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Article 

Evaluating Recalibrating AI Models for Breast Cancer 
Diagnosis in a New Context: Insights from Transfer 
Learning, Image Enhancement and High‐Quality 
Training Data Integration 
Zhengqiang Jiang *, Ziba Gandomkar, Phuong D. Trieu, Seyedamir Tavakoli Taba,   
Melissa L. Barron, Peyman Obeidy and Sarah J. Lewis * 

Discipline of Medical Imaging Science, School of Health Sciences, Faculty of Medicine and Health, The 
University of Sydney, Sydney, 2006, Australia 
*  Correspondence: zhengqiang.jiang@sydney.edu.au(ZJ), sarah.lewis@sydney.edu.au(SL) 

Simple Summary: Breast cancer  is one of  the  leading  causes of  cancer  related death  in women. The early 
detection  of  breast  cancer with  screening mammograms  plays  a  pivotal  role  in  reducing mortality  rates. 
Although the population‐based double reading screening mammograms have reduced mortality over 31% for 
women with breast  cancer  in Europe,  continuing  this program due  to  shortage of  radiologists  is difficult. 
Artificial  Intelligence  (AI)  is  an  emerging  technology which  have  provided  promising  results  in medical 
imaging  for  disease  detection.  This  study  investigates  the  performance  of  AI  models  on  an  Australian 
mammographic database, demonstrating how transfer  learning from a USA mammographic database to an 
Australian one, contrast enhancement on mammographic  images and quality of  training data according  to 
radiologists’  concordance  can  improve breast  cancer diagnosis. Our proposed methodology offers a more 

efficacious approach for AI to contribute to radiologists' decision-making in interpreting mammography 

images. 

Abstract: This paper investigates the adaptability of four state‐of‐the‐art Artificial Intelligence (AI) models to 
the Australian mammographic context through transfer learning, explores the impact of image enhancement 
on model performance and analyses the relationship between AI outputs and histopathological features for 
clinical relevance and accuracy assessment. A total of 1712 screening mammograms (n=856 cancer cases and 
n=856 matched normal cases) were used in this study. The 856 cases with cancer lesions were annotated by two 
expert radiologists and the level of concordance between their annotations was used to establish image subsets. 
The area under  the receiver operating characteristic curve  (AUC) was used  to evaluate  the performance of 
Globally  aware  Multiple  Instance  Classifier  (GMIC),  Global‐Local  Activation  Maps  (GLAM),  I&H  and 
End2End AI models, both  in  the pre‐trained  and  transfer  learning modes, with  and without  applying  the 
Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm. The four AI models with and without 
transfer  learning  in  the  high‐concordance  subset  outperformed  those  in  the  entire  dataset. Applying  the 
CLAHE algorithm  to mammograms  improved  the performance of  the AI models.  In  the high‐concordance 
subset with transfer learning and CLAHE algorithm applied, the AUC of the GMIC model was highest (0.912), 
followed by GLAM model (0.909), I&H (0.893) and End2End (0.875). There were significant differences (P<0.05) 
in the performances of the four AI models between high‐concordance subset and entire dataset. The AI models 
demonstrated significant differences in malignancy probability concerning different tumour size categories in 
mammograms.  The  performance  of  AI  models  was  affected  by  several  factors  such  as  concordance 
classification,  image  enhancement  and  transfer  learning.  Mammograms  with  strong  concordance  of 
radiologists’ annotations, applying image enhancement and transfer learning could enhance the accuracy of 
AI models. 

Keywords:  Artificial  Intelligence;  Deep  Learning;  Radiologists’  Concordance;  Image  enhancement; 
Mammography; Saliency Maps; Transfer Learning 
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1. Introduction 

Breast  cancer  has  the  highest  incidence  among  all  types  of  solid  cancers  among  women 
worldwide  in 2020,  leading  to  the highest mortality  [1]. To reduce mortality, mammography was 
introduced for breast screening in many countries since the early 2000s. Mammography remains the 
most  common  imaging  technique  for  breast  cancer  diagnosis  in most  countries  and  a  standard 
screening mammogram consists of x‐ray  imaging with 2 views on each breast  in  the mediolateral 
oblique  (MLO) and craniocaudal  (CC) projection. Mammographic  images  in  these  two views are 
interpreted by radiologists and other readers to determine whether the screening case is negative for 
breast cancer, or the woman needs to be recalled for further imaging and/or testing.    The mortality 
for women with breast cancer from European populations has reduced by over 31% as attributed to 
population‐based  programs  using  mammography  [2].  Women  diagnosed  with  abnormal 
mammograms are recommended for further testing, which can include additional images or biopsy. 
Over 60% of these biopsies are diagnosed as cancer free [3].   

Although the sensitivity (>86%) and specificity (>96%) [4] of screening mammography to detect 
breast cancer  for women with almost entirely  fatty breasts  is relatively high, a major challenge  in 
mammography screening  involves women with dense breasts, as breast cancer can be masked by 
glandular tissue. Tissue superposition occurs in mammography when there are overlapping layers 
of breast tissue that can obscure small or subtle abnormalities, making it difficult for radiologists to 
accurately  interpret  the  images  [5].  This  issue  has  been  partially  mitigated  by  digital  breast 
tomosynthesis  (DBT),  which  is  an  advanced  mammographic  technology  that  captures  three‐
dimensional  images of  the breast, allowing  for a more detailed and  layered view of breast  tissue. 
However,  the  larger volume of  images generated by DBT necessitates more  time  for both  image 
acquisition and interpretation [6]. 

