
Article

Not peer-reviewed version

Predicting Autonomous Driving

Behavior through Human Factor

Considerations in Safety-Critical Events

Jamal Raiyn 

*

 and Galia Weidl

Posted Date: 12 December 2023

doi: 10.20944/preprints202312.0771.v1

Keywords: car&ndash;following<em>; </em>non-monotonic logic<em>; </em>driving behavior<em>;

</em>naturalistic driving studies<em>; <br /></em>safety-critical events<em>; </em>cognitive vehicles

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/743360


 

Article 

Predicting Autonomous Driving Behavior through 
Human Factor Considerations in  
Safety-Critical Events 

Jamal Raiyn * and Galia Weidl 

Connected Urban Mobility, Technical University of Applied Sciences Aschaffenburg, Aschaffenburg 63743 

Germany; jamal.raiyn@th-ab.de; galia.weidl@th-ab.de 

* Correspondence: jamal.raiyn@gmail.com 

Abstract: This research explores the predictive capabilities of autonomous driving systems by 

integrating human factor considerations within the context of safety-critical events. Recognizing the 

significance of human behaviors in influencing driving dynamics, the study employs advanced 

modeling techniques to enhance the accuracy of predictions in scenarios that demand heightened 

safety measures. Traditional rule-based systems and monotonic logic often fall short in addressing 

the complexities of safety-critical events. To overcome these limitations, the research proposes the 

application of non-monotonic logic, allowing for flexible and adaptive reasoning that 

accommodates exceptions and context-specific information. The study emphasizes the importance 

of incorporating individual differences among drivers, such as risk-taking tendencies, reaction 

times, decision-making processes, and driving styles. By considering these human factors, the 

research aims to develop realistic and accurate autonomous driving models that capture the 

nuances of real-world driving scenarios, especially in safety-critical situations. The predictive model 

takes into account both internal and external factors, enabling the autonomous system to anticipate 

and respond effectively to unforeseen events. The primary goal is to provide autonomous vehicles 

with the capability to make plausible inferences, handle conflicting data, and adapt their behavior 

in real-time during safety-critical events. The proposed model integrates personalized cognitive 

agents for each driver, incorporating their unique preferences, characteristics, and needs. This 

personalized approach aims to optimize the safety and efficiency of autonomous driving, 

contributing to the ongoing evolution of intelligent transportation systems. In conclusion, this 

research contributes to advancing the field of autonomous driving by introducing a predictive 

model that leverages human factor considerations to enhance safety in safety-critical events. The 

incorporation of non-monotonic logic and individualized cognitive agents signifies a 

comprehensive approach to address the challenges associated with predicting autonomous driving 

behavior, paving the way for safer and more reliable autonomous vehicles in dynamic and 

unpredictable environments. 

Keywords: car–following; non-monotonic logic; driving behavior; naturalistic driving studies; 

safety-critical events; cognitive vehicles 

 

1. Introduction 

Despite the increasing prevalence of vehicle automation, the persistently high number of car 

crashes remains a concern. Safety-critical events in human-driven scenarios have become more 

intricate and partially uncontrollable due to unforeseen circumstances. Investigating human driving 

behavior is imperative to establish traffic baselines for mixed traffic, encompassing traditional, 

automated, and autonomous vehicles (AVs). Various factors, such as weather conditions affecting 

visibility in longitudinal car-following (CF) behavior [1,2], influence human driving behavior [3]. 

Car-following behavior, illustrating how a following vehicle responds to the lead vehicle in the 

same lane, is a crucial aspect. Existing car-following models often make assumptions about 
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homogeneous drivers, neglecting significant heterogeneity in driving experience, gender, character, 

emotions, and sociological, psychological, and physiological traits. Failing to account for this 

heterogeneity hampers a comprehensive understanding of car-following behavior, limiting model 

accuracy and applicability. It is essential to consider driver heterogeneity in developing more realistic 

car-following models for mixed traffic. Incorporating individual differences, such as risk-taking 

tendencies, reaction times, decision-making processes, and driving styles, enhances the modeling of 

real-world driving complexities. Categorizing drivers into a few types oversimplifies the richness 

and diversity of driver characteristics, necessitating a more comprehensive approach to capture 

nuances within different driver profiles. Addressing these limitations requires models that effectively 

incorporate external heterogeneity among different drivers and internal heterogeneity within a single 

driver. The proposed model relies on personalized cognitive agents, assigning each driver a 

personalized cognitive agent capable of representing the driver's profile through accessing local 

information and learning characteristics. These personalized cognitive agents process individual user 

preferences, characteristics, and needs, aiming to provide tailored and customized experiences in the 

operation of a cognitive vehicle. This approach considers unique requirements and individual 

preferences of AV occupants while better understanding the driving behavior of surrounding 

vehicles in mixed traffic [3]. 

The subsequent sections of this paper are organized as follows: Section 2 provides an overview 

of related research; Section 3 details the methodology; and Sections 4 and 5 present a performance 

evaluation and the study's conclusions. 

