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Abstract: Infant electrocardiograms (ECG) and heart rates (HR) are very useful biosignals for psychological 
research and clinical work, but can be hard to analyze properly, particularly long form (≥5 minutes) recordings 
taken in naturalistic environments. Infant HRs are typically much faster than adult HRs, and so some of the 
underlying frequency assumptions made about adult ECGs may not hold for infants. However, the bulk of 
publicly available ECG approaches focus on adult data. Here, existing open-source ECG approaches are tested 
on infant datasets. The best performing open-source method is then modified to maximize its performance on 
infant data (e.g., including a 15Hz high pass filter, adding local peak correction). The HR signal is then 
subsequently analyzed, developing an approach for cleaning data with separate sets of parameters for the 
analysis of cleaner and noisier HR. A Signal Quality Index (SQI) for HR is also developed, providing insight 
into where a signal is recoverable and where it is not, allowing for more confidence in analysis performed on 
naturalistic recordings. The tools developed and reported in this paper provide a base for future analysis of 
infant ECG and related biophysical characteristics. Of particular importance, the proposed solutions outlined 
here can be efficiently applied to real-world large datasets. 

Keywords: ECG; Infant ECG; R-Peaks; Heart Rate; longform; naturalistic; open-source 
 

1. Introduction 

Measures of the cardiovascular system provide a good window into the activity of the 
autonomic nervous system (ANS), reflecting innervations from both the sympathetic and 
parasympathetic branches [1]. Variations in heart period and heart rate variability have been linked 
to important cognitive functions, such as attention, memory, and information processing, as well as 
changes in arousal and regulatory abilities [2–5]. ANS activity measurement has been fruitful in 
understanding both typical and atypical development, with atypical ANS shown in manifestations 
of autism spectrum disorders [6,7], attention deficit and hyperactivity disorders [8], conduct 
disorders [9], as well as the emergence of other neuropsychiatric conditions [10]. Cardiovascular 
measures are particularly useful for the study of cognitive and emotional development beginning 
with the first days of life since both the cardiovascular and autonomic systems are well developed at 
birth [11], and electrocardiography (ECG) recordings can be obtained in non-invasive fashion. In the 
context of infants’ limited behavioural repertoire, reduced motor development, and lack of verbal 
communication abilities, non-invasive methods that can give insights into cognitive and emotion 
functions, are essential for understanding how these develop within the critical first 1000 days of life. 
With advances in wearable sensing technology, ECG can be more easily obtained outside the 
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laboratory as well, allowing dense recordings over hours and days [12,13]. This opens unprecedented 
opportunities for studying the development in the natural environment, allowing us to understand 
the complexity of factors that can contribute to typical and atypical outcomes [14].  

Although ECG has been used for studying infant cognitive and emotional development for 
several decades, there currently are few evaluations of complete open-access pipelines, especially 
focussed on infant ECG recorded in naturalistic environments. Children, and in particular infants, 
have a much higher heart rate (HR) than adults [15], and so algorithms tailored to process adult heart 
signals might not be the optimal choice for processing the signals recorded from the infant heart. In 
addition to the higher heart rate, there are many other factors (e.g., differing ECG complex shapes 
that occur) that should be considered when using ECGs from infants and children [16]. Free 
movement during typical activities and lengthy recordings can produce more motion-induced noise, 
such as baseline wander and motion artefacts [17], which can be particularly problematic when 
cardiac activity is recorded from infants in naturalistic settings (e.g., their everyday home 
environment). This is in addition to other forms of ECG noise (such as power line interference and 
signal processing artefacts [18,19] that must be accounted for in ECG processing. Building on and 
extending our previous work [12], the primary aim of the current study is to propose a complete 
open-source processing pipeline for long infant ECG recordings (≥5 minutes) and validate it under a 
range of conditions (including naturalistic conditions) against open-source state-of-the-art 
approaches. Compared to our previous work, we increase dataset sizes, include ECG data recordings 
from a range of devices recorded at a range of sampling rates, and present a deeper validation of the 
different steps of the pipeline. 

During typical functioning, the depolarization of the heart ventricles produces a short and 
characteristic spike of electric signal, often referred to as the QRS complex, with the peak of the QRS 
complex referred to as the R-peak (Figure 1). When detected, the time between consecutive R peaks 
(ΔR-R) can be used to calculate the instantaneous HR in beats per minute (see Equation 1). This gives 
a precise beat-by-beat HR measurement derived from the ECG. 

HR = 60/(ΔR-R)        (1) 

There are many pre-established open-source methods designed to preprocess ECG data and 
then extract the R-peaks [20–33]. While some comparative analyses have been previously carried out 
[19,21], no analysis exists evaluating the effectiveness of these methodologies on infants and young 
children ECGs. Many of these methods also investigate other ECG complexes such as T-waves and 
P-waves, as well as the QRS complex as a whole (see Figure 1). In the present paper, only the R-peak 
detection is analysed. 

 

Figure 1. A visualisation of the different complexes with an ECG. ΔR-R represents the time between R 
peaks, as depicted in Equation (1). 
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For the ECG preprocessing step, usually a decision must be made as to whether the signal is of 
sufficient quality for further processing and analysis. Noise can be reduced by a frequency-filtering 
approaches, with low pass filters (LPF) for removing aspects such as white noise, high pass filtering 
(HPF) used for aspects such as baseline drift, bandpass filtering (BPF) to remove low-frequency and 
high-frequency noise, and notch filtering for mains interference. Alternatively, other approaches such 
as wavelets and Empirical Mode Decomposition have also been used [34–36].    

Typical ECG pipelines will only encompass the preprocessing of the ECG signal and then the R-
peak detection. Given the inherent noise level in infant and young children ECG, and particularly 
ECG recordings in the natural environment, this paper aims to encapsulate the ECG to HR process 
as a complete open-access pipeline, also accounting for any HR cleaning and HR signal quality 
measurements. First pre-existing open-access ECG pipelines from literature were evaluated. The best 
performing method was then chosen as the basis to develop our new open-source pipeline for the 
infant ECG and subsequent infant HR signal. A range of additional preprocessing options were 
evaluated, along with some ECG post-processing steps. To account for the high levels of noise in 
infant ECG, additional HR processing steps and a HR signal quality index (SQI) to help automatically 
reject areas of unrecoverable signal were incorporated to form a complete pipeline (Figure 2). 

 

Figure 2. The proposed new pipeline for processing infant ECG into a usable heart rate. The ECG 
pipeline (top row, blue boxes) takes raw ECG and applies preprocessing. The preprocessed ECG is 
then passed into the peak detection step, and then the novel steps of local peak correction and square 
wave correction (where required by the device appropriate). The HR pipeline (bottom row, red boxes) 
extracts a raw heart rate from the detected ECG peaks, and corrects for any obvious mislabelling, 
while carrying out an SQI calculation to determine quality of the signal. Adapted from Geangu et al. 
[12] to represent an infant-specific pipeline. 

2. Materials and Results 

In this section, existing ECG pipelines will be applied to datasets containing infants and toddlers. 
Then, we propose an adapted ECG pipeline (including two novel preprocessing approaches). Finally, 
we propose a HR pipeline designed specifically to deal with longform and noisy recordings. 

2.1. Datasets 

Three infant ECG datasets (Table 1) were used to develop the pipeline and test the existing 
approaches. Datasets A, B, and C were all captured using different devices with different sampling 
rates in different environments. Dataset A and B are characterised by relatively low levels of noise 
and will be used to evaluate the ECG pipeline and initial HR processing. Some of the recordings in 
Dataset A have gaps in recording due to Bluetooth dropout from the BiosignalPlux device (a subset 
of the recordings in Dataset A were the object of analyses in our previous work [12]). Dataset C 
contains the noisiest ECG (including areas of non-signal) and will be used for HR quality analysis. 
Further details on these datasets can be found in the Appendix B. The distribution of recording time 
and ages for each dataset is illustrated in Figure 3. 
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Table 1. The infant dataset information for the three datasets used in this paper. Age column shows 
the range and mean ± standard deviation. 

