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Abstract: Nuclear fusion reactors are composed by several complex components whose behaviour
may be not certain a priori. This uncertainty may have a significant importance in the evolution
of fault transients in the machine, causing unexpected damages to its components. For this reason
a suitable method for the uncertainty propagation during those transient is required. The Monte
Carlo method would be the reference option, but it is, in most of the cases, not applicable due to
the large amount of required simulations to be repeated. In this context the Polynomial Chaos
Expansion has been considered as a valuable alternative. It allows to create a surrogate model of the
original one in terms of orthogonal polynomials. Then, the uncertainty quantification is performed
repeatedly calling this much simpler and faster model. Using the fast current discharge in the Divertor
Tokamak Test Toroidal Field (DTT TF) coils as a reference scenario, this method has been applied:
the uncertainty on the parameters of the Fast Discharge Unit (FDU) varistor disks is propagated to
the simulated electrical and electro-magnetic relevant effects. Eventually two worst case scenarios
have been analyzed from the thermal-hydraulic point of view with the 4C code, simulating a fast
current discharge as a consequence of a coil quench. Eventually it has been demonstrated that
the uncertainty on the inputs (varistor parameters) strongly propagates obtaining a wide range of
possible scenarios in case of accidental transients. This result underlines the necessity to take into
account and propagate all possible uncertainties in the design of a fusion reactor, according to the
Best Estimate Plus Uncertainty approach.

Keywords: uncertainty propagation; polynomial chaos expansion; nuclear fusion reactors;
superconducting magnets; numerical modelling

1. Introduction

Nuclear facilities, like fission reactors and, in the future, fusion reactors, are extremely complex
systems both from the physical and technological point of view. For example, in fusion reactors, many
components are first-of-a-kind. The widespread of fusion reactors in the future will be possible if
these technologies will reach the maturity in terms of industrial production. At the same time, the
construction of the first fusion reactors will help to achieve this maturity. However, currently the
behaviour of these components is characterized by intrinsic uncertainties. When simulating a transient,
the latter propagate from the single components to the overall system behavior, possibly leading to
foresee serious damages to the reactor. For this reason it is relevant to estimate the impact of the
uncertainty of the data used as inputs to the model on the final results of the simulations, already
from the design phase. This will allow to set proper thresholds to the uncertainties requested to the
supplier of the different components, to avoid damages to the reactor. The reference option for the
non-intrusive (i.e. not requiring modifications of the model) uncertainty propagation (UP) analysis is
the Monte Carlo (MC) method. This approach is based on the definition and the random sampling of a
set of uncertain inputs, then deterministic calculations with these inputs are performed and the final
results can be aggregated to obtain statistical information about the output.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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However, the use of this method is often not feasible due to the very large amount of simulations
required to reach the convergence, in view of the computational time required to perform each single
simulation with complex high-fidelity codes. To face this problem several different methods have been
proposed in the literature. An option is to reduce the number of simulations for the error quantification
approximating the input distribution rather than the model, like in the Unscented Transform (UT)
technique [1,2]. Another possibility is to build a surrogate model and use it instead of the real model to
perform the uncertainty quantification, like in the Gaussian process modeling [3] and the Polynomial
Chaos Expansion (PCE) [4,5]. The main advantage of this alternative is that the surrogate model is
orders of magnitude faster than the corresponding real model.

The PCE has been employed in this work, using the python module chaospy [6], to analyze the
uncertainty propagation during a Fast current Discharge (FD) in the Divertor Tokamak Test (DTT)
facility Torioidal Field (TF) magnet system.

