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Abstract: The oxidative coupling of methane (OCM) to produce ethane and ethylene (C2 compounds)

as platform chemicals involves complex chemistry with reactions both in the gas phase and on the

catalyst surface, resulting in a distribution of products at the expense of C2 selectivity. This work uses

experimental data from a variety of mixed metal oxides on supports at different reaction conditions

(temperature, contact time, and reactant flow rates) to train a random forest regressor that predicts

methane conversion and C2 selectivity (key performance indicators (KPIs)), and deploys it to locate

optimal conditions that maximize C2 yield for a catalyst. Investigating the regressor interpretability

via feature importance reveals that the choice of metals and support are crucial to C2 selectivity

predictions, while the predictions of methane conversion are driven by the reaction conditions. The

machine learning (ML) regressor is used as a surrogate to develop performance curves for each of the

catalysts via a multi-objective optimization routine that seeks to maximize the KPIs in the decision

space of reaction conditions, is seen to locate optimal conditions at which the maximum C2 yields for

catalysts are predicted to be 15%, higher on average. Analyzing the catalysts in the space of their

performance curves with respect to a popular OCM catalyst, Mn-Na2WO4/SiO2, reveals distinct

patterns based on intrinsic properties of metals and supports. Further, the decision space with catalyst

descriptors and reaction conditions is optimized for high C2 yields using the ML surrogate, in a static

multi-objective optimization routine, and an adaptive Bayesian routine, where the latter was found to

have a wider field focus in proposing catalyst formulations and conditions. Transition metal oxides

on a variety of supports were proposed but not their lanthanide oxide counterparts.

Keywords: catalyst screening; catalyst informatics; high-throughput experiments; optimal

experimental design; random forests; multiobjective optimization; pareto curves; bayesian

optimization; genetic algorithms

1. Introduction

Synthesis of platform chemicals via catalyzed reactions lead to a wide product distribution because

every catalyst has different active sites, composition and response to operating conditions, making it

complex to identify their role in reaction mechanisms. This challenges the selective and economical

manufacturing of target products at scale, as evidenced by studies on the oxidative coupling of methane

(OCM) where the selective formation of ethane/ethylene (C2) for the polymer manufacturing chain is

limited by the thermodynamically favored over-oxidation [1]. The Edisonian approach to material

design has been replaced by information-driven platforms that seamlessly integrate digitized database

with modeling and optimization for hypothesis-driven design decisions [2]. Central to these platforms

are machine learning (ML) surrogates that map properties of candidate materials in the database to

process performance outcomes, so that appropriate materials can be recommended for experimental

synthesis [3]. This work seeks to use the high-throughput experimental database for a variety of mixed

metal oxide catalysts (M1−M2−M3O4/Support) to train ML surrogates for catalyst screening and

to device future experimental strategies that meet the selectivity-conversion targets for the extensively

studied OCM chemistry.
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The digitized data to build catalyst informatics platforms curated exhaustively from literature

[4] are associated with inconsistencies in data, methods and reproducibility because of which there

has been a shift towards high-throughput experimentation (HTE) [5], and high-throughput theoretical

calculations (HTCs) [6] to reliably record catalyst performance across scales from the level of reaction

energetics to process operations. Web-based visualization tools to deploy exploratory data analysis

on HTE data using co-ordinated multiple views (CMVs) to discover apparent trends in the reaction

performance across a variety of catalysts and operating conditions can provide insights for future

experimentation [7]. Sophisticated ML tools to uncover the not so apparent insights require quantitative

descriptors of a catalyst from elemental properties (atomic numbers, electron affinity, ionization energy,

density) of constituent metal atoms from the periodic table to characterize its activity [8], or HTC-based

reaction energetics descriptors from density functional theory [9,10]. Once the catalyst design space

has been quantified by descriptors, unsupervised clustering can be used to identify catalyst groupings

based on how they impact reaction performance, across different experimental conditions [11]. ML

has been used to develop supervised descriptor-based reaction performance prediction models, and to

minimize the time and cost in strategizing recommendations for physical experiments or theoretical

calculations to guide exploration of the design space for materials discovery [12]. Descriptor-based

ML models have been used to screen electrocatalysts for carbon-dioxide reduction [13], and also for

the adaptive electrocatalyst and photocatalyst discovery either by human-in-the-loop learning, where

the ML model is updated once the outcome has been observed via experimental/theoretical runs at

algorithmically sampled points of the design space [14–16]. Alternatively, descriptor-based ML models

have also been used for goal-driven exploration via Bayesian optimization or evolutionary genetic

algorithms [17], to create self-driving laboratories that integrate databases (literature, HTE, HTC), ML

and automated experimentation [18,19].

Most of the aforementioned approaches are yet to reveal catalyst candidates for OCM chemistry

with a C2 yield> 30%, a threshold considered practical for industrial applications that are limited by

the maximum achievable C2 yields because the reactant methane, is much less reactive to oxygen than

the target C2 products leading to selectivity-conversion tradeoffs. Analysis of 1868 literature reported

OCM catalysts, reveals that most of them barely meet 20% C2 yields, with just ∼ 12 of them surpassing

the thresholds for feasible industrial production [4]. The inconsistencies of literature-reported data

(missing data, mass balance errors), not only pose an obstacle to reproducibility but are shown to

result in poorly trained regression models to predict reaction performance that register prediction

outliers on literature data with C2 yields greater than 30%. For instance, the support vector regression

trained on literature-mined data for OCM chemistry to predict C2 yields has R2 ∼ 05− 0.6, which

is not impressive, because of which catalyst candidates discovered by it when used as a surrogate

in Bayesian optimization lacks diversity in predicted materials, with a narrow field around La2O3

derivatives, and a maximum C2 yield of ∼ 15-16% [20]. To ensure reliability of the database used to

propose catalyst candidates for OCM chemistry, HTE data has been used with informatics tools for

visualization, supervised ML and catalyst networks to uncover patterns among dynamically evolving

factors like catalyst synthesis, composition and operating conditions on reaction performance [21].