Dataset Device 
Samplin

g Rate 
(Hz) 

Environme
nt 

N Age 
(months) 

Total 
Recording 

Mean 
Duratio

n 

A 
Biosignal 

Plux 
500 

Free play in 
infant play 

area of 
research lab 

97 

2.9-42.1 
(Mage=16.

9  ± 
11.2) 

52 hrs, 
20 min 

32 min, 
22 sec 

B 
Geodesic 

EEG 
System 

1000 

Experiment
al lab 

condition 
(sitting on 

lap) 

25 
5.6-13.0 

(Mage=8.5 
± 2.1) 

3 hr, 
34 min 

8 min, 
36 sec 

C 
EgoActiv
e sensor 

250 
Home 

environme
nt 

12 
5.3-10.4 

(Mage=7.3 
± 1.9) 

15 hrs, 
45 min 

78 min, 
46 sec 

 

Figure 3. Plot age of participant vs length of recording. (a) Dataset A: the recordings have been 
roughly grouped into cohorts of 2.9-7.9 months (N =25, Mage=5.8 m.o.), 8-10.9 months (N=15, Mage=9.3 
m.o.), 11-19.9 months (N=23, Mage=13.4 m.o.), and 20-42.3 months (N=34, Mage=30.8 m.o.). (b) Dataset 
B: The recordings are grouped into cohorts of 5-6.9 months (N=7, Mage=6.0 m.o.), 7-8.9 months (N=9, 
Mage=8.0 m.o.), 9-10.9 months (N=6, Mage=9.9 m.o.) and 11-13.9 months (N=4, Mage=12.0 m.o.). (c) 
Dataset C: The recordings are grouped into cohorts of 5-7.9 months (N=7, Mage=5.8 m.o.) and 8-11 
months (N=5, Mage=9.5 m.o.). All y-axes and x-axes have different scales. A consistent colour-scale for 
age has been used in all subplots. 

A consistent issue across datasets was the range of ECG morphologies detected, such as double 
R-peaks and distorted T-waves. As infants are much smaller and less compliant than adults, ECG 
devices were often placed at a range of angles, and occasionally upside-down, therefore ECGs had to 
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be evaluated individually to determine if the signal was inverted. The devices used often had very 
narrow electrodes, which made a traditional ECG notation (e.g., 12 lead analysis) difficult to apply. 

All datasets were recorded from subjects recruited from urban areas in the North-East of 
England. Families received remuneration commensurate with the specific study they were involved 
in and an age-appropriate book as a token of participation. The research procedures were approved 
by the Ethic Committee of the Department of Psychology at University of York. Participants’ 
caregivers signed an informed consent prior to the beginning of the research procedure.  

2.2. The ECG Pipeline 

The main focus of the ECG pipelines analysed here is to accurately extract a set of R-peak 
locations from an ECG signal, identifying the peak within QRS complexes (known as peak detection). 
Some pipelines may also search for other ECG complexes, which will not be analysed here. A pipeline 
typically starts with preprocessing, a mathematical manipulation of the ECG signal to allow the QRS 
complex to be more easily identifiable.  

Once the signal has gone through preprocessing, the resulting preprocessed ECG will contain 
R-peak locations that differ slightly from the raw ECG, due to the mathematical operations that occur 
during preprocessing. In order to readjust the peaks back to the original location on the raw ECG 
(i.e., the R-peak location on the raw ECG, rather than the R-peak location on the preprocessed ECG), 
we are introducing a “local peak correction” operation. Additionally, we introduce a square-wave 
specific filter for those devices where it is appropriate. 

2.2.1. Existing ECG Approaches 

Firstly, 12 open-source pre-existing ECG methods (Table 2) were applied to Datasets A and B. 
These approaches represent the available open-source methods for R-peak extraction. Three separate 
Python packages that contain all or a subset of these methods were initially considered - HeartPy, 
Neurokit2, and py-ecg-detectors. However, all ECG methods in py-ecg-detectors were found to 
contain matching implementations in Neurokit2, without the flexibility to implement preprocessing 
and peak-detection of a method separately. This reduced the selection of ECG methods to those found 
in the HeartPy and Neurokit2 packages - the default HeartPy method, and 11 other approaches from 
the Neurokit2 package (including the default Neurokit2 approach). The open-source nature of the 
Neurokit2 means that some methods may match more closely than others to the authors’ original 
intentions. For example, the method by Gamboa [33] did not appear to work at all, which is unlikely 
to match the original author’s intentions. As such, this analysis is strictly representative of the 
implementation of these methods in readily available open-source Python software. It is 
acknowledged that proprietary measures for measuring infant ECG may well exist as part of 
commercial innovation and research. 

Table 2. A guide to the pre-existing ECG pipelines tested in this paper. 

ECG Method Method Description 

HeartPy 
[28,37] 

An approach designed to work with noisy data for both 
photoplethysmogram and ECG data. It uses baseline wander 

removal, a 0.05Hz notch filter, and a 0.003-20Hz bandpass filter in 
preprocessing. Peak detection is done through an adaptive threshold, 

followed by outlier detection and rejection. HeartPy does allow for 
user customization, although the only alteration made here was to 

raise the maximum allowed heart rate to 220bpm. 
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Neurokit2 
[23] 

A method which only uses a 0.5Hz HPF and a 50Hz notch filter in 
preprocessing. It uses gradients to detect the QRS complex, then 

detects the R-peak within the QRS. 

Pan-
Tompkins 

[26] 

One of the first ECG peak detection methods to use preprocessing and 
properly account for noise. It uses a 5-15Hz BPF for preprocessing 

before taking a derivative, squaring, and integrating with a moving 
window to isolate the R-Peak, which is detected via a series of 

thresholds. 

Hamilton [30] 
This approach is an adaptation of Pan-Tompkins which uses an 8-

16Hz BPF, rectification instead of squaring, and also a smaller 
integration window. 

Christov [20] 

A method that uses two self-adjusting algorithms to detect the current 
beat and the interval between beats, self-adjusting for different 
sampling frequencies. It is particularly designed for multi-lead 

analysis 

EngZee [31] 
(Engelse & 

Zeelenberg) 

The oldest method tested, although the method used in Neurokit2 is 
an updated version from Lourenço et al. [22]. It uses a 48-52Hz notch 

filter, before differentiating the signal and passing it through an 
adaptive LPF, finally using an adaptive threshold analysis (inspired 

by Christov’s approach) to detect the peak. 

Kalidas [32] 

This method resamples the signal to 80Hz, before using Daubechies 3 
wavelets as the basis set for stationary wavelet transforms. The signal 
is then squared and a moving window average is applied to enhance 

the R-peaks, which are then detected using threshold-based peak 
detection. 

Nabian [25] 

This approach is contained within a greater physiological signal 
toolbox, which aims to detect P, Q, R, S, and T points in the ECG. The 
R-peak detection is derived from Pan-Tompkins. A sliding window is 
used to detect a liberal initial R-peak list before culling the list down. 

Martinez [24] 
This approach also aims to identify multiple ECG complexes. 

Building off Li et al.’s approach [34], it uses a quadratic spline wavelet 
transform to identify the QRS peak. 

Elgendi [21] 

This approach uses an 8-20Hz BPF as optimal for identifying QRS 
complexes in adult ECGs. This choice is based on comparing a wide 
range of 2nd order Butterworth BPFs, along with moving window 

integration and thresholding to detect the R-peaks. 

