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Abstract: Rheumatoid arthritis (RA) is an autoimmune inflammatory disease characterized by 

chronic synovitis and progressive destruction of cartilage and bone. RA is commonly accompanied 

by extra-articular comorbidities. The pathogenesis of RA and its comorbidities is complex and not 

completely elucidated. Assembly of NLRP3 inflammasome activates caspase-1, which induces the 

maturation of interleukin (IL)-1β and IL-18 and leads to cleavage of gasdermin D with promoting 

pyroptosis. Although the available therapeutic agents are effective for RA treatment, their high cost 

and increased infection rate are causes for concern. Recent evidence revealed the components of 

NLRP3 inflammasome as potential therapeutic targets in RA and its comorbidities. This narrative 

review summarizes the current research evidence regarding the pathogenic role and the therapeutic 

potential of NLRP3 inflammasome in RA and its comorbidities. Areas covered. We searched the 

MEDLINE database using the PubMed interface and reviewed English-language literature on 

NLRP3 inflammasome from 2000 to 2023. Its pathogenic role and therapeutic potential in RA and 

its comorbidities are the focus of this review. Expert opinion. NLRP3 inflammasome may play a 

critical role in both innate and adaptive immunity, and its dysfunction contributes to the 

pathogenesis of RA and its comorbidities. Consequently, the components of NLRP3 inflammasome 

signaling represent promising therapeutic targets, and ongoing research might lead to the 

development of new, effective treatments for RA and its comorbidities. 

Keywords: NLRP3 inflammasome; comorbidities; pathogenic player; therapeutic potential; 

rheumatoid arthritis 

 

1. Introduction 

The pathology of rheumatoid arthritis (RA) is characterized by an infiltration of macrophages, 

B cells, and T cells, synovial hyperplasia, and progressive destruction of cartilage and bone, with 

resultant joint deformities [1,2]. It affects approximately 1% of the population in developed countries 

[3]. The exact etiopathogenesis of RA is not fully understood, and the proposed causes include genetic 

factors, various infections, and immune dysregulation with excessive production of proinflammatory 

mediators such as cytokines and chemokines [4–8]. It has recently been established that dysfunction 

of innate and adaptive immunity is a critical etiological factor in the development and maintenance 
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of RA [7,9,10]. The pathogenic alterations in innate and adaptive immunity are potential targets for 

therapeutic intervention in RA [7,9,10]. Besides the typical involvement of joints, RA is often 

associated with other systemic organ diseases and is complicated by comorbidities and organ 

dysfunction due to the chronic inflammatory process [11]. It has been estimated that up to 80% of RA 

patients have one or more comorbidities, resulting in a shortening of life span [12,13]. RA-related 

comorbidities mainly include atherosclerotic cardiovascular disease (ASCVD), osteoporosis (OP), 

and interstitial lung disease (ILD) [14–20]. The presence of comorbidities may affect RA disease 

activity, become a barrier to optimal disease control, and lead to an impairment in the quality of life 

(QoL) [21,22]. RA-related comorbidities are often sub-optimally managed, and effective treatment of 

RA-related comorbidities is an unmet need for rheumatologists in clinical practice. 

Nucleotide-binding domain leucine-rich repeat-containing receptors (NLRs)-containing a pyrin 

domain (NLRPs), the major components of inflammasomes, play a pathogenic role in innate 

immunity and inflammation [23–25]. NLRP3 inflammasome, a supramolecular cytoplasmic complex, 

may respond to stimuli such as adenosine triphosphate (ATP) and then recruit caspase-1, which 

cleaves pro-IL-1β and pro-IL-18 into their active biologic forms [26–28]. It is established that NLRP3 

Inflammasome dysregulation causes autoinflammatory diseases (AIDs) [29–32]; such dysfunction 

may similarly contribute to RA pathogenesis [10,33–42], although the underlying mechanisms are yet 

fully elucidated.  

Targeting the complex pathogenic factors in RA, various emerging new agents are available for 

the treatment of this disease [43,44]. Recent guidelines for RA treatment rank Janus kinase inhibitors 

(JAKi) or targeted synthetic biologic disease-modifying anti-rheumatic drugs (tsDMARDs) in parallel 

with biologic DMARDs (bDMARDs) as the options for patients who are refractory to initial 

conventional synthetic DMARDs (csDMARDs) therapy [45–47]. Nevertheless, a proportion of RA 

patients still fail to respond to current therapies [48–50]. With the high cost of b/tsDMARDs and their 

associated increased infection risk, alternative or add-on therapeutic agents targeting immune or 

inflammatory responses are worth exploring.  

