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Article 
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Melissa L. Barron 1, Peyman Obeidy 1 and Sarah J. Lewis 1,* 
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University of Sydney, Sydney, 2006, Australia 

* Correspondence: zhengqiang.jiang@sydney.edu.au (Z.J.), sarah.lewis@sydney.edu.au (S.J.L.) 

Simple Summary: Breast cancer is one of the leading causes of cancer related death in women. The early 

detection of breast cancer with screening mammograms plays a pivotal role in reducing mortality rates. 

Although the population-based double reading screening mammograms have reduced mortality over 31% for 

women with breast cancer in Europe, continuing this program due to shortage of radiologists is difficult. 

Artificial Intelligence (AI) is an emerging technology which have provided promising results in medical 

imaging for disease detection. This study investigates the performance of AI models on an Australian 

mammographic database, demonstrating how transfer learning from a USA mammographic database to an 

Australian one, contrast enhancement on mammographic images and quality of training data according to 

radiologists’ concordance can improve breast cancer diagnosis. Our proposed methodology offers a more 
efficacious approach for AI to contribute to radiologists' decision-making in interpreting mammography 
images. 

Abstract: This paper investigates the adaptability of four state-of-the-art Artificial Intelligence (AI) models to 

the Australian mammographic context through transfer learning, explores the impact of image enhancement 

on model performance and analyses the relationship between AI outputs and histopathological features for 

clinical relevance and accuracy assessment. A total of 1712 screening mammograms (n=856 cancer cases and 

n=856 matched normal cases) were used in this study. The 856 cases with cancer lesions were annotated by two 

expert radiologists and the level of concordance between their annotations was used to establish image subsets. 

The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of 

Globally aware Multiple Instance Classifier (GMIC), Global-Local Activation Maps (GLAM), I&H and 

End2End AI models, both in the pre-trained and transfer learning modes, with and without applying the 

Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm. The four AI models with and without 

transfer learning in the high-concordance subset outperformed those in the entire dataset. Applying the 

CLAHE algorithm to mammograms improved the performance of the AI models. In the high-concordance 

subset with transfer learning and CLAHE algorithm applied, the AUC of the GMIC model was highest (0.912), 

followed by GLAM model (0.909), I&H (0.893) and End2End (0.875). There were significant differences (P<0.05) 

in the performances of the four AI models between high-concordance subset and entire dataset. The AI models 

demonstrated significant differences in malignancy probability concerning different tumour size categories in 

mammograms. The performance of AI models was affected by several factors such as concordance 

classification, image enhancement and transfer learning. Mammograms with strong concordance of 

radiologists’ annotations, applying image enhancement and transfer learning could enhance the accuracy of 

AI models. 

Keywords: artificial intelligence; deep learning; radiologists’ concordance; image enhancement; 

mammography; saliency maps; transfer learning 

 

  

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 December 2023                   doi:10.20944/preprints202312.0691.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202312.0691.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

1. Introduction 

Breast cancer has the highest incidence among all types of solid cancers among women 

worldwide in 2020, leading to the highest mortality [1]. To reduce mortality, mammography was 

introduced for breast screening in many countries since the early 2000s. Mammography remains the 

most common imaging technique for breast cancer diagnosis in most countries and a standard 

screening mammogram consists of x-ray imaging with 2 views on each breast in the mediolateral 

oblique (MLO) and craniocaudal (CC) projection. Mammographic images in these two views are 

interpreted by radiologists and other readers to determine whether the screening case is negative for 

breast cancer, or the woman needs to be recalled for further imaging and/or testing.  The mortality 

for women with breast cancer from European populations has reduced by over 31% as attributed to 

population-based programs using mammography [2]. Women diagnosed with abnormal 

mammograms are recommended for further testing, which can include additional images or biopsy. 

Over 60% of these biopsies are diagnosed as cancer free [3]. 

Although the sensitivity (>86%) and specificity (>96%) [4] of screening mammography to detect 

breast cancer for women with almost entirely fatty breasts is relatively high, a major challenge in 

mammography screening involves women with dense breasts, as breast cancer can be masked by 

glandular tissue. Tissue superposition occurs in mammography when there are overlapping layers 

of breast tissue that can obscure small or subtle abnormalities, making it difficult for radiologists to 

accurately interpret the images [5]. This issue has been partially mitigated by digital breast 

tomosynthesis (DBT), which is an advanced mammographic technology that captures three-

dimensional images of the breast, allowing for a more detailed and layered view of breast tissue. 