However, going beyond the interpolation filling abilities of ML in multi-dimensional data to predict

rare targets with C2 yields > 30% when the HTE dataset used to train the ML surrogates covers yields

capped as much lesser values ∼ 20 %, is still an ongoing research effort. In that spirit, this manuscript

represents an effort to create informed serendipity using ML surrogates to enhance discovery of

catalyst candidates by avoiding a narrow field focus.

Most works outlined herein develop descriptor-based ML to predict C2 yields and CH4 conversion

using random forest regression, or neural network formalisms with mass balance reconciliation for

the same [22]. However, using these ML models to develop catalyst performance curves by tuning

operating conditions that maximize both C2 selectivity (SC2
) and methane conversion (XCH4

) for each of

the catalysts, followed by using these performance curves to screen M1− (M2)1−2 −M3Ox/Support

type catalysts with respect to the popularly used Mn− Na2 −WO4/SiO2 for OCM chemistry, is yet
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to be investigated. Most ML models have been rationalized in terms of feature importances of the

descriptors in predicting reaction outcomes, however, ML model validation to deduce activation

barriers via lumped reaction kinetics models for methane conversion, and subsequent overoxidation

of C2, is also pending investigation. Additionally, the desciptor-based ML models have also been

used to test an evolutionary framework of exploring combinations of catalyst descriptors and process

conditions in tandem, that maximize the two-fold selectivity-conversion targets, in an attempt to

propose new candidates for synthesis. A multi-objective optimization routine using the NSGA-2

genetic algorithm has been contrasted against a Bayesian optimization routine to propose candidates

and operating conditions, in an attempt to analyse field focus in proposing candidates, and the

number of generations/ sampling iterations that are required to arrive at proposed entities with the

highest achievable C2 yields. Assessing the synthesis feasibility of the proposed candidates and their

experimental validation is out of scope of this manuscript.

2. Methodology

2.1. Dataset

The HTE database for OCM chemistry using 40 types of M1− (M2)1−2−M3Ox/Support catalyst,

and 19 references across 216 experimental conditions leading to ∼ 12700 data points [5], has been used

in this work. The dataset is hosted on a web-based informatics platform called the Catalyst Acquistion by

Data Science (CADS), and records reaction outcomes at the end of each run in sequentially programmed

experimental campaigns across combinations of temperature (900, 850, 800, 775, 750 and 700 ◦C), total

reagent flowrate (10, 15, 20 ml/min), CH4/O2 ratio (2,3,4 and 6 mol/mol), and contact times (0.75,

0.50, or 0.38 s) [23]. The conversion of methane and yields/selectivity of the target products, ethane

and etylene (C2 products), as well as the undesired products (carbon dioxide, carbon monoxide) as a

result of over-oxidation have been recorded. The design space is defined by quantitative descriptors

of the catalyst and the operating conditions. Catalyst descriptors encompass atomic numbers of its

constituent metal atoms (M1, M2, M3), the composition of these metal elements in mol%, and finally

the nature of the support indicated by its unique index identification, all of which have been indicated

in the CADS data repository. Descriptors of the reaction conditions encompass temperature (T), contact

time (t), total flow rate (V̇◦), methane flow rate (V̇◦CH4) and CH4 : O2 , and have also been furnished in

the dataset. Hence, there are 12 descriptors in all, when it comes to defining the design space that has

been investigated via HTE to find optimal combinations that maximize methane conversion and C2

selectivity for OCM chemistry.

2.2. Random forest regression

Data collection under controlled experimental conditions eliminates most inconsistencies due

to variability across experimental platforms. Yet, one cannot avoid uncertainties in the recorded

measurements either because of material balance violation or instrumental errors [24]. The use of an

ensemble model that learns aggregate predictions in this work, runs a lower risk of overfitting such

biases [25], placing lesser emphasis on the need to eliminate data points with higher mass balance

uncertainties. Also, random forest regressors learn via decision thresholds on descriptors to segment

the design space in which aggregate predictions are made, making it agnostic to scale of the features

and eliminating the need for much data pre-processing. When highly parametrized set of ML models

like neural networks that run the risk of overfitting to the artefacts in data is used, good pre-processing,

efforts to embed the training with mass balances, and even truncation of datapoints with mass balance

violation beyond a fixed threshold have been widely considered [22,26].

Random forests are an ensemble model comprising many decision trees. Each decision tree has

binary nodes, where the number of samples n at each node splits into n1 and n2 samples based on the

optimal segmentation of the jth descriptor into 2 subnodes, basd on a decision threshold θ, as outlined

in Eqn 1
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R1(j, θ) = {xij|xij ≤ θ}∀i = 1, 2, · · · n1 (1)

R2(j, θ) = {xij|xij > θ}∀i = 1, 2, · · · n2

The descriptor j and its value is chosen such that the residual sum of squares is minimized for the

binary split at that tree node, achieved by minimizing the residual sum of sqaures as in Eqn 2, where

ȳ1 and ȳ2 are the average target response of the samples in each of the subnodes R1(j, θ) and R2(j, θ).

min
j,θ



min
ȳ1

∑
xij∈R1(j,θ)

(yi − ȳ1)
2 + min

ȳ2
∑

xij∈R2(j,θ)

(yi − ȳ2)
2



 (2)

Repeating the process, stratifies the d dimensional design space into W regions R1, R2, · · · RW to

generate a decision tree given in Eqn 3, where I(.) is the indicator function, i.e. I = 1 if x ∈ Rw else it is

0, w is the number of decision threshold splits, and ȳw is the average target response of the samples in

the region Rw.