Supporting the significance of NLRP3 inflammasome in the pathogenesis of RA and its 

comorbidities, increasing clinical and pre-clinical evidence has revealed the components of NLRP3 

inflammasome as potential therapeutic targets in RA [51–53]. This review aims to summarize the 

current research evidence on the pathogenic role of the NLRP3 inflammasome signaling pathway 

and its clinical implications as the therapeutic target in RA and its comorbidities. 

2. Materials and Methods 

2.1. Literature Search 

This review focuses on the updated research regarding the NLRP3 inflammasome as a 

pathogenic player and its therapeutic potential in RA. We searched the MEDLINE database using the 

PubMed interface and reviewed English-language literature as of 31 October 2023, from 2000 to 2023. 

The search keywords included pathogenesis, innate immunity, adaptive immunity, immune 

response, inflammation, NLRP3 inflammasome, proinflammatory cytokines, pyroptosis, IL-1β, IL-

18, RA, RA-related comorbidities, ASCVD, OP, ILD, clinical implication, and therapeutic potential. 

Duplicates and manuscripts with incomplete data were excluded. The details of the search strategy 

are illustrated in Figure 1.  
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Figure 1. The flow diagram of the literature selection process [Search conducted on 31 October 2023]. 

Duplicates and manuscripts with incomplete data have been excluded. RA: rheumatoid arthritis; 

NLRP3: nucleotide-binding domain leucine-rich repeat-containing receptors (NLRs)-containing a 

pyrin domain-3; ASCVD: atherosclerotic cardiovascular disease; OP: osteoporosis; ILD: interstitial 

lung disease. 

2.2. Study Selection 

Three authors (PK Chen, KT Tang, and DY Chen) independently assessed the titles and abstracts 

from the search results and retrieved the relevant full-text articles. Two authors (KT Tang and DY 

Chen) independently evaluated the full-text articles for eligibility. Articles were selected if they 1) 

were probably relevant to the pathogenic role of the NLRP3 inflammasome in RA and its 

comorbidities, and 2) were potentially relevant to its therapeutic potential in this disease, including 

clinical trials, cohorts, case reports, and case-control studies. 

2.3. Data Extraction 

The authors extracted data from these studies electronically. Information regarding innate 

immunity, adaptive immunity, immune response, pathogenesis, the NLRP3 inflammasome, 

proinflammatory cytokines, pyroptosis, IL-1β, IL-18, clinical implication, therapeutic potential, RA, 

RA-related comorbidities, ASCVD, OP, or ILD was recorded from each study. The influence of 

relevant drugs, including small molecule inhibitors, natural products, corticosteroids, csDMARDs, 

bDMARDs, tsDMARDs, and targeted therapeutics for the NLRP3 inflammasome in RA and its 

comorbidities was also documented. 
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3. Etiopathogenesis of RA and Its Comorbidities 

The pathogenesis of RA is multifactorial and complex, including environmental factors, genetic 

variables, and immune dysregulation such as inflammasome activation and cytokine-mediated 

inflammation [1–8,54,55]. Kolly et al. demonstrated that the components of NLRP3 inflammasome 

were highly expressed in the synovia of RA patients [33]. Recent evidence suggests that the 

percentages of CD4+ T cells with activated caspase-1 are significantly higher in RA patients compared 

with normal controls. Pharmacological and genetic inhibition of the DNA repair nuclease MRE11A 

may cause mitochondrial dysfunction in CD4+ T cells, leading to the NLRP3 inflammasome assembly, 

caspase-1 activation, and pyroptosis in RA CD4+ T cells [56]. Increasing evidence indicates that the 

NLRP3 inflammasome plays a critical role in the pathogenesis of RA [10,45–54]. 

Atherosclerosis is a chronic inflammatory process that leads to vascular atheromatous plaque 

buildup and the development of full-blown ASCVD [57]. The high ASCVD burden in RA patients 

[58,59] may result from a combination of traditional risk factors, disease-specific factors, chronic 

inflammation, genetic components, and the use of medications [60–63]. Variants of the gene encoding 

apolipoprotein (apo)E have been shown to be related to ASCVD risk in RA patients [64]. Among the 

particles of low-density lipoprotein (LDL), a lipoprotein class, the density, size, electric charge, and 

composition are varied. Supporting the lipid paradox hypothesis in RA [65], studies have shown an 

inverse correlation between RA-related inflammation and circulating levels of LDL cholesterol (LDL-

C) [66,67]. Electronegative LDL, a naturally occurring LDL, exerts potent atherogenic effects in cells 

and animals without undergoing ex vivo oxidation [68]. Elevated circulating levels of L5, the most 

electronegative subfraction of LDL-C have been observed in RA patients and may be a predictor of 

ASCVD in this disease [67]. Besides, a high L5 percentage was significantly associated with elevated 

expression of the gene encoding integrin CD11c, which was linked to carotid arterial plaque 

formation [69].  