However, the larger volume of images generated by DBT necessitates more time for both image acquisition and 
interpretation [6]. 

Over the past decade, Artificial Intelligence (AI) has garnered extensive attention in medical 

imaging for its promising advancements in diagnostic accuracy of interpretative tasks related to 

various organs like the brain, liver, breast, and lung [7-19]. Particularly, deep learning methods 

applied to diagnose breast cancer through mammographic images have captivated extensive interest 

[10, 12, 16, 17]. The effective training of AI models for clinical application demands a vast amount of 

data containing precise lesion locations. However, the acquisition of these extensive sets of images 

with lesion locations significantly increases the workload for radiologists and physicians. To mitigate 

some of these workload challenges, transfer learning [20], involving the use of pre-trained AI models 

in different settings, has emerged as a potential solution. 
Breast screening with AI models can assist radiologists in interpreting mammograms, especially 

in distinguishing between normal and abnormal cases [21] The Globally-aware Multiple Instance 

Classifier (GMIC) [16] AI model was designed to classify mammographic cases as benign or 

malignant. Furthermore, the Global-Local Activation Maps (GLAM) [17] AI model extended GMIC 

to classify mammographic cases as benign or malignant by generating multiple scale saliency maps. 

The I&H AI model [10] used deep neural networks to assist radiologists interpret screening 

mammograms. End2End AI model [12] demonstrated a method of breast screening on mammograms 

using deep neural networks. All these four AI models used Residual Networks (ResNet) architecture 

[22] in the training and testing processes. For completeness of the paper, a detailed review of these 

methods is given in the methods section. 

This paper investigates the performance of these four publicly available state-of-the-art AI 

models: GMIC, GLAM, I&H and End2End, on a screening mammographic database of Australian 

women. This study's primary goals include: 

(1) Comparing the performance of these models on an Australian dataset, which differs from their 

original training data (both in terms of population characteristics and the types of 

mammography machines (vendors) used), highlighting the influence of dataset variations on 

predictions. 

(2) Investigating the potential improvement of model performance through transfer learning, and 

hence the value of tailoring the AI models for other nationalities' context. 
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(3) Examining the impact of image enhancement techniques on model predictions to assess their 

potential to enhance diagnostic accuracy. 

(4) Exploring the association between the AI models' malignancy probability outputs and 

histopathological features, offering insights into the models' predictive accuracy and its 

potential clinical relevance, aiding further treatment/triaging decision-making. 

2. Materials and Methods 

Four state-of-the-art AI models involving deep neural networks were used to test an Australian 

mammographic database. Transfer learning of the four pre-trained AI models was conducted on the 

database to update these AI models. Since the images in our dataset were obtained from different 

vendors, they exhibited significantly different histograms and dynamic ranges. Therefore, we applied 

the Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm [23] to enhance the 

contrast of mammographic cases and evaluated its impact on the performance of AI models. The 

receiver operating characteristic curve (ROC) and the area under the ROC curve (AUC) metrics were 

used to evaluate the performance of the four AI models in different scenarios. Histopathological 

features were analyzed with the malignancy probabilities of mammographic cases to provide the best 

AI model in terms of AUC values. Our method consisted of several steps as illustrated in Figure 1. 
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Figure 1. Methodology flow chart. 

2.1. Data Acquisition 

After ethics approval from the University of XXXX, we used screening mammograms collected 

from the Australian mammographic database called XXX to assess the performance of the four AI 

models. The XXX database consists of 1712 mammographic cases (856 normal cases and 856 

malignant cases). Each malignant case was confirmed by the reports of follow-up biopsies. Each case 

had four mammographic views: right MLO, Left MLO, Right CC, and Left CC views. Mammograms 

were acquired from mammography machines manufactured by five different vendors, including Fuji 

Film  (32% of cases), Konica (4% of cases) Siemens (34% of cases), Hologic (19%), and Sectra (11% of 

cases). Each case was annotated by two radiologists and recorded as box regions on the 

mammographic images. Figure 2 shows an example for the annotations of two radiologists on a 

mammographic case, with red boxes from Radiologist A and green boxes from Radiologist B. 