Over  the past decade, Artificial  Intelligence  (AI) has garnered extensive attention  in medical 
imaging  for  its promising  advancements  in diagnostic  accuracy of  interpretative  tasks  related  to 
various  organs  like  the  brain,  liver,  breast,  and  lung  [7–19]. Particularly, deep  learning methods 
applied to diagnose breast cancer through mammographic images have captivated extensive interest 
[10,12,16,17]. The effective training of AI models for clinical application demands a vast amount of 
data containing precise lesion locations. However, the acquisition of these extensive sets of images 
with lesion locations significantly increases the workload for radiologists and physicians. To mitigate 
some of these workload challenges, transfer learning [20], involving the use of pre‐trained AI models 
in different settings, has emerged as a potential solution. 

Breast screening with AI models can assist radiologists in interpreting mammograms, especially 
in distinguishing between normal and abnormal cases  [21] The Globally‐aware Multiple  Instance 
Classifier  (GMIC)  [16]  AI  model  was  designed  to  classify  mammographic  cases  as  benign  or 
malignant. Furthermore, the Global‐Local Activation Maps (GLAM) [17] AI model extended GMIC 
to classify mammographic cases as benign or malignant by generating multiple scale saliency maps. 
The  I&H  AI  model  [10]  used  deep  neural  networks  to  assist  radiologists  interpret  screening 
mammograms. End2End AI model [12] demonstrated a method of breast screening on mammograms 
using deep neural networks. All these four AI models used Residual Networks (ResNet) architecture 
[22] in the training and testing processes. For completeness of the paper, a detailed review of these 
methods is given in the methods section. 

This  paper  investigates  the  performance  of  these  four  publicly  available  state‐of‐the‐art AI 
models: GMIC, GLAM, I&H and End2End, on a screening mammographic database of Australian 
women. This studyʹs primary goals include: 
(1) Comparing the performance of these models on an Australian dataset, which differs from their 

original training data (both in terms of population characteristics and the types of 
mammography machines (vendors) used), highlighting the influence of dataset variations on 
predictions. 

(2) Investigating the potential improvement of model performance through transfer learning, and 
hence the value of tailoring the AI models for other nationalitiesʹ context. 
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(3) Examining the impact of image enhancement techniques on model predictions to assess their 
potential to enhance diagnostic accuracy. 

(4) Exploring the association between the AI modelsʹ malignancy probability outputs and 
histopathological features, offering insights into the modelsʹ predictive accuracy and its 
potential clinical relevance, aiding further treatment/triaging decision‐making. 

2. Materials and Methods 

Four state‐of‐the‐art AI models involving deep neural networks were used to test an Australian 
mammographic database. Transfer learning of the four pre‐trained AI models was conducted on the 
database to update these AI models. Since the images in our dataset were obtained from different 
vendors, they exhibited significantly different histograms and dynamic ranges. Therefore, we applied 
the Contrast  Limited Adaptive Histogram  Equalization  (CLAHE)  algorithm  [23]  to  enhance  the 
contrast of mammographic cases and evaluated  its  impact on  the performance of AI models. The 
receiver operating characteristic curve (ROC) and the area under the ROC curve (AUC) metrics were 
used  to evaluate  the performance of  the  four AI models  in different  scenarios. Histopathological 
features were analyzed with the malignancy probabilities of mammographic cases to provide the best 
AI model in terms of AUC values. Our method consisted of several steps as illustrated in Figure 1. 

 
Figure 1. Methodology flow chart. 

2.1. Data Acquisition 

After ethics approval from the University of XXXX, we used screening mammograms collected 
from the Australian mammographic database called XXX to assess the performance of the four AI 
models.  The  XXX  database  consists  of  1712  mammographic  cases  (856  normal  cases  and  856 
malignant cases). Each malignant case was confirmed by the reports of follow‐up biopsies. Each case 
had four mammographic views: right MLO, Left MLO, Right CC, and Left CC views. Mammograms 
were acquired from mammography machines manufactured by five different vendors, including Fuji 
Film    (32% of cases), Konica (4% of cases) Siemens (34% of cases), Hologic (19%), and Sectra (11% of 
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cases).  Each  case  was  annotated  by  two  radiologists  and  recorded  as  box  regions  on  the 
mammographic  images. Figure 2  shows an example  for  the annotations of  two  radiologists on a 
mammographic  case, with  red  boxes  from  Radiologist  A  and  green  boxes  from  Radiologist  B. 
Concordance levels were constructed by analyzing Lin’s concordance correlation coefficient (CCC) 
[24]  between  the  annotations  of  two  radiologists  on  mammograms  according  to  McBrideʹs 
interpretation guide [25]. Lin’s CCC was computed based on the corners of two overlapped boxes of 
annotations on  the  same mammographic  image.  Intersection over Union  [26] metric was used  to 
determine  whether  two  boxes  overlapped  or  not,  with  a  value  greater  than  0  indicating  the 
overlapping of two boxes. Mammographic images were classified as four concordance levels: ‘almost 
perfect’ at >0.99 (238 cases), ‘substantial’ at <0.95 to 0.95 (222 cases), ‘moderate’ at 0.95 to 0.90 (202 
cases), and ‘poor’ at <0.90 (194 cases). 