Osteoporosis (OP) or bone fragility arises from a complex interaction of traditional risk factors 

and disease inflammation in RA. RA patients have an elevated risk of OP or osteoporotic fractures 

than healthy controls [18,70]. Using Mendelian randomization analysis, Yu et al. revealed that 

genetically determined RA was linked to estimated bone mineral density (eBMD) and fracture risk 

[71]. Similarly, osteoporosis risk could be causally increased by the presence of anti-citrullinated 

peptide antibodies (ACPA) in Asians [71,72]. The presence of ACPA, prolonged RA disease duration, 

significant exposure to corticosteroids, decreased physical activity, or history of low trauma fracture 

are the risk factors of OP or fragility fracture in RA [72,73]. 

ILD is the leading cause of mortality and the most common pulmonary manifestation of RA 

[20,74]. Estimated approximately 30% of RA patients have subclinical ILD as shown by high-

resolution computerized tomography (HRCT) scans [75]. Although the exact pathogenesis of ILD in 

RA remains unclear [74–77], smoking, male gender, older age, high titers of ACPA, disease duration, 

and positivity of Human leukocyte antigen (HLA)-DR4 were probable risk factors for RA-ILD [78–

82]. A study of the Western population revealed the MUC5B promoter variant rs35705950 as a genetic 

risk factor for developing RA-ILD, particularly in those with the usual interstitial pneumonia (UIP) 

pattern [83]. Shirai et al. identified rs12702634 at RPA3-UMAD1 as a risk variant for RA-ILD in the 

Japanese population [84]. Citrullination, a post-translational modification characterized by the 

conversion of arginine to citrulline, and the emergence of ACPA probably contribute to RA-ILD by 

releasing neutrophil extracellular traps [85]. Recently, Zhang et al. revealed a pathogenic role of IL-

17 in murine pulmonary fibrosis and RA-ILD [86]. Air pollutants, such as the elements of particulate 

matter (PM)<2.5μm in size (PM2.5), may trigger the development of ILD in genetically susceptible 

patients [87].  

4. NLRP3-Inflammasome 

4.1. NLRP3-Inflammasome Signaling in Immune Responses and Inflammation 

The innate immune system encompasses the germline-encoded pattern recognition receptors 

(PRRs), including Toll-like receptors (TLRs) and NLRs [35,88,89]. The NLRP3 inflammasome is a 
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cytoplasmic protein complex with a key role in the innate immune response and inflammatory 

reaction. Assembly of the NLRP3 inflammasome recruits and activates caspase-1, which induces the 

maturation and release of proinflammatory cytokines, including IL-1β and IL-18 [26–28]. Activation 

of the NLRP3 inflammasome also leads to cleavage of gasdermin D (GSDMD) at the GSDMD-N 

terminus [28,90] and promotes a lytic form of cell death, pyroptosis, with pores formation in the cell 

membrane and release of IL-1β and IL-18 [91–93]. The NLRP3 inflammasome signaling may play a 

critical role in both innate and adaptive immunity and act as a checkpoint in innate immunity to lead 

to skewed adaptive immune responses in autoimmune diseases [10]. 

4.2. NLRP3-Inflammasome Activation and Regulation in RA Pathogenesis. 

The dysregulation of the NLRP3 inflammasome is linked to a variety of inflammatory diseases 

such as RA [10,33–42,94]. Zhang et al. demonstrated that NLRP3 was highly expressed in the synovial 

proliferation and subchondral vasculitis areas in the paws of collagen-induced arthritis (CIA) mice 

compared to control mice [34]. NLRP3 mRNA levels were upregulated in the synovia of RA patients 

compared to OA patients [38]. Guo et al. also documented that NLRP3 inflammasome was highly 

activated in the synovia from RA patients and murine models [39]. Recent studies have found that 

pyroptosis is involved in the occurrence and progression of RA, and large amounts of IL-1β and IL-

18 are present in RA patients. In RA, complement C1q and pentaxin 3 (PTX3) in monocytes 

synergistically promote NLRP3 inflammasome over-activation and pyroptosis [40]. Wu et al. 

