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Abstract: The oxidative coupling of methane (OCM) to produce ethane and ethylene (C2 compounds)
as platform chemicals involves complex chemistry with reactions both in the gas phase and on the
catalyst surface, resulting in a distribution of products at the expense of C2 selectivity. This work uses
experimental data from a variety of mixed metal oxides on supports at different reaction conditions
(temperature, contact time, and reactant flow rates) to train a random forest regressor that predicts
methane conversion and C2 selectivity (key performance indicators (KPIs)), and deploys it to locate
optimal conditions that maximize C2 yield for a catalyst. Investigating the regressor interpretability
via feature importance reveals that the choice of metals and support are crucial to C2 selectivity
predictions, while the predictions of methane conversion are driven by the reaction conditions. The
machine learning (ML) regressor is used as a surrogate to develop performance curves for each of the
catalysts via a multi-objective optimization routine that seeks to maximize the KPIs in the decision
space of reaction conditions, is seen to locate optimal conditions at which the maximum C2 yields for
catalysts are predicted to be 15%, higher on average. Analyzing the catalysts in the space of their
performance curves with respect to a popular OCM catalyst, Mn-Na2WO4/SiO2, reveals distinct
patterns based on intrinsic properties of metals and supports. Further, the decision space with catalyst
descriptors and reaction conditions is optimized for high C2 yields using the ML surrogate, in a static
multi-objective optimization routine, and an adaptive Bayesian routine, where the latter was found to
have a wider field focus in proposing catalyst formulations and conditions. Transition metal oxides
on a variety of supports were proposed but not their lanthanide oxide counterparts.

Keywords: catalyst screening; catalyst informatics; high-throughput experiments; optimal
experimental design, random forests; multiobjective optimization; pareto curves; bayesian
optimization; genetic algorithms

1. Introduction

Synthesis of platform chemicals via catalyzed reactions lead to a wide product distribution because
every catalyst has different active sites, composition and response to operating conditions, making it
complex to identify their role in reaction mechanisms. This challenges the selective and economical
manufacturing of target products at scale, as evidenced by studies on the oxidative coupling of methane
(OCM) where the selective formation of ethane/ethylene (C2) for the polymer manufacturing chain is
limited by the thermodynamically favored over-oxidation [1]. The Edisonian approach to material
design has been replaced by information-driven platforms that seamlessly integrate digitized database
with modeling and optimization for hypothesis-driven design decisions [2]. Central to these platforms
are machine learning (ML) surrogates that map properties of candidate materials in the database to
process performance outcomes, so that appropriate materials can be recommended for experimental
synthesis [3]. This work seeks to use the high-throughput experimental database for a variety of mixed
metal oxide catalysts (M1 — M2 — M30y4/Support) to train ML surrogates for catalyst screening and
to device future experimental strategies that meet the selectivity-conversion targets for the extensively
studied OCM chemistry.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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The digitized data to build catalyst informatics platforms curated exhaustively from literature
[4] are associated with inconsistencies in data, methods and reproducibility because of which there
has been a shift towards high-throughput experimentation (HTE) [5], and high-throughput theoretical
calculations (HTCs) [6] to reliably record catalyst performance across scales from the level of reaction
energetics to process operations. Web-based visualization tools to deploy exploratory data analysis
on HTE data using co-ordinated multiple views (CMVs) to discover apparent trends in the reaction
performance across a variety of catalysts and operating conditions can provide insights for future
experimentation [7]. Sophisticated ML tools to uncover the not so apparent insights require quantitative
descriptors of a catalyst from elemental properties (atomic numbers, electron affinity, ionization energy;,
density) of constituent metal atoms from the periodic table to characterize its activity [8], or HTC-based
reaction energetics descriptors from density functional theory [9,10]. Once the catalyst design space
has been quantified by descriptors, unsupervised clustering can be used to identify catalyst groupings
based on how they impact reaction performance, across different experimental conditions [11]. ML
has been used to develop supervised descriptor-based reaction performance prediction models, and to
minimize the time and cost in strategizing recommendations for physical experiments or theoretical
calculations to guide exploration of the design space for materials discovery [12]. Descriptor-based
ML models have been used to screen electrocatalysts for carbon-dioxide reduction [13], and also for
the adaptive electrocatalyst and photocatalyst discovery either by human-in-the-loop learning, where
the ML model is updated once the outcome has been observed via experimental /theoretical runs at
algorithmically sampled points of the design space [14-16]. Alternatively, descriptor-based ML models
have also been used for goal-driven exploration via Bayesian optimization or evolutionary genetic
algorithms [17], to create self-driving laboratories that integrate databases (literature, HTE, HTC), ML
and automated experimentation [18,19].

Most of the aforementioned approaches are yet to reveal catalyst candidates for OCM chemistry
with a C2 yield> 30%, a threshold considered practical for industrial applications that are limited by
the maximum achievable C2 yields because the reactant methane, is much less reactive to oxygen than
the target C2 products leading to selectivity-conversion tradeoffs. Analysis of 1868 literature reported
OCM catalysts, reveals that most of them barely meet 20% C2 yields, with just ~ 12 of them surpassing
the thresholds for feasible industrial production [4]. The inconsistencies of literature-reported data
(missing data, mass balance errors), not only pose an obstacle to reproducibility but are shown to
result in poorly trained regression models to predict reaction performance that register prediction
outliers on literature data with C2 yields greater than 30%. For instance, the support vector regression
trained on literature-mined data for OCM chemistry to predict C2 yields has R? ~ 05 — 0.6, which
is not impressive, because of which catalyst candidates discovered by it when used as a surrogate
in Bayesian optimization lacks diversity in predicted materials, with a narrow field around La;O3
derivatives, and a maximum C2 yield of ~ 15-16% [20]. To ensure reliability of the database used to
propose catalyst candidates for OCM chemistry, HTE data has been used with informatics tools for
visualization, supervised ML and catalyst networks to uncover patterns among dynamically evolving
factors like catalyst synthesis, composition and operating conditions on reaction performance [21].
However, going beyond the interpolation filling abilities of ML in multi-dimensional data to predict
rare targets with C2 yields > 30% when the HTE dataset used to train the ML surrogates covers yields
capped as much lesser values ~ 20 %, is still an ongoing research effort. In that spirit, this manuscript
represents an effort to create informed serendipity using ML surrogates to enhance discovery of
catalyst candidates by avoiding a narrow field focus.