2. Related Research 

The literature encompasses various driving models [3,4], with many attempting to simulate a 

real driver's road tracking performance by making assumptions about inputs and outputs. These 

models aim to capture the decision-making processes and behaviors of drivers, including responses 

to changes in the road and traffic induced by external factors. A cognitive vehicle, equipped with 

onboard sensors to observe the driving behavior of surrounding vehicles [5], plays a role in 

recognizing driving maneuvers. It is acknowledged that driving behavior models involve a level of 

uncertainty due to their reliance on assumptions and approximations of real-world driver behavior. 

Additionally, they are influenced by the inherent uncertainties associated with onboard sensor 

measurements and subsequent feature extraction that characterize the surrounding objects [6]. This 

uncertainty can significantly impact the performance of control systems designed based on these 

models. A viable approach to tackle this issue is the development of models capable of predicting 

and managing uncertainties inherent in driving scenarios. 

This includes modeling the driving behaviors of human drivers and automated or autonomous 

vehicles, and external and other factors that can affect driving performance. Driving behaviors are 

the main cause of road accidents and one of the main sources of insurance claims [7]. Wang and Lu 

[8] found that the differences in driving behavior between males and females have remained 

unchanged or have increased in some aspects. The differences involved traffic accidents and offenses, 

with driving times, attitudes, education, and other background factors controlled for. Furthermore, 

all drivers are involved in traffic accidents and fatalities; however, younger drivers have the highest 

rate of accidents. Hiang and Ming [9] investigated the relationship of age and gender to speeding. 

Younger drivers exhibit the highest accident rates, as highlighted in [10]; they are notably over-

represented in traffic accidents and fatalities and are more prone than older drivers to be at fault in 

the accidents that involve them. Furthermore, it is well-documented that men and women tend to 

display distinct driving behaviors. The literature consistently evidences higher crash rates among 

male drivers than among their female counterparts, [11,12]. These disparities in driving patterns and 

accident rates among age and gender groups underscore the importance of tailoring safety measures 

and interventions to enhance road safety for all. The objective of this study was to explore the 

relationships between age and gender and speeding behavior. The findings revealed that, on average, 

young and male drivers tended to maintain higher speeds than their older and female counterparts 

before entering a roundabout and upon exiting it. This insight sheds light on the distinct driving 
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patterns associated with different age and gender groups, underscoring the need for targeted 

interventions to address speeding behaviors and enhance road safety. In [13], the primary objective 

was to examine the factors influencing aggressive driving behavior, with a particular focus on age, 

driving experience, and additional covariates. To achieve this, regression analysis was employed to 

assess how age and driving experience, as well as their potential interactions with other covariates, 

contributed to the manifestation of aggressive driving behavior. This comprehensive analysis aimed 

to provide valuable insights into the complex interplay of variables affecting driver behavior and 

aggression on the road. Driving behaviors, as discussed in [14], constitute a primary contributor to 

road accidents and represent a significant source of insurance claims. The results show that young 

and male drivers, on average, travel at a higher velocity than older and female drivers before entering 

a roundabout and accelerate to a higher velocity upon exiting. Lee et al. [15] investigated the 

relationship between crash severity and the age and gender of the at-fault driver, the socio-economic 

characteristics of the surrounding environment, and road conditions. They adopted the logit 

regression model, using age as a continuous variable to investigate how age has an impact on accident 

severity and to uncover situations where age has little effect. Shahverdy et al. [16] introduced a deep 

learning method for analyzing driver behavior focusing on driving signals, including acceleration 

and speed, to recognize five types of driving styles: normal, aggressive, distracted, drowsy, and 

drunk. Liu et al. [17] examined factors that influence aggressive driving behavior, such as human 

factors, personality traits, and demographic characteristics. Regression analysis was used to explore 

the impacts of age and driving experience and their interactions with other variables in relation to 

aggressive driving behaviors. Aggressive driving behavior is influenced by a combination of human 

factors, including age, driving experience, personality traits, and demographic characteristics. The 

analysis revealed a negative correlation between age and aggressive driving behaviors; namely, as 

individuals grow older, they tend, on average, to engage in fewer aggressive driving behaviors. The 

study also found a positive correlation between the personality trait of neuroticism and aggressive 

driving behaviors; that is, individuals with higher levels of neuroticism, characterized by emotional 

instability and heightened negative emotions, are more likely to exhibit aggressive driving 

tendencies. Significant associations were identified among age, driving experience, and depression. 

This suggests that older, more experienced drivers may be less prone to depression, potentially 

reducing their likelihood of engaging in aggressive driving behaviors. 

In the domain of car-following models, artificial intelligence tools serve as effective means to 

represent various aspects and behaviors of drivers. A novel non-monotonic logic-based approach for 

car-following in Autonomous Vehicles (AVs) has been proposed in previous studies [18,19]. This 

approach involves the development of a reasoning system incorporating non-monotonic inference 

mechanisms designed to handle uncertainties and exceptions within car-following scenarios. 