The uncertainty is given by the parameters of the characteristic of the Fast Discharge Unit (FDU)
varistor, influencing the evolution of the coil current during FD. This causes both electrical (e.g.
modification of coil peak voltage, variation of deposited energy in the FDU, etc.) and electro-magnetic
(EM) drawbacks. Indeed, varying the evolution of the coil currents means varying the magnetic
field time derivative which translate into a modification of the eddy currents induced within the
TF coil casing, and, as consequence, a modification of the Joule power deposited. In this work, the
uncertainties on the above mentioned results have been assessed using PCE. The electrical results have
been obtained by an object oriented model developed using the Modelica language in the open source
environment OpenModelica [7]. The uncertainty obtained with PCE has been benchmarked against
the MC method, since computational time was still reasonable. On the other hand the EM results have
been computed with 3D-FOX [8]. In this case the benchmark of the PCE outcomes with those of MC
was impossible due to the excessive computational time required by the EM simulations. For this
reason a benchmark of the results obtained with PCE against the UT method is proposed.

Eventually, from the statistical distribution of EM results two worst case scenarios have been
identified and used as input to the thermal-hydraulic (TH) model, developed with the 4C code [9].
A fast discharge triggered by a quench initiated at the minimum temperature margin location in the
coil has been analyzed. These analyses allowed to demonstrate that the uncertainty on the input data
(varistor parameters) will lead to a wide range of possible accidental transients which must be carefully
considered not to overlook some scenario pontentially dangerous for the machine integrity.

2. Methodology

The analysis of the TF FD transient described in this work can be divided in three consecutive
sub-blocks related to the three pieces of physics considered in the analysis:

*  Electrical (EL) simulation of the magnet power supply system;

*  Electro-Magnetic (EM) modeling of the TF coil casing to evaluate the Joule power generated by
eddy currents induced in it during the transient;

*  Thermal-hydraulic (TH) analysis of the magnet to assess the effect of the Joule power deposition
in the casing and AC losses in the superconducting (SC) cables on the coil performance.

The logical connections between the three physics analyzed in the sub-blocks, as well as their main
outcomes are schematically represented in Figure 1.
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Figure 1. Logical connections between the three physics (and sub-blocks), and related results.

2.1. Electrical model

The power supply circuit of the DTT TF coils and its FDUs have been simulated by means of an
object oriented model developed in OpenModelica [10]. The structure of the electrical circuit is taken
from [11]: the eighteen TF coils are splitted in three groups of six coils each, connected in series; and
the three groups are in turn connected in series among them and with the three FDUs, alternating one
FDU and one group of coils. Each TF coil is modelled considering the self inductance and the mutual
inductances of the other TF coils, based on the inductance matrix of the DTT TF system [12], solving
the following equation:

N dal: )
AVi=Y Lj;- de] ic1,N], (1)
j=1

where L is the inductance matrix and N is the number of TF coils in the tokamak (18 in DTT). The
inductance matrix L is square and has the coils self inductances on the main diagonal and the mutual
inductances out of the main diagonal.

The FDU is modelled as the parallel of the dumper and an ideal switch normally closed; when the
fast discharge is triggered, the switch is opened forcing the current to flow through the dumper. In the
meanwhile the power supply, modelled as an ideal current generator (forcing the nominal current of
42 5kA in DTT [13]) taken from the Modelica Standard Library [7], is disconnected from the circuit so
that the current in the loop decreases. The FDU dumper is composed of a collection of varistor disks
[12], modelled here as an equivalent single disk whose characteristic is described by the following
equation.

AV =K-IP. )

The two parameters describing the varistor behaviour (K and p) are affected by epistemic uncertainty
(i.e. there is a lack of knowledge of their values due to fabrication processes). Indeed, they can be
assumed as uniformly distributed in the following ranges:

K € [8.134,13.05], 3)

B € [0.562,0.595] )

and have been considered here as statistically independent. When trying to numerically predict the
behavior of the TF coil system during a FD, the uncertainty of these parameters is then propagated
through the analysis of all the model sub-blocks, requiring an uncertainty propagation analysis.


https://doi.org/10.20944/preprints202312.0758.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0758.v1

40f16

2.2. Electro-Magnetic model

The EM model for the evaluation of the eddy currents induced in the coil casing during the FD
is developed within the 3D-FOX, a finite element electromagnetic code developed at Politecnico di
Torino [8]. The model solves Faraday’s and Ampere’s laws using the A-formulation. The eddy currents
distribution is then used to evaluate the power distribution in the TF coil casing by means of the Ohm’s
law. The Joule power deposition is suitably averaged before providing it as input to the TH model, as
explained in [8].

