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Spin-Orbit Interaction during Light Propagation in a 
Graded-Index Medium  

Nikolai I. Petrov 

Scientific and Technological Centre of Unique Instrumentation, Russian Academy of Sciences, Moscow 

117342, Russia; petrovni@mail.ru 

Abstract: Spin-orbit coupling and nonparaxiality effects during propagation of vortex vector light beams in a 

cylindrical graded-index waveguide are investigated by solving the full three-component field Maxwell’s 

equations. Symmetry breaking effects for left- and right-handed circularly polarized vortex light beams 

propagating in a rotationally symmetric graded-index optical fiber are considered. The mode-group delay in a 

graded-index fiber due to spin-orbit interaction is demonstrated. It is shown that the relative delay times 

between vortex pulses of opposite circular polarizations of the order of 10 ps/km can be observed in graded-

index fibers for high-order topological charges.  

Keywords: nonparaxial focusing; rotationally symmetric graded-index fiber; spin-orbit interaction; 

orbital and spin Hall effects; pulse delay time; polarization-dependent asymmetry     

 

1. Introduction 

Various symmetry breaking effects arise at the propagation of a polarized light in dielectric 

media. Different transmission levels for left and right-hand circular polarizations (circular dichroism) 

exhibit optically active materials. Conventional optical activity is associated with intrinsically 3D-

chiral molecules, and it is the property of unequal absorption of right and left hand circular polarized 

light. In [1,2] directionally asymmetric transmission of polarized light in planar chiral structures was 

considered. Optical activity may also arise from extrinsic chirality. Strong optical activity and circular 

dichroism in non-chiral planar microwave and photonic metamaterials was demonstrated in [3]. It is 

well known that, when a light beam is reflected from an interface, the longitudinal shift of the gravity 

center of the beam is different for s- and p-polarized beams [4], while the transverse shift has reverse 

signs in the case of right- and left-hand circularly polarized radiation [5]. Lateral and angular shifts 

for strongly focused azimuthally and radially polarized beams at a dielectric interface were shown 

in [6]. Polarization-dependent light transmission occurs in a filter with frustrated total internal 

reflection (FTIR) due to different resonance conditions for incident beams with s- and p- polarization 

[7,8]. Recently, a phenomenon of spin-dependent splitting of the focal spot of a plasmonic focusing 

lens was demonstrated experimentally [9,10]. Polarization-dependent splitting of the reflected beam 

from the surface of the subwavelength grating was also shown in [11,12]. The effect of spin symmetry 

breaking via spin-orbit interaction, which occurs even in rotationally symmetric structures, was 

observed in plasmonic nanoapertures [13]. Similar effect of polarization-dependent transmission 

through subwavelength round and square apertures was demonstrated in [14].  

Polarization-dependent symmetry breaking effects occur also for a light propagating in optical 

waveguides. It is known that the polarization plane in an inhomogeneous medium is rotated on 

propagation of light ray on the helical trajectory [15,16]. Such rotation was observed experimentally 

in a single mode optical fiber wound on a cylinder [17] and interpreted in terms of Berry's geometrical 

phase [18]. In [19] the rotation of the polarization plane was observed also in a straight multimode 

fiber with step-index-type profile. It is of interest also to consider the inverse effect, i.e., the influence 

of polarization on the trajectory and the width of a radiation beam. As demonstrated in [20], these 

effects can be also observed in optical fibers, where small shifts are accumulated due to multiple 
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reflections in the process of radiation propagation through a fiber. The authors of [20] calculated the 

rotation of the speckle pattern produced by circularly polarized light at the output of a fiber 

corresponding to the reversal of the sign of circular polarization. In [21] it was experimentally 

demonstrated that the rotation angle of the speckle pattern depends on the angle at which a circularly 

polarized light beam is coupled into a fiber. It was shown in [22,23] that spin-orbit interaction causes 

asymmetry effect for depolarization of the right- and left-handed circularly polarized light 

propagating in a graded-index (GRIN) fiber. Depolarization is stronger if the helicity of the trajectory 

of rays and photons has the same sign, and less if they do not coincide. Spin-dependent relative shift 

between right- and left-hand circularly polarized light beams propagating along a helical trajectory 

in a graded-index fiber was shown in [24,25]. In [26] this effect was observed experimentally for a 

laser beam propagating in the glass cylinder along the smooth helical trajectory. This shift can be 

regarded as a manifestation of the optical Magnus effect [27] and the optical spin-Hall effect [28,29] 

which arises due to a spin-orbit coupling. Propagation of light beams in a graded-index medium is 

mainly investigated in the paraxial approximation. Both ray and wave optics is applied for the 

analysis of light propagation in graded-index media [30–42]. Effects of the polarization on the modes 

in lens-like media were analyzed in [43]. In [44] the polarization-dependent Goos-Hanchen (GH) 

beam shift at a graded-index dielectric interface is examined both theoretically and experimentally. 