f (x) =
W

∑
w=1

ȳwI(x ∈ Rw) (3)

This procedure is repeated on an ensemble of decision trees, ft(x), where t = 1, 2, 3 · · ·Ntrees to

generate a random forest model that aggregates the predictions across the learners in order to map the

descriptors to the target response, as f̄ : X → Y given in Eqn 4

f̄ (x) =
1

Ntrees

Ntrees

∑
t=1

ft(x) (4)

2.3. Model validation by power-law reaction kinetics

This work demonstrates the ability of ML models to connect descriptors to parameters of lumped

kinetic models to facilitate interpretability when used as a catalyst informatics tool. Evidence of

ML being rationalized either by incorporating domain knowledge as constraints during its training

or postfacto by the use of metrics like SHAP, feature importance and locally interpretable model

explanations are quite popular. Here, in addition to just feature importance, we seek to interpret

the relationship between descriptors and kinetic parameters using a lumped kinetic model for the

otherwise complex reaction mechanism for OCM chemistry that involves both the gas and surface

reactions [27]. The reactions considered in this work are as follows:

2CH4 + 0.5O2 → C2H6 + H2O

C2H6 + 0.5O2 → C2H4 + H2O

CH4 + 1.5O2 → CO + 2H2O

CH4 + 2O2 → CO2 + 2H2O

Once the random forest regression has been trained using the descriptors, the stoichiometry of

the global reaction scheme by combining the above equations can be used to regress the lumped

power-law kinetic model given in Eqn 5.

rCH4 = k10exp

[

−EaCH4

RT

]

P̄a
CH4P̄b

O2 (5)

rC2 = k20exp

[

−EaC2

RT

]

P̄a∗
CH4P̄b∗

O2
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Latin hypercube sampling (LHS) is used to randomly sample the process operation descriptors

comprising temperature (T), contact time (t), total inlet volumetric flow rate (V̇◦), inlet volumetric

flowrate of methane (V̇◦CH4) and CH4 : O2 molar ratio, for a given set of catalyst descriptors comprising

details of the elemental metals, their molar percentages and support ID. The reaction is performed in a

continuous flow reactor, and is operated at a pressure P of 1 bar under isothermal conditions. Using

this information the partial pressures of the reactants at the start of the reaction is calculated. The

random forest regressor is then used to predict the conversion and selectivity for each set of descriptors

across all samples, to obtain X̂CH4% and ŜC2%, using which the reaction rates are expressed as given

in Eqn 6, where ṅ◦CH4 is the molar flowrate of methane entering the reactor. The HTE data has been

reported for 1g mass of catalyst support impregnated with the mixed metal oxides [5], and hence the

kinetic models implicitly fit the specific reaction rates.

rCH4 = ṅ◦CH4
X̂CH4

100
(6)

rC2 = ṅ◦CH4
X̂CH4ŜC2

100

The stoichiometry of the global reaction scheme and the predicted methane conversion from the

random forest regression is then used to calculate the partial pressure of the species at the end of the

reaction. The average of the initial and the final partial pressures for oxygen and methane, along with

the reaction rate expressions in Eqn 6 is substituted into the power-law kinetic expression in Eqn 5

for all the LHS sample points to estimate via regression the kinetic parameters viz. the Arrhenius

pre-exponential factors for methane conversion (k10) and C2 formation (k20), their corresponding

apparent activation energies (EaCH4, EaC2), and the orders of the species in each of the reactions (a,b,a*,

b*). It must be noted that the HTE datasets report reaction performances only at the end of the contact

time, owing to which fitting kinetic models to species concentration profiles is approximated by the

average of the initial and final partial pressures. The estimated kinetic parameters are therefore treated

as coarse estimates to characterize the impact of different catalysts on the reaction performance across

varying operating conditions sampled by LHS.

2.4. Genetic algorithm for multi-objective optimization

The reaction performance for OCM chemistry in terms of methane conversion and C2 selectivity

are known to exhibit a tradeoff, and depend on the operating conditions and the type of catalyst used.

The combination of descriptor values x ∈ Rd×1, that maximizes both reaction performance indicators

is posed as a multiobjective optimization problem (Eqn 7), where fXCH4
(.) and fSC2

(.) are the trained

random forest regressors to predict the corresponding indicators.







max
x

fXCH4
(x)

max
x

fSC2
(x)

(7)

S.T. lb ≤ x ≤ ub (8)

M1% + M2% + M3% = 100 (9)

V̇◦ − V̇◦CH4 − V̇◦CH4
1

CH4 : O2
> 0 (10)

The multiobjective optimization is constrained by limits of the descriptors (Eqn 8), given by the

their range bounds in the HTE dataset, and Eqn 10 to ensure that the inlet volumetric flow of the

inert Ar gas is non-negative. When solving the above optimization to develop performance curves

for catalyst formulations outlined in the HTE datasets, the elemental metals (M1, M2, M3), their
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corresponding molar percentages and their supports are fixed descriptor values, with the decision

variables comprising just the operating conditions. However, when it comes to proposing different

catalysts, their descriptors along with the operating conditions are treated as variables in the decision

space in solving the multiobjective optimization, wherein the additional constraint in Eqn 9 enforces

closure in the molar percentages of the elemental metals of the catalyst. The elemental metals and

their supports are treated as categorical descriptor values but the rest of the descriptors are continuous.

The multiobjective optimization is solved using an evolutionary appraoch via the NSGA-2 genetic

algorithm [28], using 50 individuals, over 200 iterations with a mutation probability of 0.2 and crossover

probability of 0.8. The constraints are implemented via the Delta penalty approach [29], where the

fitness is penalized for invalid individuals by constant factor delta that is subtracted from the objectives

we seek to maximize.

