy and coefficient of variation (data not shown). 
The precision of these parameters reflects the quality of the trials at the time when the images were 
captured. Higher precision tends to result in a stronger correlation between yield and the vegetation 
index, as observed in flights 1, 2, and 3. 

Conversely, in flight 4 in the Nazareno location, especially when the trials were assessed at the 
end of the crop cycles, lower precision was noted. This decrease in precision was attributed to the 
emergence of weeds after the corn plants began to dry out. Conse 

quently, this led to a negative correlation between vegetation indices and yield, with a negative 
regression slope. A similar observation was made by [37], confirming the impact of weed interference 
in such situations. 

For the joint analysis of all traits, it was found that Location and Flight had statistical 
significance. Consequently, separate regression analyses were conducted for these traits. Flight 1, 
during which the plants were in the V5 stage in Lavras and Ijaci and in the V8 stage in Nazareno, 
exhibited strong R-Square values in relation to grain yield for both populations and all vegetation 
indices and green leaf areas. In general, the highest R² values were observed for the GLI and ExG 
indices (Table 3). And in the Figure 2 shows the regression slope for each flight in each location. 

Table 3. RSquare between four vegetation indices and green leaf area with grain yield (YD) for each 
of the three locations and each flight. 

  Flight 1 Flight 2 

  NGRDI VARI GLI ExG Area NGRDI VARI GLI ExG Area 

Lavras 0.07* 0.05 0.09* 0.09* 0.02 0.09* 0.09* 0.07* 0.07* 0.09** 
Ijaci 0.03 0.01 0.19** 0.19** 0.01 0.14* 0.14** 0.08* 0.06* 0.15** 

Nazareno 0.04 0.03 0.02 0.04* 0.11** 0.07* 0.06* 0.07* 0.07* 0.09** 
  Flight 3 Flight 4 

  NGRDI VARI GLI ExG Area NGRDI VARI GLI ExG Area 

Lavras 0.08** 0.10** 0.03 0.03 0.05 0.003 0.004 0.001 0.001 0.0003 
Ijaci 0.08* 0.07* 0.12** 0.13** 0.06 0.02 0.01 0.06* 0.06* 0.00 

Nazareno 0.04 0.03 0.03 0.03 0.02 0.12** 0.12** 0.05 0.05 0.001 
RSquare coefficient, ** (p<0.01), * (p<0.05), without asterisk sign nonsignificant according to the Robust Fit test, 
Huber M-estimation method. 
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Figure 2. Dispersion graph from the vegetation index and area versus yield for the four Flights and 
the tree locations and the equation for each the regression graphs. 

Recent analyses of durum wheat in Spain have shown RGB picture vegetation indices to 
consistently outperform multispectral indices such as NDVI in both yield prediction and disease. 
RGB indices at the canopy level were strongly related to GY and GY losses (R² = 0.581; R² = 0.536, 
respectively) associated with disease presence, whereas NDVI was considerably less accurate (R² = 
0.261; R² = 0.277, respectively), especially in the late stage [9]. In the case of corn, the same pattern can 
be seen. Regarding crop monitoring, RGB vegetation indices derived from canopy pictures were the 
best parameters for predicting grain yield throughout the nitrogen fertilization treatments (R² = 0.721) 
and outperformed both aerial and ground NDVI (R² = 0.689; R² = 0.293; R² = 0.287, respectively) [9]. 

Some crops showed a relatively high correlation between the Vegetation Index (VI) and yield; it 
has been shown that the normalized NGRDI is positively and significantly correlated with the 
aboveground biomass of peas and oats, with R² ranging from 0.58 to 0.78 [8]. However, in the corn 
crop, the correlation between the VI and yield varied according to the stage and to the index used, 
where VARI and NGRDI were 0.52 and 0.47, respectively [4]. The same rate was observed in this 
study. In addition to the VI, the canopy has been reported as a good predictor for corn yield, and 
canopy cover at 47 and 79 days after sowing showed a correlation to grain yield of 0.76 and 0.77, 
respectively [4]. According to [34], the precise correlation between yield potential levels in maize with 
the NDVI index was in the V3 and V8 growth stages, and the highest correlation was in V8; the same 
was observed in this study. 