In [45] the beam shifts or corrections with respect to geometrical optics caused by the nonparaxiality 

and spin-orbit interaction in a graded-index optical fiber are investigated.  

In this paper, the effect of symmetry breaking for left- and right-handed circularly polarized 

light in an isotropic graded-index fiber due to spin-orbit interaction forces is demonstrated 

analytically by solving the full three-component field Maxwell’s equations.  It is shown that the 

propagation velocities of vortex modes with right- and left- handed polarizations differ from each 

other due to spin-orbit interaction. 

2. Basic equations  

The Maxwell equations for the electric field 𝐸ሬ⃗ 𝑒𝑥𝑝( − 𝑖𝜈𝑡) in a general inhomogeneous medium 

with dielectric constant ε(x, y) reduce to: 

           𝛻ଶ𝐸ሬ⃗ + 𝑘ଶ𝑛ଶ𝐸ሬ⃗ + 𝛻൫𝐸ሬ⃗ ⋅ 𝑙𝑛 𝑛ଶ൯ = 0,                                 (1)                  

where 𝑘 = 2𝜋/𝜆 is the wavenumber and 𝜀 = 𝑛ଶ is the dielectric permittivity of the medium. 

In the paraxial approximation, equation (1) can be reduced to the equivalent time-independent 

Schrodinger equation [46]. An analogous approach may be used to obtain a parabolic equation for 

the two-component vector field wavefunction [22–24]. Using the same method, the equation for a 

three-component wave equation can be derived: 

                      
௜௞ డఅడ௭ = 𝐻̑𝛹,                                              (2) 

where  𝛹 = 𝑛଴ଵ ଶ⁄ 𝑒𝑥𝑝( − 𝑖𝑘𝑛଴𝑧) ቎𝑒௫(𝑟, 𝜙)𝑒௬(𝑟, 𝜙)𝑒௭(𝑟, 𝜙)቏,  𝐻̑ = 𝛧̑ିଵ൫𝐻̑଴ + 𝐻̑ଵ൯ = 𝐻̑଴ + 𝐻̑ଵ + 𝐻̑ଶ, 

𝐻̑଴ = ቈ− 12𝑘ଶ𝑛଴ ቆ 𝜕ଶ𝜕𝑟ଶ + 1𝑟 𝜕𝜕𝑟 + 1𝑟ଶ 𝜕ଶ𝜕𝜙ଶቇ + 12𝑛଴ (𝑛଴ଶ − 𝑛ଶ)቉ 𝐼 ̑

is the unperturbed Hamiltonian corresponding to the first two terms in the equation (1),  

𝐻̑ଵ = − 12𝑘ଶ𝑛଴ ⎝⎜
⎛ 𝜕𝜕𝑥 𝑐𝑜𝑠 𝜙 𝜕 𝑙𝑛 𝑛ଶ𝜕𝑟 𝜕𝜕𝑥 𝑠𝑖𝑛 𝜙 𝜕 𝑙𝑛 𝑛ଶ𝜕𝑟 0𝜕𝜕𝑦 𝑐𝑜𝑠 𝜙 𝜕 𝑙𝑛 𝑛ଶ𝜕𝑟 𝜕𝜕𝑦 𝑠𝑖𝑛 𝜙 𝜕 𝑙𝑛 𝑛ଶ𝜕𝑟 00 0 0⎠⎟

⎞
 

and 𝐻̑ଶ = 𝑍̑ଵି ଵ𝐻̑଴ are the perturbations corresponding to the third term in the equation (1), 𝑍̑ିଵ = ቌ 1 0 00 1 0௜ଶ௞௡బ డ ௟௡ ௡మడ௫ ௜ଶ௞௡బ డ ௟௡ ௡మడ௬ 1ቍ = 𝐼̑ + 𝑍̑ଵି ଵ. 
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Consider a rotationally symmetric cylindrical waveguide with a parabolic distribution of the 

refractive index: 

          𝑛ଶ(𝑟) = 𝑛଴ଶ − 𝜔ଶ𝑟ଶ ,                                 (3) 

where n0 is the refractive index on the waveguide axis, ω is the gradient parameter, 𝑟 = ඥ𝑥ଶ + 𝑦ଶ. 