Most works outlined herein develop descriptor-based ML to predict C2 yields and CHy4 conversion
using random forest regression, or neural network formalisms with mass balance reconciliation for
the same [22]. However, using these ML models to develop catalyst performance curves by tuning
operating conditions that maximize both C2 selectivity (Sc,) and methane conversion (Xcp,) for each of
the catalysts, followed by using these performance curves to screen M1 — (M2)1_, — M3Oy /Support
type catalysts with respect to the popularly used Mn — Na; — WO,/ SiO; for OCM chemistry, is yet
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to be investigated. Most ML models have been rationalized in terms of feature importances of the
descriptors in predicting reaction outcomes, however, ML model validation to deduce activation
barriers via lumped reaction kinetics models for methane conversion, and subsequent overoxidation
of C2, is also pending investigation. Additionally, the desciptor-based ML models have also been
used to test an evolutionary framework of exploring combinations of catalyst descriptors and process
conditions in tandem, that maximize the two-fold selectivity-conversion targets, in an attempt to
propose new candidates for synthesis. A multi-objective optimization routine using the NSGA-2
genetic algorithm has been contrasted against a Bayesian optimization routine to propose candidates
and operating conditions, in an attempt to analyse field focus in proposing candidates, and the
number of generations/ sampling iterations that are required to arrive at proposed entities with the
highest achievable C2 yields. Assessing the synthesis feasibility of the proposed candidates and their
experimental validation is out of scope of this manuscript.

2. Methodology

2.1. Dataset

The HTE database for OCM chemistry using 40 types of M1 — (M2)1_, — M3Oy /Support catalyst,
and 19 references across 216 experimental conditions leading to ~ 12700 data points [5], has been used
in this work. The dataset is hosted on a web-based informatics platform called the Catalyst Acquistion by
Data Science (CADS), and records reaction outcomes at the end of each run in sequentially programmed
experimental campaigns across combinations of temperature (900, 850, 800, 775, 750 and 700 °C), total
reagent flowrate (10, 15, 20 ml/min), CH4/O; ratio (2,3,4 and 6 mol/mol), and contact times (0.75,
0.50, or 0.38 s) [23]. The conversion of methane and yields/selectivity of the target products, ethane
and etylene (C2 products), as well as the undesired products (carbon dioxide, carbon monoxide) as a
result of over-oxidation have been recorded. The design space is defined by quantitative descriptors
of the catalyst and the operating conditions. Catalyst descriptors encompass atomic numbers of its
constituent metal atoms (M1, M2, M3), the composition of these metal elements in mol%, and finally
the nature of the support indicated by its unique index identification, all of which have been indicated
in the CADS data repository. Descriptors of the reaction conditions encompass temperature (T), contact
time (t), total flow rate (V°), methane flow rate (Vg 1a) and CHy : O; , and have also been furnished in
the dataset. Hence, there are 12 descriptors in all, when it comes to defining the design space that has
been investigated via HTE to find optimal combinations that maximize methane conversion and C2
selectivity for OCM chemistry.

2.2. Random forest regression

Data collection under controlled experimental conditions eliminates most inconsistencies due
to variability across experimental platforms. Yet, one cannot avoid uncertainties in the recorded
measurements either because of material balance violation or instrumental errors [24]. The use of an
ensemble model that learns aggregate predictions in this work, runs a lower risk of overfitting such
biases [25], placing lesser emphasis on the need to eliminate data points with higher mass balance
uncertainties. Also, random forest regressors learn via decision thresholds on descriptors to segment
the design space in which aggregate predictions are made, making it agnostic to scale of the features
and eliminating the need for much data pre-processing. When highly parametrized set of ML models
like neural networks that run the risk of overfitting to the artefacts in data is used, good pre-processing,
efforts to embed the training with mass balances, and even truncation of datapoints with mass balance
violation beyond a fixed threshold have been widely considered [22,26].

Random forests are an ensemble model comprising many decision trees. Each decision tree has
binary nodes, where the number of samples n at each node splits into 77 and 1, samples based on the
optimal segmentation of the j* descriptor into 2 subnodes, basd on a decision threshold 6, as outlined
inEqn1
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Ry(j,0) = {xjjlx;j < 0}Vi=1,2,---m )
Ry(j,0) = {xjjlxij > 0}Vi=1,2,-- -y

The descriptor j and its value is chosen such that the residual sum of squares is minimized for the
binary split at that tree node, achieved by minimizing the residual sum of sqaures as in Eqn 2, where
71 and 7, are the average target response of the samples in each of the subnodes R;(j,6) and Ry(j,6).

min [min ) (yi—g)?+min ) (i —7) 2
0 N x;j€R1(j0) 2 x;€Ry(j,0)

Repeating the process, stratifies the d dimensional design space into W regions Ry, Ry, - - - Ry to
generate a decision tree given in Eqn 3, where I(.) is the indicator function, i.e. I = 1if x € Ry, else it is
0, w is the number of decision threshold splits, and 7, is the average target response of the samples in
the region Ry,.