2.5. Bayesian optimization for adaptive experimentation

Bayesian optimization is a sequential global optimization approach that iteratively samples the

design space of decision variables using a probabilistic surrogate model [30], like a Gaussian process

regressor that captures the distribution of target predictions, P(y|x) for a given x ∈ Rd×1, and an

acquisition function like expected improvement (EI) to guide sampling as given in Eqns 11-13, subject

to the constraints in Eqns 8-10.

f (x) =
fXCH4

(x) fSC2
(x)

100
(11)

x∗ ← argmax
x∈Rd×1

f (x) (12)

EI(x) = ∑
y

(y− f (x∗))P(y|x) (13)

The idea is to start with an initial number of LHS samples, say 10, from the space of decision

variables (x ∈ Rd×1), and use the above method to sample by exploitation to find the most likely optimal

solutions based on the posterior distribution, while also resorting to exploration by sampling from

points in areas with low probability density in order to be able to find the combination of descriptor

values that maximize the yield of the desired C2 products. This approach has been widely used to

encourage serendipity while navigating the combinatorial explosion of the decision space of design

descriptors for the goal-driven enumeration of candidates in material science [31].

3. Results and Discussion

Section 3.1 presents the results from estimating kinetic parameters for different catalysts in the HTE

dataset for OCM chemistry using power-law models based on the predictions of the descriptor-based

random forest regressors. Section 3.2 discusses the performance curves of the given catalyst by tuning

the decision space of operating conditions to maximize reaction performance indicators. The catalysts

are screened with respect to a reference with the aid of the performance curves. Section 3.3 is an

attempt to use two different techniques viz. multiobjective and Bayesian optimization to navigate both

the catalyst and operating condition descriptors to propose new candidates.

3.1. Assessment and validation of random forest regression via kinetic parameter estimation

A random forest (RF) regressor model is fitted to map the descriptors to the reaction performances

by way of methane conversion and C2 selectivity using a 5-fold cross validation for model

hyperparameter tuning to prevent it from overfitting to the training data. An 85% train-test split

is used for the same and predictions are assessed on completely new test data. The parity plots

shown in Figure A1 indicates that the RF model adequately captures trends in the training data, and

generalizes well on the test data too. Error from instruments or intrinsic phenomena like sintering [24]
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can potentially lead to mass balance inconsistencies in HTE datasets quantified in terms of the total

carbon balance error based on the difference between the methane conversion and the yields of the

products formed, as follows:

Total carbon balance% =
XCH4 −YC2H6 −YC2H4 −YCO −YCO2

XCH4
× 100

The ensemble nature of the RF regressors make them robust to fitting such biases as can be seen in

Figure A2, where the total carbon balance is uncorrelated with the prediction errors of the RF models

for both conversion and selectivity. RF regressors also have the inherent procedure of calculating

feature/descriptor importance [32], based on the optimal choice of descriptor that most reduces the

residual sum of squares (Eqn 2).

It can be seen from Figure 1 that the operational descriptors like temperature, inlet volumetric

flowrate of methane and the CH4 : O2 ratio are more important than any of the catalyst descriptors

to the prediction model for methane conversion. While for the C2 selectivity model, the catalyst

descriptors encompassing atomic numbers of metal elements M1 and M2, and the support ID are

important in addition to the operational descriptors of temperature and inlet volumetric flowrate of

methane and CH4 : O2 ratio. Although the catalyst surface active sites at OCM conditions are still

unknown, the rate determining step involves hydrogen abstraction by C-H bond cleavage of methane

either via surface-active oxygen (Langmuir-Hinshelwood kinetics) or via oxygen from the lattice sites

(Mars-Van Krevelen), and requires high temperatures [33]. Coupling of methyl radicals to form ethane

that dehydrogenates to ethylene is thermodynamically less favored than its further oxidation to COx

because of which, although high flowrates of reagents are known to increase methane conversion,

lower proportions of oxygen is used [34]. Also, the use of M2 type promoters in mixed metal oxide

catalysts of M1M3O4 type are found to suppress further oxidation by hindering the exposure of the

tetrahedral M3O2−
4 active site, thereby increasing C2 selectivity [35]. Hence, prediction of methane

conversion is dominated by the identified operating condition descriptors, and that of C2 selectivity is

governed by the said catalyst descriptors as seen in Figure 1.

Figure 1. Feature importance of the RF regressors trained to predict methane conversion and C2

selectivity

Once the RF models have been duly fit and assessed, it is important to validate them via fitting

power-law kinetic parameters for each of the catalysts in the HTE dataset. As specified in Section 2.3,
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the points sampled via LHS in the space of the descriptors for the operating conditions are outlined

in Table A1, and are used to regress the rate expressions to estimate the kinetic parameters for each

catalyst. The MnNa2WO4/SiO2 is a popular OCM catalyst that has registered high experimental C2

yields ∼ 14-27% and stability [36] and hence has been chosen as reference with respect to which the

other catalysts are screened in this work. Figures 2b,c presents the regression to estimate the kinetic

parameters for methane conversion and C2 formation, using the RF model predicted conversion and

selectivity values at the LHS points as shown in Figure 2a.

(a) RF predictions (b) CH4 consumption rate (c) C2 formation rate

Figure 2. Regression fits for kinetic parameter estimation for MnNa2WO4/SiO2 via the RF models.

The same procedure is followed for the other catalysts, where Figure A3 reports the regression

fits, Figure A4 reports the species orders, and Figure 3c reports the apparent activation energies.