revealed that acid-sensitive ion channel-1a mediates chondrocyte pyroptosis in arthritis by 

promoting NLRP3 inflammatory vesicle assembly, caspase-1 expression, and IL-1β and IL-18 release 

[95]. Besides, Ca2+ and cyclic AMP are two key molecular regulators of the NLRP3 inflammasome 

[96]. Werner et al. demonstrated that increased extracellular Ca2+ ([Ca2+]ex) could induce inflammation 

through promoting NLRP3 inflammasome assembly and IL-1β release [97]. They further proposed 

that increased [Ca2+]ex, calciprotein particles, and proinflammatory cytokines drive a vicious cycle of 

inflammation and bone destruction in RA [97]. Besides, the stimulation of anti-citrullinated peptide 

antibodies (ACPA) could activate pannexin channels with the release of ATP and promote the NLRP3 

inflammasome activation and IL-1β production in RA [41]. These observations suggest that the 

activation of NLRP3 inflammasome signaling and the ensuing overproduction of inflammatory 

cytokines are key to the pathogenesis of RA [35–42,98]. 

4.3. The Genetic Predisposition of NLRP3 Inflammasome in RA. 

Nucleotide polymorphisms occur within the regulatory region of cytokine genes, and some are 

associated with an altered rate of gene expression. The NLRP3 inflammasome gene polymorphisms 

contribute to susceptibility, disease activity, or disease severity in RA [99–102]. The genetic variants 

of the NLRP3 inflammasome can also affect the therapeutic response to TNF-α inhibitors in RA 

patients [103–105]. 

4.4. The Involvement of NLRP3 Inflammasome Activation in RA-Related Comorbidities  

Elevated cholesterol and genetic predisposition may trigger the activation of NLRP3 

inflammasome signaling pathway and promote the development and progression of ASCVD [106–

108]. Karasawa et al. revealed that the crystallization of released cholesterol in the atherosclerotic 

plaque may activate NLRP3 inflammasome with the production of IL-1β and IL-18 [106]. In contrast, 

the lack of caspase-1 exhibits a protective effect against the evolution of atherosclerotic lesions, 

further resonating with the causative association of NLRP3 inflammasome with atherosclerosis [106]. 

Rhoads et al. also demonstrated that oxidized LDL (oxLDL) immune complex induced 

inflammasome activation through a more robust mechanism than oxLDL alone did [109]. Besides, an 

association study has identified the Q705K polymorphism(rs35829419) in the NLRP3 gene as a 

protective factor against the risk of developing infarction in females [110]. The C10X variants 

(rs2043211) in the CARD8 gene were related to the lower expression of CARD8 in carotid plaques in 

a Swedish cohort [111]. In a Chinese cohort, a variant (rs2043211) in the CARD8 gene was associated 
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with ischemic stroke [112]. Kastbom et al. showed that genetic variants of the NLRP3 inflammasome 

were associated with ischemic stroke in Swedish patients with RA [113]. These observations suggest 

the close link between the NLRP3 inflammasome signaling pathway and ASCVD in inflammatory 

diseases such as RA. 

Increasing evidence also supports the association between the NLRP3 inflammasome signaling 

pathway and OP [114,115]. In an ovariectomized (postmenopausal) OP rats’ model, inhibition of the 

NLRP3 could increase osteoblasts number and bone density, suggesting a pathogenic role of NLRP3 

in OP [116]. The activation of NLRP3 inflammasome contributes to the maturation of downstream 

proinflammatory cytokines, IL-1β and IL-18, and pyroptosis [26–28]. Pyroptosis of osteoblasts may 

participate in OP pathogenesis [117]. Lei et al. revealed that IL-17 could induce pyroptosis of murine 

primary osteoblasts in the NLRP3-mediated pathway, which further promoted the release of IL-1β 

and receptor activator of nuclear factor-kappa B ligand (RANKL) and exacerbated the progression of 

OP [118]. Interestingly, IL-1 may also participate in the TNF-α-mediated inflammatory bone loss 

[119]. He et al. reported an association of IL-1β haplotype with OP susceptibility in the Chinese Han 

population [120]. Besides, IL-18 could upregulate the production of key osteoclastogenic mediators 

and increase bone loss in RA [121].  