 
Figure 2. Annotations from Radiologist A in red and Radiologist B in green. 

The training and testing mammographic cases of our database had an equal representation of 
breast density. Two  image sets were developed: the first subset  included cases rated with  ‘almost 
perfect’ agreement between radiologists (termed  ‘high‐concordance subset’ in this paper), and the 
second  dataset  included  all  cases  that  have  been  marked  with  cancers  with  ‘no  concordance 
threshold’ applied (termed ‘entire dataset’ in this paper). 

2.2. AI models 

The GLAM, GMIC, I&H and End2End models were evaluated in this study. These four models 
were selected as each model provided promising results in diagnosing cancers on mammographic 
images with  high AUC  values.  The GMIC model  combined  the  global  and  local  context  in  the 
decision‐making  process  [16].  To  obtain  additional  details  of  the  local  context,  the  GLAM 
incorporated  zoom  functionality  for  the  local  context,  hence  it  is  a  similar  approach  taken  by 
radiologists  interpreting  mammographic  images  [17].  To  mimic  radiologists  interpreting 
mammographic  images from different views, I&H  fused each model trained on each view for the 
decision‐making process [10] as sometimes a mammographic image from a single view is not enough 
to determine whether the mammographic image has cancer. Instead of searching cancer signs in a 
direction from the global to the local on a mammographic image like GMIC and GLAM, End2End 
trained  a  local  classifier  and  then  expanded  to  a  global  classifier  to  determine  whether  the 
mammographic images showed signs of cancers. Although the AUC values reported previously for 
GMIC, GLAM, I&H and End2End using their original mammography databases were 0.909, 0.882, 
0.895, and 0.88, respectively, these AI models have reportedly provided relatively low AUC values 
on other mammographic databases from different ethnicities and manufacturers [27]. 
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2.2.1. Globally‐aware Multiple Instance Classifier (GMIC) 

The GMIC firstly learned the global feature map of a mammographic image using a ResNet‐22 
network  [25]. The global  feature map was convolved with a 1 x 1  filter and Sigmoid operation  to 
generate  a malignant map.  The  value  of  each  pixel  in  the  global  feature map was  [0,1], which 
indicated whether  the  presence  of malignancy.  The  feature map was  then  scanned  to  get  non‐
overlapping K patches with  largest  total  intensity  inside  the patches. As suggested  in  the original 
paper, K was set as 3. Local features of patches were extracted using a ResNet‐34 network and then 
combined with a gated attention network for computing weights of features. The final step combined 
the  malignant  map  and  local  feature  with  weighted  representation  of  all  patches  to  predict 
malignancy probability. All the mammographic images for GMIC models were resized to a resolution 
of 1920 x 2944 pixels using bilinear  interpolation  [28]. For  the GMIC model,  the source codes are 
publicly available on the GitHub at https://github.com/nyukat/GMIC.git.   

2.2.2. Global‐local Activation Maps (GLAM) 

The GLAM learned the global saliency map of a mammographic image using a convolutional 
neural  network  (CNN).  To  capture  different  sizes  of malignancy,  the  global  saliency map was 
generated at different scales. The second stage generated a set of patches from the feature map based 
on the local maximum of average intensity. In the last stage, each image patch was applied a ResNet‐
34 network  [22]  to  extract  the  local  feature map, which was  then  assigned  to  the  corresponding 
mammographic image. All feature maps of local patches were combined with the global feature map 
to predict  the probability  of malignancy  on  a mammographic  image using  binary  cross‐entropy 
function. All the mammographic images for GLAM models were also resized to a resolution of 1920 
x  2944  pixels.  For  the GLAM model,  the  source  codes  are  publicly  available  on  the GitHub  at 
https://github.com/nyukat/GLAM.git. 

2.2.3. I&H 

I&H  trained  AI  models  based  on  MLO  and  CC  views  on  each  breast  and  concatenated 
representations  from  four views  to predict  the probability of malignancy  in each mammographic 
image. A ResNet‐22 was used  for model  training  in  a mammographic  image  of  each  view. The 
mammographic images in CC view for I&H model were resized to 2677 x 1942 and 2974 x 1748 in 
MLO view. For  this model, we used  the source codes published by  the authors on  the GitHub at 
https://github.com/nyukat/ breast_cancer_classifier.git. 

2.2.4. End2End 

End2End  converted a patch  classifier  to a whole mammographic  image  classifier by adding 
heatmaps and convolutional layers on the top of the neural network. These convolutions used two 
Visual Geometry Group (VGG) [29] blocks with 3 x3 convolutions and batch normalization. All the 
mammographic images for End2End were resized to a resolution of 1152 x 896 pixels. For this model, 
we  used  the  source  codes  published  by  the  authors  on  the  GitHub  at 
https://github.com/lishen/end2end‐all‐conv.git. 

