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Article
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Abstract: In the present article, we study the possibilities of machine learning for estimation of seeing

at the Maidanak Astronomical Observatory (38◦40′24′′N, 66◦53′47′′E) using only Era-5 re-analysis

data. Seeing is usually associated with the integral of the turbulence strength C2
n(z) over the height

z. Based on the seeing measurements accumulated over 13 years we created ensemble models

of multi-layer neural networks under the machine learning framework, including training and

validation. For the first time in the world, we have simulated optical turbulence (seeing variations)

during night-time with deep neural networks trained on a 13-year database of astronomical seeing.

A set of neural networks for simulations of night-time seeing variations have been obtained. For

these neural networks the linear correlation coefficient ranges from 0.48 to 0.68. We show that

modeled seeing with neural networks is well described through meteorological parameters, which

include wind speed components, air temperature, humidity and turbulent surface stresses. One

of the fundamental new results is that the structure of small-scale (optical) turbulence over the

Maidanak Astronomical Observatory does not depend or depends negligibly on the large-scale

vortex component of atmospheric flows.

Keywords: turbulence; optical turbulence; seeing; telescope; neural network

1. Introduction

Atmospheric flows are predominantly turbulent, both in the free atmosphere and in the

atmospheric boundary layer. Within these atmospheric layers, a continuous spectrum of turbulent

fluctuations over a wide range of spatial scales is formed. This range includes scales from the largest

vortices associated with the flow boundary conditions being considered, to the smallest eddies,

which are determined by viscous dissipation. The energy spectrum of turbulence, especially in its

short-wavelength range, is significantly deformed with height above ground, the structure and energy

of optical turbulence also change noticeably.

The Earth’s atmosphere significantly limits ground-based astronomical observations [1–4]. Due

to atmospheric turbulence, wavefront distorts, solar images are blurred, and small details in the

images become indistinguishable. Optical turbulence has a decisive influence on the resolution of

stellar telescopes and the efficiency of using adaptive optics systems. The main requirement for

high-resolution astronomical observations is to operate under the quietest, optically stable, atmosphere

characterized by a weak small-scale (optical) turbulence.

One of the key characteristics of optical turbulence is seeing [5,6]. The seeing parameter is

associated with the full width at half-maximum of the long-exposure seeing-limited point spread

function at the focus of a large diameter telescope [7,8]. This parameter can be expressed through the

vertical profile of optical turbulence strength. In particular, in isotropic three-dimensional Kolmogorov
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turbulence, the seeing can be estimated by the integral of the structure characteristic of turbulent

fluctuations of the air refractive index C2
n(z) over the height z [8]:

seeing =
0.98λ

(

0.423secα
(

2π
λ

)2 ∫ H
0 C2

n(z)dz
)−3/5

, (1)

where H is the height of the optically active atmosphere, α is the zenith angle, λ is the light wavelength.

In astronomical observations through the Earth’s turbulent atmosphere, atmospheric resolution

(seeing), as a rule, does not exceed 0.7 - 2.0 ′′. In conditions of intense optical turbulence along the line

of sight, seeing increases to 4.0 - 5.0 ′′. At the same time, modern problems of astrophysics associated

with high resolution observations require seeing of the order of 0.1 ′′ or even better [9,10]. In order

to improve the quality of solar or stellar images and achieve high resolution, special adaptive optics

systems are used [11,12]. Monitoring and forecasting the seeing are necessary for the functioning of

adaptive optics systems of astronomical telescopes and planning observing time.

Correct estimations of the seeing and prediction of this parameter are associated with the

development of our knowledge about:

(i) The evolution of small-scale turbulence within the troposphere and stratosphere.
(ii) Inhomogeneous influence of mesojet streams within the atmospheric boundary layer on the

generation and dissipation of turbulence.
(iii) Suppression of turbulent fluctuations in a stable stratified atmospheric boundary layer and the

influence of multilayer air temperature inversions on vertical profiles of optical turbulence.
(iv) The phenomenon of structurization of turbulence under the influence of large-scale and

mesoscale vortex movements [13].

