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Abstract: Japanese encephalitis virus is a mosquito-borne member of the Flaviviridae family. JEV is
the leading cause of viral encephalitis in Asia and is characterized by encephalitis, high lethality and
neurological sequelae in survivors. The virus also causes severe disease in swine, which are an
amplifying host in the transmission cycle, and in horses. US agricultural authorities have recently
recognized the threat to the swine industry and initiated preparedness activities. Other mosquito-
borne viruses exotic to the Western Hemisphere have been introduced and established in in recent
years, including West Nile, Zika, and chikungunya viruses, and JEV has recently invaded
continental Australia for the first time. These events amply illustrate the potential threat of JEV to
US health security. Susceptible indigenous mosquito vectors, birds, feral and domestic pigs, and
possibly bats, constitute the receptive ecological ingredients for spread of JEV in the US. Fortunately,
unlike the other virus invaders mentioned above, an inactivated whole virus JE vaccine (IXIARO®)
has been approved by the US Food & Drug Administration for human use in advance of a public
health emergency, but there is no veterinary vaccine. This paper describes the risks and potential
consequences of introduction of JEV in the US, the need to integrate planning for such an event in
public health policy and the requirement for additional countermeasures, including antiviral drugs
and an improved single dose vaccine that elicits durable immunity in both humans and livestock.
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Introduction

Japanese encephalitis is a potentially severe and fatal disease characterized by non-suppurative
inflammation and damage to the central nervous system (CNS) caused by a member of the Flavivirus
genus, family Flaviviridae. JE virus (JEV) is transmitted principally by Culex mosquitoes, with pigs
and birds as viremic hosts in the amplification cycle. JEV affects a wide area of temperate and tropical
parts of the Asia-Pacific region inhabited by over 3 billion people (Figure 1), with an annual incidence
of approximately 100,000 human cases and 25,000 deaths [1], and a high proportion of survivors have
significant permanent neurological impairment. Notwithstanding preventative vaccination, JE
remains the leading cause of viral encephalitis in Asia [2].
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Figure 1. Geographic distribution of Japanese encephalitis in the Asia-Pacific region. The possible
occurrence of JEV in birds and in a Culex pipiens mosquito pool in Italy is not shown. From Scholarly
Community Encyclopedia (encyclopedia.pub/entry/43099); original reference Srivastava KS et al.
Vaccines 2023;11(4):742.

Pigs are an important amplifying host in the JEV transmission cycle, which is a major threat to
the swine industry as it causes CNS disease, abortion and reproductive failure. Humans and horses,
also affected by the disease, are dead-end hosts and do not develop viremia levels sufficient to infect
blood-feeding mosquitoes. There is an extensive literature available on JE history [3], epidemiology
[4], vector-host relationships [5-8], pathogenesis [9-12], vaccine development and utilization [13-17].

The focus of this paper is on JE as an emerging virus disease with potential for introduction from
Asia and spread in the Americas. This possibility is illustrated by the recent introduction and spread
of other mosquito-borne viruses West Nile (WN), Zika, and chikungunya from the Old to the New
World, the invasion of Europe by another flavivirus, Usutu [18], having a similar transmission cycle
as WNYV, and the invasion of continental Australia by JEV [19,20].

Historical threat

Following World War II, there was concern that return of equipment and materiel from the
Pacific Theatre could lead to the introduction of JEV into the United States, with establishment of
transmission by indigenous mosquito vectors and vertebrate hosts and subsequent geographic
spread. This risk was again acknowledged in the 1980s when the exotic mosquito species and
secondary JEV vector [21,22], Aedes albopictus, was introduced into the US via ova infesting used truck
tires imported from Japan [23]. By that time, vertical transmission of JEV in mosquitoes had been
established experimentally [24], and it was feared that JEV could be introduced by naturally infected
ova that hatched in used tires left outdoors and filled with rainwater, serving as sites for mosquito
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oviposition and breeding. After its introduction, Ae albopictus spread across the eastern half of the US
from infested to adjacent areas at a rate of 100-300 km per year [25]. Similarly, another invasive Asian
mosquito and secondary vector of JEV, Ae. japonicus, which also is capable of transovarial JEV
transmission, was first detected in the US in 2000, has been likely been repeatedly introduced, and
has greatly expanded its distribution over 33 states [26].