2.3. Image enhancement 

Image enhancement techniques can be helpful to optimize contrast of mammographic images 
and  one  example  is  from Min  et  al.  [30], where  the  study presented pseudo‐color mammogram 
generation to enhance mass‐like feature in mammographic images. In this study, we used the CLAHE 
[23] algorithm to enhance mammographic images because it is fast and produces promising contrast 
enhancement. The CLAHE algorithm firstly divided an image into un‐overlapped tiles. In the second 
stage,  it  conducted histogram  equalization  for  each  tile. The histogram  equalization used  a pre‐
defined clip limit to redistribute the bins and then map to an improved tile. The last stage combined 
each improved tiles to generate an enhanced image using bilinear interpolation. For the parameters 
of the CLAHE algorithm, the clip Limit was set to 12 and tile Grid Size was set to (8, 8). 
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2.4. Transfer learning 

Transfer  learning of  the  four AI models was  conducted on  the XXX database,  including 856 
cancer cases and 856 normal cases. All DICOM images were downsampled to match the resolution 
of the input images for the models and converted to PNG format to reduce the computational time 
of the training process. We conducted a four‐fold cross validation to train and test the four AI models 
on the database with transfer learning.    The training set was further split into training and validation 
sets to refine the stopping criteria. This step involved an iterative process, assessing the AI modelsʹ 
accuracy in the current epoch against the previous one. The training concluded when the validation 
process callback showed no improvement in model accuracy, typically after a patience threshold of 
3 epochs had been reached.   

The  transfer  learning of  each AI model was optimized using Adam algorithm [31]. The  loss 
function used the binary cross‐entropy. As suggested in the original studies, the learning rates for the 
GMIC, GLAM and I&H were set as 10‐5 and End2End was set as 10‐4, respectively.    For an equitable 
comparison of performance between transfer learning models and pre‐trained models, the transfer 
learning  approach  employed  the  ResNet‐22  network  for  the  global module  and  the  ResNet‐34 
network for the local module. These are the same networks utilized by the pre‐trained GMIC and 
GLAM models. Additionally,  I&H utilized the ResNet‐22 network as  its pre‐trained model, while 
End2End employed the VGG network as its pre‐trained model. 

2.5. Evaluation metrics 

The  performance  of  four AI models  in  the  classification  of malignancy  on mammographic 
images was evaluated using sensitivity, specificity, the area under receiver operating characteristic 
curve (AUC). An ANOVA test was conducted for each AI model between the two image sets, with 
the corresponding p‐values as shown in the Results section. A threshold of statistical significance was 
set as 0.05. Bonferroni correction was used to adjust for multiple comparisons.   

2.6. Association between the malignancy probability from the AI and histopathological features 

We also employed the Kruskal‐Wallis U‐test to investigate potential differences in malignancy 
probability  as  predicted  by  the  top‐performing  AI  model  across  distinct  categories  based  on 
pathology  reports.  We  considered  pathological  factors  including  Estrogen  Receptor  (ER), 
Progesterone Receptor  (PR), Breast Cancer Grade, Human Epidermal Growth  Factor Receptor  2 
(Her2),  and  the  differentiation  between  Ductal  Carcinoma  In  Situ  (DCIS)  and  invasive  cancer. 
Additionally, an analysis was conducted based on the size of cancers, with tumours classified into 
four groups (mm): (0.999, 10.0], (10.0, 15.0], (15.0, 25.0], and (25.0, 150.0] intervals. The Kruskal‐Wallis 
U‐test was utilized to assess the statistical significance of differences among these groups.   

3. Results 

3.1. The performances of four AI models 

In  the  pre‐trained  stage, GMIC  obtained  significantly  higher AUC  score  in  both  the  high‐
concordance subset and entire dataset in original (0.865 and 0.824) and contrast‐enhanced (0.870 and 
0.836) modes,  followed  by  the  GLAM,  I&H,  and  then  End2End models  (Table  1).  There were 
significant differences (P<0.05) (Table 1) in the performances of these models between two datasets. 
The AUC values of the four AI models were higher when CLAHE image enhancement algorithm was 
applied, in comparison with the original mammograms (Table 1) (e.g., 0.870 for GMIC + CLAHE vs. 
0.865  for GMIC only  in  the high‐concordance subset, and 0.836  for GMIC + CLAHE vs. 0.824  for 
GMIC only in the entire dataset). 

In  the  transfer  learning stage,  the highest AUC score was  found with  the GMIC  for both  the 
high‐concordance subset and entire dataset (0.910 and 0.883) and again with the contrast‐enhanced 
(0.912 and 0.889) mode, compared with the values generated by the GLAM, I&H, and then End2End’s 
models without contrast enhancement (Table 1). Significantly higher AUC scores were also reported 
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in  the  subset  than  the  entire dataset across  four models with and without  contrast‐enhancement 
(P<0.05) (Table 1). There was an  improvement  in  the AUC values of  the  four  transfer  learning AI 
models on the contrast‐enhanced mammograms compared with the original mammograms in both 
datasets as shown in this table (e.g., 0.912 for GMIC + CLAHE vs. 0.910 for GMIC only in the high‐
concordance subset, and 0.889 for GMIC + CLAHE vs. 0.883 for GMIC only in the entire dataset). 

Table 1. Performance comparison of four AI models with and without CLAHE image enhancement 
algorithm on both entire dataset  (AUCEntire) and  the high‐concordance data subset  (AUCHigh). Two 
different scenarios were considered: using the original models and using the models re‐calibrated for 
our dataset using transfer learning. 