Zong [29] 

Uses a LPF, a non-linear scaling factor to enhance the QRS complex 
and reduce noise, and then adaptive thresholds to determine the 

onset and duration of the QRS complex. The non-linear scaling factor 
reduces low frequency noise, eliminating the need for a HPF as well 

as the LPF. In the Neurokit2 implementation, the LPF is set at the 
Nyquist frequency (half the sampling rate), whereas in the paper 

Zong et al. appear to recommend a 16Hz LPF. 
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Rodrigues 
[27] 

Uses a double derivative, square, and moving window integration in 
preprocessing to enhance the QRS complex. The R-Peak is then 

detected using a finite state machine which enhances the R-peak 
position [38] and uses an adaptive exponential decaying threshold for 

detection [39]. 

The specificity, sensitivity and Positive Predictive Value (PPV) of the methods were then 
compared against a ground truth set of labels (Figures 4 and 5). Specificity penalises incorrect peak 
selection, and PPV identifies the ratio of correctly identified peaks out of all peaks identified for a 
given method. Given the sparsity of peaks within a signal, both measures tend to be preferable due 
to their inclusion of False Positives within the denominator. The sensitivity is also important but can 
be falsely inflated by a method identifying many false peaks, and so must be considered in the context 
of the other two metrics. These methods all require precise detection of peak location. 

Specificity = (True Negatives) / (True Negatives + False Positives)   (2) 
Sensitivity = (True Positives) / (True Positives + False Negatives)   (3) 

Positive Predictive Value = (True Positives) / (True Positives + False Positives)  (4) 

The distributions of results are shown in violin plots, with black dots representing each 
individual result. The median and interquartile ranges (IQR) are also shown as dotted lines. 
Collectively, this visualisation allows for evaluation of both the summative statistics and the general 
metric distribution. In cases where results of some methods fell far beyond the range of the best 
performing methods, visualisations have been truncated to preserve a clearer comparison between 
the core performances. For each method their conventional preprocessing has been applied, although 
local peak correction was used after labelling to allow fair comparison between the different methods. 
The datasets used are Datasets A & B, which are both clean enough to have a reliable ground truth. 
A visualisation of the algorithmically-labelled peaks by different methods in sample infant ECG 
without local peak correction is shown in Figure 6, with the labels shown on both the preprocessed 
ECG.  

The range of successes that different current methods have for dealing with infant ECG are 
shown for Dataset A (Figure 4) and Dataset B (Figure 5). The Figure 6 visualisation shows the effect 
of different preprocessing methods on the raw heart rate, and that some approaches label other 
complexes in the ECG instead of the QRS. 

The inbuilt methods for both packages [23,28] outperformed the implementation of all other pre-
existing methods, with the Neurokit2 method performing best overall. This is true both when 
considering their respective full distribution, median and interquartile ranges (IQR). Out of the 
remaining methods, Martínez et al.’s wavelet-based method [24] and Rodrigues et al.’s approach [27] 
were 3rd and 4th best. Martinez had good specificity and fairly good PPV but worse sensitivity, 
indicating the peaks that were detected were accurate, but many peaks were missing. Rodrigues was 
able to adapt better than most methods to the fast heart rate and noisy signals, but still had some 
worst-case subjects that it was unable to adapt to, especially in Dataset B.  

Nabian et al.’s method [25] appeared 5th-best overall, narrowly outperforming the sensitivity of 
the Martinez method for Dataset A but had more results with poorer for specificity and PPV. Zong’s 
approach [29] did next best for Dataset A but fell apart completely on Dataset B. Engelse and 
Zeelenberg’s method [23,26] had a low false peaks detection rate, but also did not detect enough of 
the true peaks for accurate HR calculation. Christov’s method [20] seemed to work well with some of 
the signals but would need altering of its internal threshold factors to properly adapt to children’s 
ECG.  

All other approaches tested [21,26,30,32] did not perform well with the datasets and had lower 
median specificity/sensitivity/PPV values than the other methods. They would likely need some 
fundamental changes to be suited to the ECG of a young child, as many of these methods contained 
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time constraints which work very well for adults but were too rigid for the faster heart rate of a child, 
falsely rejecting too many R-peaks or identifying other complexes in the ECG over the QRS complex.  

 

Figure 4. Violin plots showing the specificity, sensitivity and positive predictive values for the pre-
existing ECG approaches applied to Dataset A, with local peak correction applied to allow for cross-
method comparison. The thin dark-grey lines represent interquartile values, the thick light-grey line 
represents the median. Each dot represents a single result in the dataset, with the “violin” helping 
visualise the distribution. HeartPy, Neurokit2, Rodrigues and Martinez are shown in more detail in 
Figure 8. 
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Figure 5. Violin plots showing the specificity, sensitivity, and positive predictive values for the pre-
existing ECG approaches applied to Dataset B, with local peak correction applied to allow for cross-
method comparison. HeartPy, Neurokit2, Rodrigues and Martinez are shown in more detail in Figure 
9. 

 

Figure 6. A visualization of the peak detection for the pre-existing methods on a 12-month-old from 
Dataset A. The raw ECG and ground truth are shown left. All other approaches show the 
preprocessed ECG and original detected R-peak location for that method. 

2.2.2. Proposed ECG Preprocessing 

We developed two separate preprocessing approaches by adapting the best performing pre-
existing approach (Neurokit2). These two approaches were a frequency-preprocessing approach and 
an Empirical Mode Decomposition (EMD) approach, which are both then tested and compared 
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against the existing approaches. The frequency-based approach applies filters that attenuate the 
energy of a signal occurring at a given frequency. Low-pass filters remove high-frequency detail, only 
allowing smooth changes in the signal to pass through. High-pass filters (HPF) do the opposite, 
removing smooth signal trends to leave more rapidly altering complexes in the signal. Bandpass 
filters (BPF) remove some of the high frequency and low frequency information, whereas notch filters 
only remove signal energy at a given frequency. One problem with frequency filters is that they do 
not discriminate between two separate signal sources that share a frequency band. EMD is an 
adaptive technique that decomposes the signal into Intrinsic Mode Functions (IMFs) - characteristic 
signals that can have overlapping frequency information [40]. If noise or non-QRS complexes can be 
completely captured in an IMF, they can be removed without affecting the QRS. This same logic can 
also be applied to wavelet filtering [34,41,42]. 

A recent study [43] found that a 0.05-150Hz BPF preprocessing approach outperformed a 1-17Hz 
BPF approach on a study investigating peak detection in children - but the study only tested those 
two specific filters. As such, it was considered worth evaluating a range of 5th-order Butterworth 
BPFs and HPFs applied before R-peak detection.  

We chose the Neurokit2 algorithm for peak detection due to its high performance across all 
categories (see Figures 4 and 5) as well as the simplicity of the initial baseline Neurokit2 preprocessing 
(a 0.5Hz HPF with a 50Hz band stop filter). A variety of different frequency filters were applied in 
addition to the standard Neurokit2 preprocessing to determine the best frequency-preprocessing 
approach. Dataset A and Dataset B were both used to test the frequency ranges (Figure 7). An upper 
frequency bound of 20, 30, 50, 100, and “None” was used (with the “None” option indicating no 
upper bound, i.e., an HPF). A range of lower bounds were also tested, with 0.5, 2, 5, 8, 10, 15, and 
20Hz lower bounds shown in Figure 7. In general, the high pass filters had better median 
specificity/sensitivity/PPV than the bandpass filters, as well as overall improved distributions. 
However, the improvement in results is marginal when compared to the 50Hz/100Hz upper bounds. 
For Dataset A, the 15Hz HPF approach was marginally better than similar filter approaches when 
considering median and IQR, although an upper bound of 50Hz and any lower bound between 8-
20Hz produce fairly similar results. For Dataset B, the lower IQR had perfect specificity, sensitivity, 
and PPV for 5-15Hz HPF, with the only distinguishing factor being how well the worst-case results 
were processed. However, the 20Hz HPF results were a lot worse for Dataset B. 
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Figure 7. The Specificity, Sensitivity, and PPV (columns 1, 2, and 3) results shown as violin plots for 
a selection of frequency-preprocessing methods applied to (a) Dataset A, and (b) Dataset B. In all 
subplots, the median is shown as a thick, light grey bar, and the IQR is shown as thin dark grey bars. 
Each black dot represents one result. The lower frequency bounds are shown on the y-axis, the upper 
frequency bounds on the x-axis (with the right-most column of each subplot indicating no upper 
bound, i.e., an HPF). Results are all shown at a consistent scale, violin plots which go to the edge of 
the graph may have results outside the visualized range. 