The apparent activation energies for MnNa2WO4/SiO2 in Figure 3a is within the literature ballpark

∼ 200-270 kJ/mol [27]. Clear groupings among the catalysts when the supports are varied for the

MnNa2WO4 catalyst in Figure 3a, and the metal atoms are varied for a fixed SiO2 support in Figure

3b have been observed. Transition metal oxide supports are reported to have better C2 yields than

SiO2 at similar process conditions [6], and even when porous aluminosilicates/zeolite-like supports or

SiC are used as it leads to the formation of highly dispersed active sites after calcination [11], thereby

having lower apparent activation energies for OCM reactions, as seen in Figure 3a. It must be noted

that the regression calculated activation energies for zeolite-like supported MnNa2WO4 catalysts is

very low, and is not the case in reality. This is primarily an artefact of approximately estimating kinetic

parameters using RF predicted reaction KPIs at the end of contact time, and at the given LHS sample

points by neglecting concentration gradients and potentially different chemistries. However, it is a

reasonable approach to screen for trends and groupings among different catalysts. Similarly, in Figure

3b shows 3 groupings among alkali/alkaline earth metals, transition metals, and lanthanides/actinide

metals on a fixed SiO2 support with increasing apparent activation energies is seen. This can largely

be attributed to the electronic properties of the mixed metal oxides by way of their electronegativity

and ionization energies that impact the activation of methane and gas phase oxygen [37].
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(a) (b)

(c)

Figure 3. Apparent activation energy for methane consumption and C2 formation estimated for (a)

MnNa2WO4 across different supports, (b) different mixed metal oxide catalysts on SiO2 support, and

(c) distribution of the activation energies across the catalysts

3.2. Performance curves for catalyst screening

A good approach to compare how different catalysts i.e. ones with different supports or different

mixed metal oxides impact the reaction KPIs of OCM chemistry is to use kinetic models to ascertain

the best performance which can be achieved by a given catalyst over a range of operating conditions

[38]. Using RF models as kinetic surrogates to maximize both methane conversion and C2 selectivity

for a given catalyst with fixed loading of metal atoms as outlined in the HTE dataset, in the decision

space of just the 5 operating condition descriptors has resulted in the S-X performance curves shown

in Figure 4.

(a) (b)

Figure 4. S-X performance curves for the OCM catalysts outlined in the HTE dataset.
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The operating conditions corresponding to the best C2 yields obtained from these S-X performance

curves have been tabulated in Tables A2 and A3, and shows on average across all catalysts ∼ 15%

improvement over the experimental values of the HTE dataset within the limits of the total carbon

balance (TCB%). The C2 yield is defined as the product of the methane conversion and C2 selectivity

that the RF models have been trained to predict, and combines the tradeoff between 2 of the reaction

KPIs for the OCM reactions. Comparatively screening the catalysts based on the C2 yields in the locus

of their S-X performance curves from multiobjective optimization, with respect to the reference catalyst

reveals distinct groupings as seen in Figure 5. The figures indicate the RMS distance of the points

on the performance curves of the catalysts from that of the reference, also the standard deviation of

the performance curve C2 yields of the reference within which those of the other catalysts lie, and

also the correlation of the same with the reference. The points are annotated with the maximum C2

yields of the performance curves that have been tabulated with their associated operating conditions

in Appendix B.

These RF model-based screening plots reveal insights into interactions between the mixed metal

oxides and the supports that contribute to surface properties linked to catalyst activity and C2

selectivity. Na-Mn-W oxides supported on SiO2 is subject to severe restructuring owing to Na-induced

phase change crystallization, but its superior thermal stability at high temperatures required for

OCM reactions has made it a popular baseline [39]. The use of supports with different acid, basic or

amphoteric nature to explore its synergies with Mn and W for redox cycles for O2 activation and CH4

activation, respectively can easily be deduced from Figure 5a. The use of acidic metal oxide supports

like TiO2 acts as a sink for alkali metal dopants, and stabilizes active species (MnOx, WOx) to facilitate

lower temperatures to activate gas phase oxygen, thereby suppressing undesirable further oxidation

to form COx [40]. The non-selective oxidation during high temperature exothermic reactions when

acidic metal oxide supports are used is mitigated by using less acidic supports like SiO2 instead of

Al2O3, alkali metal promoters (M2) to neutralize acidic sites in the support, altogether using basic

metal oxides for supports (MgO, BaO, CaO) despite their inability to stabilize WOx required for CH4

activation, and even by using an inert gas stream like Ar to dissipate hotspots [37]. SiO2 and alumino

silicate-based materials like zeolite supports are known to phase transform by crystallization due

to the alkali metal dopant (Na), which is conducive for the dispersion and stabilization of the WOx

active species [41]. The phase change of the support is seen to cause a drastic decrease in the surface

area for Al2O3, ZrO2 and SiO2, but a sharp increase for SiC supports that have an added benefit of

thermal stability [38]. The surface area and porosity of the supports correlates positively with C2

yield owing to better dispersion of active sites, as with zeolite supports [42]. However, if the supports

are highly porous and also acidic in nature, alkali metal dopants are used to poison surface sites to

limit excessive unselective oxidation [37]. It must be noted that neither the role of active sites nor

individual supports is clear in OCM chemistry because even blank tests have shown good activity and

C2 selectivity leading to questions about the actual contribution of the support to the chemistry [36].

However, it must be pointed that surface area, porosity, acidity/basicity, thermal stability and phase

change amenability of the different supports for Na-Mn-W oxides justify the insights deduced from

the patterns of the screening plot in Figure 5a.
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(a)

(b)

Figure 5. Screening catalysts based on correlation, standard deviation and root mean squared distances

of their C2 yields from the S-X curves, with respect to that of the reference MnNa2WO4/SiO2.