W

f(x) =Y 7ul(x € Ry) 3)

w=1

This procedure is repeated on an ensemble of decision trees, f;(x), where t =1,2,3- - - Ntrees to
generate a random forest model that aggregates the predictions across the learners in order to map the
descriptors to the target response, as f : X — Y given in Eqn 4

1 Nirees

f(x) fi(x) (4)

Ntrees =1

2.3. Model validation by power-law reaction kinetics

This work demonstrates the ability of ML models to connect descriptors to parameters of lumped
kinetic models to facilitate interpretability when used as a catalyst informatics tool. Evidence of
ML being rationalized either by incorporating domain knowledge as constraints during its training
or postfacto by the use of metrics like SHAP, feature importance and locally interpretable model
explanations are quite popular. Here, in addition to just feature importance, we seek to interpret
the relationship between descriptors and kinetic parameters using a lumped kinetic model for the
otherwise complex reaction mechanism for OCM chemistry that involves both the gas and surface
reactions [27]. The reactions considered in this work are as follows:

2CHy + 0.505 — CoHg + H,O
CoHg +0.50, — CoHy + H,O
CH, + 1.50, — CO + 2H,0

CHj + 20, — CO, + 2H,0

Once the random forest regression has been trained using the descriptors, the stoichiometry of
the global reaction scheme by combining the above equations can be used to regress the lumped
power-law kinetic model given in Eqn 5.

—Ea _ _
rcHa = kipexp [R;m] PE114P8, ®)

—Ea _ _
rco = kppexp [RTCZ} Pg’fﬂPgE
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Latin hypercube sampling (LHS) is used to randomly sample the process operation descriptors
comprising temperature (T), contact time (t), total inlet volumetric flow rate (V°), inlet volumetric
flowrate of methane (V2;;,) and CH, : O, molar ratio, for a given set of catalyst descriptors comprising
details of the elemental metals, their molar percentages and support ID. The reaction is performed in a
continuous flow reactor, and is operated at a pressure P of 1 bar under isothermal conditions. Using
this information the partial pressures of the reactants at the start of the reaction is calculated. The
random forest regressor is then used to predict the conversion and selectivity for each set of descriptors
across all samples, to obtain Xcpa% and $c2%, using which the reaction rates are expressed as given
in Eqn 6, where 71, is the molar flowrate of methane entering the reactor. The HTE data has been
reported for 1g mass of catalyst support impregnated with the mixed metal oxides [5], and hence the
kinetic models implicitly fit the specific reaction rates.

.0 XCH4
TCH4 = nCH4W (6)

rc2 = ficpy Reuoes
100

The stoichiometry of the global reaction scheme and the predicted methane conversion from the
random forest regression is then used to calculate the partial pressure of the species at the end of the
reaction. The average of the initial and the final partial pressures for oxygen and methane, along with
the reaction rate expressions in Eqn 6 is substituted into the power-law kinetic expression in Eqn 5
for all the LHS sample points to estimate via regression the kinetic parameters viz. the Arrhenius
pre-exponential factors for methane conversion (k1p) and C2 formation (ky), their corresponding
apparent activation energies (Eacpa, Eacy), and the orders of the species in each of the reactions (a,b,a*,
b*). It must be noted that the HTE datasets report reaction performances only at the end of the contact
time, owing to which fitting kinetic models to species concentration profiles is approximated by the
average of the initial and final partial pressures. The estimated kinetic parameters are therefore treated
as coarse estimates to characterize the impact of different catalysts on the reaction performance across
varying operating conditions sampled by LHS.

2.4. Genetic algorithm for multi-objective optimization

The reaction performance for OCM chemistry in terms of methane conversion and C2 selectivity
are known to exhibit a tradeoff, and depend on the operating conditions and the type of catalyst used.
The combination of descriptor values x € R**1, that maximizes both reaction performance indicators
is posed as a multiobjective optimization problem (Eqn 7), where fx_,,(.) and fs_,(.) are the trained
random forest regressors to predict the corresponding indicators.

maxfx.., (x)
X f CH4 (7)
max g, (x)
S.T. Ib<x<ub (8)
M1% + M2% + M3% = 100 9)
o . 1
V' = Ve — VCH47CH4 0 >0 (10)

The multiobjective optimization is constrained by limits of the descriptors (Eqn 8), given by the
their range bounds in the HTE dataset, and Eqn 10 to ensure that the inlet volumetric flow of the
inert Ar gas is non-negative. When solving the above optimization to develop performance curves
for catalyst formulations outlined in the HTE datasets, the elemental metals (M1, M2, M3), their
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corresponding molar percentages and their supports are fixed descriptor values, with the decision
variables comprising just the operating conditions. However, when it comes to proposing different
catalysts, their descriptors along with the operating conditions are treated as variables in the decision
space in solving the multiobjective optimization, wherein the additional constraint in Eqn 9 enforces
closure in the molar percentages of the elemental metals of the catalyst. The elemental metals and
their supports are treated as categorical descriptor values but the rest of the descriptors are continuous.
The multiobjective optimization is solved using an evolutionary appraoch via the NSGA-2 genetic
algorithm [28], using 50 individuals, over 200 iterations with a mutation probability of 0.2 and crossover
probability of 0.8. The constraints are implemented via the Delta penalty approach [29], where the
fitness is penalized for invalid individuals by constant factor delta that is subtracted from the objectives
we seek to maximize.