During the assessment of the ECG preprocessing options, elevated T-waves were observed in 
some of the subjects in the recordings. T-waves typically overlap in frequency with QRS waves [44], 
which can cause some problems in R-peak detection. An approach using EMD could remove the T-
waves while preserving the QRS complex. Here, we remove any signals with >50% of the signal 
power between 0.5-8Hz, given that T-wave content is reported to lie in the 0-10Hz range [44], and the 
QRS is reported to lie in the 8-20Hz range [21]. The EMD approach is also used with standard 
Neurokit2 preprocessing and peak detection.  

A comparison between the proposed 15Hz HPF filter and the EMD approach with the best-
performing pre-existing approaches is shown in Figure 8 (Dataset A) and Figure 9 (Dataset B). The 
HeartPy, Neurokit2, Martinez and Rodrigues results display the same characteristics as in Figures 4 
and 5. The 15Hz HPF approach improves on the EMD and all pre-existing methods in terms of worst-
case labelling and median, IQR statistics for Dataset A. Specifically, the 15Hz HPF median specificity, 
sensitivity, and PPV (0.999989, 0.9958, 0.9975) outperformed the median results of all other methods, 
the closest pre-existing method being Neurokit2 (0.999975, 0.9863, 0.9938). If we interpret these 
median results on the average signal length (30.5 minutes, 4180 peaks), it would mean: 13 fewer peaks 
labelled incorrectly (10 vs 23), 39 fewer peaks missed (18 vs 57) and only 0.25% of peaks that were 
identified were labelled incorrectly (vs 0.72% for Neurokit2). While the EMD approach does improve 
on the other pre-existing approaches, for Dataset A, for Dataset B, the EMD approach performs much 
worse overall, with a few worst-case labels performing very poorly. 
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Figure 8. Violin plots for the best approaches for Dataset A. The median is shown as a thick, light grey 
bar, and the IQR is shown as thin dark grey bars. Each black dot represents one result. The HeartPy, 
Neurokit2, Martinez and Rodrigues results are the same as in Figure 4, but with a greater y-axis zoom. 
The EMD and 15Hz HPF approaches are new ones evaluated by this paper. 
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Figure 9. Violin plots for the best approaches for Dataset B. The median is shown as a thick, light grey 
bar, and the IQR is shown as thin dark grey bars. Each black dot represents one result. The HeartPy, 
Neurokit2, Martinez and Rodrigues results are the same as in Figure 5, but with a greater y-axis zoom. 

Average heart rate varies as a function of age [15], so a sub-analysis visualizing the performance 
of the methods at different age boundaries on Dataset A was also carried out (Figure 10). Age-
divisions were chosen as a balance between keeping a large enough cohort size for valid analysis, 
and to recognise natural groupings that arose within the datasets (see Figure 3). Dataset B age-based 
analysis contained far fewer participants, especially when split into cohorts, and is included in 
Appendix C for completeness. The results for 15Hz HPF on Dataset A were worst in the 8-10 month 
range, but still outperformed all other methods at all age ranges (Figure 10).  
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Figure 10. An age-based breakdown of Figure 8. A different age bracket is shown in each quadrant. 
The median is shown as a thick, light grey bar, and the IQR is shown as thin dark grey bars. Each 
black dot represents one result. 

2.2.3. ECG Peak Detection 

R-peak detection is the process by which an algorithm finds the R-peak within the QRS complex, 
for all QRS complexes in an ECG signal. By testing all the pre-existing methods, it was clear that 
Neurokit2 was one of the best suited to these datasets (Figures 4 and 5) and works well with the 
proposed preprocessing approaches of 15Hz HPF or EMD filtering (Figures 7 and 8). The Neurokit2 
peak detection is used in the proposed ECG pipeline without alteration in this specific step. 

2.2.4. Local Peak Correction 

Stronger frequency filtering applied during the preprocessing step has a stronger impact on peak 
location, shifting R peaks (and other peaks) in the ECG (see Figure 6). To counteract the shifting-
peaks effects, we implemented a novel local correction relative to the unfiltered signal. This correction 
iteratively searches for the largest peak ± 0.01s either side of the peak location on the processed ECG 
to check for a larger local peak within the raw unprocessed ECG, until no larger peak is found within 
the search limit. To distinguish this technique from “peak detection”, it will be referred to as “peak 
correction”. This peak correction only has a small impact on peak location but preserves variation 
between peaks and allows for more accurate comparison of specificity/sensitivity/positive predictive 
value measures (see Appendix D). In instances where multiple indices could be labelled for a given 
peak, the closest peak to the preprocessed ECG was used (see Appendix E). 

It was also observed that the first and last beat of an ECG were liable to be missed under certain 
methods. This was addressed by a one-second artificial extension of the signal at the start and the 
end. The first/last values of the preprocessed ECG were as used as the constant value for the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 December 2023                   doi:10.20944/preprints202312.0633.v1

https://doi.org/10.20944/preprints202312.0633.v1


 15 

 

 

extensions at each end. While this will only have a small impact for long recordings, it could be very 
impactful for shorter recordings. 

2.2.5. Square Wave Peak Correction 

While filter-based preprocessing will deal with many sources of noise, any periodic non-ECG 
signal is likely to be preserved with the frequency-processing and EMD methods. Square waves were 
occasionally observed when recording was started prior to attaching the device to a subject. The 
nature of square waves is very likely dependent on the device, and square wave removal is highly 
recommended in these recordings. For the EgoActive device responsible for Dataset C, a median filter 
with a 101-sample width was used to exclude blocks of signal that were within 0.5% of a local 
maximum/minimum. The precise filter width and max/min margin will depend on the gain and 
sampling rate of the device used. This correction was applied post peak detection, to remove any 
peaks deemed to occur during these periods. Square wave correction was not required for Datasets 
A and B. 

2.3. The HR Pipeline 

2.3.1. Calculate Raw Heart Rate 

Once a set of R-peaks is detected, the heart rate can be calculated as described by Equation 1. 
This is an instantaneous heart rate calculation reflecting beat-to-beat changes. For some research 
questions, an average heart rate (collected over a few beats) will be preferred and will likely reduce 
the impact of noise in the calculation. Here, only instantaneous heart rate is considered. Even with 
good R-peak detection methods, a peak can be missed, or a non-R-peak can be incorrectly labelled. 
This will lead to an erroneous heart rate measurement, which can be detected through filtering. 