The screening plot in Figure 5b presents a comparative assessment of the C2 yields from the

S-X performance loci for different mixed metal oxide catalysts on SiO2 supports with respect to the

reference catalyst. The patterns reveals a coupling between the electronic properties of the metal

elements and the OCM reaction performance. Host oxides doped with alkali/alkaline earth metals are

reported to increase C2 selectivity due to their low electronegativity and ionization energy [11], with

mainly Na known to induce crystallization of SiO2 supports, while most of these dopants are known

to distort the active site (WO2−
x ) for methane activation [37]. But the stability of these dopants at the

harsh reaction conditions is challenged, as evidenced by catalyst degradation when the highly volatile

(low melting point metal dopant) Li is used because of which either promoted lanthanide oxides, or
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alkali dopants with higher melting points are generally preferred for OCM reactions. The positive

correlation between the conductivity of the M1 metals with catalytic performance has been discussed,

with Manganese (Mn) having the high electrical conductivity and hence preferred [43]. The type of M1

oxide and its oxidation state is known be impacted by the nature of the oxo anion, and the choice of

tungsten (W) and Molybdenum (Mo) as the M3 elements are discussed to have reasonable catalytic

performance [43]. In line with this discussion, the three major groups identified in Figure 5b are seen

to comprise alkali/alkaline earths, transition metals, and lanthanides.

3.3. Proposed candidates across combinations of catalysts and operating conditions

Different metal elements in the mixed metal oxides, their molar proportions, interactions with the

support they are impregnated on, and even the operating conditions are known to exhibit synergies

impacting reaction performance, from the discussions thusfar. Most literature, until recently had

deemed to achieve the best performance only if Mn, Na or K, and W were present [43]. The

combinatorial explosion in navigating the design space of these catalyst and operating condition

descriptors to create serendipity in proposing new candidates, is demonstrated by goal-driven

sampling discovery via Bayesian optimization for C2 yield maximization as shown in Figure 6a.

Alternatively, using the NSGA-2 genetic algorithm to solve multi-objective optimization in the

decision space of catalyst and operating condition descriptors to maximize methane conversion

and C2 selectivity, was seen to take longer to converge to values of maximum C2 yields, as seen in

Figure A5.

Table 1. Best candidates for C2 yield maximization in the space of catalyst and operating condition

descriptors across sampling iterations of Bayesian optimization.

Catalyst M1 atom M2 atom M3 atom M1 mol% M2 mol% M3 mol% Support ID T(◦C) time(s) V̇(ml/min) V̇CH4 (ml/min) CH4 : O2 YC2%
Mn-Na2WO4/CeO2 25 11 74 40.00 40.00 20.00 5 700.00 0.75 10.00 2.00 2.00 8.71
Mn-Li2MoO4/SiO2 25 3 42 40.00 40.00 20.00 11 775.00 0.75 10.00 7.30 6.00 9.07
Ti-Na2WO4/SiO2 22 11 74 40.00 40.00 20.00 11 700.00 0.75 10.00 2.40 4.00 9.78
Mn-FeMoO4/SiO2 25 26 42 40.00 40.00 20.00 11 850.00 0.38 20.00 4.50 3.00 10.92
Mn-CaWO4/SiO2 25 20 74 40.00 40.00 20.00 11 700.00 0.38 20.00 4.50 3.00 11.63
Fe-Li2MoO4/Nb2O5 26 3 42 44.81 27.25 26.48 8 815.49 0.65 15.76 11.26 2.69 12.32
Mo-Li2MoO4/ZrO2 42 3 42 44.24 27.44 26.84 13 821.44 0.49 16.37 6.30 5.73 12.80
Mo-Na2MoO4/ZrO2 42 11 42 44.02 27.77 26.37 13 799.38 0.70 10.16 3.62 5.59 13.73
Mn-CaWO4/TiO2 25 20 74 44.17 27.01 26.96 12 726.27 0.38 15.31 12.00 4.60 15.07
Cu-K2WO4/SiO2 29 19 74 44.49 27.94 26.83 11 823.97 0.74 17.49 3.30 4.81 17.11
Ti-K2MoO4/SiCnf 22 19 42 44.44 27.54 26.10 10 799.36 0.49 15.55 2.11 4.26 17.42
V-K2WO4/CeO2 23 19 74 44.98 27.74 26.68 5 784.46 0.50 12.53 2.12 5.73 17.53
Mn-K2MoO4/SiCnf 25 19 42 44.93 27.70 26.99 10 818.22 0.73 15.25 2.10 5.94 19.04
Ti-MgMoO4/ZSM-5 22 12 42 44.11 27.03 26.21 14 790.11 0.50 17.69 2.20 2.25 19.25
Mn-Li2WO4/SiO2 25 3 74 44.87 27.80 26.99 11 804.92 0.51 18.37 2.01 5.48 19.36

The descriptor values of the 50 individuals (annotated with black numbers in increasing order

of the C2 yields) at the end of 3000 solution generations have been visualized in a 2d t-SNE plot of

Figure 6b. Additionally, the descriptors corresponding to the best C2 yield among the samples picked

by the acquisition function in each iteration of the Bayesian optimization have also been visualized in

the 2d t-SNE plot, and are annotated in pink by their sampling indices in increasing order of the C2

yields. The descriptors corresponding to the experimental dataset are also visualized on the t-SNE plot,

and all the points are shaded by their associated C2 yields predicted by the RF models. The catalysts

proposed by the multiobjective optimization was found to have a narrow field focus in proposing

candidates, as most of the catalysts proposed were MnWO4 doped with alkali/alkaline earth metals

on either SiC, SiCnf or SiO2 supports at their respective optimal operating conditions. Hence, only

the descriptor candidates corresponding to the best C2 yields among the sampling iterations from

Bayesian optimization have been presented in Table 1. It can be seen that a number of new candidates

like mixed metal oxides of transition metals on a wide variety of supports have been proposed to

have comparable performance as the best performing Mn-Na-W family of baseline catalysts. However,

no new mixed metal lanthanide oxides have been proposed. Lanthanide group elements have been

reported to hinder the exposure of WO2−
x , and thereby lower catalytic activity [11]. The feasibility

of synthesizing the tabulated catalysts, characterizing them and designing experiments around the
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specified optimal operating conditions, encourages goal-driven approaches to experimentation in the

future.