Concordance levels were constructed by analyzing Lin’s concordance correlation coefficient (CCC) 

[24] between the annotations of two radiologists on mammograms according to McBride's 

interpretation guide [25]. Lin’s CCC was computed based on the corners of two overlapped boxes of 

annotations on the same mammographic image. Intersection over Union [26] metric was used to 

determine whether two boxes overlapped or not, with a value greater than 0 indicating the 

overlapping of two boxes. Mammographic images were classified as four concordance levels: ‘almost 

perfect’ at >0.99 (238 cases), ‘substantial’ at <0.95 to 0.95 (222 cases), ‘moderate’ at 0.95 to 0.90 (202 

cases), and ‘poor’ at <0.90 (194 cases). 

AI models performance evaluation 

Without applying contrast 

enhancement of cases in 

high concordance subset   

Applying contrast 

enhancement of cases 

in high concordance 

subset   

Without applying contrast 

enhancement of cases in 

entire dataset  

Applying contrast 

enhancement of cases 

in entire dataset 

4 Pre-trained AI models 

Australian mammographic 

Transfer learning 

High concordance 
data subset (n=238) 

4 AI models updated 

Entire dataset  
(n=856)
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Figure 2. Annotations from Radiologist A in red and Radiologist B in green. 

The training and testing mammographic cases of our database had an equal representation of 

breast density. Two image sets were developed: the first subset included cases rated with ‘almost 

perfect’ agreement between radiologists (termed ‘high-concordance subset’ in this paper), and the 

second dataset included all cases that have been marked with cancers with ‘no concordance 

threshold’ applied (termed ‘entire dataset’ in this paper). 

2.2. AI models 

The GLAM, GMIC, I&H and End2End models were evaluated in this study. These four models 

were selected as each model provided promising results in diagnosing cancers on mammographic 

images with high AUC values. The GMIC model combined the global and local context in the 

decision-making process [16]. To obtain additional details of the local context, the GLAM 

incorporated zoom functionality for the local context, hence it is a similar approach taken by 

radiologists interpreting mammographic images [17]. To mimic radiologists interpreting 

mammographic images from different views, I&H fused each model trained on each view for the 

decision-making process [10] as sometimes a mammographic image from a single view is not enough 

to determine whether the mammographic image has cancer. Instead of searching cancer signs in a 

direction from the global to the local on a mammographic image like GMIC and GLAM, End2End 

trained a local classifier and then expanded to a global classifier to determine whether the 

mammographic images showed signs of cancers. Although the AUC values reported previously for 

GMIC, GLAM, I&H and End2End using their original mammography databases were 0.909, 0.882, 

0.895, and 0.88, respectively, these AI models have reportedly provided relatively low AUC values 

on other mammographic databases from different ethnicities and manufacturers [27]. 

2.2.1. Globally-aware Multiple Instance Classifier (GMIC) 

The GMIC firstly learned the global feature map of a mammographic image using a ResNet-22 

network [25]. The global feature map was convolved with a 1 x 1 filter and Sigmoid operation to 

generate a malignant map. The value of each pixel in the global feature map was [0,1], which 

indicated whether the presence of malignancy. The feature map was then scanned to get non-

overlapping K patches with largest total intensity inside the patches. As suggested in the original 

paper, K was set as 3. Local features of patches were extracted using a ResNet-34 network and then 

combined with a gated attention network for computing weights of features. The final step combined 

the malignant map and local feature with weighted representation of all patches to predict 

malignancy probability. All the mammographic images for GMIC models were resized to a resolution 

of 1920 x 2944 pixels using bilinear interpolation [28]. For the GMIC model, the source codes are 

publicly available on the GitHub at https://github.com/nyukat/GMIC.git.  
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2.2.2. Global-local Activation Maps (GLAM) 

The GLAM learned the global saliency map of a mammographic image using a convolutional 

neural network (CNN). To capture different sizes of malignancy, the global saliency map was 

generated at different scales. The second stage generated a set of patches from the feature map based 

on the local maximum of average intensity. In the last stage, each image patch was applied a ResNet-

34 network [22] to extract the local feature map, which was then assigned to the corresponding 

mammographic image. All feature maps of local patches were combined with the global feature map 

to predict the probability of malignancy on a mammographic image using binary cross-entropy 

function. All the mammographic images for GLAM models were also resized to a resolution of 1920 

x 2944 pixels. For the GLAM model, the source codes are publicly available on the GitHub at 

https://github.com/nyukat/GLAM.git. 