The simulation setup is the same presented in [8], adding cyclic periodic boundary conditions
to the model of a single TF coil to exploit the periodicity of the tokamak to simulate the effect of the
simultaneous discharge of all the TF coils.

2.3. Thermal-hydraulic model

The model of the DTT TF coils developed within the 4C code [9], presented in [14] and used for
the simulation of several transients, is adopted for the TH analysis. The TH simulation setup are taken
from [15], while the logical connection between the EM module (3D-FOX) and the TH one (4C code) is
reported in detail in [8].

2.4. Uncertainty propagation analysis

One of the aims of the uncertainty propagation is to evaluate the impact of the uncertainties of the
inputs on the outputs of a generic model and to asses how they affect the performance of the system
represented by the computational model. Usually, UP is a demanding activity requiring a large amount
of expensive simulations. At the same time, UP is mandatory since uncertainties can have a dramatic
impact on the performance of nuclear systems. In fact, one of the most recent methodologies for the
licensing of nuclear system is the so called Best Estimate Plus Uncertainty method [16,17], where the
output is provided together with its uncertainty. This approach is progressively substituting the more
traditional conservative approach.

To reduce the computational burden of the UQ, several methods have been proposed in the
literature. In this work, the Polynomial Chaos Expansion has been used, together with the Unscented
Transform for verification purposes, benchmarking the two methods. Only in the case of the EL
model, the Monte Carlo approach has also been used as a further reference benchmark, thanks to the
sufficiently short computational time of the detailed model.

2.4.1. Polynomial Chaos Expansion

The Polynomial Chaos Expansion approximates a stochastic model M (X), where the stochastic
nature comes from the uncertainty of the inputs (X), through a series of orthogonal polynomials. The
random vector X is represented by a joint probability distribution which, in the case of independent
variables (as in this work), is simply the product of the single marginal probability density functions
associated with each input. It is possible to express the model M in terms of an expansion of orthogonal
polynomials ¥ selected according to the joint distribution of the input:

oo C
MX) =) a¥e(X)~ ) ac¥e(X), (5)
c=0 c=0

where a are the coefficients of the multivariate orthogonal polynomials. The infinite sum in eq. (5)
must be truncated at the first C terms due to practical reasons. The total number of terms C in the
polynomial expansion depends on the polynomial order p and on the dimension of the input d and,
according to the total degree truncation scheme, it is:
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There are several techniques for the evaluation of the polynomial coefficients, which are the
unknowns of the PCE method. Some of these techniques are intrusive, requiring the modification
of the model equations (e.g. stochastic Galerkin method [18]), others are non-intrusive, where the
computational model is treated as a black-box (e.g. pseudo-spectral projection, point collocation [19]
and stochastic testing [20]). In this work, the pseudo-spectral projection method implemented in
chaospy has been used.

In the pseudo-spectral projection method, the coefficient of eq. (5) are computed through a
quadrature integration scheme as:

o0 I
e = [ IXMOOELOW(N) & 1 M) Ee(X 0 (X) @
oo i=1

where X = Xj, X, .., X] is the vector of quadrature nodes generated according to the chosen
quadrature rule, w(X;) are the corresponding weights and M (X;) are the exact model evaluations
at node X;. Thus, knowing the values of M (X;) for all the nodes and the appropriate expansion of
orthogonal polynomials, it is possible to compute the coefficients a. and a surrogate model of M (X)
according to eq. (5). Hermite and Legendre polynomials are typically used as orthogonal polynomials
for Gaussian and uniform distributions, respectively; see [5] for a more detailed description about
the relation between the type of distribution and the most appropriate orthogonal polynomial set.
Once the Is exact model simulations have been performed, the polynomial metamodel can be used
to evaluate the first moments of the output distributions (i.e. mean and variance), but also the
complete distributions and other quantities like Sobol” sensitivity indices, which allow to rank the
input parameters based on how much they affect the uncertainty of the output.