(a)

(b)

Figure 6. Goal-driven design of experiments to maximize C2 yields by evaluating combinations of

catalyst constitutents and operating conditions.

4. Conclusions

This work develops a descriptor-based random forest regression model that maps to the reaction

KPIs of methane conversion and C2 selectivity furnished in the HTE dataset for OCM chemistry,

spanning a wide variety of catalysts and operating conditions. The synergies among the catalyst

constituents and operating conditions impact the conversion of reactant methane to selectively form

ethane and ethylene by suppressing their undesirable total oxidation to form COx. Ethane and ethylene

are viable platform chemicals in polymer processing. The feasibility of their industrial production
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necessitates the OCM reactions to be designed with catalysts and operating conditions resulting in

C2 yields greater than 30%. Most literature and trial-and-error experimental efforts have fallen short.

Also, the maximum reported C2 yield in the HTE dataset in this work is 20%, within the limits of

the total carbon balance. This limits the models trained herein to make higher predictions. However,

the focus is to deploy the models in (i) screening catalysts to identify relationships between catalyst

properties and reaction KPIs, (ii) optimizing the operating conditions for catalyst formulations in

the HTE datasets to maximize both methane conversion and C2 selectivity, and (iii) proposing new

catalysts and their optimal operating conditions by a goal-driven Bayesian optimization for C2 yield

maximization to guide future experimentation. The ability of the RF models to capture lumped kinetics

has been validated and is shown to reveal patterns among SiO2 supported catalysts, and among

MnWO4 catalysts across different supports, in the space of the estimated kinetic parameters. The RF

models were found to improve the C2 yield by ∼ 15% on average when used to optimize operating

conditions for catalysts in the HTE dataset to meet both methane conversion and C2 selectivity targets.

Screening the catalysts in the space of the best performance achieved across a range of operating

conditions along the S-X curves are found to reveal similar patterns, as in the space of the kinetic

parameters estimated by the RF model. A number of transition metal oxides on different supports have

been proposed by the Bayesian optimization routine, but lanthanide metal oxides were not sampled.
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Appendix A

Appendix A.1. Assessing the random forest regression model

Figure A1. Parity plots between the model predictions for methane conversion and C2 selectivity

against the experimental data shaded by the total carbon balance.
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(a) (b)

Figure A2. Random forest regressor predictions are shown to be uncorrelated to the total carbon

balance

Appendix A.2. Tabulation of LHS sample points

Table A1. Points sampled by LHS from the space of operating condition descriptors

T(◦C) time(s) V̇(ml/min) V̇CH4 (ml/min) CH4:O2 (mol:mol)

756.17 0.60 21.62 10.92 15.41
747.83 0.41 21.04 10.42 16.67
751.17 0.53 20.88 10.08 12.74
752.83 0.47 21.63 10.75 12.29
749.50 0.72 21.13 10.58 19.54
754.50 0.66 21.21 10.25 10.70

Appendix A.3. Fits and orders of power-law kinetic parameter estimation

(a) (b)

Figure A3. Regression fits for the estimation of power-law kinetic parameters
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(a) (b)

(c) (d)

Figure A4. Estimated orders for the consumption of methane (a),(b), and those for the C2 formation

(c),(d) for different catalysts.

Appendix B

Table A2. Performance curve conditions to improve C2 yields as compared to the best reported values

in the HTE dataset for MnNa2WO4 catalysts with different supports

Catalyst
Experimental conditions S-X performance curve conditions

T(◦C) time(s) V̇(ml/min) V̇CH4 (ml/min) CH4:O2 (mol:mol) max YC2 TCB% T(◦C) time(s) V̇(ml/min) V̇CH4 (ml/min) CH4:O2 (mol:mol) max YC2 YC2 improvement%

Mn-Na2WO4/BN 800.00 0.50 15.00 9.60 3.00 7.75 -42.85 787.33 0.71 12.37 2.05 5.26 14.36 85.30
Mn-Na2WO4/MgO 800.00 0.50 15.00 3.40 3.00 9.32 6.05 812.79 0.46 15.67 2.10 5.61 15.47 66.02
Mn-Na2WO4/Al2O3 750.00 0.38 20.00 12.80 3.00 8.08 -15.04 822.76 0.40 18.44 2.15 3.19 11.21 38.77
Mn-Na2WO4/SiO2 800.00 0.50 15.00 3.00 2.00 21.03 -0.71 788.05 0.53 13.95 2.10 5.39 18.72 -10.99
Mn-Na2WO4/SiC 800.00 0.50 15.00 3.40 3.00 19.59 2.06 808.30 0.59 16.55 2.06 5.66 19.90 1.59
Mn-Na2WO4/SiCnf 800.00 0.38 20.00 4.00 2.00 19.15 -1.83 812.97 0.59 14.74 2.04 5.79 19.69 2.80
Mn-Na2WO4/BEA 800.00 0.38 20.00 4.50 3.00 15.56 -0.77 792.61 0.50 12.74 2.04 5.23 16.33 4.93
Mn-Na2WO4/ZSM-5 800.00 0.38 20.00 4.50 3.00 19.90 -1.94 817.63 0.67 12.58 2.09 5.81 19.36 -2.71
Mn-Na2WO4/TiO2 750.00 0.38 20.00 4.00 2.00 18.29 5.69 821.57 0.57 14.80 2.11 5.31 18.71 2.29
Mn-Na2WO4/ZrO2 800.00 0.38 20.00 4.80 4.00 11.21 -3.64 793.97 0.60 14.02 2.05 5.26 18.28 63.11
Mn-Na2WO4/Nb2O5 800.00 0.38 20.00 12.80 3.00 8.25 -11.21 813.40 0.62 17.65 2.11 5.86 13.81 67.44
Mn-Na2WO4/CeO2 775.00 0.75 10.00 2.00 2.00 18.04 0.23 819.77 0.55 18.39 2.15 5.94 16.62 -7.86
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Table A3. Performance curve conditions to improve C2 yields as compared to the best reported values

in the HTE dataset for mixed metal oxides on SiO2 support.