  Original  Transfer Learning   
   AUCEntire AUCHighP‐Values AUCEntire AUCHighP‐Values 

GMIC    0.824  0.865  0.0283  0.883  0.91  0.0416 
GLAM    0.817  0.858  0.0305  0.877  0.906  0.0359 
I&H  0.806  0.842  0.0454  0.852  0.891  0.0257 
End2End  0.784  0.819  0.0368  0.824  0.874  0.0162 
GMIC+CLAHE    0.836  0.870  0.0137  0.889  0.912  0.0348 
GLAM+CLAHE    0.825  0.864  0.0181  0.886  0.909  0.0310 
I&H+CLAHE  0.812  0.845  0.0339  0.855  0.893  0.0185 
End2End+CLAHE 0.793  0.821  0.0286  0.828  0.875  0.0124 

Figure 3 and Figure 4  show  the  comparison of ROC curves of  the  four AI models with and 
without  transfer  learning  on  high‐concordance  subset  and  entire dataset,  respectively. The ROC 
curves in these figures show a clear improvement of performance among the four AI models with 
transfer learning (see Figure 3 and 4 (a) and (c)) and CLAHE contrast enhancement (see Figure 3 and 
4 (b) and (d)). Confidence intervals for the four AI models on high‐concordance subset are shown in 
the legend of each subfigure. 

Figures 3 and 4 also illustrate that the receiver operating characteristic (ROC) curves of the four 
AI models, both with and without  transfer  learning and with and without contrast enhancement, 
exhibited superior performance in high‐concordance compared to the entire dataset (e.g., Figure 3 (a) 
and Figure 4 (a)). The ROC curves of the four AI transfer learning models shown more improvement 
on two datasets than those of the four pre‐trained AI models (e.g., Figure 3 (a) and Figure 4 (a) vs. 
Figure 3 (c) and Figure 4 (c)).     
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Figure  3.  The  receiver  operating  characteristic  curves  (ROC)  of  the  four  AI  models  on  high‐
concordance subset.  (a) ROC curves of  the AI models on original mammographic  images;  (b) The 
ROC curves of  the AI models on enhanced mammographic  images;  (c) The ROC curves of  the AI 
transfer learning models on original mammographic images; (d) The ROC curves of the AI transfer 
learning models on enhanced mammographic images. 
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Figure 4. The receiver operating characteristic curves (ROC) of the four AI models on entire dataset. 
(a)   ROC curves of the AI models on original mammographic images; (b) The ROC curves of the AI 
models on enhanced mammographic images; (c) The ROC curves of the AI transfer learning models 
on  original mammographic  images;  (d)  The  ROC  curves  of  the AI  transfer  learning models  on 
enhanced mammographic images. 

3.2. Pairwise Comparisons of four AI models 

We conducted pair‐wise comparisons among the models in various scenarios to explore if the 
difference in the performances were significant. In each scenario, six comparisons were made and the 
p‐values were adjusted using Bonferroni correction. As shown in Table 2, the differences were more 
significant when models were  re‐calibrated  using  transfer  learning.  This  highlights  the  need  of 
transfer learning to leverage the maximum added benefit of the model. The GMIC and GLAM models 
were not significantly different in the entire dataset because both models have similar architecture of 
networks and GLAM was an extended work of GMIC.   

Table 2. The p‐values  for pair‐wise comparison of  the models’ output  in different  scenarios. The 
significant p‐values were shown  in bold  (significant  level of 0.0083 was considered after applying 
Bonferroni adjustment). The p‐values were adjusted using Bonferroni correction. 

Model  
Images 

Without Transferred 
Learning, Original 

Without Transferred 
Learningl, CLAHE 

With Transferred 
Learning, Original   

With Transferred 
Learning, CLAHE 

Dataset  Entire  High  Entire  High  Entire  High  Entire  High 
GMIC vs GLAM  0.0362  0.0624  0.0331  0.0566  0.0193  0.0233  0.0141  0.0215 
GMIC vs I&H  0.0175  0.0387  0.0108  0.0369  0.0076  0.0135  0.0058  0.0121 

GMIC vs End2End  0.0062  0.0078  0.0049  0.0062  0.0027  0.0041  0.0015  0.0030 
GLAM vs I&H  0.0236  0.0294  0.0217  0.0279  0.0061  0.0093  0.0020  0.0075 

GLAM vs End2End  0.0064  0.0186  0.0059  0.017  0.0073  0.0142  0.0057  0.0128 
I&H    vs End2End  0.0081  0.0351  0.0025  0.0344  0.0220  0.0327  0.0106  0.0310 

The I&H and GMIC or GLAM models were not significantly different when using the original 
or contrast‐enhanced images  in the entire dataset, but significant differences were observed when 
transfer learning models were used.    The GMIC and End2End models were significantly different in 
both  the  high‐concordance  subset  and  the  entire  dataset  due  to  different  deep  neural  network 
architectures for the two models (one with ResNet and the other with VGG).   

3.3. Comparison of salience maps on original and locally‐enhanced mammographic images 

Figure 5 shows the comparison of saliency maps generated from GLAM and GMIC on both an 
original mammographic  image  and with  the  applied CLAHE  algorithm. The  annotations of  two 
radiologists on  the same mammographic case were  shown  in  the  left CC view  in Figure 2. From 
Figure 5 we can see that the saliency maps of GLAM (see Figure 5(c)) and GMIC (see Figure 5(e)) 
from original mammographic images deviated from the centroid of the radiologists’ annotations and 
occupied a smaller area of the annotations. However, the saliency maps of the two AI models from 
the  contrast‐enhanced  image  (see  Figure  5(d)  and  (f))  aligned with  the  centroid  of  radiologists’ 
annotations and occupied a larger area of the annotations. 
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Figure 5. Comparison of saliency map from GLAM and GMIC on an original mammographic image 
with and without applying Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm. 
(a) Original mammogram  in CC  view;  (b)  Enhanced mammogram  using CLAHE  algorithm;  (c) 
Saliency maps  on  the  original mammogram  using  GLAM;  (d)  Saliency maps  on  the  enhanced 
mammogram using GLAM; (e) Saliency maps on the original mammogram using GMIC; (F) Saliency 
maps on the enhanced mammogram using GMIC. 