In principle, the surrogate model is able to reproduce the results of the exact model inside the
range of validity of the input distributions, with the advantage of being much faster and simpler. It
is this peculiar characteristic which justifies the use of the metamodel for uncertainty quantification
purposes.

2.4.2. Unscented Transform

The intuition upon which the Unscented Transform technique is based is that it is simpler to
approximate the distribution of the inputs rather than approximate the model used to generate the
output distribution. The approximation of the input distribution is obtained generating a set of sigma
points that represent the probability distribution of the input and which are used to feed the exact
model. According to the literature [21], 2d+1 sigma points are sufficient to get a good representation
of the input and of the mean and variance of the output, where d represents the dimension of the
input perturbed data. The UT generally requires less simulations than the PCE, but it gives a limited
amount of information (namely the first two moments of the output distribution), assuming a Gaussian
distribution for the output. However, in some cases, it could be sufficient to know the mean and the
variance of an output distribution, making the UT an interesting technique for preliminary evaluations.

Among the several algorithms presented in literature, here the so called Generalized Unscented
Transformation [22] has been employed, since it allows to deal with constrained sigma points like
those generated starting from the uniform distributions in eq. (3) and eq. (4) for the DTT FDU input
parameters at hand, avoiding to have non-physical sigma points outside of the prescribed distributions.

In this work, the UT has been employed to check that at least the first two moments calculated with
the PCE are correct, to add an additional benchmark also in the EM model in which the comparison to
the MC was not viable due to excessive computational time of the detailed model.
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3. Results

In this section the results of the three modules are summarized, including the statistical analysis of
the uncertainty propagation, from the inputs to the outputs of both EL and EM models. The generation
ans simulation of a TH worst case scenario, selected according to the uncertainty quantification
analysis, is also presented.

3.1. Results of the Electrical model

The EL model is sufficiently fast to allow the analysis of its uncertainty propagation on the
results by a Monte Carlo approach. For this reason a MC analysis has been developed exploiting the
interoperability of Python and Modelica assured by OMPython [7] and DyMat packages. The MC
method simply consists of sampling a large number N of random points from the input distribution
and performing a simulation for each of these points giving a result ¢;. In the MC algorithm the
average results ¢y are computed as:

L ®)

Z |

N
In=1),
i1

Together with the average value both standard deviation (STD) and relative standard deviation (RSD)
are computed, according to the following equations:

N

STD(En) = | 30 L (6 ~ T2 ©
i=1

RSD(zy) = SLPEN) (10)

inv-VN
The RSD is used as indicator to stop the sampling of random points once the required tolerance
is reached. In this case, the required tollerance for the RSD was 0.1%, and was reached after ~
28500 simulations. The Equation (10) underlines one of the main drawbacks of MC, namely its slow
convergence (as 1/+/N), asking for a large number of simulations.

The statistical distributions of the following four relevant results have been obtained from the
MC run and are reported in Figure 2:

* T — time required for the current to decrease from nominal value to 0.1 A;

e I2it= fot I?(t")dt', considering its asymptotic value, which is proportional to the energy extracted
from the TF coils during the FD;

e  AVrpy — peak voltage on the FDU during the discharge;

e AVrp — peak voltage on the TF coil during the discharge.

The resulting mean values of the monitored variables and their standard deviations are reported
in Table 1.

The same model has been analyzed using the PCE to reduce the required number of simulations
to obtain the same statistical information. Quadrature and polynomial orders from 1 to 3 have been
tested and the results have been compared to those of the MC method, obtaining extremely good
agreement for all the monitored variables using order 3, as it is shown in Figure 3. Indeed the norm 2 of
the relative difference between the MC and PCE order 3 distribution results in a maximum discrepancy
of 0.05 % between the two.