There are strong mechanistic similarities between usual interstitial pneumonitis (UIP), the most 

common pattern of RA-ILD, and idiopathic pulmonary fibrosis (IPF) in RA. However, Lasithiotaki et 

al. revealed distinct NLRP3 inflammasome activation profiles between RA-UIP and IPF [122], with 

significantly higher levels of IL-1β and IL-18 in bronchoalveolar lavage fluid (BALF) from RA-UIP 

patients compared with IPF patients. Intracellular IL-1β levels were also augmented in RA-UIP BALF 

cells upon NLRP3 inflammasome stimulation [122]. These findings suggest that NLRP3 

inflammasome is involved in the pathogenesis of RA-ILD. Similarly, Aberrant activation of NLRP3 

inflammasome is observed in scleroderma-associated ILD [123,124]. Ramos-Martinez and colleagues 

demonstrated enhanced activity of the NLRP3 inflammasome in the lungs of patients with anti-

synthetase syndrome [125]. Hence, NLRP3 inflammasome and associated cytokines may participate 

in the pathogenesis of autoimmune diseases-related ILD.  

5. Therapeutic Potential by Targeting NLRP3 Inflammasome 

5.1. Small Molecule Inhibitors 

With increasing evidence supporting the importance of NLRP3 inflammasome in RA 

pathogenesis [10,33–42], there has been significant interest in developing therapeutic agents targeting 

the components of NLRP3 inflammasome signaling [51–53]. One approach is to develop small 

molecule inhibitors that can block the activation of the NLRP3 inflammasome. As illustrated in Table 

1, several compounds have been identified as inhibitors of the components of the NLRP3 

inflammasome signaling pathway, including MCC950 [39,126,127], VX-765 [128], and disulfiram 

[129]. Guo et al. demonstrated that treatment with MCC950, a selective NLRP3 inhibitor, led to 

reduced joint inflammation and bone destruction in the murine RA model [39]. Another approach is 

to target the downstream products of NLRP3 inflammasome activation, such as the sophisticated 

pyroptosis pathway [129,130] and the production of pro-inflammatory cytokines. MCC950 could 

reduce macrophage infiltration and atherosclerotic lesion size through attenuating inflammation and 

pyroptosis in atherosclerosis murine models [131,132]. Li et al. reported that VX-765 could inhibit 

atherosclerosis in ApoE-deficient mice by modulating the pyroptosis of vascular smooth muscle cells 

[133]. Given the pathogenic role of IL-18 in RA-associated OP [121], IL-18BP, an antagonist of IL-18, 

is speculated to be effective in the management of OP [134]. Mansoori et al. similarly revealed that 

high serum IL-18BP was associated with a low risk of osteoporosis in postmenopausal women [134].  
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Table 1. The potential inhibitors of the components of NLRP3 inflammasome in rheumatoid arthritis 

(RA). 

Agents Targets 
Experimental model and 

mechanism 
 Diseases References 

 Small molecule inhibitors 

MCC950 

The NACHT 

domain of 

NLRP3 

inflammasome 

Block ASC oligomerization, inhibit 

inflammation (1) Reduce synovitis 

and cartilage erosion by inhibiting 

NLRP3 and caspae-1 activation in 

CIA model. (2) Elevated liver 

enzymes in phase II clinical trial.  

 
RA, ASCVD, 

OP, ILD 
[126,127,131,132] 

VX-765 Caspase-1 

Ameliorate the severity and 

progression of synovitis in CIA 

murine model.  

 RA, ASCVD [128,133] 

Disulfiram GSDMD  

Inhibits pyroptosis and 

inflammatory cytokine release in 

both canonical and noncanonical 

inflammasome pathways. 

RA and 

associated OP 
[129] 

IL-18BP 
IL-18 binding 

protein 

Reduces Th17 cells with resultant 

inhibition of osteoclastogenesis 

and induces osteoblasts formation. 

RA and 

associated OP 
[134] 

 Natural products 

Celastrol (isolated 

from Tripterygium 

wilfordii) 

Inhibit the ROS-

NF-κB-NLRP3 

inflammasome 

axis. 

(1) Reduce synovitis through 

blocking the NF-κB pathway and 

inhibiting the NLRP3 

inflammasome in a CFA-induced 

rat model. 

(2) Attenuate human B19 NS1-

induced NLRP3 inflammasome 

activation in macrophages in U937 

and THP-1 cells.  

 RA [135,136] 

Baihu-Guizhi 

decoction (BHGZD) 

Inhibit 

TLR4/NF-

κB/NLRP3 

activation- 

induced 

pyroptosis. 