3.4. Association between the malignancy probability from the AI and histopathological features 

The outcomes of the Kruskal‐Wallis tests, assessing the significance of differences in malignancy 
probability  predicted  by  the  highest‐performing  AI model  (GMIC)  across  various  pathological 
factors, revealed non‐significant findings. The comparison based on ER, PR, and Her2 status yielded 
p‐values of 0.342, 0.414, and 0.179 respectively. The examination of breast cancer grade resulted in a 
p‐value of 0.169. Additionally, the differentiation between DCIS (503 cases) and invasive cancer (312 
cases) exhibited a non‐significant p‐value of 0.152. 

However, when investigating the impact of tumour size categories on malignancy probability, 
the results were statistically significant. There were 337 cases with  tumor size  in  (0, 10.0mm], 174 
cases in (10.0, 15.0mm], 179 cases in (15.0, 25.0mm], and 166 cases above 25mm. The analysis yielded 
a p‐value of 0.0002, indicating that the distinct size groups indeed manifest significant differences in 
malignancy  probability  provided  by  the AI model. As  shown  in  Figure  6,  the most  prominent 
difference was observed between the first size category (i.e., lesions with a size of 10mm or less) with 
the lowest malignancy probability scores compared with the other size intervals.   
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Figure  6. Box plot depicting  the  relationship  between  tumour  size  categories  and  corresponding 
malignancy probability scores from the highest‐performing AI model. 

4. Discussion 

In previous studies, the mammograms for training and testing the GLAM, GMIC and I&H were 
conducted with  the New York University Breast Cancer  screening database,  [32] which  included 
examinations  from  two manufacturers:  Siemens  and Hologic.  The  training  and  testing  data  for 
End2End were  film‐screen  (FS) mammographic  images  from  the Digital Database  for  Screening 
Mammography (DDSM) [33]. Our dataset included digital mammographic images collected from a 
wider range of vendors such as Sectra, Fuji, Siemens, Hologic, GE Healthcare and Philips Healthcare. 
The mammographic images from the NYU and DDSM databases were obtained in the USA, whilst 
our dataset was obtained in Australia and could represent different populations, with the majority 
ethnicity group of our database unlikely to be matched with the USA databases. Previous research 
has shown an 8% difference  in  the AUC of an AI model on US screening mammograms and UK 
screening mammograms [11]. 

Our results showed that transfer learning improved the performance of the four AI models in 
detecting cancer  lesions on digital screening mammograms. As shown  in Table 1, the AUC of the 
transfer learning GMIC model increased from 0.865 for the pre‐trained model to 0.910 in the high‐
concordance subset and from 0.824 to 0.883 in the entire dataset. Similar results were also found for 
GLAM, I&H and End2End. This indicates that transfer learning of the four models was influenced 
by the quality of the concordance levels, indicating that high quality data together with undertaking 
transfer learning are both important factors for training an effective AI model.     

Applying  image  enhancement  via  CLAHE  algorithm  to  our  image  set  improved  the 
performance of  the AI models  in detecting  cancer  lesions on  screening mammograms. The AUC 
values of  the  four AI models were greater  than  those without enhanced mammographic  images. 
Other  image  enhancement  such  as  Pseudo‐color  mammogram  generation  and  local  histogram 
equalization algorithm [34] may also improve the AUC performance of AI models and this could be 
a direction for future work. 

We  also  explored  the  prediction  of  malignancy  probability  by  the  GMIC  as  the  highest 
performing model across various pathological factors. Despite non‐significant differences observed 
in the context of ER status, PR status, breast cancer grade, Her2 status, and the distinction between 
DCIS and invasive cancer, our investigation showed an association between tumour sizes and AI’s 
output.    The  exploration  of  tumour  size  categories  revealed  a  highly  significant  variance  in 
malignancy probability, with the most notable contrast emerging between the  initial size category 
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(tumours measuring 10mm or less) and the subsequent size intervals. This finding highlights the AIʹs 
potential  limitation  in  confidently  annotating  malignancy  in  cases  of  small  tumours  and  that 
radiologists should be mindful of the association between lower AI‐assigned probability score and 
smaller tumor sizes. This insight reinforces the need for a nuanced understanding of AI results and 
their context in clinical practice. 

To evaluate the four models, we investigated the performance of the AI models from the point 
of view of malignancy detection or reporting as a normal case. We did not include any cases with 
benign lesions in our Australian database, so the results cannot comment on the models’ ability to 
identify cases with benign features, and this may include cases that are benign but more challenging 
to AI and human readers. With transfer learning and contrast enhancement application, the AUC of 
GMIC with CLAHE in the high‐concordance subset was 0.912 which is also the best model of four AI 
models on this study. It is imperative to engage in transfer learning when mammograms are gathered 
from distinct populations or various vendors as the performance of AI models can be influenced by 
the specific vendor or population, necessitating adaptation for optimal results. 