This allows performing only sixteen simulation of the detailed model as training set. In fact, in
the case of the pseudo-spectral projection method, the number of simulations required is given by
(p +1)4, where p is the polynomial degree at which the truncation occurs (3 in this case) and d the
dimension of the input space (2 in the case at hand). This choice results in a polynomial with 10 a.
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coefficients, according to eq. (6). Here, the quadrature nodes and the weights have been obtained using
the Gaussian quadrature rule.

ma 0.4

= 0.2

0.0
0.9915 15 20 4 6
T[s] 12 t[GA? - 5]

(@) (b)

0.0004
— — 0.002
| 0.0003 I
S %
0.0002
S 2 0.001
0.0001
0:0000 4000 6000 0,000 600 800 1000 1200
AVpeak [V] AVpeak, TF [V]

© (d)

Figure 2. Statistical distribution of (a) 7, (b) I? - t, (c) AVepy and (d) AVrp obtained with the MC
method.

Table 1. Comparison between the mean value and standard deviation of the monitored variables using
the MC, PCE and UT methods.

Variable V+2.0
MC PCE UT
T [s] 14.77 £4.70 14.76 +4.69 14.77 £ 4.69
AVepu [V] 5065.85 4+ 1708.03 5067.26 £ 1708.40 5067.27 4+ 1698.46
AVrE [V] 843.98 4 284.56 844.21 £ 284.62 844.22 + 28297

I? - t[GA? - §] 4.67 +1.58 4.67 +1.57 4.67 +1.57
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Figure 3. Statistical distribution of (a) T, (b) I? - t, (¢) AVrpy and (d) AVyp obtained with the PCE
method. Comparison between performances of different PCE quadrature orders are shown for each
distribution.

To better highlight the accuracy of the PCE results the comparison between the mean values and
their standard deviation obtained with MC and PCE is reported in Table 1. Using the PCE it has been
possible to evaluate also the current and 12 - t evolution. Knowing the statistical distribution of each
point in the evolution, it has been possible to evaluate an average evolution and a 1 — 99% confidence
interval, for both variables, reported in Figure 4.
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Figure 4. Average evolution of (a) current and (b) I? - t with respective 1 — 99% confidence range
evaluated with PCE.

Eventually, the UT method has been applied as well. In the framework of the EL model its
application is not particularly relevant since the reduction of the required number of simulation is
limited (five simulation instead of sixteen) and the amount of statistical information is limited to
the average and the standard deviation, without providing effective information on the distribution.
However this method has been introduced as a useful benchmark for the EM model in which the MC
method can not be applied due to the excessive computational cost.

The five UT sigma points have been generated according to the Generalized Unscented
Transformation algorithm and the results are summarized in Table 1, showing very good agreement
between the three methods. Indeed, the maximum relative error on the computed mean values is
~ 0.06 % (smaller than the tolerance imposed to check the convergence of the MC run), while the
maximum relative error on the computed variance is ~ 0.6 %.

The results show a non-negligible variance, justifying the necessity to further propagate the
uncertainties through the EM model. In particular, as the relative standard deviation on the outputs of
the EL model, computed as 0/ V is generally larger than that on the input distributions in eq. (4) and
eg. (3), the electrical model seems to amplify the uncertainties.

3.2. Results of the Electro-Magnetic model

The MC method was not applicable to the uncertainty propagation analysis in the EM model due
to the increase of the computational time (~ 1day/simulation) of the detailed model. For this reason
the PCE of quadrature order 3 has been used to build a surrogate model of the detailed one, based on
its results, since it proved to be accurate to replace the detailed EL model too. The 3D-FOX calculates
the evolution of the power P(t) deposited in the TF coil casing. The monitoring variables have been
extracted from this evolution, considering:

*  The peak of the deposited power Ppu;
*  The overall deposited energy E = fot”‘d P(t)dt.