Reduce synovitis as well as bone 

erosion and alleviate disease 

activity through inhibiting NF-κB 

via TLR4/PI3K/AKT signaling to 

suppress the NLRP3 

inflammasome activation and 

GSDMD-mediated pyroptosis in 

AIA-modified rat model 

 RA [138] 

Sulforaphene 

(extracted from 

radish seeds) 

NLRP3  

Suppress the M1 polarization of 

macrophages and reduce synovitis 

in CIA murine model  

 RA [139] 

Osthole (extracted 

from Angelicae 

pubescentis radix) 

AMPK agonist 

Inhibit NLRP3 inflammasome 

activation by regulating 

mitochondrial homeostasis in CIA 

rat model. 

 RA [141] 

Scropolioside B 

(isolated from 

Scrophularia dentada 

Royle ex Benth.) 

NF-κB and the 

NLRP3 

inflammasome 

pathway 

Inhibit NF-κB activity, reduce 

NLRP3 expression, and suppress 

the maturation as well as the 

release of IL-1β. 

 

RA and 

associated 

atherosclerosis 

[142] 

Wedelolactone, 

derived from Eclipta 

alba 

NF-κB and the 

NLRP3 

inflammasome 

Ameliorate synovitis and cardiac 

complications via inhibiting the 

activation of NF-κB/NLRP3 

inflammasome pathway 

 

RA and 

cardiac 

complication 

[143] 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 December 2023                   doi:10.20944/preprints202312.0598.v1

https://doi.org/10.20944/preprints202312.0598.v1


 8 

 

 Disease-modifying anti-rheumatic drugs (DMARDs) 

Hydroxychloroquine 

or chloroquine  

The second 

signal of 

NLRP3 

activation 

(1) Inhibit Ca2+-activated K+ 

channels, which led to impaired 

inflammasome activation in THP-1 

macrophages. 

(2) Inhibit NLRP3 

inflammasome activation in 

C57BL/6 mice model. 

 

RA and 

associated 

ASCVD 

[144,145] 

Anakinra, a 

biological DMARDs 

IL-1β receptor 

antagonist  

Inhibit the NLRP3 inflammasome 

downstream cytokine, IL-1β, in RA 

patients.  

 RA [146] 

Canakinumab, a 

biological DMARDs 

Monoclonal 

antibody 

targeting IL-1β 

Reduce the rates of recurrent 

ASCVD, including myocardial 

infarction and stroke 

 

RA and 

associated 

ASCVD 

[147] 

Tofacitinib, a Janus 

kinase 1/3 inhibitor 

NLRP3 

inflammasome 

Restore the balance of 

γδTreg/γδT17 cells by inhibiting 

NLRP3 inflammasome in CIA 

model 

 RA [148] 

 Epigenetic regulators  

MiRNA-33 inhibitor 
NLRP3 and 

caspase-1 

MiR-33 impairs mitochondrial 

oxygen consumption rate with 

increasing ROS, and then 

upregulates NLRP3 inflammasome 

expression in macrophages in CIA 

mice model  

 RA [153] 

MiRNA-30a NLRP3 

MiRNA-30a inhibits the NLRP3 

inflammasome activation, reduce 

synovitis, and bone damage in 

TNFα-transgenic C57BL/6 mice 

model.  

 RA [154] 

MiRNA-223 NLRP3 

MiRNA-223 from BMSCs-derived 

exosomes inhibits NLRP3 

activation and the release of IL-β, 

TNF-α, and IL-18 in RAW264.7 

cells by luciferase reporter assay & 

rescue experiment 

 

RA and 

associated 

ASCVD 

[155] 

LncRNA MIAT IL-1β 

LncRNA MIAT inhibited the 

expression of IL-1β, TNF-α and 

suppressed macrophage 

inflammation in J774A.1 cell-based 

assay. 

 RA [160] 

 Allogenic mesenchymal stem cells  

hUCB-MSCs 
NLRP3 

inflammasome 

Downregulate the activation of 

NLRP3 inflammasome via a 

paracrine loop of IL-1β signaling in 

CIA murine model. 

 RA [162] 

NLRP3: nucleotide-binding domain leucine-rich repeat-containing receptors (NLRs)-containing a pyrin domain-

3; NACHT: nucleotide-binding domain; TLR4: Toll-like receptor 4; PI3K: phosphatidylinositol 3-kinase; AIA: 

adjuvant-induced arthritis; CIA: collagen-induced arthritis; CFA: complete Freund’s adjuvant; hUCB-MSCs: 

human umbilical cord blood mesenchymal stem cells; BMSCs: bone marrow-derived stem cells; ATP: adenosine 

triphosphate; ROS: reactive oxygen species; GSDMD: gasdermin-D; IL-1: interleukin-1; Treg: regulatory T cells; 

TNF-α: tumor necrosis factor-α; MiRNA: microRNA. 
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5.2. Natural Products 