2.5. Bayesian optimization for adaptive experimentation

Bayesian optimization is a sequential global optimization approach that iteratively samples the
design space of decision variables using a probabilistic surrogate model [30], like a Gaussian process
regressor that captures the distribution of target predictions, P(y I x) for a given x € R?*1, and an
acquisition function like expected improvement (EI) to guide sampling as given in Eqns 11-13, subject
to the constraints in Eqns 8-10.

f(X) _ fX(jH4(fggSC2 (X) (11)
x* = argmaxf(x) (12)
x€RIx1
EI(x) =} (y— f(x"))P(y|x) (13)
Y

The idea is to start with an initial number of LHS samples, say 10, from the space of decision
variables (x € R?*1), and use the above method to sample by exploitation to find the most likely optimal
solutions based on the posterior distribution, while also resorting to exploration by sampling from
points in areas with low probability density in order to be able to find the combination of descriptor
values that maximize the yield of the desired C2 products. This approach has been widely used to
encourage serendipity while navigating the combinatorial explosion of the decision space of design
descriptors for the goal-driven enumeration of candidates in material science [31].

3. Results and Discussion

Section 3.1 presents the results from estimating kinetic parameters for different catalysts in the HTE
dataset for OCM chemistry using power-law models based on the predictions of the descriptor-based
random forest regressors. Section 3.2 discusses the performance curves of the given catalyst by tuning
the decision space of operating conditions to maximize reaction performance indicators. The catalysts
are screened with respect to a reference with the aid of the performance curves. Section 3.3 is an
attempt to use two different techniques viz. multiobjective and Bayesian optimization to navigate both
the catalyst and operating condition descriptors to propose new candidates.

3.1. Assessment and validation of random forest regression via kinetic parameter estimation

A random forest (RF) regressor model is fitted to map the descriptors to the reaction performances
by way of methane conversion and C2 selectivity using a 5-fold cross validation for model
hyperparameter tuning to prevent it from overfitting to the training data. An 85% train-test split
is used for the same and predictions are assessed on completely new test data. The parity plots
shown in Figure Al indicates that the RF model adequately captures trends in the training data, and
generalizes well on the test data too. Error from instruments or intrinsic phenomena like sintering [24]
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can potentially lead to mass balance inconsistencies in HTE datasets quantified in terms of the total
carbon balance error based on the difference between the methane conversion and the yields of the
products formed, as follows:

XcHa — Yeone — Yeona — Yco — Ycoz < 100
XcHa

Total carbon balance% =

The ensemble nature of the RF regressors make them robust to fitting such biases as can be seen in
Figure A2, where the total carbon balance is uncorrelated with the prediction errors of the RF models
for both conversion and selectivity. RF regressors also have the inherent procedure of calculating
feature/descriptor importance [32], based on the optimal choice of descriptor that most reduces the
residual sum of squares (Eqn 2).

It can be seen from Figure 1 that the operational descriptors like temperature, inlet volumetric
flowrate of methane and the CHy : O; ratio are more important than any of the catalyst descriptors
to the prediction model for methane conversion. While for the C2 selectivity model, the catalyst
descriptors encompassing atomic numbers of metal elements M1 and M2, and the support ID are
important in addition to the operational descriptors of temperature and inlet volumetric flowrate of
methane and CHy : O; ratio. Although the catalyst surface active sites at OCM conditions are still
unknown, the rate determining step involves hydrogen abstraction by C-H bond cleavage of methane
either via surface-active oxygen (Langmuir-Hinshelwood kinetics) or via oxygen from the lattice sites
(Mars-Van Krevelen), and requires high temperatures [33]. Coupling of methyl radicals to form ethane
that dehydrogenates to ethylene is thermodynamically less favored than its further oxidation to COy
because of which, although high flowrates of reagents are known to increase methane conversion,
lower proportions of oxygen is used [34]. Also, the use of M2 type promoters in mixed metal oxide
catalysts of M1 M30, type are found to suppress further oxidation by hindering the exposure of the
tetrahedral M3OZ* active site, thereby increasing C2 selectivity [35]. Hence, prediction of methane
conversion is dominated by the identified operating condition descriptors, and that of C2 selectivity is
governed by the said catalyst descriptors as seen in Figure 1.

- Feature importance (Xcp, %)
=== Feature importance (Sc, %)

M1_mol%
#3~atom_number

Time(s H4-flow (ml/min)
Total_flow (ml/min)

Figure 1. Feature importance of the RF regressors trained to predict methane conversion and C2
selectivity

Once the RF models have been duly fit and assessed, it is important to validate them via fitting
power-law kinetic parameters for each of the catalysts in the HTE dataset. As specified in Section 2.3,
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the points sampled via LHS in the space of the descriptors for the operating conditions are outlined
in Table A1, and are used to regress the rate expressions to estimate the kinetic parameters for each
catalyst. The MnNay;WQO,/5iO; is a popular OCM catalyst that has registered high experimental C2
yields ~ 14-27% and stability [36] and hence has been chosen as reference with respect to which the
other catalysts are screened in this work. Figures 2b,c presents the regression to estimate the kinetic
parameters for methane conversion and C2 formation, using the RF model predicted conversion and
selectivity values at the LHS points as shown in Figure 2a.

2 -
le-7 R* = 0.95 le-5 R2 =0.9
2.5 p 1.9 4 -
78.0 {0 m ’ — ’,
= 2.4 i d g
7751 g v’ Q 1.8 A »”
77.0 = 2.31 - £ ’,
: o o ,/ Y )/
o X o~
&~ 76.5 oo S 2.2 ,/ & 1.7 //;
g s o
W 76.0 - T 214 ‘. @ R
- ’ T 1.6 ’
75.5 2 ’ - ’
5 2.0 e T ’
75.0 g /’ g L5 - P
o197 a 17
74.5 ° . .
T T T T T T T T T T Ll
10 11 12 2.0 2.2 2.4 1.5 1.6 1.7 1.8 1.9
XcH, % Expt rcy, (mol/s) 17 EXpt rc, (mol/s) 1e-5
(a) RF predictions (b) CH4 consumption rate (c) C2 formation rate

Figure 2. Regression fits for kinetic parameter estimation for MnNay; WO,/ SiO; via the RF models.