The statistical distributions of the peak of the deposited power and of the energy deposited are reported
in Figure 5: they highlight how the uncertainty on the inputs translates into a huge uncertainty on the
peak power and deposited energy. Neglecting this uncertainty propagation may lead to disregard the
worst case scenarios connected to this transient, concerning e.g. its TH effects.

The average value and the standard deviation of the peak of the deposited power and of the
deposited energy computed with the PCE have been benchmarked against those evaluated with the
UT. The comparison of the results is shown in Table 2.
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Figure 5. Statistical distribution of (a) peak of the power deposition and of (b) deposited energy,
obtained using PCE with quadrature order 3.

Table 2. Comparison between the mean value and standard deviation of the peak power and the
deposited energy evaluated with PCE and UT.

Variable V+2.0
PCE UT
Priax [MW] 1.01 + 0.62 1.00 + 0.61
E [M]] 442 +1.40 442 +1.40

The benchmark shows an excellent agreement between the PCE and the UT. This does not
guarantee the accuracy of the statistical distribution obtained with PCE, but suggests that the metamodel
developed reproduces properly the main statistical data, namely the mean and the variance.

As already done for the evolution of the current and of I 2.t in the EL model analysis, here the
average power evolution and its 1 — 99% confidence range have been calculated using the PCE and
are shown in Figure 6.

0 10 20
Time [s]

Figure 6. Average evolution of the power deposited within the TF coil casing with its 1 — 99%
confidence range evaluated with PCE.
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The width of the 1 — 99% confidence range highlights the importance of considering the
uncertainty on the input data to evaluate the worst case scenario to be retained for the analysis
of this transient. Moreover, the impact of the uncertainty is much larger in the first part of the transient
(peak region). This is expected since the first part of the transient is driven by the large value of the
time derivative of the current at the beginning of the FD, strongly affected by the K and  parameters
of the varistors. On the contrary, the last part of the transient is less affected by the uncertainty of the
inputs, as the time derivative of the current is reduced, reducing consequently the power deposited.

A further benchmark of the metamodel based on PCE is performed applying it to the inputs
represented by the sigma points generated for the UT computations and comparing the results to those
obtained in those points with the detailed EM model (3D-FOX). To ensure a fair benchmark, the UT
sigma points used do not belong to the PCE model training set.

The comparison is shown in Table 3 including the relative error £y on variable V obtained as:

_ Vpce — Vap-rox (1)
Vap_rox

The larger relative discrepancy is smaller than 0.5%, which is considered a satisfactory accuracy.
This benchmark does not guarantee the level of accuracy for the entire parameter space (K, B),
but demonstrates that the model is able to reproduce properly the detailed model results in the
entire parameter space, covered by the UT sigma points. In fact, by definition, the sigma points are
constructed by the UT algorithm to cover in the best possible way the input space, with the smallest
number of points.

Table 3. Comparison between the peak power obtained using the 3D-FOX and the PCE metamodel
using as input the UT sigma points (¢) as input parameters.

Piax3p-Fox  Puax,pCE Relative Esp-rox Epce [M]] Relative
[MW] [MW] Error - [M]] Error - ¢
8Ppeak

o0 0.975 0.977 +0.28% 4.40 4.40 —0.03%
) 0.628 0.625 —0.45% 3.51 3.51 —0.11%
03 0.726 0.728 +0.31% 3.82 3.82 +0.01%
oy 1.39 1.39 +0.28% 5.28 5.28 +0.02%
05 1.30 1.30 +0.05% 5.08 5.07 —0.06%