The experimental outcomes of this approach demonstrate enhanced adaptability and decision-

making performance compared to traditional rule-based systems. The researchers introduced an 

adaptive car-following system utilizing non-monotonic logic to improve reasoning and decision-

making capabilities. This system incorporates context-dependent rules and non-monotonic inference 

mechanisms, effectively managing exceptions and conflicting information during car-following. 

Simulation results indicate improved safety and efficiency across various traffic scenarios. 

This study explores the integration of non-monotonic logic into car-following algorithms, as 

illustrated in Figure 1. It proposes an architecture that combines rule-based reasoning with non-

monotonic inference mechanisms to address uncertainties and modify the behavior of AVs during 

car-following. The experimental evaluations reveal improved performance and adaptability, 

particularly under dynamic traffic conditions. 

The paper offers a comprehensive overview of the challenges and opportunities associated with 

applying non-monotonic reasoning to car-following by AVs. It critically examines the limitations of 

traditional rule-based systems and underscores the benefits of non-monotonic logic in managing 

uncertainties, conflicting data, and context-dependent reasoning. Additionally, the paper identifies 

potential avenues for future research and explores other applications of non-monotonic reasoning 

within the realm of autonomous driving. 
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Figure 1. Personalized cognitive agent reasoning. 

3. Methodology  

3.1. The CNN Reasoning Approach 

Reasoning and decision-making tasks benefit from the application of Convolutional Neural 

Network (CNN) reasoning, as demonstrated in recent studies [19]. The conventional CNN 

architecture typically comprises multiple convolutional layers succeeded by fully connected layers. 

These layers operate collaboratively to learn hierarchical representations of input data, allowing the 

network to discern intricate patterns and features. To enhance reasoning capabilities, CNNs can be 

extended or combined with additional components. 

This extension often involves the incorporation of supplementary layers, such as Recurrent 

Neural Networks (RNNs) or attention mechanisms. These additions help the network capture 

temporal or spatial dependencies, facilitating sequential reasoning [20]. Additionally, CNNs are 

adept at visual reasoning tasks, where the model is trained to reason about relationships between 

objects. Through the learning process, the model extracts meaningful features from input data and 

utilizes them to infer relationships and draw logical deductions. In the case of AVs, these features are 

likely derived from various sources of information, such as sensor data, video feeds, and other data 

related to a driver’s behavior and the surrounding environment. The goal of feature extraction is to 

transform raw data into a format that the model can work with effectively. These extracted features 

can include elements like a vehicle’s speed, position, and orientation, road conditions, weather 

conditions, and more. Here, a hybrid approach is proposed, which combines multiple techniques to 

create more accurate and robust driver models, such as the one illustrated in Figure 1. A hybrid model 

uses deep learning to find causal relationships between a statistical model and human factors, such 

as age, gender, experience, and driving behavior, collected through feature extraction, to predict a 

driver’s speed and acceleration, but also incorporates rule-based logic to handle unexpected 

situations, as illustrated in Figure 2. One of the challenges in modeling driver behavior is dealing 

with unexpected or uncommon situations on the road. To do this, rule-based logic is incorporated 

into the model. These rules act as a safety net and provide the model with guidelines on how to react 

in situations that may not be well represented in the training data. This hybrid approach combines 

the strengths of different techniques to create a comprehensive driver model. It uses deep learning 

for understanding causal relationships, statistical modeling for making predictions, and rule-based 

logic for handling unexpected scenarios, ultimately improving the accuracy and robustness of the 

model’s predictions and inferences related to driver behavior. 
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Figure 2. System model. 

3.2. Data Collection 

The dataset used in this research is based on naturalistic driving data taken from the L3Pilot 

database [21]. A European research project, L3Pilot, which tests the viability of automated driving as 

a safe and efficient means of transportation on public roads, has developed a common data format 

(CDF) for both data collection and processing, and has implemented a consolidated database for 

processed data collection. The data consist of performance indicators for four driving scenarios, free 

driving, following a lead vehicle, driving in traffic jams, and changing lanes. The used data for 

training the deep learning algorithm involves cleaning and formatting the data, selecting relevant 

features, and splitting the dataset into training, validation, and testing sets. Table 1 summarizes the 

main notations that we use here. 

Table 1. Summary of the main notation. 

Notation Description Symbol 

Min_ax 

Max_ax 

SD_ax 

SD_ay 

Mean_v 

SD_v 

Max_abs_ay 

Max_v 

Mean_pos_in_line 

Mean_THW 

Minimum longitudinal acceleration 

Maximum longitudinal acceleration 

StDEV of longitudinal acceleration  

StDEV of lateral acceleration 

Mean speed 

Standard deviation of speed 

Maximum absolute lateral acceleration 

Max speed 

Mean position in lane 

Mean time headway 

min(ax) 

max(ax) 

sd(ax) 

sd(ay) 

m(v) 

sd(v) 

max(|ay|) 

max(v) 

sd(Pos in lane) 

m(THW) 

3.3. Algorithm Description 

Our approach is a hybrid algorithm, outlined in Figure 3, consisting of two distinct phases. Deep 

learning, a subset of machine learning, involves training artificial neural networks to discern patterns 

in data. By employing deep learning techniques to analyze extensive datasets of human and vehicle 

behavior, one can uncover intricate patterns and causal relationships that may be challenging to 

detect using conventional statistical methods. 
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Statistical tools are then applied to assess the performance of the prediction scheme. The model 

predicting a driver's behavior during car-following operates in terms of certainty and uncertainty. 