The same procedure is followed for the other catalysts, where Figure A3 reports the regression
fits, Figure A4 reports the species orders, and Figure 3¢ reports the apparent activation energies.
The apparent activation energies for MnNa; WO,/ SiO, in Figure 3a is within the literature ballpark
~ 200-270 kJ /mol [27]. Clear groupings among the catalysts when the supports are varied for the
MnNay;WQO; catalyst in Figure 3a, and the metal atoms are varied for a fixed SiO; support in Figure
3b have been observed. Transition metal oxide supports are reported to have better C2 yields than
5iO; at similar process conditions [6], and even when porous aluminosilicates/zeolite-like supports or
SiC are used as it leads to the formation of highly dispersed active sites after calcination [11], thereby
having lower apparent activation energies for OCM reactions, as seen in Figure 3a. It must be noted
that the regression calculated activation energies for zeolite-like supported MnNa; WO, catalysts is
very low, and is not the case in reality. This is primarily an artefact of approximately estimating kinetic
parameters using RF predicted reaction KPIs at the end of contact time, and at the given LHS sample
points by neglecting concentration gradients and potentially different chemistries. However, it is a
reasonable approach to screen for trends and groupings among different catalysts. Similarly, in Figure
3b shows 3 groupings among alkali/alkaline earth metals, transition metals, and lanthanides/actinide
metals on a fixed SiO; support with increasing apparent activation energies is seen. This can largely
be attributed to the electronic properties of the mixed metal oxides by way of their electronegativity
and ionization energies that impact the activation of methane and gas phase oxygen [37].
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Figure 3. Apparent activation energy for methane consumption and C2 formation estimated for (a)

MnNay; WOy across different supports, (b) different mixed metal oxide catalysts on SiO, support, and

(c) distribution of the activation energies across the catalysts

3.2. Performance curves for catalyst screening

A good approach to compare how different catalysts i.e. ones with different supports or different
mixed metal oxides impact the reaction KPIs of OCM chemistry is to use kinetic models to ascertain
the best performance which can be achieved by a given catalyst over a range of operating conditions
[38]. Using RF models as kinetic surrogates to maximize both methane conversion and C2 selectivity
for a given catalyst with fixed loading of metal atoms as outlined in the HTE dataset, in the decision
space of just the 5 operating condition descriptors has resulted in the S-X performance curves shown

in Figure 4.
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Figure 4. S-X performance curves for the OCM catalysts outlined in the HTE dataset.
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The operating conditions corresponding to the best C2 yields obtained from these S-X performance
curves have been tabulated in Tables A2 and A3, and shows on average across all catalysts ~ 15%
improvement over the experimental values of the HTE dataset within the limits of the total carbon
balance (TCB%). The C2 yield is defined as the product of the methane conversion and C2 selectivity
that the RF models have been trained to predict, and combines the tradeoff between 2 of the reaction
KPIs for the OCM reactions. Comparatively screening the catalysts based on the C2 yields in the locus
of their S-X performance curves from multiobjective optimization, with respect to the reference catalyst
reveals distinct groupings as seen in Figure 5. The figures indicate the RMS distance of the points
on the performance curves of the catalysts from that of the reference, also the standard deviation of
the performance curve C2 yields of the reference within which those of the other catalysts lie, and
also the correlation of the same with the reference. The points are annotated with the maximum C2
yields of the performance curves that have been tabulated with their associated operating conditions
in Appendix B.

These RF model-based screening plots reveal insights into interactions between the mixed metal
oxides and the supports that contribute to surface properties linked to catalyst activity and C2
selectivity. Na-Mn-W oxides supported on SiO; is subject to severe restructuring owing to Na-induced
phase change crystallization, but its superior thermal stability at high temperatures required for
OCM reactions has made it a popular baseline [39]. The use of supports with different acid, basic or
amphoteric nature to explore its synergies with Mn and W for redox cycles for O, activation and CHy
activation, respectively can easily be deduced from Figure 5a. The use of acidic metal oxide supports
like TiO; acts as a sink for alkali metal dopants, and stabilizes active species (MnOy, WOy) to facilitate
lower temperatures to activate gas phase oxygen, thereby suppressing undesirable further oxidation
to form CO,, [40]. The non-selective oxidation during high temperature exothermic reactions when
acidic metal oxide supports are used is mitigated by using less acidic supports like SiO; instead of
Al O3, alkali metal promoters (M) to neutralize acidic sites in the support, altogether using basic
metal oxides for supports (MgO, BaO, CaO) despite their inability to stabilize WO, required for CHy
activation, and even by using an inert gas stream like Ar to dissipate hotspots [37]. SiO, and alumino
silicate-based materials like zeolite supports are known to phase transform by crystallization due
to the alkali metal dopant (Na), which is conducive for the dispersion and stabilization of the WO,
active species [41]. The phase change of the support is seen to cause a drastic decrease in the surface
area for Al,O3, ZrO, and SiO,, but a sharp increase for SiC supports that have an added benefit of
thermal stability [38]. The surface area and porosity of the supports correlates positively with C2
yield owing to better dispersion of active sites, as with zeolite supports [42]. However, if the supports
are highly porous and also acidic in nature, alkali metal dopants are used to poison surface sites to
limit excessive unselective oxidation [37]. It must be noted that neither the role of active sites nor
individual supports is clear in OCM chemistry because even blank tests have shown good activity and
C2 selectivity leading to questions about the actual contribution of the support to the chemistry [36].
However, it must be pointed that surface area, porosity, acidity /basicity, thermal stability and phase
change amenability of the different supports for Na-Mn-W oxides justify the insights deduced from
the patterns of the screening plot in Figure 5a.
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Figure 5. Screening catalysts based on correlation, standard deviation and root mean squared distances
of their C2 yields from the S-X curves, with respect to that of the reference MnNa; WO,/ SiO5.