One of the best tools used for simulations of geophysical flows is machine learning models and,

in particular, deep neural networks [14]. Neural networks are used for estimation and prediction of

atmospheric processes. A number of studies are devoted to machine learning models applied for

description of the characteristics of optical turbulence [15,16].

In addition to numerical atmospheric models and statistical methods [17], machine learning

is one of the tools for estimating and predicting atmospheric characteristics including the optical

turbulence [16,18–21]. Cherubini T. and el. have presented a machine-learning approach to translate

the Maunakea Weather Center experience into a forecast of the nightly average optical turbulent state

of the atmosphere. [22]. In the paper [23] for prediction of optical turbulence a hybrid multi-step model

is proposed by combining empirical mode decomposition, sequence-to-sequence and long short-term

memory network.

Thanks to ability to learn from real data and adjust to complex models with ease machine learning

and artificial intelligence methods are being successfully implemented for multi-object adaptive optics.

By applying machine learning methods, the problem of restoring wavefronts distorted by atmospheric

turbulence is solved.

This paper discusses the possibilities of using machine learning methods and deep neural

networks to estimate the seeing parameter at the site of the Maidanak observatory (38◦40′24′′N,

66◦53′47′′E). The site is considered as one of the best ground sites on the Earth for optical astronomy in

the world. The goal of this work is to develop approach for estimating seeing at the Maidanak

observatory through large-scale weather patterns and, thereby, anticipate the average optical

turbulence state of the atmosphere.

2. Evolution of atmospheric turbulence

It is a known fact that turbulent fluctuations of the air refractive index n
′

are determined by

turbulent fluctuations of air temperature T
′

or potential temperature θ′: n
′
∼ T

′
∼ θ′. In order to select

the optimal dataset for training the neural network, we considered the budget equation for the energy

of potential temperature fluctuations Eθ = 1/2θ
′2 [24]:
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dEθ

dt
+

∂Qθ

∂z
= −Fz

∂θ

∂z
− ǫθ , (2)

where the substantial derivative d
dt = u ∂

∂x + v ∂
∂y , u and v is the mean horizontal components of wind

speed, t is the time, Qθ is the 3rd order vertical turbulent flux of Eθ , Fz is the vertical flux of potential

temperature fluctuations, ∂θ
∂z is the vertical partial derivative of the mean value of θ, ǫθ is the rate of

dissipation.

Analyzing this equation we can see that the operator d
dt determines changes in Eθ due to large-scale

advection of air masses. The second term in the left-hand side of equation 2 is neither productive

nor dissipative and describes the energy transport. The 3rd order vertical turbulent flux Qθ can be

expressed through the fluctuations of the squared potential temperature θ
′2 and fluctuations of the

vertical velocity component w
′
:

Qθ =
1

2
θ
′2w

′
. (3)

For small turbulent fluctuations of air temperature, Qθ can be neglected. An alternative approach

is to construct a regional model of Qθ changes using averaged vertical profiles of meteorological

characteristics.

The term Fz
∂θ
∂z is of great interest. The parameter Fz describes the energy exchange between

turbulent potential energy and turbulent kinetic energy and determines the structure of optical

turbulence. Also, it is important to emphasize that this exchange between energies is governed by the

Richardson number.

The down-gradient formulation for Fz is:

Fz = −
KH N2

β
, (4)

where the turbulence coefficient KH can be defined as a constant for a thin atmospheric layer or

specified in the form of some model. β = g/T0, g is the gravitational acceleration, T0 is a reference

value of absolute temperature. The Brunt-Vaisala frequency N2 describes the oscillation frequency of

an air parcel in a stable atmosphere through average meteorological characteristics:

N2 =
g

θ

dθ

dz
. (5)

According to Large Eddy Simulations[24], the dependencies of both the vertical turbulent

momentum flow and heat on the Richardson gradient number, which is associated with the vertical

gradients of wind speed and air temperature have been revealed. These dependencies are complex;

they demonstrate nonlinear changes of vertical turbulent flows with increasing Richardson number. It

can be noted that with an increase of the Richardson number from 10−2 to values greater than 10, the

vertical turbulent momentum flux tends to decrease. For a vertical turbulent heat flux, on average,

a similar dependence is observed with a pronounced extremum for the Richardson numbers from 4

x10−2 to 7 x10−2.