Certainty in car-following increases when the driver is familiar with the situation, and the leading 

vehicle maintains a consistent speed, appropriate acceleration and deceleration, and adherence to 

traffic rules. Conversely, uncertainty arises when the leading vehicle executes erratic or unexpected 

actions, such as sudden braking, lane changes without signaling, and unforeseen accelerations. Lack 

of information or incomplete information about road conditions, traffic situations, or the intentions 

of the leading vehicle can also contribute to uncertainty. 

Drivers commonly rely on signals and visual cues from the leading vehicle to comprehend its 

intentions. When these cues are unclear or inconsistent, predicting the leading vehicle's next move 

becomes challenging for the following driver. Addressing these sources of uncertainty is crucial for 

enhancing road safety and optimizing traffic flow. 

 

Figure 3. Hybrid model. 

3.4. Feature extraction 

One strategy involves leveraging deep learning models to extract features from data. 

Subsequently, these features serve as input for various machine learning schemes, including nearest 

neighbor, random forest, naïve Bayesian network (NBN), decision table schemes, and others. The 

extraction of features based on naturalistic driving data holds pivotal significance for analyzing 

driving behavior, especially in the context of safety-critical events. While human driving behavior 

can be identified, its control is challenging. Human drivers are influenced not only by external factors, 

which can be estimated and predicted, but also by internal factors affecting cognition that are 
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challenging to distinguish or control. In contrast, for Autonomous Vehicles (AVs), both internal and 

external factors are predictable, as depicted in Figure 4. 

 

Figure 4. Identification of driving behavior. 

The trained CNN can construct a driver profile based on time headway. CNN classifies driver 

behaviors into three groups: normal, inattentive, and aggressive. To evaluate and validate the quality 

of the data-clustering results, we used the silhouette, a statistical technique [22] for graphically 

representing how well each object has been classified. For each driver, we calculated a silhouette 

score, using the following formula: 

),max( ii

ii
i

ba

ab
S

−
=  (1)

where ai, is the average distance from the 𝑖th point to the other points in the same cluster as 𝑖, and bi 

is the minimum average distance from the 𝑖th point to points in a different cluster, minimized over 

all clusters. The silhouette value is an internal criterion used for interpretating and validating 

consistency within a cluster of data; it measures how similar each point is to points in its cluster when 

compared to points in other clusters. Furthermore, we assigned a score rating the degree of a driver’s 

aggressiveness.  

3.5. Reasoning-Based Non-Monotonic Logic 

To address the constraints associated with monotonic logic, we advocate for the adoption of 

non-monotonic logic as a promising strategy to augment the reasoning capabilities of Autonomous 

Vehicles (AVs) during car-following scenarios. Non-monotonic logic introduces flexibility and 

adaptability into reasoning processes, accommodating exceptions and context-specific information. 

By integrating non-monotonic logic into AVs, they can engage in plausible inferences, manage 

conflicting data, and dynamically adapt their behavior to ensure safe and efficient car-following. As 

a result, the level of confidence in driver profiles is represented by the following statement: 
normalABelief =)(  
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einattentivBBelief =)(  

aggressiveCBelief =)(  

The degree of belief in the likelihood of an accident depends on the driver’s profiles (A, B, and 

C), and is expressed as follows. 

lowAaccident =)|Pr(  

mediumBaccident =)|Pr(  

highCaccident =)|Pr(  

The degree of belief in the likelihood of an accident depends on a joint probability derived from 

the driver’s profile (A, B, and C) and driving-related experience (E) and is computed as follows (the 

probabilities of the state depend on the weights obtained from the CNN training): 
lowEAaccident =∧ )|Pr(  

lowEBaccident =∧ )|Pr(  

mediumECaccident =∧ )|Pr(  

lowEAaccident =∧ )|Pr(  

highEBaccident =∧ )|Pr(  

highECaccident =∧ )|Pr(  

The personalized cognitive agent alerts the autonomous control system based on the causal 

relationship between human factors and driver behavior related to time headway. This alert (which 

is denoted as alarm) can be represented as a combinatorial combination of the Boolean variables 

involved, as showed in Table 2 

Table 2. Alert truth table for inattentive (B), experienced (E), and aggressive (C) drivers. 