Besides the small molecule inhibitors, several natural products exhibit anti-inflammatory effects 

through targeting the NLRP3 inflammasome signaling pathway (Table 1). Celastrol, a natural 

product isolated from Tripterygium wilfordii, has displayed therapeutic potential in inflammatory 

diseases, such as RA. One recent study showed the attenuating effects of celastrol on parvovirus B19-

NS1-induced NLRP3 inflammasome activation in macrophages [135]. Jing et al. also revealed that 

celastrol inhibited inflammation by inhibiting the reactive oxygen species- NF-κB-NLRP3 

inflammasome axis and relieved RA symptoms [136]. Baihu-Guizhi decoction (BHGZD), a traditional 

Chinese-medicine-originated disease-modifying anti-rheumatic prescription, may reduce the disease 

activity of RA [137]. Li et al. reported that BHGZD could suppress the NLRP3 inflammasome 

activation and GSDMD-mediated pyroptosis by inhibiting NF-κB via TLR4/PI3K/AKT signaling in 

an adjuvant-induced arthritis-modified rat model [138]. Sulforaphene, extracted from radish seeds, 

has been demonstrated to suppress the M1 polarization of macrophages and reduce synovitis in the 

CIA murine model [139]. Osthole, a characteristic coumarin compound in Angelicae pubescentis radix, 

can improve arthritis in the CIA rat model by inhibiting inflammation and oxidative stress [140]. 

Jiang et al. further showed that Osthole could Inhibit NLRP3 inflammasome activation by regulating 

mitochondrial homeostasis [141]. Scropolioside B, isolated from a Tibetan medicine, Scrophularia 

dentada Royle ex Benth., could inhibit NF-κB activity, reduce NLRP3 expression, and suppress the 

maturation and release of IL-1β, suggesting its therapeutic potential in RA and its associated 

atherosclerosis [142]. Cao and colleagues demonstrated that Wedelolactone, derived from Eclipta 

alba, could ameliorate synovial inflammation, cardiac complication, and fibrosis by inhibiting the 

activation of the NF-κB/NLRP3 inflammasome pathway [143].  

5.3. Disease-Modifying Anti-Rheumatic Drugs (DMARDs)  

Hydroxychloroquine (HCQ), a known ion channel inhibitor, is a commonly used and effective 

treatment for RA. Schroeder et al. demonstrated that HCQ could inhibit Ca2+-activated K+ channels 

and suppress inflammasome activation [144]. Cui et al. also revealed that chloroquine inhibited the 

activation of NLRP3 inflammasome in a murine model of hyperuricemic nephropathy [145]. Since 

IL-1β, an NLRPP3 inflammasome downstream cytokine, promotes synovial inflammation in RA 

patients, the IL-1β receptor antagonist anakinra has been approved for active RA patients 

unresponsive to csDMARDs [146]. Targeting IL-1β might also have therapeutic potential in RA-

associated comorbidities. The Canakinumab Antiinflammatory Thrombosis Outcome Study 

(CANTOS) study showed the benefit of canakinumab, an IL-1β blockade, in patients with previous 

myocardial infarction [147].  

5.4. Janus Kinase Inhibitors (JAKi) 

Janus kinase inhibitors (JAKi) exert their therapeutic effects by blocking JAK/STAT-mediated 

signaling implicated in RA pathogenesis. Although tofacitinib, a JAK1/JAK3 inhibitor, is effective in 

RA treatment [48–50], the underlying mechanisms of drug action remain obscure. Yang et al. 

demonstrated that tofacitinib could restore the balance of γδTreg/γδT17 cells in RA by inhibiting the 

NLRP3 inflammasome [148]. 

5.5. microRNAs (miRNAs) and Stem Cells 

Multiple miRNAs are shown to be involved in the post-transcriptional regulated expression of 

NLRP3 inflammasome [149,150]. The miRNAs are short non-coding RNAs composed of 

approximately 20 to 24 nucleotides that mediate messenger (m)RNA cleavage, translational 

repression, or mRNA destabilization [151,152]. Xie et al. revealed an elevated expression of miRNA-

33 as a positive regulator of the NLRP3 inflammasome in RA patients [153]. Yang et al. also showed 

that miRNA-30a might suppress the expression of NLRP3 inflammasome in macrophages and 

regulate inflammation in RA [154]. A recent study revealed that miR-223 carried by bone marrow 

stem cells-derived exosomes can target NLRP3 and inhibit the activation of inflammasome in 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 December 2023                   doi:10.20944/preprints202312.0598.v1

https://doi.org/10.20944/preprints202312.0598.v1


 10 

 

macrophages and rats RA models [155]. Liao et al. also demonstrated that neutrophil-derived 

exosomal miR-223 could suppress the NLRP3-inflammasome signaling and IL-18 production in 

macrophages in an in vitro assay [156]. Besides, long non-coding RNAs (lncRNAs), the non-protein-

coding transcripts greater than 200 nucleotides, have emerged as novel players in gene regulation 

[157,158]. The LncRNAs have been shown to be the key regulators of inflammatory responses [159]. 