The Hamiltonian 𝐻̑ may be rewritten in terms of annihilation and creation operators [36]:  𝐴̑ଵ,ଶ = ଵ√ଶ (𝑎̑ଵ ± 𝑖𝑎̑ଶ) , 𝐴̑ଵ,ଶା = ଵ√ଶ (𝑎̑ଵା ∓ 𝑖𝑎̑ଶା), 𝑎̑ଵ = ଵ√ଶ ቆ√𝑘𝜔𝑥̑ + 𝑖ට௞ఠ 𝑝̑௫ቇ, 𝑎̑ଶ = ଵ√ଶ ቆ√𝑘𝜔𝑦̑ + 𝑖ට௞ఠ 𝑝̑௬ቇ, 𝑝̑௫ = − ௜௞ డడ௫ , 𝑝̑௬ = − ௜௞ డడ௬, (𝑥, 𝑦) = (𝑟 𝑐𝑜𝑠 𝜙 , 𝑟 𝑠𝑖𝑛 𝜙), 
డడ௫ = 𝑐𝑜𝑠 𝜙 డడ௥ − ௦௜௡ థ௥ డడథ, 

డడ௬ = 𝑠𝑖𝑛 𝜙 డడ௥ + ௖௢௦ థ௥ డడథ. 

These operators satisfy the commutation relations: ൣ𝑎̑௜ , 𝑎̑௝ା൧ = 𝛿௜௝, ൣ𝐴̑௜ , 𝐴̑௝ା൧ = 𝛿௜௝. 

Thus, we have  𝐻̑଴ = ఠ௞௡బ ൫𝐴̑ଵା𝐴̑ଵ + 𝐴ଶା𝐴̑ଶ + 1൯𝐼,̑ 𝐻̑ଵ = 𝜂 ቂ𝑐ଵ ቀ1 + ଵଶ 𝜎̑௭ − ଵଶ 𝜎̑௭ଶቁ + 𝑐ଶ ቀଵଶ 𝜎̑௭ + ଷଶ 𝜎̑௭ଶ − 1ቁ + 𝑐ଷ(𝜎̑௭𝜎̑ା − 𝜎̑ି𝜎̑௭) + сସ(𝜎௭𝜎ା + 𝜎ି𝜎௭)ቃ,    (4) 𝐻̑ଶ = ቂℎ𝜎̑ ଶି + ଵଶ 𝑠(𝜎̑ି − 𝜎̑ି𝜎̑௭ − 𝜎̑௭𝜎̑ି)ቃ 𝐻̑଴. 

Here  𝑐ଵ = 1̑ + 𝐴̑ଵ𝐴̑ଶ − 𝐴̑ଵା𝐴̑ଶା , 𝑐ଶ = ଵଶ ൫𝐴̑ଵଶ − 𝐴̑ଵାଶ + 𝐴̑ଶଶ − 𝐴̑ଶାଶ൯ , 𝑐ଷ = −𝑖𝑘𝐿̑௭ , 𝑐ସ = − ௜ଶ ൫𝐴̑ଵଶ + 𝐴̑ଵାଶ − 𝐴̑ଶଶ −𝐴̑ଶାଶ൯ , ℎ = −𝑖𝜉൫𝐴̑ଵ + 𝐴̑ଵା + 𝐴̑ଶ + 𝐴̑ଶା൯ , 𝑠 = 𝜉൫𝐴̑ଵା − 𝐴̑ଵ + 𝐴̑ଶ − 𝐴̑ଶା൯ , 𝜂 = ఠమଶ௞మ௡బయ , 𝜉 = ଵଶ ቀఠ௞ ቁଷ ଶ⁄ ଵ௡బయ , 𝐿̑௭ =− ௜௞ డడథ = ଵ௞ ൫𝐴̑ଶା𝐴̑ଶ − 𝐴̑ଵା𝐴̑ଵ൯ , 𝐼̑ = ൭1 0 00 1 00 0 1൱  is the unit matrix and 𝜎̑௫ = ଵ√ଶ ൭0 1 01 0 10 1 0൱ , 𝜎̑௬ =
ଵ√ଶ ൭0 −𝑖 0𝑖 0 −𝑖0 𝑖 0 ൱, 𝜎̑௭ = ൭1 0 00 0 00 0 −1൱, 𝜎̑ା = ଵ√ଶ ൫𝜎̑௫ + 𝑖𝜎̑௬൯, 𝜎̑ି = ଵ√ଶ ൫𝜎̑௫ − 𝑖𝜎̑௬൯. 