B E Alarm C E Alarm 

F F F F F F 

F T F F T F 

T F T T F T 

T T F T T F 

a) b) 

The personalized cognitive agent formulates rules based on identified beliefs. While traditional 

rule-based systems and monotonic logic have been extensively utilized for decision-making in 

Autonomous Vehicles (AVs), these approaches often encounter difficulties in handling the non-

deterministic and dynamic nature of car-following scenarios. Monotonic logic typically assumes that 

additional information does not alter the validity of previously drawn conclusions, posing challenges 

in dealing with exceptions, conflicting data, and context-dependent reasoning prevalent in car-

following situations. 

To overcome these limitations, the adoption of non-monotonic logic is recommended as a 

promising approach to enhance the reasoning capabilities of AVs during car-following. Non-

monotonic logic offers flexible and adaptive reasoning, accommodating exceptions and context-

specific information. Integrating non-monotonic logic into AVs empowers them to make plausible 

inferences, handle conflicting, uncertain, and incomplete data, and dynamically adapt their behavior 

for safe and efficient car-following. 

The primary objective of this research is to explore the potential benefits and challenges 

associated with integrating non-monotonic logic into AVs for car-following. This exploration 

considers human factors, driving behaviors, and external factors. The personalized cognitive agent 

establishes rules by defining relationships between human factors and driving behaviors and 

formulates logical statements based on facts to represent knowledge and infer new information, as 

illustrated in Figure 5. 
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The agent uses logical statements and facts to represent knowledge, which can come from 

various sources, including data, research, expert knowledge, and previous interactions with the 

driver. Logical statements are used to express the relationships among different variables or 

conditions, enabling the agent to make logical deductions based on the information provided. Facts 

are typically specific data points or pieces of information about the driver, the driver’s current state, 

the environment, and the vehicle. The agent uses the rules it formulated, the logical statements 

available, and facts to infer new information. In this context, inference refers to the process of drawing 

logical conclusions or making predictions based on the rules and the knowledge provided. The 

agent’s role is to reason and deduce how a driver’s human factors may lead to specific driving 

behaviors; for instance, it might infer that a tired driver is more likely to exhibit slower reaction times. 

 

Figure 5. Rule design. 

4. Discussion and Analysis 

This section discusses the modeling of causal dependencies between human factors and driving 

behavior during car-following with the aim of keeping a time headway (THW) (the time distance 

between a leading and a following vehicle). The data provide evidence on the heterogeneity of human 

driving profiles as the mean of the THW ranges from near 0 s to 5 s, and the minimum of THW ranges 

from near 0 s to more than 3 s. Based on these preliminary findings, we propose the definitions of 

three profiles:  

(i) ’aggressive’: a shorter car time headway, (0–2 s); 

(ii) ’inattentive’: a longer reaction time (2–3 s); 

(iii) ’normal’ for intermediate values of reaction time and car time headway (longer than 3 s), i.e., 

maintaining adaptive cruise control, which is expressed in terms of adaptive relative distance 

[m] and constant relative speed [m/s]. 

The definitions of the two non-normal driver profiles (aggressive inattentive) are formalized 

below. 

o Aggressive driver profile: A driver i is considered to be aggressive with respect to a threshold t*, 

for the time headway THW if  

 <=

T

t

ttiTHW
T

iTHW *),(1:)( , (2)
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where the time, T, (in seconds) = relative distance (m)/relative speed (m/s). 

o Inattentive driver profile (a driver with a long reaction time): A driver i is considered to be 

inattentive (with a long reaction time) with respect to a threshold t~  on the time headway THW 

if  
ttiTHWiTHW

t

~),(min:)(min >=  (3)

o Normal driver profile: Drivers whose profiles are neither aggressive or inattentive are called 

normal. They have intermediate values for reaction time headway (e.g., <1 s). 

4.1. The Combination of Human Factors and Driving Behaviors 

Driving behavior is influenced by various human factors, and age, gender, and experience. It's 

essential to recognize that individual differences play a significant role in driving behavior, and not 

all individuals within a particular age group or gender will exhibit the same patterns. Young drivers 

(Teenagers and Early 20s) often exhibit riskier behavior due to their lack of experience and judgment. 

They may be more prone to speeding, distracted driving, and taking risks on the road. Middle-Aged 

Drivers (30s to 50s) has more experience and better judgment, leading to safer driving practices 

compared to younger drivers. However, physical changes associated with aging may start to emerge, 

affecting driving abilities. Some studies [3] have suggested that males tend to engage in riskier 

driving behaviors, such as speeding and aggressive driving. On the other hand, females may exhibit 

more cautious driving patterns and are often associated with fewer traffic violations. Inexperienced 

drivers are more likely to make errors and have difficulty handling challenging situations on the 

road. Lack of familiarity with road rules and traffic patterns can contribute to higher accident rates 

among new drivers. To provide a mathematical description of the correlations between driving 

behavior and human factors (age, gender, experience), we can use statistical methods, such as 

regression analysis. Regression analysis allows us to model the relationship between a dependent 

variable (e.g., driving behavior) and one or more independent variables (e.g., age, gender, experience) 

in a quantitative manner. We can then use multiple linear regression to create a model that predicts 

driving behavior based on age, gender, and experience. Mathematically, the multiple linear 

regression model can be written as: 

εββββ ++++= ExperienceGenderAgeBehaviorDriving ***_ 3210  (4)

Where, β0,β1,β2, and β3 are the coefficients of the model. ϵ is the error term. Based on a dataset with 

observations for different drivers, and the dependent variable representing safe driving behavior. 