Following Kolmogorov, the dissipation rate may be expressed through the turbulent dissipation

time scale tT :

ǫθ = Eθ(CPtT)
−1. (6)

CP is the dimensionless constant of order unit. In turn, parameter tT is related to the turbulent length

scale:

tT = Ls/E1/2
k = Ls/(0.5(u′2 + v

′2))1/2. (7)
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Using formula 8, equation 6 will take the form:

ǫθ = EθE1/2
k (CPLs)

−1. (8)

Analyzing equation 8 we can note that the rate of dissipation of temperature fluctuations is determined

by the turbulence kinetic and turbulence potential energies. In the atmosphere, the transition rate of

turbulence potential energy into turbulence kinetic energy depends on the type and sign of thermal

stability. This transition is largely determined by the vertical gradients of the mean potential air

temperature.

Given the above, we can emphasize that the real structure of optical turbulence is determined

by turbulent kinetic energy and turbulent potential energy. In turn, turbulent kinetic energy and

turbulent potential energy may be estimated using averaged parameters of large-scale atmospheric

flows. In particular, energy characteristics of dynamic and optical turbulence can be parameterized

through the vertical distributions of averaged meteorological characteristics. Correct parameterization

of turbulence must also take into account certain spatial scales, determined by the deformations of

the turbulence energy spectra. Among such scales, as a rule, the outer scale and integral scale of

turbulence are considered.

To fully describe the structure of atmospheric small-scale (optical) turbulence, parameterization

schemes must take into account:

(i) Generation and dissipation of atmospheric turbulence as well as the general energy of

atmospheric flows.
(ii) The influence of air temperature inversion layers on the suppression of vertical turbulent flows

[25]. This is especially important for the parameterization of vertical turbulent heat fluxes, which

demonstrates the greatest nonlinearity for different vertical profiles of air temperature and wind

speed.
(iii) Features of mesoscale turbulence generation within air flow in conditions of complex relief [26].
(iv) Development of intense optical turbulence above and below jet streams, including mesojets

within the atmospheric boundary layer.

The structure of optical turbulence depends on meteorological characteristics at different heights

above the Earth’s surface. As shown by numerous studies of atmospheric turbulence the main

parameters which determine the structure and dynamics of turbulent fluctuations are the wind speed

components, wind shears, vertical gradients of air temperature and humidity, the Richardson number

and buoyancy forces as well as large-scale atmospheric perturbation characteristics [21,29,30]. Taking

into account the dependence of optical turbulence on meteorological characteristics, vertical profiles

of the horizontal components of wind speed, air temperature and humidity, atmospheric vorticity

and vertical component at various pressure levels were selected as input parameters for training the

neural networks. Total cloud cover, surface wind speed and air temperature, as well as the calculated

values of northward and eastward surface turbulent stresses were selected as additional parameters.

We should emphasize that information about the vertical profiles of meteorological characteristics is

necessary to determine the seeing parameter with acceptable accuracy without the use of measurement

data in the surface layer. Using measured meteorological characteristics in the surface layer of the

atmosphere as input data will further significantly improve the accuracy of modeling variations of

seeing.

3. DATA USED

The approach based on the application of a deep neural network, has a certain merit as it allows

one to search for internal relations between seeing variations and the evolution of some background

state of atmospheric layers at different heights. We use the medians of seeing estimated from

measurements of differential displacements of stellar images at the site of the Maidanak Observatory

as predicted values. We should note that routine measurements of star image motion are made at
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the Maidanak Observatory using the Differential Image Motion Monitor. The database of measured

seeing is available for two periods: 1996-2003 and 2018-2022. In Figure 1, we present the total amount

of differential image motion monitor (DIMM) data for each month during the acquisition period. The

13-year data set used covers a variety of atmospheric situations and is statistically confident. Analysis

of Figure 1 shows that the fewest number of nights used for machine learning occurs in March. The

best conditions correspond to August - October, when the observatory has a good amount of clear

time.