Representation of the Hamiltonian by means of the operators will allow us to calculate the matrix 

elements analytically. Note that generalized Stokes vectors consisting of nine real parameters in terms 

of vector and tensor operators are considered to completely describe three-dimensional fields [47].  

The solution of the unperturbed equation is described by radially symmetric Laguerre-Gauss 

functions 𝜓௩௟(𝑟, 𝜙) = |𝑣, 𝑙⟩: 
        𝜓௩௟(𝑟, 𝜙) = ቀ௞ఠగ ቁభమ ቂ ௣!(௣ା௟)!ቃభమ (𝑘𝜔𝑟ଶ)೗మ 𝑒𝑥𝑝 ቀ− ௞ఠ௥మଶ ቁ 𝐿௣௟ (𝑘𝜔𝑟ଶ) 𝑒𝑥𝑝( 𝑖𝑙𝜙),            (5) 

where 𝑣 = 2𝑝 + |𝑙| is the principal quantum number, p and 𝑙 are the radial and azimuthal indices, 

accordingly, and 𝑙 = 𝑣, 𝑣 − 2, 𝑣 − 4, . . .1  or 0, 𝜔 = 2/(𝑘𝑤଴ଶ) , 𝑤଴  is the radius of the fundamental 

mode.  

The numbers 𝑣  and 𝑙  express the eigenvalues of the unperturbed Hamiltonian 𝐻̑଴|𝑣, 𝑙⟩ =(𝜔/𝑘𝑛଴ଶ)(𝑣 + 1)|𝑣, 𝑙⟩ , and eigenvalues 𝐿 = 𝑙/𝑘  of the angular momentum operator 𝐿̑௭|𝑣, 𝑙⟩ =(𝑙/𝑘)|𝑣, 𝑙⟩.  

It was shown in [36,39] that the hybrid wave functions consisting of transverse and longitudinal 

components are the solutions of the equation (2):  

               𝛹(𝑟, 𝜙, 0) = อ|𝑣𝑙⟩𝑖𝜎|𝑣𝑙⟩𝑒௭ ං,                             (6) 

where 𝜎 = +1 and 𝜎 = −1 correspond to right-handed and left-handed circularly polarized beams, 

accordingly, and 𝜎 = 0 corresponds to the linear polarization. 

The propagation constant, which takes into account non-paraxial terms of the first order, is given 

by the expression [39,48]:  𝛽௩௟ఙ = 𝑘𝑛଴ ቄ1 − 𝜂(𝑣 + 1) − ఎమଷଶ ሾ11(𝑣 + 1)ଶ − 𝑗ଶ − 2𝑗𝜎ሿቅ,             (7)                  

where 𝜂 = 𝜔 𝑘𝑛଴ଶ⁄ , 𝑛଴ is the refractive index on the waveguide axis, 𝜔 is the gradient parameter, 𝑗 = 𝑙 + 𝜎 is the total angular momentum, σ  is the spin angular momentum. 

The term 𝑗 ⋅ 𝜎 in (7) relates to the spin-orbit and spin-spin interactions. 
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Consider the incident vector vortex beams with right-circular and left-circular polarizations, 

accordingly: ⟨𝛹଴ା| = (⟨𝑣′𝑙|, −𝑖⟨𝑣′𝑙|, 𝑒௭) and ⟨𝛹଴ି | = (⟨𝑣′𝑙|, 𝑖⟨𝑣′𝑙|, 𝑒௭), where |𝑣′𝑙⟩ is given by (5), and 𝜔′ = 2/(𝑘𝑎଴ଶ), 𝑎଴ is the radius of a beam which is different from the radius of the fundamental mode 

of the medium 𝑤଴ = ඥ2/(𝑘𝜔).    