2.2.3. I&H 

I&H trained AI models based on MLO and CC views on each breast and concatenated 

representations from four views to predict the probability of malignancy in each mammographic 

image. A ResNet-22 was used for model training in a mammographic image of each view. The 

mammographic images in CC view for I&H model were resized to 2677 x 1942 and 2974 x 1748 in 

MLO view. For this model, we used the source codes published by the authors on the GitHub at 

https://github.com/nyukat/ breast_cancer_classifier.git. 

2.2.4. End2End 

End2End converted a patch classifier to a whole mammographic image classifier by adding 

heatmaps and convolutional layers on the top of the neural network. These convolutions used two 

Visual Geometry Group (VGG) [29] blocks with 3 x3 convolutions and batch normalization. All the 

mammographic images for End2End were resized to a resolution of 1152 x 896 pixels. For this model, 

we used the source codes published by the authors on the GitHub at 

https://github.com/lishen/end2end-all-conv.git. 

2.3. Image enhancement 

Image enhancement techniques can be helpful to optimize contrast of mammographic images 

and one example is from Min et al. [30], where the study presented pseudo-color mammogram 

generation to enhance mass-like feature in mammographic images. In this study, we used the CLAHE 

[23] algorithm to enhance mammographic images because it is fast and produces promising contrast 

enhancement. The CLAHE algorithm firstly divided an image into un-overlapped tiles. In the second 

stage, it conducted histogram equalization for each tile. The histogram equalization used a pre-

defined clip limit to redistribute the bins and then map to an improved tile. The last stage combined 

each improved tiles to generate an enhanced image using bilinear interpolation. For the parameters 

of the CLAHE algorithm, the clip Limit was set to 12 and tile Grid Size was set to (8, 8). 

2.4. Transfer learning 

Transfer learning of the four AI models was conducted on the XXX database, including 856 

cancer cases and 856 normal cases. All DICOM images were downsampled to match the resolution 

of the input images for the models and converted to PNG format to reduce the computational time 

of the training process. We conducted a four-fold cross validation to train and test the four AI models 

on the database with transfer learning.  The training set was further split into training and validation 

sets to refine the stopping criteria. This step involved an iterative process, assessing the AI models' 

accuracy in the current epoch against the previous one. The training concluded when the validation 

process callback showed no improvement in model accuracy, typically after a patience threshold of 

3 epochs had been reached.  

The transfer learning of each AI model was optimized using Adam algorithm [31]. The loss 

function used the binary cross-entropy. As suggested in the original studies, the learning rates for the 
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GMIC, GLAM and I&H were set as 10-5 and End2End was set as 10-4, respectively.  For an equitable 

comparison of performance between transfer learning models and pre-trained models, the transfer 

learning approach employed the ResNet-22 network for the global module and the ResNet-34 

network for the local module. These are the same networks utilized by the pre-trained GMIC and 

GLAM models. Additionally, I&H utilized the ResNet-22 network as its pre-trained model, while 

End2End employed the VGG network as its pre-trained model. 

2.5. Evaluation metrics 

The performance of four AI models in the classification of malignancy on mammographic 

images was evaluated using sensitivity, specificity, the area under receiver operating characteristic 

curve (AUC). An ANOVA test was conducted for each AI model between the two image sets, with 

the corresponding p-values as shown in the Results section. A threshold of statistical significance was 

set as 0.05. Bonferroni correction was used to adjust for multiple comparisons.  

2.6. Association between the malignancy probability from the AI and histopathological features 

We also employed the Kruskal-Wallis U-test to investigate potential differences in malignancy 

probability as predicted by the top-performing AI model across distinct categories based on 

pathology reports. We considered pathological factors including Estrogen Receptor (ER), 

Progesterone Receptor (PR), Breast Cancer Grade, Human Epidermal Growth Factor Receptor 2 

(Her2), and the differentiation between Ductal Carcinoma In Situ (DCIS) and invasive cancer. 

Additionally, an analysis was conducted based on the size of cancers, with tumours classified into 

four groups (mm): (0.999, 10.0], (10.0, 15.0], (15.0, 25.0], and (25.0, 150.0] intervals. The Kruskal-Wallis 

U-test was utilized to assess the statistical significance of differences among these groups.  