The screening plot in Figure 5b presents a comparative assessment of the C2 yields from the
S-X performance loci for different mixed metal oxide catalysts on SiO; supports with respect to the
reference catalyst. The patterns reveals a coupling between the electronic properties of the metal
elements and the OCM reaction performance. Host oxides doped with alkali/alkaline earth metals are
reported to increase C2 selectivity due to their low electronegativity and ionization energy [11], with
mainly Na known to induce crystallization of SiO, supports, while most of these dopants are known
to distort the active site (WO2~) for methane activation [37]. But the stability of these dopants at the
harsh reaction conditions is challenged, as evidenced by catalyst degradation when the highly volatile
(low melting point metal dopant) Li is used because of which either promoted lanthanide oxides, or
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alkali dopants with higher melting points are generally preferred for OCM reactions. The positive
correlation between the conductivity of the M1 metals with catalytic performance has been discussed,
with Manganese (Mn) having the high electrical conductivity and hence preferred [43]. The type of M1
oxide and its oxidation state is known be impacted by the nature of the oxo anion, and the choice of
tungsten (W) and Molybdenum (Mo) as the M3 elements are discussed to have reasonable catalytic
performance [43]. In line with this discussion, the three major groups identified in Figure 5b are seen
to comprise alkali/alkaline earths, transition metals, and lanthanides.

3.3. Proposed candidates across combinations of catalysts and operating conditions

Different metal elements in the mixed metal oxides, their molar proportions, interactions with the
support they are impregnated on, and even the operating conditions are known to exhibit synergies
impacting reaction performance, from the discussions thusfar. Most literature, until recently had
deemed to achieve the best performance only if Mn, Na or K, and W were present [43]. The
combinatorial explosion in navigating the design space of these catalyst and operating condition
descriptors to create serendipity in proposing new candidates, is demonstrated by goal-driven
sampling discovery via Bayesian optimization for C2 yield maximization as shown in Figure 6a.
Alternatively, using the NSGA-2 genetic algorithm to solve multi-objective optimization in the
decision space of catalyst and operating condition descriptors to maximize methane conversion
and C2 selectivity, was seen to take longer to converge to values of maximum C2 yields, as seen in
Figure A5.

Table 1. Best candidates for C2 yield maximization in the space of catalyst and operating condition
descriptors across sampling iterations of Bayesian optimization.

Catalyst Mlatom M2atom M3atom Mlmol% M2mol% M3 mol% SupportID T(°C) time(s) V(ml/min) Vcpy (ml/min) CHy: Oy | Yo%
Mn-Na2WO4/CeO2 | 25 11 74 40.00 40.00 20.00 5 700.00 0.75 10.00 2.00 2.00 8.71

Mn-Li2Mo0O4/Si0O2 25 3 42 40.00 40.00 20.00 11 775.00 0.75 10.00 7.30 6.00 9.07

Ti-Na2WO4/Si02 22 11 74 40.00 40.00 20.00 11 700.00 0.75 10.00 2.40 4.00 9.78

Mn-FeMo0O4/Si02 25 26 42 40.00 40.00 20.00 11 850.00 0.38 20.00 4.50 3.00 10.92
Mn-CaWO4/Si02 25 20 74 40.00 40.00 20.00 11 700.00 0.38 20.00 4.50 3.00 11.63
Fe-Li2M0O4/Nb205 | 26 3 42 44.81 27.25 26.48 8 81549  0.65 15.76 11.26 2.69 12.32
Mo-Li2Mo0O4/ZrO2 42 3 42 44.24 27.44 26.84 13 821.44 049 16.37 6.30 5.73 12.80
Mo-Na2MoO4/ZrO2 | 42 11 42 44.02 27.77 26.37 13 799.38 0.70 10.16 3.62 5.59 13.73
Mn-CaWO4/TiO2 25 20 74 44.17 27.01 26.96 12 72627 0.38 15.31 12.00 4.60 15.07
Cu-K2WO04/Si02 29 19 74 44.49 27.94 26.83 11 82397 0.74 17.49 3.30 4.81 17.11
Ti-K2MoO4/SiCnf 22 19 42 44.44 27.54 26.10 10 799.36  0.49 15.55 2.11 4.26 17.42
V-K2WO4/CeO2 23 19 74 44.98 27.74 26.68 5 78446 0.50 12.53 212 5.73 17.53
Mn-K2MoO4/SiCnf 25 19 42 44.93 27.70 26.99 10 818.22 0.73 15.25 2.10 5.94 19.04
Ti-MgMoO4/ZSM-5 | 22 12 42 44.11 27.03 26.21 14 790.11 050 17.69 2.20 225 19.25
Mn-Li2WO4/Si02 25 3 74 44.87 27.80 26.99 11 804.92 051 18.37 2.01 5.48 19.36