2.3.2. Correction for Missing and Additional Beats 

A missing R-peak will cause two true measurements to be replaced by a single false 
measurement of approximately half value (Figure 11a), while an additional peak will cause one true 
measurement to be replaced by two roughly double false measurements (Figure 11b), although the 
proximity of the additional peak to existing peaks will alter the amplification ratio of the subsequent 
heart rate. 
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Figure 11. A demonstration of potential inaccuracies arising in R-peak labelling algorithms. Each QRS 
complex should contain one R-peak label. The left column shows an ECG signal (purple) and peak 
labels. The black “x”s show the underlying true peak labels. The blue “+”s and red “o”s show incorrect 
labelling. The right column shows the corresponding instantaneous heart rate, calculated through 
Equation 1. (a) A single lower heart rate measurement due to missing a beat; (b) Two raised heart rate 
measurements due to an additional beat; (c) Two incorrect heart rate measurements, one higher and 
one lower, with the order depending on the direction the beat is shifted. (c) is adapted from Geangu 
et al. [12]. 

To detect beats which vary above/below a local median by more than a given proportional 
threshold, we used a median filter. The effects of the specific filter width and threshold are illustrated 
in Figure 12. The identified incorrect measurements are removed, and then estimated by local linear 
interpolation. If precise beat-to-beat comparisons are not required, a more liberal threshold over a 
wider beat-window can robustly account for noise. The first evaluation (Figure 12a) examines a clean 
ECG against a ground truth, and only deals with missing beats. The second evaluation (Figure 12b) 
compares the residual heart rate from a filter applied to the output of the ECG pipeline against a 
ground truth and represents the approach that should be taken with a less clean initial ECG. 

Two metrics are used to ascertain the ideal filter width and proportional threshold for HR 
processing. The first metric is used to evaluate the median approach applied to a clean set of R-peak 
labels that only contains a few errors. The second metric is used to evaluate the median approach 
applied to a realistically processed ECG. 

Dataset A (N=97) was captured using a BiosignalPlux device that recorded the ECG through 
Bluetooth. Across the 97 recordings, occasional disconnections would occur, leading to gaps in signal 
(23 in total). Additionally, the noise arising from infant motion would also lead to small periods 
where no QRS complex could be identified (323). These gaps in the ground truth R-peak list result in 
drops in the derived HR signal. The optimal median filter approach will identify these gaps, without 
removing any real signal. The expected number of gaps to interpolate over is recorded for each 
participant. The absolute difference between interpolations made by the filter and the expected 
number of interpolations is used to evaluate the optimal parameters for a clean environment. Figure 
12a shows the variation in these results with different parameter choices. 

Next, the output from the proposed ECG pipeline (15Hz HPF preprocessing, Neurokit2 peak 
detection) is used to represent a realistically preprocessed signal. The residual heart rate between the 
median-filtered ECG and a ground truth (with gaps interpolated over) is used to demonstrate the 
optimal parameters from a noisier baseline (Figure 12b). 

For the clean ECG test (Figure 12a), a high activation threshold (e.g., 1.7 or 1.8) combined with a 
narrow filter width (e.g., 7-21) produced a very low number of incorrect adjustments (<3% compared 
to total number of adjustments, or <0.0015% compared to every potential adjustment e.g., every single 
heart rate beat). Almost all these incorrect adjustments were due to arrhythmias in the heart rate, 
causing a longer than expected gap between detected beats. A very conservative threshold combined 
with very few beats needed to accurately determine the incorrect label makes sense given the 
cleanness of the ground truth. For the test with the processed ECG (Figure 12b), a much more liberal 
activation threshold (e.g., 1.2 or 1.3) with a much wider filter width (15-31) provided the optimal 
parameters for reducing the heart rate residual with this dataset. This accounts for the higher level of 
uncertainty in underlying truth in the processed heart rate. 
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Figure 12. The result of parameter variation for selecting different Filter Widths (FW) and Activation 
Thresholds (AT) with a local moving-median filter. (a) The total number of errors in interpolation for 
the moving-median applied to a clean dataset, with 346 the expected number of interpolations across 
the dataset. One 12-month infant with a mildly arrhythmic heart rate accounts for 4 of the incorrect 
interpolations in the optimal parameter choices. (b) The heart rate residual shows the difference 
between the interpolated heart rate and the true heart rate for the moving-median applied to a 
realistically processed dataset. A trade-off is then made between how strict the threshold is in 
removing incorrect peak labels compared to preserving the original signal. (b) is adapted from 
Geangu et al. [12], with additional data and labels added. 

2.3.3. Correction for Shifted Beats 

Wrongly located R-peaks can remain undetected by the median filter approach described above. 
A useful observation is that an early-labelled beat will lead to a much greater heart rate rise followed 
by a much steeper heart rate drop than would typically appear within a natural signal (Figure 11c). 
A late-labelled beat will do the opposite. The proposed algorithm searches for the presence of three 
consecutive sign changes concurrently with a large variation in the heart rate difference (>15bpm for 
the first and third heart rate gaps, >25bpm for the middle gap), thus identifying the mislabelled beats 
within a signal, provided the neighbouring beats are correct. Areas with large amounts of mislabelled 
beats are likely to be caught by the algorithm for missing/additional beats and are likely one reason 
for the more conservative thresholds present in the processed HR tests. 

2.3.4. Signal Quality Index Calculation 

In addition to developing methods to correct R-peak labels for longform infant ECG, it is 
important to identify time periods that have many (consecutive) incorrect labels due to noisy 
measurements. Local linear interpolation will be unable to accurately reflect the underlying HR for 
these periods, and so they may need to be excluded from further data analyses. Thus, we developed 
an algorithm optimized for longform infant ECG to help identify regions in which a data recovery 
approach is inadvisable.  

Pre-existing methods for HR quality assessment were not found to be suitable for long heart 
rates. Kramer et al. [45] use non-stationary signal, viable heart-rate range, and high signal-to-noise 
ratio (SNR), but require the signal to be rejected/accepted in full. Rodrigues et al. [17] extracted shapes 
and behaviours of the signal to group ECG samples by an agglomerative clustering approach, an 
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approach that becomes computationally inefficient for longer recordings. It is also worth noting that 
many ECG methods implicitly try to reject areas of high noise directly in the ECG [46], with the 
HeartPy method [28] able to explicitly reject peaks which create a beat interval >30% above or below 
of the mean interval time of the whole signal. Additionally, Zhao & Zhang [47] proposed a noise 
detection algorithm based on agreement from different ECG algorithms. However, given the results 
in this paper showing the poor performance of most algorithms on infant ECG (see Figures 4 and 5), 
this approach was not explored here. 

The beat correction algorithm for missed/additional beats was used as a baseline measure of 
signal quality, with additional steps added to fine-tune the quality algorithm further. Figure 2 
highlights that correctly labelled R-peaks will typically fall inside the expected bounds, whereas 
incorrectly labelled R-peaks are likely going to either cause a steep decrease or increase in heart rate 
(for missing or additional labels, respectively). By calculating the proportion of “wrong” labels within 
a given filter width, a rolling measure of heart rate signal quality is calculated. If a small number of 
incorrect labels are present, a close approximation to the original heart rate can be recovered. If many 
measurements are incorrect, then the heart rate cannot be reliably approximated. A filter width of 31 
and an adaptive threshold of 1.3 was used (Figure 12b). 

A moving-median approach was used to create the base of a binary Signal Quality Index (SQI) 
vector [12]. At each time point (i.e., heartbeat measurement), the percentage of local beats within the 
filter width that deviated by a multiplicative factor of 1.3 above or below the local median was 
calculated (i.e., the local median indicates the existence of poor signal within the sliding window, and 
for a median HR of 100bpm the proportion of beats outside 77-130bpm was calculated). If the 
percentage of poor beats was ≤25%, then SQI=1 (high signal quality) at that time point. Otherwise, 
SQI=0 (low signal quality). The sliding window was then moved to the next time point. 