Corn yield is influenced by multiple factors related to the environment. In addition, maize yield 
per unit of area is related not only to yield per plant but also to multiple traits, including tolerance to 
biotic and abiotic stresses, adaptability to the climate and weather, tolerance to planting density, and 
lodging resistance; these traits create complexities and difficulties for direct correlations between 
yield and simple traits [38]. 

Although plant area and VI are associated with yield for maize varieties, yield per plant is largely 
determined by yield per ear, which is determined by grain number (GN) and grain weight (GW); GN 
can be decomposed into ear row number (ERN) and GN per row (GNPR). Decomposition of maize 
yield would facilitate in-depth genetic and molecular studies of maize yield [38]. 

For corn ear phenotyping, a total of 530 ears displayed substantial phenotypic variation for all 
descriptors assessed. This diversity was crucial for validating the proposed methodologies as it 
included various ear patterns. The ear length ranged from 11.8 to 22.6 centimeters, while the width 
ranged from 3.83 to 6.12 centimeters. The estimate of the regression coefficient (R²) for width was 0.92 
(Figure 3 A), and for length, it was 0.88 (Figure 3 B). These high R² values indicated a strong 
association between the values obtained through manual phenotyping and those extracted from 
imaging. 
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Figure 3. Dispersion graph from manual versus photographic measurements for the traits width (A), 
length (B), TNG (C), and corn ear yield with photographic TNG measurement (D) and multiple R-
squared (R²). 

Width measurements were conducted with a digital pachymeter, ensuring higher precision, 
while length measurements were taken using a ruler. The validity of these results is further supported 
by the Pearson’s correlation coefficient when calculated separately for different populations and 
locations (Table 4). 

The correlation for TNG ranged from 0.65 in population AB in Ijaci to 0.80 in population CD in 
Lavras, with an R² of 0.62, indicating a strong association with the measurements (Figure 3 C). These 
graphs confirm the precise estimation of the number of grains, as they demonstrate a strong 
correlation between TNG and ear yield (Figure 3 D). Generally, manual estimations exhibited lower 
accuracy for all the assessed traits compared to photographic measurements (Table 4). Phenotyping 
using images to estimate the number of grains offers significant advantages, including automation, 
cost-effectiveness, enhanced accuracy in estimations, and reduced time and labor requirements. In 
contrast, manual measurements are highly subjective and influenced by human factors [14-11-22-19-
1-35-36]. 

Table 4. Accuracy for manual and photographic width, length, TNG and correlation between manual 
and photographic measurements in the AB and CD populations in Ijaci, Lavras and Nazareno. 

 Manual Accuracy 
Photographic 

Accuracy 
Correlation 

Width Length TNG Width Length TNG Width Length TNG 

Ijaci AB 68.95 67.94 84.56 77.12 72.85 84.58 0.90** 0.95** 0.65** 
Ijaci CD 85.55 74.48 76.00 82.58 73.27 87.86 0.96** 0.98** 0.70** 

Lavras AB 65.99 72.54 65.26 81.96 75.20 83.31 0.95** 0.95** 0.79** 
Lavras CD 92.39 17.78 78.82 93.66 69.47 83.77 0.98** 0.83** 0.80** 

Nazareno AB 57.02 80.58 83.73 71.58 79.97 93.52 0.97** 0.97** 0.75** 
Nazareno CD 79.78 82.20 51.23 78.62 80.78 64.96 0.98** 0.97** 0.71** 

Pearson’s correlation coefficient ** (p<0.01), * (p<0.05), without asterisk sign nonsignificant correlation according 
to the T test. 

The methodology presented for estimating length and width demonstrated remarkable 
consistency. Consequently, its adoption in breeding programs has the potential to enhance the 
efficiency of ear phenotyping while reducing the time required and minimizing human errors in data 
collection. 
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These findings align with existing literature, where high concordance indices, approaching 
unity, were observed in the estimation of leaf area through digital images. Previous studies have 
similarly concluded that image analysis can effectively replace manual phenotyping by providing 
more precise measurements of the relevant descriptors [26]. 

4. Conclusions 

The best index related to yield varied due to flight and location. The best time for image 
collection was between V5 to VT stage. Ear phenotyping based on digital images represents a 
promising alternative to measure corn yield components. This technique provided greater efficiency 
and high correlation with manual evaluations. 
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