Although JEV has not been detected in the US, the risk may be reconsidered in light of climate
change and changes in the ecology and distribution of JEV and in international travel and trade. A
quantitative risk assessment conducted in 2019 considered the potential mechanisms of introduction
of JEV into the US and based on modeling assumptions concluded that there was a high risk of
introduction by an infected adult mosquito on passenger aircraft during the summer months [27].
Geographically, the risk of introduction in the US may be highest in California due to frequency of
arrivals from Asia and the abundance of Culex vectors and avian hosts [28], and the state ranks 10t
in the nation in feral pig populations which could serve as amplifying hosts [29].

The closely related WNYV rapidly spread across the US between 1999 and 2003, and also utilizes
birds and Culex spp. mosquito vectors for transmission; however, swine-- a large mammalian
amplifying host for JEV-- are not involved in WNV transmission. Young pigs are susceptible to
neuroinvasion by JEV and clinical encephalitis, whereas in adult female pigs, JEV infects the
developing fetuses and causes abortion and stillbirth. In adult male pigs, testicular infection and
swelling may cause infertility. For these reasons, JEV poses a significant threat to the US swine
industry.

The current threat

In October 2022, the Swine Health Information Center of the US Department of Agriculture
(USDA) Animal and Plant Health Inspection Service (APHIS) held a Symposium entitled “Japanese
Encephalitis Virus: Emerging Global Threat to Humans & Livestock”, and initiated a website a year
later promoting preparedness and diagnostic testing, with new goals for veterinary public health
coordination, distribution of information, and JEV-specific testing available to the livestock industry
[30]. Funding has been provided for studies of the pathways of potential JEV introduction in the US.
Learnings from the 2022 introduction of JEV in Australia have been incorporated into the analysis of
response measures. The level of concern for human health in the US has not been elevated
proportionately. Although it may be acknowledged that surveillance for human encephalitis,
diagnostic testing, organized mosquito control, and the availability of an FDA-approved JE vaccine
represent safeguards that would be available if JEV appeared in the US, it is likely that a major public
health and veterinary emergency would occur before those measures resulted in control of the
disease.

The risk of expansion of the geographic footprint of JEV is illustrated by events in Australia in
the last 2 years. Prior to 2022, JEV (genotype IV) activity had been confined to the tropical islands of
the Torres Straits at the northern peak of the York Peninsula. In 2022, an outbreak of JE was detected
in piglets in south-eastern Australia and was followed by reports of further outbreaks in piggeries
and multiple human cases across five states in continental Australia [31]. A program has been
initiated to control mosquito breeding in and around piggeries and to vaccinate persons at risk.
Modelling indicates that approximately 850,000 Australians reside within the flight range of the
principal vector, Cx. annuloristris , from a piggery [32].

Mechanisms of potential introduction and spread of JEV

The published quantitative assessment referred to above considered the mechanisms whereby
JEV could be introduced?. These pathways included: (a) infected mosquito vectors (by aircraft, cargo
ships, tires, or wind); (b) import of viremic animals or infected animal products; (c) transport by
viremic migratory birds; (d) import of infectious or contaminated biological materials (e.g. vaccines);
(e) import of infected animal products; and (f) entry of infected humans. The introduction of infected
adult mosquitoes was considered the most likely mechanism. However, the source of introduction
would probably be extremely difficult to identify and would have occurred weeks or months before
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recognition, as was likely the case for WN virus which was found first in human cases of encephalitis
in New York City in 1999. From New York, WNV began a rapid expansion across the entire country
over 4 years and became the most common single cause of viral encephalitis in the US [33,34]. In the
20 years after its introduction, there have been an estimated 7 million persons infected with WNV in
the US, 51,702 total case reports, 25,227 cases of encephalitis, and 2,376 deaths [35]. One aspect of the
clinical presentation that might lead to early recognition is the predilection of JE for children [36],
whereas WN principally affects adults, with the highest attack rate in the elderly.

Of 41 species that have been implicated in transmission of JEV by detection in field collected
mosquitoes in the Asia-Pacific region or in experimental studies, a number occur in the US (Figure
2)56 [37]. It is likely that other North American mosquitoes are competent vectors but have not been
evaluated. This question needs to be carefully evaluated to understand the receptivity of the US (and
tropical America) to the introduction and spread of JEV.

Present throughout the US:
Cx. pipiens complex

Cu. inornata

Ae. vexans ME
Ae. dorsalis

Ae. albopictus
Ae. japonicus

Cx. tarsalis

Figure 2. Distribution in the United States of mosquito species that are known vectors of JEV based
on detection of virus in mosquito pools in the Asia-Pacific region or that are potential vectors based

on experimental studies.