Catalyst
Experimental conditions S-X performance curve conditions

T(◦C) time(s) V̇(ml/min) V̇CH4 (ml/min) CH4:O2 (mol:mol) max YC2 TCB% T(◦C) time(s) V̇(ml/min) V̇CH4 (ml/min) CH4:O2 (mol:mol) max YC2 YC2 improvement%

Mn-Li2WO4/SiO2 800.00 0.50 15.00 3.00 2.00 18.81 9.29 793.70 0.47 13.26 2.00 5.94 18.77 -0.21
Mn-MgWO4/SiO2 775.00 0.50 15.00 3.00 2.00 16.08 5.92 805.43 0.45 13.66 2.09 5.87 18.59 15.59
Mn-K2WO4/SiO2 775.00 0.75 10.00 2.00 2.00 18.55 3.12 820.03 0.61 17.14 2.12 5.28 18.47 -0.45
Mn-CaWO4/SiO2 850.00 0.38 20.00 4.80 4.00 8.51 10.87 870.22 0.39 17.95 2.02 5.08 12.55 47.46
Mn-SrWO4/SiO2 850.00 0.38 20.00 4.80 4.00 10.65 12.74 833.07 0.39 18.57 2.06 5.77 12.61 18.40
Mn-BaWO4/SiO2 850.00 0.38 20.00 5.10 6.00 10.17 13.48 788.44 0.52 19.85 12.02 4.84 10.05 -1.16
Mn-Li2MoO4/SiO2 800.00 0.38 20.00 4.00 2.00 14.00 7.74 769.54 0.63 11.26 2.13 5.98 16.45 17.53
Mn-Na2MoO4/SiO2 775.00 0.50 15.00 3.00 2.00 15.43 -0.58 798.53 0.54 17.36 2.14 5.02 16.01 3.74
Mn-K2MoO4/SiO2 800.00 0.38 20.00 4.50 3.00 16.60 -6.61 814.59 0.47 12.99 2.03 5.06 16.13 -2.84
Mn-FeMoO4/SiO2 850.00 0.38 20.00 5.10 6.00 12.57 7.69 840.37 0.44 17.54 2.02 5.05 11.63 -7.45
Mn-ZnMoO4/SiO2 850.00 0.50 15.00 3.90 6.00 12.96 15.70 856.03 0.41 19.40 2.06 5.38 11.78 -9.13
Ti-Na2WO4/SiO2 800.00 0.75 10.00 2.00 2.00 20.23 9.12 800.11 0.71 12.22 2.10 5.11 17.21 -14.95
V-Na2WO4/SiO2 775.00 0.50 15.00 6.00 2.00 8.58 -4.08 812.24 0.40 19.94 2.09 3.24 13.59 58.34
Fe-Na2WO4/SiO2 800.00 0.75 10.00 2.00 2.00 15.24 5.16 812.21 0.49 16.08 2.05 5.31 17.16 12.59
Co-Na2WO4/SiO2 850.00 0.38 20.00 4.50 3.00 16.14 7.41 823.83 0.51 14.33 2.14 5.90 17.64 9.32
Ni-Na2WO4/SiO2 800.00 0.50 15.00 3.00 2.00 17.66 8.01 806.45 0.47 12.85 2.06 5.64 17.74 0.47
Cu-Na2WO4/SiO2 800.00 0.38 20.00 8.00 2.00 9.11 -5.59 796.12 0.40 17.58 2.02 2.57 12.91 41.73
Zn-Na2WO4/SiO2 850.00 0.38 20.00 4.00 2.00 12.62 7.19 788.46 0.40 17.83 2.15 2.00 13.01 3.10
Y-Na2WO4/SiO2 850.00 0.50 15.00 3.40 3.00 12.56 -3.45 801.48 0.68 11.28 2.04 5.18 14.50 15.41
Zr-Na2WO4/SiO2 800.00 0.75 10.00 2.00 2.00 13.86 2.69 811.17 0.66 12.01 2.09 5.32 14.99 8.14
Mo-Na2WO4/SiO2 800.00 0.50 15.00 3.00 2.00 11.01 13.88 756.00 0.46 14.00 8.12 2.07 12.25 11.27
Pd-Na2WO4/SiO2 800.00 0.75 10.00 2.00 2.00 15.45 -2.82 794.41 0.73 10.61 2.15 5.16 15.20 -1.64
La-Na2WO4/SiO2 850.00 0.38 20.00 4.50 3.00 15.43 9.34 790.40 0.65 10.89 2.01 5.92 16.90 9.50
Ce-Na2WO4/SiO2 800.00 0.75 10.00 2.00 2.00 16.75 2.48 815.08 0.69 11.59 2.06 5.55 17.49 4.39
Nd-Na2WO4/SiO2 850.00 0.38 20.00 4.50 3.00 15.88 9.43 797.14 0.65 10.71 2.02 5.83 18.77 18.17
Eu-Na2WO4/SiO2 850.00 0.38 20.00 4.00 2.00 16.09 8.48 788.82 0.75 11.02 2.15 5.51 18.46 14.71
Tb-Na2WO4/SiO2 850.00 0.38 20.00 4.50 3.00 15.84 4.96 789.10 0.64 12.31 2.13 5.92 18.62 17.57
Hf-Na2WO4/SiO2 850.00 0.38 20.00 4.00 2.00 16.01 4.52 824.64 0.70 10.26 2.10 5.57 18.54 15.79

Appendix C

Figure A5. Genetic algorithm for multi-objective optimization of methane conversion and C2 selectivity

across combinations of catalyst and operating condition descriptors.
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