GenderAgeaccidentBehaviorDriving *087.0*04.008.1)(_ ++=  (5)

One of the significant factors that can lead to car-following accidents is not maintaining an 

appropriate time headway (THW). Time headway refers to the time interval between the front of one 

vehicle and the front of the vehicle immediately in front of it. If a driver fails to maintain a sufficient 

time headway, it reduces their ability to react to sudden changes in the speed or behavior of the lead 

vehicle. This lack of reaction time can result in rear-end collisions or other accidents, especially when 

the lead vehicle suddenly decelerates or stops. Time headway can be influenced by various factors, 

including speed, road conditions, weather, driver attentiveness, and reaction time. Tailgating, which 

is driving too closely behind the vehicle in front, is a common behavior associated with inadequate 

time headway and is a major risk factor for accidents. To mitigate the risk of car-following accidents 

related to time headway, drivers should maintain a safe following distance that allows enough time 

to react to any changes in traffic conditions.  A mathematical formula for calculating the value of 

Mean_THW is based on the given variables. The formula for Mean_THW is a linear combination of 

various variables, each multiplied by a corresponding coefficient: Max_ax, this represents a 

measurement related to acceleration in the x-axis direction of a vehicle. Mean_LongDist_LeadVeh 

(LD_LV), these represents a measurement related to the mean of the longitudinal distance between 

the vehicle and the leading vehicle (vehicle directly in front). Mean_v_LeadVeh (v_LV), this 

represents a measurement related to the mean of the velocity of the leading vehicle. 
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LVvLVLDaxMaxTHWMean _*0129.0_*0988.0_*0611.03952.2_ +++=  (6)

Driving behaviors, such as time headway, speed, and acceleration, depend on human factors, 

such as age, gender, and experience on external factors, such as weather conditions. This paper 

focuses on human factors. The probability of an accident is expressed as follows: 

ε + Experience  w+ Age   w+Gender     w=Headway  Time 210 ×××  (7) 

The weight of each human factor is calculated in terms of naturalistic driving. 
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The personalized cognitive agent can estimate the likelihood of an accident based on 

minimization of the weights. The type of minimization objective function is referred to as a loss 

function, or cost function. Neural network learning algorithms are formulated with the use of a loss 

function. The goal is always to minimize errors in prediction L by minimizing the number of 

misclassifications with respect to all the training instances in a data set D containing feature–label 

pairs. 
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The cost function is a special type of function that helps to minimize error and approach the 

expected output as closely as possible. It uses two parameters to calculate error: one is the estimated 

output of the CNN model (also called the prediction); the other is the actual output. The mean 

squared error (MSE) is a loss function commonly used in various machine learning tasks, including 

regression problems. Other loss functions, such as the root mean square error (RMSE) and the mean 

absolute error (MAE), are also commonly used depending on the specific problem and requirements. 

Table 3 compares various machine learning schemes based on statistical measurements of error. The 

nearest neighbor and random forest algorithms provide better classification performance than the 

other, namely, the zeroR, NBN, and DT. Furthermore, these two schemes outperform the others for 

accuracy, as can be seen in their higher rating in the comparison graphs in Figure 6. 

 

Figure 6. Comparisons of ML schemes. 

Table 3. Statistical measurement of error. 

 NN NBN zeroR J48 RF DT 

MAE 0.1687 0.186 0.200 0.182 0.169 0.190 

RMSE 0.290 0.306 0.316 0.301 0.292 0.307 

RAE 84.033 93.07 93.07 90.676 84.288 95.049 

RRSE 91.663 96.83 96.83 95.241 92.274 96.950 
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MAE: Mean absolute error; RMSE: Root mean square error; RAE: Relative absolute error; RRSE: Root relative 

square error. RF: Random forest; DT: Decision Table; NN: Neural Network. 

The nearest neighbor scheme is a classification algorithm that assigns a data point to the class 

most common among its k-nearest neighbors in the training dataset. The random forest scheme is an 

ensemble learning method that combines multiple decision trees to make predictions. It is known for 

its ability to handle high-dimensional data and capture complex relationships in the data. 

5. Simulation Results 

The causal relationship between human factors and driver behavior related to time headway is 

complex and influenced by various factors. Human factors can play a significant role in determining 

how drivers perceive, interpret, and respond to the need to maintain proper time headway. Figure 7 

shows graphic samples of mean time headway values for aggressive, inattentive, and normal drivers. 

Aggressive drivers are inclined to follow vehicles closely and maintain shorter time headways. 