3.3. Identification of the worst case scenarios

The relevant worst case scenarios (WCSs) to be used as input to the TH model must now be
identified. In the WCS selection both EL and EM aspects must be considered. Indeed, a fast current
discharge is fundamental to promptly protect the magnet from the quench, but at the same time
deposits a lot of energy in the coil casing, contributing to the coil temperature increase. For this reason
it is relevant to evaluate the (K, B) couples which cause the slowest discharge (WCS1) and that lead
to the highest energy deposition in the coil casing (WCS2), and perform their TH analysis. The two
scenarios are clearly distinct, as the slower is the discharge, the smaller is the energy deposited in the
casing (driven by the time derivative of the current). Thus they will be generated by points standing at
the opposite boundaries of the (K, B) plane. This statement is confirmed by Figure 7 in which the T and
deposited energy values have been mapped, using the PCE model, on the (K, p) plane. The specific
values of K and § generating the two WCSs are (K = 8.134, B = 0.562) for WCS1 and (K = 13.05,
B = 0.595) for WCS2.
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Figure 7. Map of (a) T and (b) energy deposited in the coil casing in the K, B plane.

Using these values of K and §, the inputs to the TH model have been computed.

The first required input is the evolution of the coil current, evaluated with the EL model and it
is reported in Figure 8(a). As expected, the two evolutions are very different and this will strongly
influence the quench evolution.

0 10 20 30 0 10 20

Time [s] Time [s]
(@) ®)

Figure 8. Evolution of (a) current and (b) total power deposited in the coil casing during the two WCSs.

The second required input is the power deposited in the casing, including both its evolution
and distribution (to account for its non-uniformity). The PCE metamodel has been trained on a
set of 3D-FOX simulations considering the evolution of the overall power deposition, to reduce the
computational cost. Therefore, a dedicated run of the 3D-FOX has been performed for each of the two
selected WCSs to prepare the detailed input to the 4C code, namely the spatial discretization of the
power deposition in the casing [8]. The total power deposited in one TF coil casing in the two WCSs
is reported in Figure 8(b), confirming that the fastest discharge is actually responsible of the larger
energy deposition.

3.4. Results of the Thermal-Hydraulic model

The inputs have been adopted to simulate a FD triggered by the magnet quench. In the simulation
the quench has been obtained by a local heat deposition at the location where the minimum temperature
margin is computed in nominal operation, i.e. in the first turn of the two central pancakes at inboard
equator. In this work, 50 kW /m of external power (e.g. a very concentrated beam of particles coming
from the plasma) have been deposited in 10 cm of SC cable around the minimum margin location
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of pancake 6 for 0.1 s. The power deposition erodes the temperature margin leading the magnet to
quench initiation and propagation. The FD is triggered by the quench detection system when the
voltage computed across the coil overcomes the 100 mV threshold, waiting then for a validation time
of 1.5 s [23] to reduce the spurious detections.

The evolution of the voltage computed with the 4C code in the two WCSs is reported in Figure 9.
The WCS2, characterized by a faster discharge, leads to a faster response to quench protection, reducing
the quench propagation (and therefore the voltage buildup) in the Winding Pack (WP). Due to the
inter-pancake thermal coupling, the neighbouring pancakes (namely, 5 and 7) are also heated up,
possibly quenching. However, the voltage raise in pancakes 5 and 7 is almost negligible in WCS2 due
to the faster reduction of the current; on the contrary, in WCS1 the delayed current decrease causes a
quench initiation and propagation also in those pancakes. Quench initiation in pancake 7 is slightly
delayed with respect to pancake 5 due to the smaller magnetic field there, being if further away from
the coil center.
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—-—- WCS2 - P#6
2500 —— WCS1 - P#5
—-—- WCS2 - p#5 [30 % 8 01 T 16 s
% 2000 — WCSL-P#7 | = Tme [s)
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<
1000 CanTSERN
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0 | s —_———— ||
0 5 10 15 20 25
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Figure 9. Voltage evolution computed in pancakes 5, 6 and 7 in both WCS1 and WCS2. The current
evolution for WCS1 (solid) and WCS2 (dashed) is also plotted, to be read on the right axis.