The arbitrary incident beam may be expanded into modal solutions, so the evolution of a beam 

in the medium (3) can be represented as 

𝛹(𝑟, 𝜙, 𝑧) = ∑ 𝑎௩௟ఙ௩௟ఙ ቮ|𝑣𝑙⟩𝑖𝜎|𝑣𝑙⟩(𝑖/𝑘𝑛଴)𝛻ሬ⃗ ୄ(𝑥⃗ + 𝑖𝜎𝑦⃗)|𝑣𝑙⟩ං 𝑒𝑥𝑝(𝑖𝛽௩௟ఙ𝑧),                 (8) 

where 𝑎௩௟ఙ are the coupling coefficients. 

If the incident beam is described by the Laguerre-Gauss function 𝛹௩′௟′ఙ∗ = ൫1/√2൯ൻ⟨𝑣′𝑙′|, −𝑖𝜎⟨𝑣′𝑙′|, 𝑒௭∗ห, the coupling coefficients 𝑎௩௟ఙ can be calculated analytically:  ⟨𝑣𝑙𝜎|𝑣′𝑙𝜎⟩ = ൬ଶඥఠఠᇲఠାఠᇲ ൰௟ାଵ ቀఠᇲିఠఠᇲାఠቁ௣ି௣ᇲ ቀ௣ᇲ!(௣ା௟)!(௣ᇲା௟)!௣!ቁభమ 𝑃௣ᇲൣ௣ି௣ᇲ,௟൧(𝑡),                   (9) 

where 𝑃௣ᇱሾ௣ି௣ᇱ,௟ሿ(𝑡) are the Jacobi polynomials, 𝑡 = 1 − 2 ቀఠᇱିఠఠᇱାఠቁଶ
, 𝜔′ = 2/𝑘𝑎଴ଶ, 𝜔 = 2/𝑘𝑤଴ଶ. 

3. Simulation results    

Below we consider the effects of asymmetry caused by nonparaxiality and spin-orbit interaction, 

when Laguerre-Gauss beams with different radial and azimuthal indices and polarization states 

propagate in a rotationally symmetric cylindrical waveguide with a parabolic distribution of the 

refractive index (3). 

3.1. Effect of nonparaxiality on the beam width and axial intensity distribution  

The effects of non-paraxiality are most evident when focusing the beam. It is known that 

nonparaxial effects significantly influence on the characteristics of a tightly focused beam [49–55]. In 

the paraxial approximation, focusing occurs periodically with a period 𝑧் = గ௡బఠ . However, the 

focusing begins to weaken with increasing distance, if nonparaxial effects are considered (Figure 1). 

In addition, there is a shift in focus plane towards the source aperture, and this shift accumulates 

with distance and increases with increasing aperture size 𝑎଴. Unlike the paraxial case, focusing ceases 

to be observed with increasing distance, i.e. the properties of self-imaging will decrease at a certain 

distance, determined by the degree of nonparaxiality 𝜂 = 𝑎଴ 𝑧்⁄ . 
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Figure 1. Beam width change with distance. l = 0, σ = 0, 𝜆 = 0.63 μm, 𝑛଴ = 1.5. Dashed line – paraxial 

approximation. (a) 𝑎଴ = 45 µm; (b) 𝑎଴ = 90 µm.  

In Figure 2 the intensity distributions in axial direction of the transverse field component are 

presented for nonparaxial and paraxial cases. Simulations show that intensity oscillations in front of 

the focus plane occur due to interference between modes. Besides, the focal plane shift occurs when 
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the nonparaxiality effects are considered (Figure 2c, 2d). This shift increases with aperture of incident 

beam and the degree of nonparaxiality.   
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Figure 2. Intensity profiles of the transverse electric field component in axial direction. l = 0, σ = 0, 𝜆 = 0.63 μm, 𝑛଴ = 1.5,  𝑎଴ = 45 µm. (𝑎) − nonparaxial; (b) – paraxial approximation; (c) – intensity 

profiles at a second focus plane: black line – nonparaxial, red line – paraxial; (d) – intensity profiles 

at a third focus plane: black line – nonparaxial, red line – paraxial.  