Figure 1. The number of nights Nnig by months.

The observed difference in the number of nights for different months is related to the atmospheric

conditions limiting the observations (strong surface winds and high-level cloud cover).

Also, we used data from the European Center for Medium-Range Weather Forecast Reanalysis

(Era-5) [27] as inputs for training the neural networks. Meteorological characteristics at different

pressure levels were selected from the Era-5 reanalysis database for two periods: 1996-2003 and

2018-2022. Night-to-night averaging of the reanalysis data corresponds to the averaging of measured

seeing.

3.1. Era-5 reanalysis data

Reanalysis Era-5 is a fifth generation database. Data in the Era-5 reanalysis are presented with

high spatial and temporal resolution. The spatial resolution is 0.25 ◦, and the time resolution is 1 hour.

Data are available for pressure levels ranging from 1000 hPa to 1 hPa. In simulations, in addition to

hourly data on pressure levels, we also used hourly data on single levels (air temperature at the height

of 2 meters above surface and horizontal components of wind speed at the height of 10 meters above

surface).

We have verified the Era-5 reanalysis data for the region where the Maidanak astronomical

observatory is located. Verification was performed by comparing semi-empirical vertical profiles of

the Era-5 re-analysis with radiosounding data at the Dzhambul station. Dzhambul is one of the closest

sounding stations to the Maidanak astronomical observatory.
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In order to numerically estimate the deviations of reanalysis data from measurement data, we

calculated the mean absolute errors and the standard deviations of air temperature and wind speed.

The mean absolute errors and the standard deviations were estimated using the formulas [28]:

∆T =
1

N

N

∑
i=1

| Ti(z)(Era − 5)− Ti(z)(rad) |, (9)

∆V =
1

N

N

∑
i=1

| Vi(z)(Era − 5)− Vi(z)(rad) |, (10)

σT =

(

1

N

N

∑
i=1

(Ti(z)(Era − 5)− Ti(z)(rad))2

)0.5

, (11)

σV =

(

1

N

N

∑
i=1

(Vi(z)(Era − 5)− Vi(z)(rad))2

)0.5

, (12)

where z is the height, ∆T and ∆V are the mean absolute errors in air temperature and wind speed.

Brackets (Era − 5) and (rad) indicate the type of data (Era-5 reanalysis and radiosondes). σT and σV

are the root mean square deviations in air temperature and wind speed. N includes all observations

for January, 2023 and July, 2023.

Figures 2 and 3 show the vertical profiles of ∆T, ∆V, σT and σV . The profiles are averaged over

June-August and December-February. Analysis of these figures shows that, in winter, ∆T, ∆V, σT

and σV are 1.3 ◦, 2.8 m/s, 1.7 ◦, 3.3 m/s, respectively. In winter, the high deviations of measured

air temperature from the reanalysis derived values are observed mainly in the lower layer of the

atmosphere (up to 850 hPa). We attribute these deviations to inaccuracy of modeling surface thermal

inversions and meso-jets in the reanalysis. Above the height, corresponding to 850 hPa level, the

deviations decrease significantly (∆T ∼ 1.2 ◦, σT = 1.5 ◦). In vertical profiles of wind speed, the

character of height changes in the wind is more ordered. In particular, significant peaks are observed

in the entire thickness of the atmosphere. The standard deviation of wind speed in the atmospheric

layer up to 850 hPa level (in the lower atmospheric layers) is higher than 6.0 m/s. In the layer above

the 850 hPa pressure level, ∆V and σV decrease to 1.8 m/s and 2.2 m/s respectively.

In summer, temperature deviations between radiosonde and Era-5 data decrease. Analysis of

Figures 3 shows that these deviations are due to the fact that the reanalysis often does not reproduce

correctly the large scale jet stream. Also, in summer, the Era-5 reanalysis overestimates the surface

values of air temperature. ∆T and σT in the entire atmosphere are 1.7◦, 2.3◦, respectively. σT values are

2.8 ◦ and 3.6 ◦ within the lower atmospheric layers and at the height of the large scale jet stream.