Like WNYV, JEV readily infects birds, which serve as viremic vertebrate hosts and are widely
distributed and abundant in the US, including around airports (potential sites of entry), where they
represent a hazard to aircraft. The circulation of WNV is often revealed by overt illness and death in
birds, particularly corvids which are highly susceptible, whereas JEV is less pathogenic and clinically
silent in avian species. This increases the likelihood that JEV could circulate for some time without
recognition. Studies of JEV ecology in Asia have focused attention on wading birds (Ardeidae) [38]
and domesticated birds (chickens, ducks) [39], but the implication of these species in transmission
was affected by sampling bias. North American birds, including house sparrows, grackles, starlings,
red-wing blackbirds, rock pigeons, as well as egrets, develop viremia following experimental
infection with JEV genotypes I and III¢, and would likely play a role in transmission and spread
following an introduction.

In contrast to WN, pigs are highly susceptible to JEV and also serve to amplify JEV transmission
by mosquito vectors. In Asia, pigs are believed to be the most important hosts in transmission. The
discrepancy in host susceptibility between WN and JE may be mediated by non-structural genes of
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the virus determining viral replication, as shown for differences between WN and St. Louis
encephalitis (SLE) virus infection in avian species [40].

In addition to becoming viremic, experimentally infected pigs also shed JEV virus from nasal
epithelium [41], playing a potential role in non-arthropod-borne, contact spread [42—44]. This route
of infection probably plays a role in JEV transmission in crowded swine barn conditions. JEV oral
shedding was detected in some experimentally infected North American bird speciesf, and mice
infected with JEV intranasally shed virus and can infect other mice by aerosols or direct contact [45].
Of interest, birds also shed WNV orally and in feces and contact spread has been documented
experimentally [46].

Shedding of JEV from pigs raises the possibility that the virus could be introduced from Asia by
passengers carrying infected pork products, although secondary spread would appear to be a very
low risk. Illegal introduction of pork products has long been a concern of USDA and US Customs
and Border Control for the introduction of African swine fever, swine vesicular disease and classical
swine fever (hog cholera).

Multiple factors in the relationship between hogs, pigs and JEV underlie the concern regarding
introduction of the virus into the US. These include the potential for spread of JEV by multiple
indigenous mosquito vectors, especially Culex spp., the potential for pig-pig contact spread, as well
as the reports of persistent infection in pig tonsil and other lymphoid tissues*. These factors would
likely lead to recommendations for restricted movement of swine and possibly even some
depopulation measures, which may have limited effectiveness in the case of a vector-borne disease.
Australia has not limited movement of pigs, pork or pig semen with the expansion of JEV in the
continent and has not recommended depopulation but has focused on reducing mosquito vector
populations around piggeries.

There are over 72 million head of domestic swine in the US concentrated in the Mid-West [47],
60,000 pig farms and a pork industry that contributes $57 billion to the US economy [48].
Additionally, there are also large numbers of feral swine, with over 6 million animals across 35 states
which represent a potential for unrecognized disease transmission, as well as small-scale back-yard
pig and poultry operations, for which biosecurity measures and veterinary oversight is low [49]. In
parts of Asia where they have been studied, feral swine appear to play an important role in JEV
transmission and are not subject to preventative immunization [50]. Feral swine populations are
expanding in the US, and their distribution is principally in warm climates of the states Gulf Coast
from Florida to Texas [51], favoring mosquito-borne transmission. The proximity of feral pigs to
airports that might be the points of introduction of infected adult mosquitoes is uncertain, but it is
worthy of mention that at least one major international airport in Europe serving Asia has
intentionally placed pigs in surrounding fields to prevent bird strikes [52]. JEV represents a threat of
introduction to Europe, as it does for the Americas, and there are reports of finding JEV RNA in birds
and a pool of Culex pipiens mosquitoes sampled in Italy [53,54].

Organized large-scale piggeries in the US are organized with an emphasis on biosecurity
measures, which, however, principally include precautions against contagious diseases such as
pseudorabies, African swine fever, brucellosis, and porcine reproductive and respiratory syndrome.
In Australia, as a result of the introduction of JEV, new biosecurity efforts have been revised to
include mosquito control activities [55]. These measures have been noted in USDA’s recent
preparedness efforts®, but implementation, especially for outdoor piggery operations will be
extremely challenging.