3. Results 

3.1. The performances of four AI models 

In the pre-trained stage, GMIC obtained significantly higher AUC score in both the high-

concordance subset and entire dataset in original (0.865 and 0.824) and contrast-enhanced (0.870 and 

0.836) modes, followed by the GLAM, I&H, and then End2End models (Table 1). There were 

significant differences (P<0.05) (Table 1) in the performances of these models between two datasets. 

The AUC values of the four AI models were higher when CLAHE image enhancement algorithm was 

applied, in comparison with the original mammograms (Table 1) (e.g., 0.870 for GMIC + CLAHE vs. 

0.865 for GMIC only in the high-concordance subset, and 0.836 for GMIC + CLAHE vs. 0.824 for 

GMIC only in the entire dataset). 

In the transfer learning stage, the highest AUC score was found with the GMIC for both the 

high-concordance subset and entire dataset (0.910 and 0.883) and again with the contrast-enhanced 

(0.912 and 0.889) mode, compared with the values generated by the GLAM, I&H, and then End2End’s 

models without contrast enhancement (Table 1). Significantly higher AUC scores were also reported 

in the subset than the entire dataset across four models with and without contrast-enhancement 

(P<0.05) (Table 1). There was an improvement in the AUC values of the four transfer learning AI 

models on the contrast-enhanced mammograms compared with the original mammograms in both 

datasets as shown in this table (e.g., 0.912 for GMIC + CLAHE vs. 0.910 for GMIC only in the high-

concordance subset, and 0.889 for GMIC + CLAHE vs. 0.883 for GMIC only in the entire dataset). 

Table 1. Performance comparison of four AI models with and without CLAHE image enhancement 

algorithm on both entire dataset (AUCEntire) and the high-concordance data subset (AUCHigh). Two 

different scenarios were considered: using the original models and using the models re-calibrated for 

our dataset using transfer learning. 
 

Original Transfer Learning  

  AUCEntire AUCHigh P-Values AUCEntire AUCHigh P-Values 
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GMIC  0.824 0.865 0.0283 0.883 0.91 0.0416 

GLAM  0.817 0.858 0.0305 0.877 0.906 0.0359 

I&H 0.806 0.842 0.0454 0.852 0.891 0.0257 

End2End 0.784 0.819 0.0368 0.824 0.874 0.0162 

GMIC+CLAHE  0.836 0.870 0.0137 0.889 0.912 0.0348 

GLAM+CLAHE  0.825 0.864 0.0181 0.886 0.909 0.0310 

I&H+CLAHE 0.812 0.845 0.0339 0.855 0.893 0.0185 

End2End+CLAHE 0.793 0.821 0.0286 0.828 0.875 0.0124 

Figure 3 and Figure 4 show the comparison of ROC curves of the four AI models with and 

without transfer learning on high-concordance subset and entire dataset, respectively. The ROC 

curves in these figures show a clear improvement of performance among the four AI models with 

transfer learning (see Figure 3 and 4 (a) and (c)) and CLAHE contrast enhancement (see Figure 3 and 

4 (b) and (d)). Confidence intervals for the four AI models on high-concordance subset are shown in 

the legend of each subfigure. 

Figures 3 and 4 also illustrate that the receiver operating characteristic (ROC) curves of the four 

AI models, both with and without transfer learning and with and without contrast enhancement, 

exhibited superior performance in high-concordance compared to the entire dataset (e.g., Figure 3 (a) 

and Figure 4 (a)). The ROC curves of the four AI transfer learning models shown more improvement 

on two datasets than those of the four pre-trained AI models (e.g., Figure 3 (a) and Figure 4 (a) vs. 

Figure 3 (c) and Figure 4 (c)).   

 
Figure 3. The receiver operating characteristic curves (ROC) of the four AI models on high-

concordance subset. (a) ROC curves of the AI models on original mammographic images; (b) The 

ROC curves of the AI models on enhanced mammographic images; (c) The ROC curves of the AI 

transfer learning models on original mammographic images; (d) The ROC curves of the AI transfer 

learning models on enhanced mammographic images. 
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Figure 4. The receiver operating characteristic curves (ROC) of the four AI models on entire dataset. 

(a) ROC curves of the AI models on original mammographic images; (b) The ROC curves of the AI 

models on enhanced mammographic images; (c) The ROC curves of the AI transfer learning models 

on original mammographic images; (d) The ROC curves of the AI transfer learning models on 

enhanced mammographic images. 