Considering wind speed, the deviations between the measured and modeled parameters are

pronounced. ∆V and σV are 2.2 m/s and 2.7 m/s, respectively. In the lower layers of the atmosphere,

the mean absolute error and the root mean square deviation are 2.9 m/s and 3.6 m/s. High deviations

in the wind speed correspond to the atmospheric levels under a large-scale jet stream (200 hPa). Within

the upper atmospheric layers σV can reach 4.0 m/s.
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Figure 2. Vertical profiles of ∆T [o K], ∆V [m/s], σT [o K] and σV [m/s] in winter.
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Figure 3. Vertical profiles of ∆T [o K], ∆V [m/s], σT [o K] and σV [m/s] in summer.

Thus, in this section we examine how well the reanalysis data, corresponding to a certain

computational cell, describes the real vertical profiles of wind speed and air temperature. In

general, there are some atmospheric situations when re-analysis reproduces profiles with a large error.

Re-analysis does not reproduce thin thermal inversions, mesojet streams in the lower atmospheric

layers as well as overestimates or underestimates the speed of air flow in a large-scale jet stream. In
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order to increase the efficiency of training neural networks, below we considered model weather data

also with the best reproducibility of vertical changes. In training, we used meteorological characteristics

at the all available pressure levels from 700 hPa to 3 hPa. The selection of the lower pressure surface

corresponding to 700 hPa is determined by the elevation of the observatory (2650 m, surface pressure

Psur f is equal to 733 hPa) and surrounding areas above sea level.

3.2. Seeing values derived from image motion measurements

The predicted value is the medians of seeing averaged over the night. Seeing is the parameter

calculated from image motion measurements. The theory for calculating the seeing based on image

motion measurements is described in the paper [7]. Using the Kolmogorov model, the seeing may be

estimated based on the following relation:

σ2
α = Kλ2r−5/3

0 D−1/3, (13)

where λ is the light wavelength, D is the telescope diameter. The variance in the differential

image motion denoted as σ2
α . This quantity is related with the Fried parameter r0 by the formula:

seeing = 0.98
λ

r0
, (14)

Coefficient K in formula 13 depends on the ratio of the distance between the centers of apertures

Sd and aperture diameter ds, the direction of image motion and the type of tilt. The coefficients for

longitudinal and transverse motions, are determined by the gravity center of the images:

Kl = 0.34

(

1 − 0.57

(

Sd

ds

)−1/3

− 0.04

(

Sd

ds

)−7/3
)

, (15)

Kt = 0.34

(

1 − 0.855

(

Sd

ds

)−1/3

+ 0.03

(

Sd

ds

)−7/3
)

. (16)

Using all data of measurements we computed the seeing values, shown as the histograms in

Figures 4 a) and b). Analysis of Figures 4 a) and b) shows that the range of changes of the integral

intensity of optical turbulence at the Maidanak astronomical observatory site is narrow. The bulk of

the values fall within the range from 0.6 to 0.9 ′′. Despite the narrow range of seeing changes, we can

note that the neural networks have been trained for a wide range of atmospheric situations.
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(a) 1996
-2003,

Figure 4. Cont.

(b) 2018 -
2022

Figure 4. Histograms of measured seeing values at the Maidanak observatory for two periods: 1996 -

2003 and 2018 - 2022. Ni is the number of cases

4. Neural network configuration for estimation of seeing

An artificial neural network is a complex function that connects inputs and outputs in a certain

way. Construction of a neural network is an attempt to find internal connections, patterns between

inputs, their neurons and outputs in the study of phenomena and processes. The aims of this study is

to show how capable an artificial neural network is of estimating seeing variations for the Maidanak

astronomical observatory, which is located in the most favorable atmospheric conditions.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 December 2023                   doi:10.20944/preprints202312.0637.v1

https://doi.org/10.20944/preprints202312.0637.v1


11 of 21

Flowchart for creation of neural networks is shown in Figure 5. According to this flowchart,

the initial time series are divided into training, checking and validation data sets. The main stage is

training the neural network and generation of partial models. In particular, learning is based on data

pairs of observed input and output variables. Using different inputs (meteorological characteristics)

we optimized the final structure of the neural network.