Consequences of and response to the introduction of JEV in North America

The introduction of WNV in the US in 1999 was one of the most important events in the modern
history of emerging infections prior to the Ebola outbreak in West Africa in 2014-2016 and the global
SARS-CoV-2 epidemic in 2019. JE is a much bigger disease threat than WN to human and animal
health in the US. There is no barrier to spread by indigenous mosquito species and vertebrate hosts
other than the background of cross-protective immunity to the antigenically-related WNV [56].
Cross-protection has been demonstrated experimentally in rodents [57], nonhuman primates [58] and
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wild birds [59]. Cross-protective immunity to WNV could dampen transmission of JEV in avian hosts,
as was postulated for displacement of SLE in southern California [60]. Large-scale indoor pig
operations practicing high-level biosecurity measures represent a barrier to JEV transmission, and
mosquito control measures, as now recommended in Australia, would likely be introduced.

Introduction of JEV would constitute a public health emergency that would require a substantial
response and, if transmission was established, would constitute a blow to the economy. It is likely
that an initial focus of transmission would go unnoticed, and that the virus would become established
before mosquito-control measures could be taken to eradicate it. The predilection of JEV for children,
the high case-fatality rate, and the difficulty of preventing mosquito exposure in children engaged in
outdoor activities would create significant concerns.

Following a point introduction of JEV into the US, rapid spread would be expected, both radially
and over long distances by mobile and migratory movements of birds [61]. Bats are also involved in
JE transmission in Asia [62], and represent another mechanism for geographic spread. Introduction
of JE into the US would evoke a substantial effort on surveillance of birds, pigs and mosquitoes on
the part of local, state, and federal public health agencies, including adding JEV diagnostic test
methods to nationwide clinical laboratory services and intensified vector control activities. Local
laboratory-based surveillance for mosquito-borne diseases had been actively practiced in the US
through the 1980s but cost factors and competing priorities led to senescence of many programs; these
activities were temporarily re-stimulated by the WN outbreak, and nationwide reporting of arbovirus
activity remains in place [63,64]. Surveillance and monitoring of JEV in birds and swine and human
and equid case diagnosis by serological methods are complicated by the immunological cross
reactivity between JE, WN and SLE viruses.

Vaccines as a countermeasure

Although there is considerable genetic variation of JEV strains, and all marketed vaccines are
derived from a single JEV genotype (genotype III), human vaccines are believed to protect against all
strains in the five known virus genotypes. In the US, there is one FDA-approved JE cell-based
inactivated JE vaccine (IXIARO®) for use in persons 2 months of age or greater. However, in
veterinary practice in Asia, there has been some concern about lower efficacy of JEV genotype III
vaccines against the dominant circulating genotype I strains [65] and, in consequence, a genotype I
live vaccine is in development for use in swine in South Korea.

Vaccination of swine using a modified live vaccine has been variously practiced in South Korea
[66], Taiwan and Japan for many years. There is no approved veterinary vaccine in the US. In Asia,
the goal is immunization of breeder pigs for prevention of abortion and stillbirth and reproductive
failure in boars. Immunization of pigs as a public health measure to minimize virus amplification
and prevent human disease is complicated by (i) the need to rapidly protect gilts born during the
summer months of virus transmission and ii) by the immunological immaturity of piglets during
their first month of life. Passive transfer of immunity is inefficient; colostrum and milk from immune
sows prevents JEV infection in gilts for only a short period, since the ability to adsorb
immunoglobulins from the gut is limited after 4 weeks of age and since the porcine placenta does not
permit transfer of maternal antibody from the bloodstream [67]. If JEV were introduced into the US
swine population, it would likely take up to 2 years for a veterinary vaccine to be conditionally
approved. A high priority would be for development of a safe, live attenuated vaccine that elicited
rapid protection without the need for booster doses. Having this preventive measure stockpiled and
available in an emergency would appear to be a priority for US homeland security and would avoid
the scramble to produce such an important health measure after the fact. This point is illustrated by
the introduction and spread of WNV that caused deaths and required euthanasia of many horses and
valuable zoo animals in the US before a veterinary vaccine was approved and by the widespread
disease in Australian piggeries in the ongoing JEV outbreak. Until a veterinary JE vaccine is approved
and commercialized, the focus in the US would be on fire-fighting outbreaks with vector control
around piggeries and by limiting movement of pigs.
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Neutralizing antibodies constitute a surrogate for JE vaccine efficacy [68,69] and a neutralization
titer of 210 has been accepted as a correlate of protection by the World Health Organization [70] and
ACIP7. Only a low concentration of antibody is required to prevent neuroinvasion by the virus.
IXIARO was therefore approved by FDA for human use based on neutralizing antibody as a correlate
of clinical benefit, and no post-marketing requirements were imposed for demonstration of efficacy
in reducing disease [71]. The ACIP provided recommendations for use of the inactivated JE vaccine
(IXIARO) for adult US travelers and laboratory workers in 2010 [72] and for children in 2013 [73].
Whereas human vaccination against JE has been cost-effective in JE endemic countries with high
burden of disease [74], the history of immunization of travelers in the US, Australia, France and other
countries suggests that vaccine uptake is relatively low and cost per case averted is very high [75-
77]. This equation would likely change if the virus were introduced into the homeland, but as yet no
strategy for such an event and no policy of the use of human vaccination if JEV were introduced has
been set forth by CDC [78].