3.2. Effect of spin-orbit interaction on the intensity distribution  

The intensity distributions in the transverse and longitudinal directions at different distances 

are determined by the functions 𝐼ୄ(𝑟, 𝜙, 𝑧) = |𝜓ୄ(𝑟, 𝜙, 𝑧)|ଶ  and 𝐼௭(𝑟, 𝜙, 𝑧) = |𝑒௭(𝑟, 𝜙, 𝑧)|ଶ , 

accordingly. In Figure 3 the intensity profiles of the transverse and longitudinal field components in 

a focal plane 𝑧௙ are presented for the circularly polarized incident beams with radial index p = 0 and 

different azimuthal indices (topological charges). The waveguide (3) with the gradient parameter 𝜔 = 7 ∙ 10ିଷ µmିଵ and the refractive index 𝑛଴ = 1.5 is considered. Here and below, the beams with 

wavelength λ = 0.63 μm are considered. The initial beam width or the full width at half-maximum 

(FWHM) is 𝑎଴ = 45 μm.      
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Figure 3. Intensity profiles of the transverse electric field component (left column) and the 

longitudinal electric field component (right column) for the circularly polarized incident beam with 

zero radial index in the focal plane 𝑧௙ = 331 𝜇𝑚: (a, b) 𝑙 = 1, 𝜎 = 1; (c, d) 𝑙 = −1, 𝜎 = 1 . 
As can be seen, the intensity profiles of the transverse components are similar for topological 

charges with opposite signs (Figure 3a, 3c), but the longitudinal components differ significantly 

(Figure 3b, 3d). If for a positive topological charge l = 1 the longitudinal component has a ring shape 

(Figure 3b), then for a negative topological charge l = −1 it has a Gaussian shape (Figure 3d). This 

effect can be interpreted as an orbital Hall effect.  

Figure 4 shows the intensity profiles of the transverse and longitudinal components of the field 

in the focal plane 𝑧௙ for circularly polarized incident beams with opposite helicity signs and similar 

azimuthal indices (topological charges). The intensity profiles of both the transverse and longitudinal 

components are like to the intensity profiles of incident beams with topological charges of opposite 

signs and the same circular polarization (Figure 3). This is because the spin-orbital interaction term 𝑙 ∙ 𝜎 in the equations describing the evolution of an incident beam in a graded-index medium retains 

its sign and numerical value.  
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Figure 4. Intensity profiles of the transverse electric field component (left column) and the 

longitudinal electric field component (right column) for the circularly polarized incident beam with 

zero radial number in the focal planes 𝑧௙ = 331 𝜇𝑚: (a, b) 𝑙 = 1, 𝜎 = 1 ; (c, d) 𝑙 = 1, 𝜎 = −1. 

In Figure 5 the intensity profiles of the transverse and longitudinal field components in a focal 

plane 𝑧௙  are presented for the incident beams with the right- and left- handed polarizations and 

different topological charges. The total angular momentum of both incident beams 𝑗 = 𝑙 + 𝜎 = 1 and 

the radial index p = 0.    
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Figure 5. Intensity profiles of the transverse electric field component (left column) and the 

longitudinal electric field component (right column) for the circularly polarized incident beams with 

zero radial number in the focal planes 𝑧௙ = 331 𝜇𝑚: (a, b) 𝑙 = 0, 𝜎 = 1; (c, d) 𝑙 = 2,   𝜎 = −1. 

It is seen that the shapes of transverse field components are different. If for a right- handed 

polarization with 𝜎 = 1 the longitudinal component has a Gaussian shape (Figure 5a), then for a left- 

handed polarization with 𝜎 = −1 it has a ring shape (Figure 5c). There is a difference in the shapes 

of the transverse components, although the total angular momentum is the same in both cases.  

In Figure 6 the intensity profiles of the transverse and longitudinal field components in a focal 

plane 𝑧௙  are presented for the incident beams with the right- and left- handed polarizations and 

different topological charges 𝑙 = 1 and 𝑙 = 3. The total angular momentum of both incident beams 𝑗 = 𝑙 + 𝜎 = 2 and the radial index p = 0.    
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Figure 6. Intensity profiles of the transverse electric field component (left column) and the 

longitudinal electric field component (right column) for the circularly polarized incident beams with 

zero radial number in the focal planes 𝑧௙ = 331 𝜇𝑚: (a, b) 𝑙 = 1, 𝜎 = 1; (c, d) 𝑙 = 3, 𝜎 = −1. 

As can be seen the intensity distributions of the transverse and longitudinal field components 

for the right- and left- handed polarizations have the ring shapes. However, the radii of the rings for 

the transverse components differ significantly.      

In Figure 7 the intensity profiles of the transverse and longitudinal field components in a focal 

plane 𝑧௙  are presented for the incident beams with the right- and left- handed polarizations, the 

radial index 𝑝 = 1 and the same topological charges 𝑙 = 1. 
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Figure 7. Intensity profiles of the transverse electric field component (left column) and the 

longitudinal electric field component (right column) for the circularly polarized incident beams with 

nonzero radial number p = 1 in the focal plane 𝑧௙ = 331 𝜇𝑚: (a, b) 𝑙 = 1, 𝜎 = 1; (c, d) 𝑙 = 1, 𝜎 = −1. 