To make the SQI more accurate, additional manipulations were used to account for the specific 
location of the high-deviation beats. First, the regions of good SQI were then extended (i.e., set to 
SQI=1) according to whether the beats just beyond the boundary of the good SQI region were within 
the local median range. Second, continuous regions >3.5s long of high-deviation beats (>1.3 beats 
from local median) were set to SQI=0, as were any gaps in heart rate longer than 2.5s. Lastly, any 
remaining good regions <5s long were set to SQI=0, to leave regions of a reasonable size. These 
parameters could be tailored depending on the length of the useful heart rate region for a given 
research question, and how precise a heart rate is required to be.  

The Boolean SQI vector can then be applied to the heart rate to either set areas of bad signal to 
0bpm, or to cut those regions from the signal. 

2.3.5. SQI-Filtered Heart Rate 

The SQI-step of the pipeline was evaluated using the specificity and sensitivity metrics 
(Equations (2) and (3)) applied to Dataset C, a very longform dataset (length ≥ 50 minutes) captured 
outside of a lab environment, taken at 250Hz. These factors combined to give high levels of noise in 
the dataset, while still being clean enough to have areas of signal that should be preserved. A set of 
filtering parameters that minimised the residual error in the processed HR (AT: 1.3, FW: 31) were 
used as the base for the SQI algorithm (Figure 12B). An example visualisation of the SQI algorithm 
applied to a noisy HR is shown in Figure 13, with the results of the analysis shown in Figure 14. 

As seen in Figure 13, the SQI algorithm is not designed to label HR as poor when only individual 
beats are missing. However, when multiple peaks are missing and the underlying median filter is 
more unreliable, the HR is designed to be labelled as not usable. Figure 14 shows the general success 
rate of the SQI algorithm when applied to noisy datasets. Overall, the SQI has a high true positive 
rate, meaning almost no clean signal is excluded from the recording. The SQI does have a higher false 
positive rate for some of the recordings, meaning some noisy signal may make it into the final 
analysis, which may require these recordings to be excluded. However, this does represent a 
significant improvement over the baseline of including all HR signal and is also shown to work very 
well for the cleaner signals (top left of Figure 14).  
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Figure 13. A demonstration of SQI on dataset C. Top: The derived HR signal. Brown and green lines 
represent the raw HR. Brown HR is HR that falls within a local median, while green HR falls outside 
the local median. The red HR line represents the HR following local linear interpolation to remove 
outlier HR points. The purple line represents the SQI vector indicating whether a time point has good 
(=1) or poor (=0) signal quality. This vector indicates a noisy period when the HR data can be 
considered unreliable and thus excluded from further analyses. Bottom: The corresponding ECG 
signal (light purple), with the detected R-peaks shown as green dots. Individual missing peaks can be 
approximated by interpolation, but a noisier period (SQI=0) becomes harder to recover and so is 
considered unreliable. 

 
Figure 14. A demonstration of the SQI algorithm on a noisy dataset. Each dot represents one 
recording. The algorithm has a very good true positive rate (sensitivity), but a slightly worse false 
positive rate (1-specificity), implying it will often identify good areas, but may not reject areas of bad 
HR as often as it should. 

2.3.6. Cleaned and Filtered Heart Rate 

The end result is a heart rate signal that has been corrected in areas of small mislabelling, and is 
discounted in areas of large noise where the signal is unrecoverable. 
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3. Discussion 

Until now, there has been limited freely available research on ECG R-peak detection methods 
which are adequate for infants. In this paper, existing open-source ECG methods were tested on 
infant datasets acquired in a range of conditions (including naturalistic conditions), and the best 
performing method was adapted into a high-performing novel pipeline that contains all necessary 
steps from raw ECG preprocessing to HR calculation. Our proposed approach includes alterations to 
the preprocessing and local peak correction steps, explicitly outlying a guide for when to interpolate 
missing/additional beats, and introduces an SQI vector designed to detect unreliable areas of HR 
measurements that can be adapted around for further data analysis steps. This is particularly relevant 
for real-world large data sets collected in the natural environment, where manual rejection of 
unreliable areas of HR measurements would not be feasible. 

Both the HeartPy and Neurokit2 packages are highly useful open-source scientific tools that 
collectively provide a wide range of options for ECG analysis. They both provide a wide range of 
functionality beyond R-peak detection in ECG, although that is all that is focussed on here. It is worth 
acknowledging that there are many methods that exist outside of the open-source domain which are 
not evaluated here. While many of the methods in Neurokit2 were open source originally some were 
written in different languages and have had to be adapted into Python, with both the translation 
issues and the inherent nature of open-source collaborative approaches meaning that some 
imperfections in implementation can arise. The analysis in this paper focuses on the available open-
source implementation of these methods, rather than necessarily the methods themselves. 

The HeartPy, and Neurokit2 default show the best results with Dataset A and Dataset B overall, 
with both performing particularly well on Dataset B. The Rodrigues method performed well on 
Dataset A, and Martinez shows good specificity and a reasonably good PPV IQR on Dataset A and a 
good overall performance on Dataset B. All four approaches were quick to run and had ECGs that 
they labelled to a very high standard, although all of them also had ECGs that were not labelled as 
accurately as our proposed pipeline later managed. 

The inbuilt Neurokit2 method was chosen as a candidate for further fine tuning due to the high 
performance and simple initial preprocessing. Many existing methods contain several hard-coded 
parameters that have been developed to work with adult ECGs. Neurokit2’s inbuilt method only 
used a notch filter tuned at mains frequency and a fairly unrestrictive high-pass filter of 0.5Hz. The 
Neurokit2 preprocessing was applied before all frequency-processing testing, but the specific notch 
filter could be altered depending on the ECG device and the 0.5Hz HPF could also be removed given 
that a stronger HPF is likely to be optimal for infant ECG. 

In developing a new pipeline, it was found that a 15Hz high-pass filter provided an approximate 
best filter for infant ECG preprocessing (Figure 7), which is very different to the 8-20Hz BPF 
commonly suggested for preprocessing in adults [21]. This held for two different devices with 
different amounts of subject motion and different sampling rates (Figures 8 and 9). It also improved 
on other methods at a range of age ranges (Figure 10). While the specific bands were slightly different 
for the two datasets (e.g., a 20Hz HPF worked well for Dataset A but not Dataset B), the 15Hz HPF 
fell within a good range both times. This gives us confidence that it is a more robust methodology for 
infants. It would be interesting for a future study to test the age range at which the optimal HPF 
begins to drop for older children. The precise frequency bounds used could vary slightly depending 
on the specific device used and sample population. These results indicate that any upper bound of 
50Hz or higher and any lower bound of 8-15Hz appear to have very similar levels of performance 
across both tested datasets. 

The proposed EMD preprocessing approach improved the default Neurokit2 method slightly in 
Dataset A but did not out-perform the optimal frequency-processing filter. In Dataset B there were a 
few worst-case scenarios that caused the EMD approach to have low specificity and PPV. 
Additionally, there is a dramatically increased run-time when applying EMD processing. As such, it 
is not recommended to use this approach.  
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One section of major contribution that the new pipeline brings is the novel local peak correction. 
The 0.01s threshold was determined heuristically to balance overcoming high frequency noise while 
minimising false peak detection. This allows for much heavier filtering without compromising on the 
R-peak label locations, as well as comparative analysis between R-peak detection for the different 
methods. The start/end peak detection had a very minimal reactive effect, and the start/end of ECGs 
are often discarded. However, in pure detection terms, it was found to improve all the open-source 
algorithms evaluated here at very little computational cost, and so is recommended for future 
inclusion. The square wave filtering was very device-specific, as two thirds of the devices detected 
did not tend to exhibit square wave noise, and so square wave filtering would only succeed in 
subtracting noise from the signal. However, for the device that did exhibit square wave noise, it 
greatly improved detection. 