The descriptor values of the 50 individuals (annotated with black numbers in increasing order
of the C2 yields) at the end of 3000 solution generations have been visualized in a 2d t-SNE plot of
Figure 6b. Additionally, the descriptors corresponding to the best C2 yield among the samples picked
by the acquisition function in each iteration of the Bayesian optimization have also been visualized in
the 2d t-SNE plot, and are annotated in pink by their sampling indices in increasing order of the C2
yields. The descriptors corresponding to the experimental dataset are also visualized on the t-SNE plot,
and all the points are shaded by their associated C2 yields predicted by the RF models. The catalysts
proposed by the multiobjective optimization was found to have a narrow field focus in proposing
candidates, as most of the catalysts proposed were MnWOQO, doped with alkali/alkaline earth metals
on either SiC, SiCnf or SiO, supports at their respective optimal operating conditions. Hence, only
the descriptor candidates corresponding to the best C2 yields among the sampling iterations from
Bayesian optimization have been presented in Table 1. It can be seen that a number of new candidates
like mixed metal oxides of transition metals on a wide variety of supports have been proposed to
have comparable performance as the best performing Mn-Na-W family of baseline catalysts. However,
no new mixed metal lanthanide oxides have been proposed. Lanthanide group elements have been
reported to hinder the exposure of WO2~, and thereby lower catalytic activity [11]. The feasibility
of synthesizing the tabulated catalysts, characterizing them and designing experiments around the
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specified optimal operating conditions, encourages goal-driven approaches to experimentation in the

future.
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Figure 6. Goal-driven design of experiments to maximize C2 yields by evaluating combinations of

catalyst constitutents and operating conditions.

4. Conclusions

This work develops a descriptor-based random forest regression model that maps to the reaction
KPIs of methane conversion and C2 selectivity furnished in the HTE dataset for OCM chemistry,
spanning a wide variety of catalysts and operating conditions. The synergies among the catalyst

constituents and operating conditions impact the conversion of reactant methane to selectively form
ethane and ethylene by suppressing their undesirable total oxidation to form CO,. Ethane and ethylene
are viable platform chemicals in polymer processing. The feasibility of their industrial production
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necessitates the OCM reactions to be designed with catalysts and operating conditions resulting in
C2 yields greater than 30%. Most literature and trial-and-error experimental efforts have fallen short.
Also, the maximum reported C2 yield in the HTE dataset in this work is 20%, within the limits of
the total carbon balance. This limits the models trained herein to make higher predictions. However,
the focus is to deploy the models in (i) screening catalysts to identify relationships between catalyst
properties and reaction KPlIs, (ii) optimizing the operating conditions for catalyst formulations in
the HTE datasets to maximize both methane conversion and C2 selectivity, and (iii) proposing new
catalysts and their optimal operating conditions by a goal-driven Bayesian optimization for C2 yield
maximization to guide future experimentation. The ability of the RF models to capture lumped kinetics
has been validated and is shown to reveal patterns among SiO, supported catalysts, and among
MnWQOy catalysts across different supports, in the space of the estimated kinetic parameters. The RF
models were found to improve the C2 yield by ~ 15% on average when used to optimize operating
conditions for catalysts in the HTE dataset to meet both methane conversion and C2 selectivity targets.
Screening the catalysts in the space of the best performance achieved across a range of operating
conditions along the S-X curves are found to reveal similar patterns, as in the space of the kinetic
parameters estimated by the RF model. A number of transition metal oxides on different supports have
been proposed by the Bayesian optimization routine, but lanthanide metal oxides were not sampled.
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Appendix A

Appendix A.1. Assessing the random forest regression model
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Figure A1l. Parity plots between the model predictions for methane conversion and C2 selectivity
against the experimental data shaded by the total carbon balance.
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Appendix A.2. Tabulation of LHS sample points

Table Al. Points sampled by LHS from the space of operating condition descriptors

T(°C) time(s) V(ml/min) Vcpy (ml/min) CH4:02 (mol:mol)

756.17  0.60 21.62 10.92 15.41
74783 041 21.04 10.42 16.67
75117 0.53 20.88 10.08 12.74
752.83 047 21.63 10.75 12.29
74950 0.72 21.13 10.58 19.54
75450 0.66 21.21 10.25 10.70

Appendix A.3. Fits and orders of power-law kinetic parameter estimation
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Figure A3. Regression fits for the estimation of power-law kinetic parameters
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Figure A4. Estimated orders for the consumption of methane (a),(b), and those for the C2 formation
(c),(d) for different catalysts.

Appendix B

Table A2. Performance curve conditions to improve C2 yields as compared to the best reported values
in the HTE dataset for MnNay; WO, catalysts with different supports

Catalyst

Experimental

SX performance curve

CH£O2 (mok:mol)

TCC) _fime(s) _V(ml/min) _Veps (ml/min) max Yo, _TCB% | T(CC) __time(s) _V(ml/min) Ve (ml/min) _CH&O2 (molimol) _max Yo, Yoy improvement’s
Mn-Na2WO4/BN 80000 050  15.00 9.60 3.00 7.75 285 | 78733 071 1237 205 526 436 85.30
Mn-Na2WO4/MgO | 800.00 050  15.00 340 3.00 9.32 605 | 81279 046 1567 210 561 1547 66.02
Mn-Na2WO4/A203 | 750.00 038  20.00 12.80 3.00 8.08 11504 | 82276 040 1844 215 319 11.21 3877
Mn-Na2WO4/$i02 | 80000 050 1500 3.00 2.00 21.03 071 | 78805 053 1395 210 539 18.72 -10.99
Mn-Na2WO4/SiC 80000 050  15.00 340 3.00 19.59 206 | 80830 059 1655 206 5.66 19.90 1.59
Mn-Na2WO4/SiCnf | 800.00 038 2000 400 2.00 19.15 183 | 81297 059 1474 204 5.79 19.69 2.80
Mn-Na2WO4/BEA | 800.00 038  20.00 450 3.00 15.56 077 | 79261 050 1274 204 523 16.33 493
Mn-Na2WO4/ZSM-5 | 800.00 038 2000 450 3.00 19.90 194 | 817.63 067 1258 209 581 19.36 271
Mn-Na2WO4/TiO2 | 750.00 038  20.00 400 200 18.29 560 | 82157 057 1480 211 531 1871 229
Mn-Na2WO4/ZrO2 800.00 0.38 20.00 4.80 4.00 1121 -3.64 793.97  0.60 14.02 2.05 5.26 18.28 63.11
Mn-Na2WO4/Nb205 | 800.00 038  20.00 12.80 3.00 825 41121 | 81340 062 17.65 211 586 1381 67.44
Mn-Na2WO4/CeO2 775.00 0.75 10.00 2.00 2.00 18.04 0.23 819.77  0.55 18.39 215 5.94 16.62 -7.86
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Table A3. Performance curve conditions to improve C2 yields as compared to the best reported values
in the HTE dataset for mixed metal oxides on 5iO, support.