3.2. Pairwise Comparisons of four AI models 

We conducted pair-wise comparisons among the models in various scenarios to explore if the 

difference in the performances were significant. In each scenario, six comparisons were made and the 

p-values were adjusted using Bonferroni correction. As shown in Table 2, the differences were more 

significant when models were re-calibrated using transfer learning. This highlights the need of 

transfer learning to leverage the maximum added benefit of the model. The GMIC and GLAM models 

were not significantly different in the entire dataset because both models have similar architecture of 

networks and GLAM was an extended work of GMIC.  

Table 2. The p-values for pair-wise comparison of the models’ output in different scenarios. The 

significant p-values were shown in bold (significant level of 0.0083 was considered after applying 

Bonferroni adjustment). The p-values were adjusted using Bonferroni correction. 

Model  

Images 

Without 

Transferred 

Learning, Original 

Without 

Transferred 

Learningl, 

CLAHE 

With Transferred 

Learning, Original  

With Transferred 

Learning, CLAHE 

Dataset Entire High Entire High Entire High Entire High 

GMIC vs GLAM 0.0362 0.0624 0.0331 0.0566 0.0193 0.0233 0.0141 0.0215 

GMIC vs I&H 0.0175 0.0387 0.0108 0.0369 0.0076 0.0135 0.0058 0.0121 
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GMIC vs End2End 0.0062 0.0078 0.0049 0.0062 0.0027 0.0041 0.0015 0.0030 

GLAM vs I&H 0.0236 0.0294 0.0217 0.0279 0.0061 0.0093 0.0020 0.0075 

GLAM vs End2End 0.0064 0.0186 0.0059 0.017 0.0073 0.0142 0.0057 0.0128 

I&H  vs End2End 0.0081 0.0351 0.0025 0.0344 0.0220 0.0327 0.0106 0.0310 

The I&H and GMIC or GLAM models were not significantly different when using the original 

or contrast-enhanced images in the entire dataset, but significant differences were observed when 

transfer learning models were used.  The GMIC and End2End models were significantly different in 

both the high-concordance subset and the entire dataset due to different deep neural network 

architectures for the two models (one with ResNet and the other with VGG).  

3.3. Comparison of salience maps on original and locally-enhanced mammographic images 

Figure 5 shows the comparison of saliency maps generated from GLAM and GMIC on both an 

original mammographic image and with the applied CLAHE algorithm. The annotations of two 

radiologists on the same mammographic case were shown in the left CC view in Figure 2. From 

Figure 5 we can see that the saliency maps of GLAM (see Fig. 5(c)) and GMIC (see Fig. 5(e)) from 

original mammographic images deviated from the centroid of the radiologists’ annotations and 

occupied a smaller area of the annotations. However, the saliency maps of the two AI models from 

the contrast-enhanced image (see Fig. 5(d) and (f)) aligned with the centroid of radiologists’ 

annotations and occupied a larger area of the annotations. 

 

Figure 5. Comparison of saliency map from GLAM and GMIC on an original mammographic image 

with and without applying Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm. 

(a) Original mammogram in CC view; (b) Enhanced mammogram using CLAHE algorithm; (c) 

Saliency maps on the original mammogram using GLAM; (d) Saliency maps on the enhanced 

mammogram using GLAM; (e) Saliency maps on the original mammogram using GMIC; (F) Saliency 

maps on the enhanced mammogram using GMIC. 
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3.4. Association between the malignancy probability from the AI and histopathological features 

The outcomes of the Kruskal-Wallis tests, assessing the significance of differences in malignancy 

probability predicted by the highest-performing AI model (GMIC) across various pathological 

factors, revealed non-significant findings. The comparison based on ER, PR, and Her2 status yielded 

p-values of 0.342, 0.414, and 0.179 respectively. The examination of breast cancer grade resulted in a 

p-value of 0.169. Additionally, the differentiation between DCIS (503 cases) and invasive cancer (312 

cases) exhibited a non-significant p-value of 0.152. 

However, when investigating the impact of tumour size categories on malignancy probability, 

the results were statistically significant. There were 337 cases with tumor size in (0, 10.0mm], 174 

cases in (10.0, 15.0mm], 179 cases in (15.0, 25.0mm], and 166 cases above 25mm. The analysis yielded 

a p-value of 0.0002, indicating that the distinct size groups indeed manifest significant differences in 

malignancy probability provided by the AI model. As shown in Figure 6, the most prominent 

difference was observed between the first size category (i.e., lesions with a size of 10mm or less) with 

the lowest malignancy probability scores compared with the other size intervals. 