The two scenarios also differ in term of the hot-spot (HS) temperature, that may lead to permanent
damages to the coil. Indeed, as shown in Figure 10 where the HS temperature reached during the
transient is plotted for each pancake, the hot spot temperature is larger, in the central pancakes, in
the WCS1, featuring a larger Joule power deposition. Opposite trend is observed in side pancakes
(e.g. pancake 1) in which the quench is not initiated and the heating is due to the thermal contact with
the casing, where eddy current power is deposited. Given that the power deposition in the casing is
larger in WCS2 (see Figure 8(b)) also the power transferred from the casing to the WP is larger and
thus the conductor temperature increases more. From the bar plot in Figure 10 it is also possible to
appreciate the effect of the inter-pancake heat diffusion, visible from the progressive temperature
decrease moving far away from the quenched (central) pancakes.

The importance of reducing the current in the fastest possible way is clear comparing the hot spot
temperature in the two scenarios. Indeed, HS temperature is much larger in WCS1, due to the faster
current decrease in WCS2. On the contrary, the temperature increase in the side pancakes, given by
the eddy current power deposition in the casing, is similar in the two cases, despite the consistent
difference in the casing power deposition between them, as can be seen from Figure 8(b). Actually,
the timescale of the heat transfer from the casing to the WP is quite slow if compared to the current
discharge duration, also in the slower WCSI.
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Figure 10. Maximum hot spot temperature reached in each pancake during the transient, for both
WCS1 and WCS2.

These results show that the uncertainty on the characteristic parameters of the varistors leads,
eventually, to a wide range of quench evolutions. Increasing as much as possible the precision on
the varistor parameters during their manufacturing is fundamental to have reliable predictions and
therefore a safe reactor operation. Moreover, the preferable direction in the refinement of the varistor
characteristics is that leading to faster current discharges; this, despite the larger power deposition
in the coil casing due to eddy currents, ensures a faster response to the quench and thus limits its
propagation, reducing the HS temperature and therefore the risk to damage the coil.

4. Conclusions and perspective

In this paper, the Polynomial Chaos Expansion has been adopted to assess the uncertainty
propagation in a transient relevant for the safe operation of a nuclear fusion plant. The uncertainty in
the characteristic parameters of the varistors of the fast discharge units of the DTT TF coils have been
propagated to the computed results during a fast discharge transient. The uncertainty has an impact
on the actual current evolution during the discharge which influences both the eddy currents induced
in the coil casing and the TH behaviour of the coil during the quench propagation.

The current evolution during the discharge has been computed, as a function of the varistor
parameters, with an object oriented electrical model developed using the Modelica language. The
uncertainty propagation from the varistor parameters to the effective current evolution has been
assessed using a surrogate model based on the PCE, which has been successfully benchmarked against
the Monte Carlo approach. The obtained statistical distribution of the current evolution has been used
as input to the electro-magnetic model developed using the 3D-FOX tool to computing, again with
a PCE surrogate model, the statistical distribution of the power (and energy) deposition in the coil
casing due eddy currents.

Eventually, both these results (current and power evolution) have been used to identify two
possible worst case scenarios to be simulated with the thermal-hydraulic model, developed with the
4C code. The two cases are the slowest current dump and the highest power deposition in the casing.

The comparison of the results of the thermal-hydraulic model shows that the considered
uncertainty on the varistor parameters leads to a wide range of different results. For what concerns the
quench protection, the reduction of the current discharge time, reducing the hot spot temperature, is
preferable to the reduction of the power deposited in the casing due to eddy currents.
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The effect of the latter is however important, especially on the hydraulic circuit pressurization
and He venting. In perspective, more detailed models, including also the hydraulic circuits, will be
used to assess this effect.

The application of the statistical methods also to the TH model will in future allow to identify
other worst case scenarios between the two extreme ones analyzed in this work. Moreover, a reverse
analysis will be performed with the aim of suggesting the maximum limits of uncertainty which are
acceptable on the varistor parameters.
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