Experienced drivers often have a better understanding of lane discipline and the importance of 

staying within their designated lane. They are more likely to maintain a consistent and centered lane 

position. Inexperienced drivers may have a limited understanding of lane discipline which increases 

the risk of collisions. They may also find the acceleration of a vehicle thrilling or exhilarating, 

especially if it is their first time driving or if they are not yet accustomed to the sensation of speed. In 

addition, they may feel nervous or anxious during acceleration, particularly in situations where they 

are still learning to control the vehicle’s speed and acceleration smoothly. Young drivers between 20 

and 24 years of age are statistically more likely to be involved in car accidents than older drivers, as 

illustrated in Figure 8. Several factors contribute to this increased risk, such as lack of experience, 

distracted driving and night-time driving. Figure 9 shows evidence that more females than males are 

involved in car accidents. Males are more likely to engage in risky driving behaviors, such as 

speeding, aggressive driving, not wearing a seat belt, and driving under the influence of alcohol or 

drugs, all of which increase the likelihood of an accident. Car accidents can vary in terms of their 

types and causes. Figure 10 shows several types of accidents plotted against age groups. One common 

type is “rear-end collisions”, where one vehicle collides with the rear of a preceding vehicle. These 

are typically associated with cars traveling in the same directions; they occur most often in traffic 

jams and during lane-changing maneuvers involving adjacent cars. 

 

Figure 7. Driver profiles. 
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Figure 8. Age versus number of accidents. 

 

Figure 9. Gender versus number of accidents. 

 

Figure 10. Age versus type of accident. 

6. Conclusions 

In conclusion, the incorporation of non-monotonic logic in Autonomous Vehicles (AVs) for car-

following represents a promising avenue for enhancing safety, adaptability, and decision-making in 

dynamic traffic environments. Traditional rule-based systems and monotonic logic often struggle 

with exceptions, conflicting data, and context-dependent reasoning prevalent in car-following 

scenarios. Non-monotonic logic empowers AVs to overcome these limitations, fostering more robust 

and intelligent behavior. They can navigate uncertainties, adapt to changing conditions, and make 

plausible inferences based on incomplete or uncertain information. 
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The integration of non-monotonic logic also facilitates the modeling of non-monotonic 

dependencies in driver behavior, enabling AVs to respond effectively to unexpected actions, variable 

speeds, and context-specific behaviors exhibited by human drivers. This contributes to the 

improvement of safety, efficiency, and overall performance in autonomous driving systems. 

Additionally, safety can be further enhanced through the utilization of AI characteristics, including 

sensor fusion, perception, decision-making, predictive analytics, and continuous learning. AI enables 

vehicles to perceive their environment, make informed decisions, and monitor performance in real-

time. 

The combined use of non-monotonic logic and AI characteristics provides a comprehensive 

approach to developing safe cognitive AVs. However, ongoing research is essential to address 

challenges associated with integrating these functionalities in AVs. These challenges encompass 

interpreting and handling complex scenarios, validating and verifying non-monotonic reasoning, 

and developing robust and reliable AI algorithms. Future work aims to integrate features describing 

human factors and vehicle behavior to formulate cognitive hypotheses within a hierarchical cognitive 

Bayesian network, building upon the approach in [7] for recognizing vehicle behaviors such as car-

following, lane-following, and lane-changing. Addressing these challenges will contribute to further 

improvements in the safety, reliability, and acceptance of AVs on our roads. 

Funding: This study has been supported by Project 101076165 — i4Driving within Horizon Europe under the 

call HORIZON-CL5-2022-D6-18 01-03, which is programmed by the European Partnership on ‘Connected, 

Cooperative and Automated Mobility’ (CCAM). 

Data Availability Statement: Data will be made available on request. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Yarlagadda, J.; Pawar, D.S. Heterogeneity in the Driver Behavior: An Exploratory Study Using Real-Time 

Driving Data. Hindawi J. Adv. Transp. 2022, 2022, 4509071. https://doi.org/10.1155/2022/450907. 

2. Zhai, C.; Wu, W. A new car-following model considering driver’s characteristics and traffic jerk. Nonlinear 

Dyn. 2018, 93, 2185–2199. https://doi.org/10.1007/s11071-018-4318-7. 

3. Raiyn, J.,;Weidl, G.  Improving Autonomous Vehicle Reasoning with Non-Monotonic Logic: Advancing 

Safety and Performance in Complex Environments, 2023 IEEE International Smart Cities Conference, 

University POLITEHNICA of Bucharest, Romania on 24 – 27 September, 2023. 

4. Bouhsissin, S.; Sael, N.; Benabbou, F. Driver Behavior Classification: A Systematic Literature Review. IEEE 

Access 2013, 11, 14128–14153. 

5. Weidl, G.; Madsen, A.L.; Wang, S.R.; Kasper, D.; Karlsen, M. Early and Accurate Recognition of Highway 

Traffic Maneuvers Considering Real-World Application: A Novel Framework Using Bayesian Networks. 