Wang et al. reported that LncRNA MIAT (myocardial infarction-associated transcript) could 

downregulate IL-1β and TNF-α to suppress macrophage inflammation in the 774A.1 cell-based assay 

[160]. Recently, cell-based therapies using mesenchymal stem cells (MSCs) have been spotlighted as 

a promising strategy for the management of RA [161]. Shin et al. demonstrated that human umbilical 

cord blood-MSCs (hUCB-MSCs) could downregulate the activation of the NLRP3 inflammasome via 

a paracrine loop of IL-1β signaling in the CIA murine model [162], suggesting the therapeutic 

potential of hUCB-MSCs in RA treatment.  

Briefly, targeting the NLRP3 inflammasome signaling pathway represents a promising 

therapeutic strategy for RA and its comorbidities, and ongoing research would facilitate the 

development of novel and effective treatments for this disease. 

6. Conclusion 

With progressive insight into the pathogenesis of RA and its comorbidities, the role of the 

NLRP3 inflammasome is gaining importance in this disease [10,21–30]. Hence, the components of the 

NLRP3 inflammasome signaling pathway would be a promising therapeutic target in RA and its 

comorbidities [39–41]. Based on the available evidence, we summarized the data regarding the 

pivotal role of the NLRP3 inflammasome in the pathogenesis of RA and its comorbidities and its 

therapeutic potential in Figure 2. Hopefully, this will lead to effective novel therapies for RA and its 

comorbidities. 

 

Figure 2. The proposed model for the pathogenic role of NLRP3 inflammasome signaling pathway in 

RA and its clinical implications as the therapeutic potential. Several ligands that bind to TNFRs and 

TLRs can activate nuclear factor (NF)-κB. As a transcription factor, activated NF-κB can translocate 

into the nucleus and thereby activate the expression of NLRP3 and pro-IL-1β. As an endogenous 

ligand, anti-citrullinated peptide antibodies (ACPA), can promote NF-κB phosphorylation through 

binding to TNFRs and TLRs. In the second signal, extracellular ATP can bind to P2X7 and thereby 

lead to K+ efflux and extracellular Ca++ influx, which activate the NLRP3 inflammasome with 

overproduction of mature form of IL-1β and IL-18. The NLRP3 inflammasome activation also leads 

to the cleavage of gasdermin D, which promotes pyroptosis with the formation of pores in the cell 
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membrane and the release of IL-1β and IL-18. ACPA can also activate the pannexin channel, resulting 

in ATP secretion and NLRP3 inflammation activation. Besides, In RA monocytes, complement C1q 

and pentaxin 3 (PTX3) synergistically activate the NLRP3 inflammasome and pyroptosis. Several 

compounds have been identified as inhibitors of the components of the NLRP3 inflammasome 

signaling pathway. MCC950, VX-765, osthole, and sulforaphane can inhibit the activation of the 

NLRP3 inflammasome. Tofacitinib, one of JAKi, may restore the balance of γδTreg/γδT17 cells in RA 

by inhibiting the NLRP3 inflammasome. Disulfiram inhibits GSDMD and thereby blocks pyroptosis 

and the release of IL-1β and IL-18. Anakinra, an IL-1β receptor antagonist, blocks the effects of NLRP3 

inflammasome downstream cytokine. Among natural products, both Baihu-Guizhi decoction 

(BHGZD) and celastrol can inhibit NLRP3 activation by blocking the NF-κB pathway. HCQ could 

inhibit Ca2+-activated K+ channels and then impair inflammasome activation. The microRNA-30a and 

miR-223 inhibit the expression of NLRP3 and inflammasome activation. RA: rheumatoid arthritis; 

TNFα: tumor necrosis factor-α; TNFRs: TNFα receptors; TLRs: Toll-like receptors; ATP: adenosine 

triphosphate; PTX3: pentaxin 3; GSDMD: gasdermin D; IL: interleukin; ASCVD: atherosclerotic 

cardiovascular disease; OP: osteoporosis; ILD: interstitial lung disease. 
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