 
Figure 6. Box plot depicting the relationship between tumour size categories and corresponding 

malignancy probability scores from the highest-performing AI model. 

4. Discussion 

In previous studies, the mammograms for training and testing the GLAM, GMIC and I&H were 

conducted with the New York University Breast Cancer screening database, [32] which included 

examinations from two manufacturers: Siemens and Hologic. The training and testing data for 

End2End were film-screen (FS) mammographic images from the Digital Database for Screening 

Mammography (DDSM) [33]. Our dataset included digital mammographic images collected from a 

wider range of vendors such as Sectra, Fuji, Siemens, Hologic, GE Healthcare and Philips Healthcare. 

The mammographic images from the NYU and DDSM databases were obtained in the USA, whilst 

our dataset was obtained in Australia and could represent different populations, with the majority 

ethnicity group of our database unlikely to be matched with the USA databases. Previous research 

has shown an 8% difference in the AUC of an AI model on US screening mammograms and UK 

screening mammograms [11]. 

Our results showed that transfer learning improved the performance of the four AI models in 

detecting cancer lesions on digital screening mammograms. As shown in Table 1, the AUC of the 

transfer learning GMIC model increased from 0.865 for the pre-trained model to 0.910 in the high-

concordance subset and from 0.824 to 0.883 in the entire dataset. Similar results were also found for 
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GLAM, I&H and End2End. This indicates that transfer learning of the four models was influenced 

by the quality of the concordance levels, indicating that high quality data together with undertaking 

transfer learning are both important factors for training an effective AI model. 

Applying image enhancement via CLAHE algorithm to our image set improved the 

performance of the AI models in detecting cancer lesions on screening mammograms. The AUC 

values of the four AI models were greater than those without enhanced mammographic images. 

Other image enhancement such as Pseudo-color mammogram generation and local histogram 

equalization algorithm [34] may also improve the AUC performance of AI models and this could be 

a direction for future work. 

We also explored the prediction of malignancy probability by the GMIC as the highest 

performing model across various pathological factors. Despite non-significant differences observed 

in the context of ER status, PR status, breast cancer grade, Her2 status, and the distinction between 

DCIS and invasive cancer, our investigation showed an association between tumour sizes and AI’s 

output.  The exploration of tumour size categories revealed a highly significant variance in 

malignancy probability, with the most notable contrast emerging between the initial size category 

(tumours measuring 10mm or less) and the subsequent size intervals. This finding highlights the AI's 

potential limitation in confidently annotating malignancy in cases of small tumours and that 

radiologists should be mindful of the association between lower AI-assigned probability score and 

smaller tumor sizes. This insight reinforces the need for a nuanced understanding of AI results and 

their context in clinical practice. 

To evaluate the four models, we investigated the performance of the AI models from the point 

of view of malignancy detection or reporting as a normal case. We did not include any cases with 

benign lesions in our Australian database, so the results cannot comment on the models’ ability to 

identify cases with benign features, and this may include cases that are benign but more challenging 

to AI and human readers. With transfer learning and contrast enhancement application, the AUC of 

GMIC with CLAHE in the high-concordance subset was 0.912 which is also the best model of four AI 

models on this study. It is imperative to engage in transfer learning when mammograms are gathered 

from distinct populations or various vendors as the performance of AI models can be influenced by 

the specific vendor or population, necessitating adaptation for optimal results. 

5. Conclusion 

In this paper, we presented the performance of four publicly available AI models for breast 

cancer detection in different situations such as concordance classification of annotations in the input 

data, the incorporation of contrast enhancement, and the application of transfer learning. The results 

showed that when tested on the high-concordance subset, these four AI models outperformed their 

performance on the entire datasets. Improvements in the performance of AI models were observed 

through the application of contrast enhancement to mammograms and the utilization of transfer 

learning. In addition, the AI models' malignancy probability scores were notably influenced by the 

sizes of tumors visible in the mammograms. Applying concordance classifications, transfer learning 

and contrast enhancement of mammograms to AI models is likely to provide an effective method for 

AI assisting decision-making when radiologists interpret mammographic images. 
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