It can be seen that the ring size in Figure 7a is much larger than the ring size in Figure 3a, 

although both cases have the same total angular momentum 𝑗 = 𝑙 + 𝜎 = 2 . The transverse 

components have an annular shape, whereas the longitudinal component of the left- handed 

polarization has a Gaussian shape (Figure 7d). Note that the spot size of the longitudinal field 

component in the plane of focus is less than the wavelength. The FWHM value (full width at half 

maximum) of the focused spot in the longitudinal component of the field is only 0.55 µm (Figure 7d). 

The thickness of the ring is also less than the wavelength (Figure 7 a). 

3.3. Effect of spin-orbit interaction on the speed of vortex beams in optical fiber 

Spin-orbit interaction affects the trajectory and intensity distribution of the light beam at 

propagation in a graded-index medium. The modes of a cylindrical waveguide are degenerated in 

the scalar approximation. When the vector term in the wave equation defining the spin-orbit 

interaction is considered, the spectrum of the propagation constant is split. The splitting of levels due 

to the term ∇ε (spin-orbit interaction of photons) in lens-like media has been considered in several 

papers [58,59]. Spin-orbit interaction in waveguides can significantly change the energy spectrum, 

causing splitting and removal of degeneracy of modes with different radial and azimuthal indices 

and polarizations [48,56,57]. These effects affect the group delay of modes in optical waveguides. 

The group delay of the modes or the average time of arrival of a pulse are given by [48,57] 

𝜏 = ௭௩೒ = ௭௖ డఉడ௞ ≅ ௭௡బ௖ + ௭௡బ௖ ఎమଷଶ ሾ11(𝜈 + 1)ଶ − 𝑗ଶ − 2𝑗 ⋅ 𝜎ሿ,                   (10) 

where c is the light velocity in vacuum, 𝒗𝒈 is the mode-group velocity, z is the length of the fiber, 𝒋 = 𝒍 + 𝝈 is the total angular momentum, σ  is the spin angular momentum. 

The group velocities 𝑣௚ = 𝑧 𝜏⁄  of vortex modes with right- and left- handed polarizations differ 

from each other, therefore, effective anisotropy is induced due to spin-orbit interaction. Such an 

asymmetry does not exist in the case of zero orbital momentum 𝑙 = 0. It follows from (10) that the 

group velocity of the modes decreases with increasing angular momentum of the propagating modes. 

Note that a similar result was obtained for a twisted light in vacuum in [60,61]. 

In Figure 8a the relative propagation delay of modes compared with the fundamental mode as 

a function of radial mode number p for various fundamental mode radiuses 𝑤଴ = (2 𝑘𝜔⁄ )ଵ ଶ⁄  is 

presented. In Figure 8b the delay times of the azimuthal modes of fixed radial indices l (𝑝 = 0) are 

presented.  
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Figure 8. Delay times as a function of radial (a) and azimuthal (b) indices, accordingly, z = 1 km, 𝑛଴ =1.5, σ  = 0. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 December 2023                   doi:10.20944/preprints202312.0658.v1

https://doi.org/10.20944/preprints202312.0658.v1


 11 

 

It can be seen that the delay time increases with increasing radial and azimuthal indices. The 

delay time also increases with a decrease in the radius of the fundamental mode 𝑤଴. 

Spin-induced asymmetry   

It follows from (10) that the group delay time depends on the spin angular momentum σ.  

Figure 9 shows the spin-dependent relative delay times ∆τ between pulses of different polarization 

states depending on the topological charge for waveguides with different gradient parameters. 
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Figure 9. Relative delay times as a function of topological charge: z = 1 km, 𝑛଴ = 1.5; 1 - delay 

between beams with σ = -1 and σ = 1 ∆𝜏 = 𝜏ିଵ − 𝜏ଵ; 2 - ∆𝜏 = 𝜏଴ − 𝜏ଵ; 3 - ∆𝜏 = 𝜏଴ − 𝜏ିଵ; 4 - ∆𝜏 = 𝜏ଵ −𝜏ିଵ. (a) 𝜔 = 8 ∙ 10ିଷ µm-1, (b) 𝜔 =  2.2 ∙ 10ିଶ µm-1. Subindex in 𝜏ఙ corresponds to the spin angular 

momentum σ = 0, 1, −1.  