IEEE Intell. Transp. Syst. Mag. 2018, 10, 146–158. 

6. Abdar, M.; Pourpanah, F.; Hussain, S.; Rezazadegan, D.; Liu, L.; Ghavamzadeh, M.; Fieguth, P.; Cao, X.; 

Khosravi, A.; Acharya, R.; et al. A Review of Uncertainty Quantification in Deep Learning: Techniques. Inf. 

Fusion 2021, 76, 243–297. https://doi.org/10.1016/j.inffus.2021.05.008. 

7. Bhargavi, R. Road Rage and Aggressive Driving Behavior Detection in Usage-Based Insurance Using 

Machine Learning. Int. J. Softw. Innov. 2019, 11, 1–29. https://doi.org/10.4018/IJSI.319314. 

8. Wang, J.; Li, K.; Lu, X.-Y. Effect of Human Factors on Driver Behavior. In Advances in Intelligent Vehicles; 

Academic Press: Cambridge, MA, USA, 2013; pp. 111–155. 

9. Hiang, T.S.; Ming, G.L. Speeding driving behavior: Age and gender experimental analysis. MATEC Web 

Conf. 2016, 74, 30. 

10. Rousseeuw, P.J. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. 

Comput. Appl. Math. 1987, 20, 53–65. https://doi.org/10.1016/0377-0427(87)90125-7. 

11. Nguyena, T.T., Krishnakumaria, P., Calverta, S-C., Vub, H-L. Lintam H.(2019). Feature extraction and 

clustering analysis of highway congestion, Transportation Research Part C: Emerging Technologies, vol 100, 

March 2019, Pages 238-258. 

12. Lee, D.; Guldmann, J.-M.; von Rabenau, B. (2023). Impact of Driver’s Age and Gender, Built Environment, 

and Road Conditions on Crash Severity: A Logit Modeling Approach. Int. J. Environ. Res. Public Health, 20, 

2338. https://doi.org/10.3390/ijerph20032338. 

13. Wang, J.; Zhang, L.; Lu, X.; Li, K. Driver Characteristics Based on Driver Behavior. In Ehsani; 2013. 

14. Oppenheim, M.; Parmet, I.; Oron-Gilad, Z.T. Can Driver Behavior Be Traced to Gender Role, Sex and Age? 

Adv. Transp. 2022, 60, 450–459.https://doi.org/10.54941/ahfe1002477. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 December 2023                   doi:10.20944/preprints202312.0771.v1

https://doi.org/10.20944/preprints202312.0771.v1


 15 

 

15. Lee, D.; Guldmann, J.-M.; von Rabenau, B. Impact of Driver’s Age and Gender, Built Environment, and 

Road Conditions on Crash Severity: A Logit Modeling Approach. Int. J. Environ. Res. Public Health 2023, 20, 

2338. https:// doi.org/10.3390/ijerph20032338. 

16. Shahverdy, M.; Fathy, M.; Berangi, R.; Sabokrou, R. Driver behavior detection and classification using deep 

convolutional neural networks. Expert Syst. Appl. 2020, 149, 113240. 

17. Liu, X.-K.; Chen, S.-L.; Huang, D.-L.; Jiang, Z.-S.; Jiang, Y.-T.; Liang, L.-J.; Qin, L.-L. The Influence of 

Personality and Demographic Characteristics on Aggressive Driving Behaviors in Eastern Chinese Drivers. 

Psychol. Res. Behav. Manag. 2022, 15, 193–212. 

18. Ley, H.; Sridharan, M. Integrating Non-Monotonic Logical Reasoning and Inductive Learning With Deep 

Learning for Explainable Visual Question Answering. Front. Robot. AI 2019, 6, 125. 

https://doi.org/10.3389/frobt.2019.00125. 

19. Szalas, A. Decision-making support using non-monotonic probabilistic reasoning. In Intelligent Decision, 

Technologies 2019: Proceedings of the 11th KES International Conference on Intelligent Decision Technologies (KES-

IDT 2019), Malta, 17–19 June 2019; Volume 142 of Smart Innovation, Systems and Technologies; Springer: 

Singapore; Volume 1, pp. 39–51. 

20. Raiyn, J.; Weidl, G. Naturalistic Driving Studies Data Analysis Based on a Convolutional Neural Network. 

In Proceedings of 9th international Conference on Vehicle Technology and Intelligent Transportation 

Systems, 2023; pp. 248–256, ISBN 978-989-758-652-1, ISSN 2184-495X. 

21. L3pilot Automation Driving. Available online: https://l3pilot.eu/ (accessed on 14 November 2023). 

22. Raiyn, J. (2021). Classification of Road Traffic Anomaly Based on Travel Data Analysis, International Review of 

Civil Engineering (IRECE), Vol. 12. No.6. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 

products referred to in the content. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 December 2023                   doi:10.20944/preprints202312.0771.v1

https://doi.org/10.20944/preprints202312.0771.v1