IXIARO has been studied in multiple clinical trials and has been shown to be safe and
immunogenic. The vaccine is produced by formalin inactivation of purified SA14-14-2 JE virus from
Vero cell culture fluid. The SA14-14-2 strain is an attenuated virus, which is used as a live vaccine in
China and some other Asian countries since 1989 [79]. Although two doses are required for primary
immunization with IXIARO, these may be administered at a short interval (7 days) in young adults,
although a 28-day interval is recommended for persons <18 or 265 years of age [80]. Protective
immunity is assumed to be established within 1 week after the second dose. Antibody titers wane
over time and boosting to maintain immunity is recommended within 11 months after primary
immunization. IXIARO is marketed globally by Valneva, the parent company, and by multiple
distribution partnerships in Australia, Europe and Asia. The utility of IXIARO for immunization of
livestock has not been determined.

Whereas the profile of IXIARO is certainly acceptable in the event risk-based vaccination was
recommended in the US, there would be advantages for a vaccine that elicits rapid protection after a
single dose in all age groups and that provides long-term immunity (at least 5 years) without the
need for boosting. A live, attenuated single-dose vaccine, IMOJEV® with this product profile was
developed in the US as a chimeric virus in which the envelope genes of JEV (the SA14-14-2 strain) are
inserted into the backbone of yellow fever 17D vaccine virus, a live vaccine with a long history of use
[81]. IMOJEV is manufactured in Vero cell culture to international standards, is marketed in Australia
and in a number of Asian countries (Brunei, Cambodia, Hong Kong, Indonesia, Laos, Malaysia,
Myanmar, Philippines, Singapore, Thailand and Vietnam) and has been widely used with an
excellent safety and immunogenicity record [82,83]. The vaccine was marketed by Sanofi Pasteur
until 2022 when it was acquired by Substipharm Biologics [84]. It is not approved in the US or Europe
but would be a useful addition to preparedness efforts in the event of emergence of JE there. The
utility of IMOJEV for immunization of livestock has not been determined and deserves study.

In addition to vaccines, antiviral drugs could play an important role in treatment of JE and other
flavivirus infections. Although there are some promising approaches [85], none are in clinical
development.

Conclusions

Japanese encephalitis poses a material threat of introduction and spread in the US and tropical
America, and there is a need to consider steps to prepare for and mitigate this eventuality. As a result
of the introduction of JEV into continental Australia in 2022, the USDA has initiated measures aimed
at preparedness in the US, because of the danger JEV poses to the swine industry and the economy
as a whole. With respect to human health, no threat assessment or plan has yet been made public by
the CDC. Fortunately, there is an FDA-approved JE vaccine for use in children and adults. As yet to
be promulgated policies for vaccination will be required, based on the geographic impact, incidence,
and risk factors for JE infection, and supply constraints may be an issue since the current indication
is only for travelers, laboratory workers, and military personnel. Consequently, consideration should
be given to an emergency use stockpile to ensure immediate availability in the event of an outbreak,
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and to promoting the approval of the live, attenuated single-dose vaccine, IMOJEV, that elicits
durable immunity. Other preparatory public health measures may include making available rapid,
specific diagnostic tests and surveillance activities, particularly around potential sites of introduction.
Further research is also needed on the competence of indigenous mosquito vectors, mechanisms of
overwintering of the virus in the US, the potential for direct contact transmission in animals, the
interaction of JEV and other flaviviruses in vectors and hosts, and on development of effective
antiviral drugs.
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