Where either precise beat detection is required or a heart is suspected to contain arrhythmias, 
the heart rate filtering proposed here may not be appropriate. However, it was found to do a good 
job at preserving the overall shape of the heart rate, and subsequently serve as a good way to detect 
noisy periods when also combined with the SQI. It was found that a much more conservative 
activation threshold (1.7/1.8) and thinner width of median filter (7-15) were optimal for cleaner ECGs, 
but that more liberal thresholds (1.2/1.3) and wider filters (15-31) would produce lower residual heart 
rates when applied to the detected heart rate (Figure 12). While it is recommended to view some raw 
ECG along with the processed heart rate to ascertain the underlying level of noise, a choice of 1.7/11 
or 1.3/31 activation threshold/filter width for cleaner and noisier signals respectively can serve as a 
fair initial parameter choice (with the former being recommended for short lab-based ECGs with no 
motion, and the latter being recommended for any other forms of ECG). 

Neither Dataset A nor B were sufficiently noisy to test the SQI analysis properly. As such, 
Dataset C was the only one used for this purpose. The sensor used for Dataset C was the EgoActive 
sensor, a lightweight wearable device designed for much longer recordings in the natural 
environment, while being as unobtrusive as possible to the child to ensure comfort and allow free 
moving. The lower ECG sampling rate was chosen to maximise the duration of a continuous 
recording [12]. The SQI approach to determine noisy periods of HR serves as a good first step towards 
a robust noise-detection algorithm. The SQI-mediated HR allows for the analysis of long recordings, 
which can contain large amounts of noise. While the SQI method serves as a good automatic way to 
identify unreliable heart rate calculations, the specific parameters used will depend on the research 
question. For example, more noise-averse analysis such as standard-deviation based HRV require 
stricter noise thresholds. Analysis concerned with general HR rises/falls or average HRs can use a 
looser threshold to capture more data. The SQI calculation did work very well on recordings with 
easily discernible noise, being particularly good at separating non-HR periods from HR periods but 
struggling a bit more with noisy HR vs clean HR. Understanding and automatically detecting which 
types of noise cause poorer performance could make it more robust in future. The specific parameters 
used in the SQI are dependent on how much noise is tolerable for a given research problem, meaning 
it will likely have to be double-checked if parameters are altered.  

The proposed pipeline was very computationally efficient. The ECG pipeline was applied to all 
of Dataset A (N=97, sampling rate=500Hz, Mrecording=32 minutes, 94,089,683 data points) and took 
111.33s in total (1.15s per ECG). The total preprocessing and peak labelling time was 20.75s (0.21s per 
ECG) and the local peak correction took 90.59s (0.93s per ECG). The HR pipeline is also 
computationally efficient, as a combination of median filters and difference functions provide the 
backbone for both the SQI and the beat-cleaning algorithms. By applying the SQI to the heart rate, 
the size of the vectors processed are greatly reduced compared to an ECG (1-3Hz sample density for 
HR compared to 250-1000Hz for ECG). An N=63 set of noisy HR signals collectively covering 92 hours 
(comprising 559,612 beats in total) took only 6.68s total processing time. This includes both the time 
to filter the heart rate with a moving-median filter, and create the SQI vector. All calculations were 
done consecutively using an 11th Gen Intel(R) Core (TM) i5-1145G7 @ 2.60GHz, and do not include 
the loading times required to import the data into Python initially.  
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Future Research 

Since adaptations are shown to improve the Neurokit2 pipeline, it is very possible that other 
methods could also be adapted to process infant ECG. Some exploratory analysis on the HeartPy and 
Pan-Tompkins methods was carried out and was not initially encouraging (though was not in depth 
enough to draw concrete conclusions). Additionally, while the computational inefficiency of the EMD 
approach was a concern for longform ECGs, many studies focus on shorter infant ECG signals where 
processing time will be less of a factor. Given the strong performance of the approach on Dataset A, 
it is very possible that small alterations to the EMD methodology (such as the criteria for IMF 
rejection) could prove to be a positive avenue for future research. 

The datasets captured here lay the grounding for a future infant-specific approach for the R 
peaks, especially for machine-learning approaches. Additionally, there could also be great future use 
in infant-specific analysis of the remaining ECG morphology. 

Finally, sensor orientation and position, particularly for small wearable sensors, can have a big 
impact on different infant ECG complexes. A general analysis creating a consistent set of guidelines 
for wearable infant ECG could prove of great use to the scientific community, as could further 
validation of different aspects of this pipeline on data collected at specific sensor orientations and 
positions. 

4. Conclusions 

In this work, we evaluate existing open-source ECG pipelines on longform infant datasets, 
before improving on the state-of-the art approach to develop our own pipeline. We also develop a 
HR pipeline to clean up the signal and identify areas which are too noisy to process. Collectively, 
these form a full, computationally efficient pipeline to turn raw infant ECG signals into cleaned and 
processed HR signals. This process is designed to even work on naturalistic recordings, although it 
also outperforms existing methods in short lab-based recordings of infants as well. 

Author Contributions: Conceptualization, H.T.M., E.G., M.I.K., S.S.; methodology, H.T.M., E.G., M.I.K., S.S., 
Q.C.V.; software, H.T.M.; validation, H.T.M., A.P.M.-C., M.C.G.-d-S.; formal analysis, H.T.M.; investigation, 
A.P.M.-C., M.C.G.-d-S., E.G.; resources, E.G., S.S.; data curation, H.T.M., A.P.M.-C., M.C.G.-d-S., E.G; writing—
original draft preparation, H.T.M., E.G., M.I.K., Q.C.V.; writing—review and editing, all authors; visualization, 
H.T.M.; supervision, E.G., M.I.K., Q.C.V., S.S.; project administration, E.G..; funding acquisition, E.G., M.I.K., 
Q.C.V., All authors have read and agreed to the published version of the manuscript. 

Funding: This work presented in this manuscript received funding from the Wellcome Leap, the 1 kD Program. 

Institutional Review Board Statement: The study was conducted in accordance with the Declaration of 
Helsinki, and approved by the Ethics Commi�ee of the Department of Psychology, University of York, for 
studies involving humans. 

Informed Consent Statement: Informed consent was obtained from all subjects involved in this study. 

Data Availability Statement: All data and software will be made available upon reasonable request sent to Elena 
Geangu (elena.geangu@york.ac.uk). 

Acknowledgments: We would like to express our gratitude to all families who dedicated their time to donate 
data in the study. The authors would also like to thank Nicoleta Gavrila, Lauren Charters, Aastha Mishra, Emily 
Clayton, and Brigita Ceponyte for additional help in data collection, and David Mullineaux for help in verifying 
the code used in the project. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

The following additional resources will be made available to researchers upon request: 
1. Datasets A, B, and C, with each file including  

a. Raw ECG 
b. ECG timeseries corresponding to a. 
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c. Labelled true R-Peaks indices (datasets A and B only) 
d. Detected R-Peaks indices from our 15Hz HPF pipeline, post correction 
e. Raw HR generated from d. 
f. HR timeseries corresponding to e. 
g. Moving-median-filtered HR example 
h. HR SQI (Dataset C only) 
i. Labelled SQI truth (Dataset C only) 

2. Python source code for applying the entire ECG and HR pipeline to raw ECG signal 

Appendix B. Further Dataset Information 

Dataset A served as the main dataset to develop the ECG-processing and early HR-processing 
section of the pipeline (everything except HR signal quality). It comprised 97 separate ECG signals 
of children aged 3-42 months (total recording time: 52 hours 20 minutes, Mduration: 32 minutes, min: 11 
minutes, max: 52 minutes, distribution of age and recording duration shown in Figure 3A). ECGs in 
Dataset A were collected using a BiosensorPlux device (PLUX Biosignals, Lisbon, Portugal) with a 
sampling rate of 500Hz. ECGs were trimmed at the start and end prior to any analysis to exclude any 
non-recording period (e.g. the trimmed periods are not included in the recording times above). There 
are 23 recording gaps in total in the dataset due to Bluetooth dropout from the BiosignalsPlux device. 
These recordings occurred while infants engaged in free-play in a semi naturalistic setting in a lab 
(i.e., play room).   