Initialize inputs

      Divide data in 
     3 datasets 

Choose of the method
for creating a neural

network 

 Generate subsamples
 from dataset according

 to partial models 
with steadily increasing

 complexity 

Estimate coefficients of 
partial models at each

layer 

Calculate external criterion
for models on checking 

dataset

Seeing

Choose the best model 
   (set of models) 

New inputs

Estimation of model 
   (set of models) 

Figure 5. Flowchart for creation of neural networks.

Important step in seeing simulation with neural networks is the selection of input variables. The

inputs are selected based on the physics of turbulence formation described in Section 2. According to

the theory, the formation of turbulent fluctuations of air temperature and, consequently, air refractive

index is largely determined by the advection of air masses, the rate of dissipation of fluctuations as well

as vertical turbulent flows, which depend on vertical gradients of meteorological characteristics. In

addition, the turbulence structure is closely related to large-scale atmospheric disturbances, including

meso-scale jet streams and large atmospheric turbulent vortices. In particular, the inputs are wind

speed components, air temperature and humidity, vorticity of air flows and the values of surface

turbulent stresses. The final configuration of the neural network is formed by excluding neurons

whose weights are minimal. As we will see below, the neural networks obtained that best reproduce

the seeing variations do not contain neurons functionally related to atmospheric vortices.

To create configurations of neural networks connecting inputs and outputs, we chose the group

method of data handling (GMDH) [31–33]. The GMDH method is based on some model of the

relationship between the free variables x and the dependent parameter y (seeing) [34]. To identify

relationships between the turbulent parameter seeing averaged during the night and vertical profiles

of mean meteorological characteristics we used the Kolmogorov-Gabor polynomials, which is the sum

of linear covariance, linear, quadratic and cubic terms [31]:

y = W0 +
m

∑
i=1

Wixi +
m

∑
i=1

m

∑
j=1

Wijxixj +
m

∑
i=1

m

∑
j=1

m

∑
k=1

Wijkxixjxk + ... (17)

In formula 17 the index m denotes the set of free variables, Wi,Wij,Wijk are the weights. The seeing is

considered as a function of a set of free variables[31]:

seeing = f (x1, x2, x1x2, x2
1....) = F(z1, z2, z3....). (18)

The modeled seeing∗ can be expressed in the following shape[31]:

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 December 2023                   doi:10.20944/preprints202312.0637.v1

https://doi.org/10.20944/preprints202312.0637.v1


12 of 21

seeing∗ = W0 +
F0

∑
i=1

Wizi = W0 + Wz, (19)

where Wz is a scalar product of two vectors. The correct estimation of the outputs is mainly determined

by the trained parameters - the weights W. The goal of training is to find such weights, at which the

created neural network produces minimal errors.

The result of applying the GMDH method is a certain set of neural network models containing

internal connections between input meteorological parameters, their derivatives and output. The best

solution must correspond to the minimum of the loss function, the values of which depend on all

weights. The loss function can be written as [31]:

Rext(validate) =

(

1

M

M

∑
i∈validate

(seeingi − seeingi∗(training))2

)0.5

, (20)

The loss function Rext(check) is estimated using validate data (new data).

Finding the minimum of loss function is a rather difficult task due to the multidimensionality of

the function, determined by the number of input variables. To find the minimum of the loss function

from the training dataset, a gradient descent algorithm is used based on calculating the error gradient

vector (partial derivatives of the loss function over all weights). In simulations, the initial weights are

initialized randomly and are small. The weights are updated or adjusted using error backpropagation

method (from the last neural layer to the input layer). In this method, calculation of derivatives

of complex functions makes it possible to determine weight increments in order to reduce the loss

function. In this case, for each output neuron with the number of the layer Nneur+1, errors and weight

increments are calculated and propagated to the neurons in the previous layer Nneur. The optimal

neural network should correspond to the minimum of this loss function Rext(validate).

After training, we received a wide set of neural network configurations for estimating the seeing.