It is seen from Figure 9, that in the case of positve azimuthal indices, the delay time of a pilse 

with left- handed polarization is longer than that of pulses with linear and right- handed 

polarizations, i.e. 𝜏ାଵ < 𝜏଴ < 𝜏ିଵ. This indicates that a right- handed polarized pulse propagates at a 

higher speed than linear and left- haded polarized pulses, i.e. 𝑣ିଵ < 𝑣଴ < 𝑣ାଵ. In the case of negative 

azimuthal indices, the delay time of a pilse with right- handed polarization is longer than that of 

pulses with linear and left- handed polarizations, i.e. 𝜏ାଵ > 𝜏଴ > 𝜏ିଵ. This indicates that in this case 

a left- handed polarized pulse propagates at a higher speed than linear and right- handed polarized 

pulses, i.e. 𝑣ିଵ > 𝑣଴ > 𝑣ାଵ .This effect can be attributed to the temporary spin Hall effect, which 

manifests itself as a difference in the arrival time of pulses with different circular polarization.  

Thus, the pulses with right- and left- handed polarizations propagate with different velocities 

due to spin-orbit interaction. The spin-orbit interaction is responsible also for the degeneracy lifting 

of modes with distinct orbital angular momentum (OAM) and polarization but the same total angular 

momentum. The removal of degeneracy can be considered as an optical analogue of the Lamb shift, 

in which the levels are separated between degenerate states with the same total angular momentum. 

This level splitting is very small for ordinary optical fibers, where 𝑤଴ ≫ 𝜆, but it becomes significant 

for fibers with a diameter of the order of the wavelength. Numerical estimates have shown that the 

elimination of degeneracy leads to a delay time between degenerate modes of the order of 1 ns/km 

for an optical fiber with a radius of the funfdamental mode of the order of the wavelength of light.  

4. Conclusion 

Thus, the effects of nonparaxiality and spin-orbit coupling on the axial and radial intensity 

distributions, and on the group velocities of modes are studied by solving the full three-component 

field Maxwell’s equations. It is shown that nonparaxiality causes an asymmetry in the distribution of 

the field intensity in the axial direction during tight focusing. Spin-orbit interaction induces the 

effective anisotropy in an isotropic graded-index medium causing asymmetry effects between the 
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right- and left-handed polarized beams. Note that these effects can be regarded as a manifestation of 

the optical spin-Hall effect [28,29] which arises due to a spin-orbit coupling. In its turn, the spin-Hall 

effect is related to the geometric Berry phase [10,26,32,62]. It was shown in [10,32], that the spin Hall 

effect and the Berry phase are closely associated with the spin angular momentum dynamics and can 

be explained in terms of the Coriolis effect.  

Future research may be related to the study of asymmetric effects in the propagation of vortex 

pulses and partially polarized and partially coherent vortex beams in a graded-index medium [63–

67]. Of particular interest is the consideration of the effects of large-scale revival [39,68], the transverse 

spin phenomenon [69–71] and the optical spin Hall effect [72,73]. 

In summary, the modal solutions in a GRIN medium, which are the hybrid vector Laguerre-

Gauss modes with spin-orbit entanglement, are used to study the propagation of vector wave beams 

in a graded-index medium. Modes exhibiting hybrid entanglement between spin and orbital angular 

momentum may be useful for classical implementations of quantum communication and 

computational tasks. The asymmetric distribution of the field intensity of the focused spot in the axial 

direction is shown. The asymmetry effects manifesting in different intensity distributions in the focal 

plane for opposite handedness of vorticity and/or polarization are demonstrated. It is shown that the 

group velocities of vortex modes with right- and left-handed polarizations differ from each other, so 

the effective anisotropy is induced due to spin-orbit interaction. The velocities of the left- and right- 

handed circularly polarized light pulses propagating in a graded-index fiber are different, which 

leads to a difference in the arrival time of pulses with opposite circular polarizations. This difference 

increases with the topological charge and radial index. The different delay times for opposite 

handedness of polarization can be considered as a temporal spin Hall effect, which can be observed 

for light with left- and right- handed circular polarization in an isotropic graded-index fiber. These 

effects influence on the group delay of modes and the average time of arrival of a pulse in optical 

fibers and become important in fiber optic communications with high carrying capacities and faster 

transmission rates.  
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