Catalyst Experimental conditions 5-X performance curve conditions
TCC) _time(s) _V(ml/min) Vcps (ml/min) __CH&O2 (molmol) _max Yo, _TCB% | T(°C) __time(s) _ V(ml/min) _Vcpy (ml/min) _CH4O2 (molmol) _max Yo, _ Yop improvement’

Mn-LiZWO4/5i02 | 80000 050  15.00 3.00 2.00 1881 929 | 79370 047 1326 2.00 594 1877 021

Mn-MgWO4/5i02 | 77500 050  15.00 3.00 2.00 16.08 592 | 80543 045  13.66 209 5.87 1859 15.59
Mn-K2WO4/Si02 | 77500 075  10.00 200 200 1855 312 | 82003 0.61 17.14 212 5.28 1847 045
Mn-CaWO4/5i02 | 850.00 038  20.00 480 400 851 1087 | 87022 039 1795 202 5.08 1255 47.46
Mn-SrWO4/5i02 850.00 038  20.00 480 400 10.65 1274 | 83307 039 1857 2.06 577 1261 18.40
Mn-BaWO4/5i02 | 850.00 038  20.00 510 600 1017 1348 | 78844 052 19.85 1202 484 10.05 116
Mn-Li2MoO4/5i02 | 800.00 038  20.00 4.00 200 14.00 774 | 76954 063 1126 213 5.98 1645 17.53
Mn-Na2MoO4/Si02 | 77500 050  15.00 3.00 200 1543 058 | 79853 054  17.36 214 5.02 16.01 374

Mn-K2MoO4/$i02 | 800.00 038  20.00 450 3.00 16.60 661 | 81459 047 1299 203 5.06 16.13 284
Mn-FeMoO4/5i02 | 850.00 038  20.00 510 6.00 1257 769 | 84037 044 1754 202 5.05 1163 745
Mn-ZnMoO4/Si02 | 850.00 050  15.00 3.90 600 12.96 1570 | 85603 041 19.40 206 5.38 11.78 913
Ti-Na2WO4/5i02 | 800.00 075  10.00 2,00 200 2023 912 | 800.11 071 1222 210 511 1721 -14.95
V-Na2WO4/5i02 77500 050 1500 6.00 2.00 858 408 | 81224 040 1994 2.09 324 1359 58.34
Fe-Na2WO4/Si02 | 800.00 075  10.00 2,00 200 1524 516 | 81221 049 1608 205 531 17.16 1259
Co-Na2WO04/Si02 850.00 0.38 20.00 4.50 3.00 16.14 7.41 823.83 0.51 14.33 214 5.90 17.64 9.32

Ni-Na2WO4/5i02 | 800.00 050  15.00 3.00 200 17.66 801 | 80645 047 1285 206 5.64 17.74 047

Cu-Na2WO4/5i02 | 800.00 038  20.00 8.00 200 9.11 559 | 79612 040  17.58 202 257 1291 4173
Zn-Na2WO4/Si02 | 850.00 038  20.00 4.00 2.00 1262 719 | 78846 040  17.83 215 2.00 13.01 3.10

Y-Na2WO4/Si02 850.00 050  15.00 340 3.00 1256 345 | 80148 0.68 11.28 204 5.18 14.50 1541
ZrNa2WO4/Si02 | 800.00 075  10.00 2.00 200 13.86 269 | 81117 066 1201 209 5.32 1499 814

Mo-Na2WO4/Si02 | 800.00 050  15.00 3.00 200 11.01 1388 | 75600 046  14.00 812 207 1225 1127
Pd-Na2WO4/5i02 | 800.00 075  10.00 2,00 200 1545 282 | 79441 073 1061 215 5.16 15.20 164
La-Na2WO4/Si02 | 850.00 038  20.00 450 3.00 1543 934 | 79040 065  10.89 201 592 16.90 9.50

Ce-Na2WO4/Si02 | 800.00 075  10.00 200 200 16.75 248 | 81508 069 1159 206 555 17.49 439

Nd-Na2WO4/5i02 | 850.00 038  20.00 450 3.00 15.88 943 | 797.14 065 1071 202 583 1877 1817
EuNa2WO4/5i02 | 850.00 038  20.00 4.00 2.00 16.09 848 | 78882 075 1102 215 551 18.46 1471
Tb-Na2WO4/5i02 | 850.00 038 2000 450 3.00 1584 49 | 78010 064 1231 213 592 18.62 17.57
Hf-Na2WO04/Si02 850.00 0.38 20.00 4.00 2.00 16.01 452 824.64 0.70 10.26 2.10 5.57 18.54 15.79
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Figure A5. Genetic algorithm for multi-objective optimization of methane conversion and C2 selectivity
across combinations of catalyst and operating condition descriptors.
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