Estimating values of the loss function, two neural network configurations were chosen, shown in

Figures A1 and A2. These configurations are obtained using all training data. Numbers on the right

side of variables in the figures correspond to pressure levels. Designations used in neural networks

are given in Table 1. The input atmospheric characteristics, the number of layers and neural network

structure automatically determined in used learning algorithm.

Table 1. Designations used in neural networks.

ine Label Parameter
ine nsss northward turbulent surface stress
u u-component of wind
v v-component of wind
w w-component of wind
q specific humidity
t air temperature
t2m air temperature at height of 2 m
ine

These configurations correspond to the minima of the loss function; the values of the functions

are close to 0.04′′. At the same time, the configuration shown in Figure A2 shows better reproducibility

of seeing variations. Figures 6 and 7 show changes in model and measured seeing values for neural

network configurations 1 and 2, respectively.
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Figure 6. Changes in model and measured seeing values. Seeing values are estimated using validation

dataset. The number of configuration of neural network is 1. Line 1 corresponds to measured seeing.

Line 2 corresponds to modeled seeing

Figure 7. Changes in model and measured seeing values. Seeing values are estimated using validation

dataset. The number of configuration of neural network is 2. Line 1 corresponds to measured seeing.

Line 2 corresponds to modeled seeing

For these configurations, the linear Pearson correlation coefficient between the model and

measured seeing values reached 0.67 and 0.7, respectively (the training datasets). For the validation

dataset, the linear Pearson correlation coefficient for configuration 1 was 0.49; for configuration 2 the

correlation coefficient increased to 0.52. Thus, using all data, the efficiency of training a neural network

that predicts variations of seeing is not very high.

The training process identified important inputs. Analysis of obtained neural network

configurations shows that the main parameters which determine the target values of total seeing

are northward surface turbulent stresses and wind speed components on the model levels closest

to the summit, that is 650 and 700 hPa. We also should emphasize that there is a degradation of

the statistical measures associated with excluding surface turbulent stresses from training process.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 December 2023                   doi:10.20944/preprints202312.0637.v1

https://doi.org/10.20944/preprints202312.0637.v1


14 of 21

Neural network configurations obtained with excluded surface turbulent stresses demonstrate low

correlation coefficients ∼ 0.3. Also, meaningful characteristics in determining the atmospheric seeing

are wind speed components at the 250 hPa level and air temperature at 2 m with minor contributions.

Atmospheric situations with high air humidity shows a negligible influence.

Development of neural network configurations using the GMDH method for the Maidanak

astronomical observatory was complicated by certain conditions. At the Maidanak Astronomical

Observatory, atmospheric conditions with low optical turbulence energy along the line of sight, and,

more importantly, with small amplitudes of changes in the magnitude of seeing from night to night are

often observed. In order to optimize the learning process and find a network with better reproducibility

of seeing variations, we have filtered the initial data. The conditions of filtering are:

i) We have chosen only atmospheric situations with the cloud fraction in the calculated cell less

than 0.3.

ii) We excluded nights when the vertical profiles of wind speed and air temperature obtained from

the re-analysis data significantly deviated from the reference vertical profiles (from data measured at

the Dzhambul radiosounding station).

iii)We retained only nights with more than 50 measurements of optical turbulence per night.

Nights with the low quantity of measurement data correspond to unfavorable atmospheric conditions

(surface strong winds and upper cloudiness).

Since the re-analysis demonstrates the highest deviations precisely for the lower layers of the

atmosphere, we excluded most of the atmospheric processes when the seeing was determined primarily

by the influence of low-level turbulence. In particular, 20 percent of nights, corresponding to the

highest deviations in air temperature and wind speed in the lower atmospheric layers, have been

excluded. The corresponding configuration of an optimal neural network is shown in Figure A3.