5. Conclusion 

In  this paper, we presented  the performance of  four publicly available AI models  for breast 
cancer detection in different situations such as concordance classification of annotations in the input 
data, the incorporation of contrast enhancement, and the application of transfer learning. The results 
showed that when tested on the high‐concordance subset, these four AI models outperformed their 
performance on the entire datasets. Improvements in the performance of AI models were observed 
through  the application of  contrast enhancement  to mammograms and  the utilization of  transfer 
learning. In addition, the AI modelsʹ malignancy probability scores were notably influenced by the 
sizes of tumors visible in the mammograms. Applying concordance classifications, transfer learning 
and contrast enhancement of mammograms to AI models is likely to provide an effective method for 
AI assisting decision‐making when radiologists interpret mammographic images.   

Author Contributions: Conceptualization, Z.J., Z.G., P.T., S.T., and S.L.; methodology, Z.J., Z.G., P.T., S.T., and 
S.L.; software, Z.J., formal analysis, Z.J., Z.G., P.T., S.T., and S.L.; data curation, Z.J., Z.G. and S.L.; writing—

original draft preparation, Z.J.; writing—review and editing, all coauthors; visualization, Z.J.; supervision, S.L.; 
project administration, M.B., S.L.; funding acquisition, Z.G., P.T., S.T., and S.L.; All authors have read and agreed 
to the published version of the manuscript. 

Funding: This work was funded by the National Breast Cancer Foundation (NBCF) Australia. 

Institutional  Review  Board  Statement:  The  study  was  conducted  in  accordance  with  the  Declaration  of 
Helsinki, and approved by Human Ethics Research Committee of the University of Sydney (2019/1017). 

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study. 

Data Availability  Statement:  The  data  supporting  this  study’s  findings  are  available  on  request  from  the 
corresponding authors. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Sung, H.;  Ferlay,  J.;  Siegel, R.L.;  Laversanne, M.;  Soerjomataram,  I.;  Jemal, A.;  Bray,  F. Global  cancer 
statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, 
CA Cancer J Clin. 2021, 71, 209‐ 249.   

2. Paci,  E.;  Broeders, M.; Hofvind,  S.;  Puliti, D.; Duffy,  S.W.  European  breast  Cancer  service  screening 
outcomes: a first balance sheet of the benefits and harms, Cancer Epidemiol. Biomark. Prev. 2014, 23, 1159–
1163. 

3. Kopans, D.B. An open letter to panels that are deciding guidelines for breast cancer screening. Breast Cancer 
Research and Treatment 2015, 151, 19–25. 

4. P.A. Carney, D.L. Miglioretti, B.C. Yankaskas, et al. Individual and combined effects of age, breast density, 
and hormone replacement therapy use on the accuracy of screening mammography, Ann Intern Med, 138, 
pp. 168‐175, (2003). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 December 2023                   doi:10.20944/preprints202312.0691.v2

https://doi.org/10.20944/preprints202312.0691.v2


  13 

 

5. Al Mousa, D.S.; Brennan, P.C.; Ryan, E.A.; Lee, W.B.; Tan, J.; Mello‐Thoms, C. How Mammographic Breast 
Density Affects Radiologistsʹ Visual Search Patterns. Academic Radiology 2014, 21, 1386‐93. 

6. Chong. A.; Weinstein,  S.P.; McDonald,  E.S.; Conant,  E.F. Digital  Breast  Tomosynthesis: Concepts  and 
Clinical Practice. Radiology 2019, 292, 1‐14.   

7. Chiu, H.Y.; Chao, H.S.; Chen, Y.M. Application of Artificial Intelligence  in Lung Cancer. Cancers  (Basel) 
2022, 14(6), 1370. 

8. Othman, E.; Mahmoud, M.; Dhahri, H.; Abdulkader, H.; Mahmood, A.; Ibrahim, M. Automatic Detection 
of Liver Cancer Using Hybrid Pre‐Trained Models. Sensors 2022, 22(14), 5429. 

9. Akinyelu, A. A.; Zaccagna, F.; Grist, J. T.; Castelli, M.; Rundo, L. Brain Tumor Diagnosis Using Machine 
Learning, Convolutional Neural Networks, Capsule Neural Networks and Vision Transformers, Applied 
to MRI: A Survey. Journal of Imaging 2022, 8(8), 205. 

10. Wu, N; Phang, J.; Park, J.; Shen, Y.; Huang, Z.; Zorin, M.; Jastrzebski, S.; Fevry T, T. et al., Deep Neural 
Networks  Improve Radiologistsʹ Performance  in Breast Cancer Screening.  IEEE Transactions  on Medical 
Imaging 2020, 39, 1184‐1194. 

11. McKinney, S. M.; Sieniek, V. M. Godbole et al. International evaluation of an AI system for breast cancer 
screening. Nature 2020, 577, 89–94. 

12. Shen,  L.; Margolies,  L.R.; Rothstein,  J.H.  et  al. Deep  Learning  to  Improve  Breast Cancer Detection  on 
Screening Mammography. Scientific Reports 2019 9, 12495. 