In Dataset A R-peaks were hand-labelled, and any R-peaks where the ground truth was difficult 
to ascertain due to signal morphology or noise levels were counted for all ECGs. ECGs with a more 
than 1 uncertain peak in 400 were excluded from the analysis, leaving 97 ECGs.  Note that due to 
the exclusion criteria allowing for some level of peak-labelling uncertainty, this will follow through 
into some uncertainty in the subsequent metrics calculated. The worst case and average uncertainties 
for each subject in Dataset A were as follows. Specificity: worst case=-1.12x10-5, mean=-3.03x10-6. 
Sensitivity: worst case=-2.44x10-3, mean=-7.02x10-4. PPV: worst case=-2.43x10-3, mean=-7.01x10-4. These 
values are sufficiently small (even assuming the worst case error for each individual subject in the 
dataset) that they do not affect any final conclusions drawn. 

Dataset B serves as a validation set by using a different sampling rate and sensor. Dataset B 
comprises 25 ECG signals from 19 infants aged 5-13 months (the ECGs from the 6 infants who 
supplied two recordings were taken at least 2 months apart). The total recording time was 3 hours 34 
minutes (Mduration: 8min 36s, min: 4min 50s, max: 17min 31s), distribution of age and recording 
duration shown in Figure 3B). This dataset has higher signal quality than Dataset A (higher sampling 
frequency, less noise, shorter duration), but is a smaller dataset. The ECGs were collected across 19 
subjects, with 6 subjects providing double recordings taken at least 2 months apart. ECGs were 
collected using a Physio16 box for the Geodesic EEG System (GES) 400 device with a sampling rate 
of 1000Hz. ECGs were trimmed at the start and end to exclude any non-recording period. These 
recordings occurred in a lab, and the infant remained mostly stationary throughout. There are a 
maximum of 2 uncertain peak labels in a subject (and only 4 uncertain labels across all subjects), 
which has a vanishingly minimal effect on subsequent calculations.  

Dataset C served as a test set for the HR signal quality. 12 ECGs with a longer recording time 
and lower sampling rate (250Hz) were gathered using the EgoActive body sensor [12], and were 
deliberately selected for a high noise level from a larger selection of recordings. Children in these 
recordings were between 5-11 months (see Figure 3C). These 12 naturalistic recordings were taken 
from a larger dataset recorded in the subject’s home, with the device often containing periods of high 
movement and also being left on post-recording. Quality labelling was done on a beat–by-beat basis 
on the calculated HR signal. Any areas of “good” signal shorter than 5s was marked as bad, to ensure 
a minimum length of heart rate. Mduration=90 minutes long for the total signal lengths (min: 55 mins, 
max: 120 minutes), or Mduration=79 minutes when accounting for non-signal at the start and end of the 
recording (min: 50 mins, max: 112 mins). The latter value is the one shown in Table 1. ECGs were 
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lightly trimmed to avoid processing >2 hours of signal, but aimed to include both HR and non-HR 
portions of signal where possible. 

Appendix C. Age-Based Analysis for Dataset B 

The smaller dataset size of Dataset B (N=25) compared to Dataset A (N=97) made any sub-
analysis less reliable, as fewer outlier results are needed to sway the median and IQRs. While 
acknowledging the reduced statistical power, it is worth noting that the 15Hz HPF approach 
proposed by our pipeline did still outperform all other methods after the age-breakdown was 
applied, with the IQR and medians still indicating perfect specificity/sensitivity/PPV in all cases 
except the lower IQR value for sensitivity in the 5-8 months cohort (Figure A1). The HeartPy and 
Neurokit2 default methods both had very good median specificity/PPV and reasonably good median 
sensitivity. There were enough results in the cohorts to start to distinguish the general trends of the 
methods, and no results were recorded to counteract the main age-related conclusions drawn in 
Figure 9 (while accounting for the different overall performances of the different methods between 
Datasets A and B). 

 
Figure A1. An age-based breakdown of Figure 9. A different age bracket is shown in each quadrant. 
The median is shown as a thick, light grey bar, and the IQR is shown as thin dark grey bars. Each 
black dot represents one result. 

Appendix D. Results without Local Peak Correction 

In many of the results in the main text, local peak correction was used to realign the R peak 
labelled on a preprocessed ECG with the R peak on the original unprocessed ECG. Prior to 
developing this methodology, either each method would have to be labelled by hand, or allowing 
peaks within a margin of error (e.g. 0.01s either side of the true label) would have to be used. Naive 
uses of specificity/sensitivity/PPV analysis without local corrections of error margins is shown in 
Figures A2 and A3 for Datasets A and B respectively. The improvement shown by using local 
correction is shown in Figures A4 and A5 (relative to Figures 4 and 5). The Local Peak Correction 
improved the Sensitivity and PPV for all methods, showing an improvement in the ratio of True 
Positives to both False Negatives and False Positives. The EngZee method performed the best without 
this correction, likely due to the very minimal preprocessing required by the approach. Interestingly, 
the specificity did drop slightly for Pan-Tompkins, Hamilton, Christov and Rodrigues, and more 
dramatically for Kalidas and Elgendi. This could be due to the reduced number of True Negatives 
and/or an increase in the number of False Positives (see Equation (2)).  
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Figure A2. Violin plots showing the specificity, sensitivity, and positive predictive values for the pre-
existing ECG approaches applied to Dataset A, with no local peak correction. 
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Figure A3. Violin plots showing the specificity, sensitivity, and positive predictive values for the pre-
existing ECG approaches applied to Dataset B, with no local peak correction. 
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Figure A4. Violin plots showing the improvement in specificity, sensitivity, and positive predictive 
values for the pre-existing ECG approaches applied to Dataset A, after local peak correction is applied. 
A negative improvement indicates that a metric got worse. 
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Figure A5. Violin plots showing the improvement in specificity, sensitivity, and positive predictive 
values for the pre-existing ECG approaches applied to Dataset B, after local peak correction is applied. 
A negative improvement indicates that a metric got worse. 

Appendix E. Labelling Uncertainty 

ECG is an analogue signal recorded with digital devices. A digital device recording analogue 
voltages that are very close in value being digitised to be exactly the same, due to discretization and 
gain issues. If this issue occurs during a QRS complex it means that there are multiple timestamps 
that could define an R-peak within a given QRS complex (see Figure A6), as the digital device will be 
unable to discern the difference between these values. Any method which finds one of these peaks 
should be considered to have found a “true” peak, but could be marked as incorrect if the “truth” 
label is on one of the other identical values in that QRS complex. Since the preprocessed ECG is 
typically smooth, local peak correction will naturally fall on the closest valid peak to the peak labelled 
on the preprocessed ECG. The R-peak on the raw ECG closest to the peak on the preprocessed ECG 
is used in all cases to ensure that if any of these peaks are arrived at by local peak correction they will 
be marked as “true” for a given method. 
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Figure A6. A demonstration of why local adjustment is needed where peaks need to be aligned 
perfectly. Zoom A, B, C, and D all show the same central peak. Zoom D shows that 3 specific indexes 
could all be labelled as the truth on the original ECG, due to the sensitivity of the sensor recording 3 
values as “-16”. All three indexes (at 211.776s, 211.780s, 211.782s) are very close in value and could 
serve as a “true” label. 
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