For this configuration, Figure 8 shows changes in the model and measured seeing. The correlation

coefficient between measured and model variations is higher than for configurations 1 and 2 and equal

to 0.68. Neurons of this network contain such atmospheric variables as u at 225 hPa and v in the

lower atmospheric layers (700 hPa). For neural network shown in Figure A3 large-scale atmospheric

advection begins to play the greatest role (u at 550 hPa). Using this neural network we also estimated

the median value of seeing at the Maidanak observatory site during the period from January to October

2023. This median value of the seeing is 0.73.
′′

Figure 8. Changes in model and measured seeing values. Seeing values are estimated using validation

dataset. Configuration of neural network obtained for chosen atmospheric cases. Line 1 corresponds to

measured seeing. Line 2 corresponds to modeled seeing
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Analysis of the neural networks obtained shows that individual bright connections between

neurons are substituted for most configurations with nearly equal weight coefficients. Unlike the Sayan

Solar Observatory, the deep neural networks obtained for the Maidanak Astronomical Observatory

do not contain pronounced connections between the seeing parameter and atmospheric vorticities

[35]. Moreover, the use of atmospheric vorticities in the simulation even slightly reduces the Pearson

correlation coefficient between the model and measured seeing values. For neural networks containing

atmospheric vorticities, the Pearson correlation coefficient is reduced less than 0.45. In our opinion,

this is due to the fact that the effect of large-scale atmospheric vorticity on optical turbulence at the

Maidanak Astronomical Observatory site is minimal and it is noticeable only for individual time

periods, when the seeing value increases.

5. CONCLUSION

The following is a summary of the conclusions.

This paper focuses on developing physically informed deep neural networks as well as machine

learning methods to predict seeing. We proposed ensemble models of multi-layer neural networks

for estimation of seeing at the Maidanak Observatrory. As far as we know, this is the first attempt to

simulate seeing variations with neural networks at the Maidanak observatory. The neural networks are

based on a physical model of the relationship between the characteristics of small-scale atmospheric

turbulence and large-scale meteorological characteristics relevant to the Astronomical Observatory

Maidanak.

For the first time, configurations of a deep neural network have been obtained for estimating

the seeing. The neurons of these networks are linear, quadratic, cubic and covariance functions of

large-scale meteorological characteristics at different heights in the boundary layer and free atmosphere.

We have shown that the use of a different set of inputs makes it possible to estimate the influence of

large-scale atmospheric characteristics on variations in the turbulent parameter seeing. In particular,

the present paper shows that:

(i) The seeing parameter weakly depends on meso-scale and large-scale atmospheric vorticity, but

is significantly sensitive to the characteristics of the surface layer of the atmosphere. In particular,

for neural networks containing atmospheric vorticities, the Pearson correlation coefficient is low,

∼ 0.45.
(ii) The air temperature and wind speed on the pressure levels closest to the observatory as well

as northward turbulent surface stress have a significant impact on the seeing. Applying the

northward turbulent surface stress parameter in the training process makes it possible to improve

significantly the retrieving seeing variations (the Pearson correlation coefficient increases from

0.45 to ∼ 0.70). The estimated median value of seeing with neural networks at the Maidanak

observatory site during the period from January to October, 2023 is 0.73 ′′.
(iii) The influence of the upper atmospheric layers (below the 200 hPa surface) becomes noticeable for

selected atmospheric situations when, as we assume, the reanalysis best reproduces large-scale

meteorological fields.

Verification of hourly averaged vertical profiles of wind speed and air temperature derived from

the Era-5 re-analysis database, has been performed. We compare semi-empirical vertical profiles of the

Era-5 re-analysis with radiosounding data of the atmosphere at the Dzhambul station, which is located

within the region of the Maidanak Astronomical Observatory. The largest deviations correspond to the

lower layers of the atmosphere and the pressure levels of a large-scale jet stream formation. In winter,

∆T, ∆V, σT and σV , are 1.3 o, 2.8 m/s, 1.7 o and 3.3 m/s, respectively. In summer, these statistics are

similar values: 1.7 o, 2.2 m/s, 2.3 o and 2.7 m/s, respectively.
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Appendix A
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Figure A1. Neural network for estimating seeing parameter. Configuration 1.
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Figure A2. Neural network for estimating seeing parameter. Configuration 2.
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Figure A3. Neural network for estimating seeing parameter for chosen atmospheric cases. Numbers

on the right side of variables correspond to pressure levels.
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