13. Al‐Masni, M.; Al‐Antari, M.; Park, J.M.; Gi, G.; Kim, T.Y.; Rivera, P.; Valarezo, E.; Choi, M.T.; Han, S.M.; 
Kim, T.S. Simultaneous detection and classification of breast masses in digital mammograms via a deep 
learning YOLO‐based CAD system. Computer Methods and Programs in Biomedicine 2018, 157, 85‐94.  

14. Dhungel,  N.;  Carneiro,  G.;  Bradley,  A.P.  A  deep  learning  approach  for  the  analysis  of  masses  in 
mammograms with minimal user intervention, Med. Image Anal. 2017, 37, 114‐128. 

15. Yang, Z.; Cao, Z.; Zhang, Y.; Tang, Y.; Lin, X.; Ouyang, R.; Wu, M.; Han, M.; Xiao, J.; Huang, L.; Wu, S.; 
Chang, P.; Ma,  J. MommiNet‐v2: Mammographic multi‐view mass  identification networks. Med.  Image 
Anal. 2021, 73, 102204. 

16. Shen, Y.; Wu, N.; Phang, J.; Park, J.; Liu, K.; Tyagi, S.; Heacock, L.; Kim, S.G.; Moy, L.; Cho, K.; Geras, K.J. 
An interpretable classifier for high‐resolution breast cancer screening images utilizing weakly supervised 
localization, Med. Image Anal. 2021, 68, 101908. 

17. Liu, K.;  Shen, Y.; Wu, N.; Chledowski,  J.;  Fernandez‐Granda, C.; Geras, K. Weakly‐supervised High‐
resolution Segmentation of Mammography  Images  for Breast Cancer Diagnosis, Proceedings  of Machine 
Learning Research 2021, 143, 268‐285. 

18. Ueda,  D.;  Yamamoto,A.;  Onoda,N.;  Takashima,  T.;  Noda,  S.;  Kashiwagi,  S.  et  al.  Development  and 
validation  of  a  deep  learning  model  for  detection  of  breast  cancers  in  mammography  from  multi‐
institutional datasets, PLoS ONE 2022, 17, e0265751. 

19. Yap, M.H.; Pons, G.; Marti, J.; Ganau, S.; Sentis, M.; Zwiggelaar, R.; Davison, A.K.; Marti, R.; Moi Hoon, Y.; 
Pons,  G.;  et  al.  Automated  Breast  Ultrasound  Lesions  Detection  Using  Convolutional  Neural 
Networks. IEEE Journal of Biomedical and Health Informatics, 2018, 22, 1218–1226. 

20. Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer 
Learning, arXiv, 2019. 

21. Mina  L.M.;  Mat  Isa,  N.A.  Breast  abnormality  detection  in  mammograms  using  Artificial  Neural 
Network, 2015  International  Conference  on  Computer,  Communications,  and  Control  Technology  (I4CT), 
Kuching, Malaysia, 2015. 

22. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016. 

23. Karel, Z. Contrast limited adaptive histogram equalization, Graphics Gems IV. Academic Press Professional, 
Inc.; USA, 1994. p. 474–85. 

24. Lin, L.I.K A concordance correlation coefficient to evaluate reproducibility. Biometrics, 1989, 45, 255–268. 
25. GB, M. A proposal for strength of agreement criteria for lin’s concordance correlation coefficient. NIWA 

Client Report HAM2005‐062, Hamilton, New Zealand: National Institute of Water & Atmospheric Research 
Ltd, 2005.   

26. Jaccard  Index, Available  online:  https://en.wikipedia.org/wiki/Jaccard_index  (accessed  on  6 December 
2023). 

27. Elbatel, M. Mammograms Classification: A Review, arXiv 2022, 2203, 1‐6. 
28. OpenCV, Available online: https://docs.opencv.org (accessed on 6 December 2023). 
29. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large‐Scale Image Recognition, arXiv 

2015, 1409, 1‐14. 
30. Min, H.; Wilson, D.; Huang, Y.; Liu, S.; Crozier, S.; Bradley, A.; Chandra., S. Fully Automatic Computer‐

aided  Mass  Detection  and  Segmentation  via  Pseudo‐color  Mammograms  and  Mask  R‐CNN,  17th 
International Symposium on Biomedical Imaging (ISBI), pp. 1111‐1115, Iowa City, USA, 2020. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 December 2023                   doi:10.20944/preprints202312.0691.v2

https://doi.org/10.20944/preprints202312.0691.v2


  14 

 

31. Kingma. D.P.; Ba, J. Adam: A method for stochastic optimization, in International Conference on Learning 
Representations, pp. 1–15, San Diego, USA, 2015. 

32. Wu, N.; Phang, J.; Park, J.; Shen, Y.; Kim, S.G.; Heacock, L.; Moy, L.; Cho, K.; Geras, K.J. The NYU Breast 
Cancer Screening Dataset v1.0. Technical Report, 2019. 

33. Lee, R.S.; Gimenez, F.; Hoogi, A.; Rubin, D. Curated Breast Imaging Subset of DDSM, The Cancer Imaging 
Archive, 2016. 

34. Wang, Y.; Chen, Q.; Zhang, B.  Image enhancement based on equal area dualistic sub‐image histogram 
equalization method. IEEE Transactions Consumer Electronics 1999, 45, 68–75. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 
products referred to in the content. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 December 2023                   doi:10.20944/preprints202312.0691.v2

https://doi.org/10.20944/preprints202312.0691.v2

