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Article
The Archimedean Origin of Modern Positional Number
Systems

Vincenzo Manca

University of Verona - Italy

Abstract: A symbolic analysis of Archimedes’ periodical number system is developed, from which a
natural link emerges with the modern positional number systems with zero. After the publication of
Fibonacci’s Liber Abaci, the decimal Indo-Arabic positional system was the basis of the algorithmic
and algebraic trend of modern mathematics, but even if zero plays a crucial role in algebra and
mathematical analysis, zeroless positional systems show the same capability of producing efficient
arithmetical algorithms based on operation tables over digits. The crucial role of digits is assessed, by
considering a representation of numbers based on strings in lexicographic order. A new algorithm for
the determination of decimal periods is presented,, by remarking the cruciality of this topic in number
theory. Periods of ordinal numbers, and enumerations of recursive enumerability are shortly recalled.
Concluding remarks are formulated about the deep relationship among numbers and information, which
shed new light on a red line passing through the whole history of mathematics.

Keywords: Archimedean Periodical System; lexicographic number represenation; fraction decimal
representation; transfinite ordinals; turing computable numbers

1. Preamble

A synthesis of the main results of the paper is here given, which can help in the recognizing a strong
connections along all the parts presented in the paper.

The paper shows that the root of positional systems can be found in the third century B. C. in a system
based on orders and periods. A circled notation is introduced that shows clearly the periodical basis of the
notion of zero.

The “Base Representation Theorem” is proved as a direct consequence of periods. This is, a further
confirmation of the previous result.

The cruciality of periods in decimal fraction representation is emphasized, and“Concatenation
Theorem” is given from which it is easily proved the correctness of decimal representations of fractions In
particular the correctness of 1/997 is proved, with 166 decimal digits.

The paper shows a strong connection of Cantor’s Ordinals with a generalized notion of Archimedean
Enumerative System.

Enumerative systems and their periodical generations link naturally Archimedean number
representation with ordinals and with Turing computable numbers.

2. Arenarius’ System

In The Sand Reckoner, entitled “Arenarius” in the Latin tradition, Archimedes of Syracuse (III century
BC) considers the problem of giving an evaluation of the size of the universe, according to Aristarchus of
Samos’ model, by counting the number of sand grains filling that universe.

For this reason, the great mathematician introduces a systematic method for representing numbers
of unlimited size, based on orders and periods. In modern terms such a notion could be defined as an
“Enumeration System”, where linguistic or symbolic expressions denoting numbers, that is, numerals
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are generated in a totally ordinate manner, in such a way that each numeral is different from those
previously generated and greater than all of them (creativity and order), and the rules of generation can be
always applied for producing a new numeral after any already generated numeral (infinity). This idea is
completely new, because all the numerals of the ancient languages reach a biggest number after that is
possible, of course, to provide expressions for bigger numbers, such as “the double of ...” or the “...plus
one”, but no systematic and efficient way was available for going up in the succession of numbers. The
method given by Archimedes is very simple [7,9]. He starts from a finite set of initial numerals, the words
of Tonic tradition for numbers from 1 to 108 (the double myriad M, where one Myriad is equal to 10%). The
ordinate list of numerals

1,2, ... M

is called by Archimedes the first order. Then, the second order is the progression of numerals
M2M, ... M2
Going on, in the same way, the last Mth order is:
MM p M MM,

The given M orders determine the first period. The second period continues the same rule of generation,
where M is replaced by M™M. Tt is clear that this method is a recurrent method where all the numbers are
denoted by means of expressions constructed by the numerals of the first order, and of course, there is
no limit in this process. in fact, after the first period, the second one can be generated, terminating with
(MM)M and so on for any following period.

The first two periods, by using modern exponential notation, are given below.

First Period
1,2,3,4,5,6,7,8,9, M

M,2M,3M, ... M?
M2 2M2,3M2, ... M3

MM ML IAM =T M
Second Period
MM 2 MMBIMM, - M(MM)
MMM, 2M(MM), BM(MM), ... ME(MM)
MEMM), 2 M2 (MM, BME(MM), .. MB(MM)
(MM (MM), 2 MM (MM), (MM (MM, L (MM)2
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(MM)M*,Z(MM)M*,3(MM)M*1, (MM)M‘

The numbers denoted by this method are exponentials (of base M) or multiples of exponentials, for this
reason we denoted them in the modern exponential notation. However Archimedes does not use any
symbolic notation, but expresses the logic of his method in natural language (Greek), and discovers some
basic properties of these numbers and in particular a rule that corresponds to the identity:

b x bY = pxty)

a sort of anticipation of the product-sum rule of logarithms.

The basic rule of Archimedes’” enumeration method is that orders are arithmetic progressions, where
any order has M numerals, and the last numeral of any order coincides with the first numeral of the next
order and with the ratio of the progression. The first period has M orders, the second one M? orders, and
so on for the following periods.

3. From Arenarius to zeroless decimal systems

Now we consider Archimedes’ system with a symbolic notation adherent to Arenarius’ formulation
given in natural language. For this purpose, we introduce a symbol expressing the end of orders and
periods, realized as a circled superscript. We use an initial order of ten numerals, denoted by the usual
decimal symbols 1, 2, 3,4, 5, 6, 7, 8,9, but ten is denoted by 1° because it corresponds to the end of the first
order. The first period is given completely, the second period is indicated, by omitting some orders.

1,2,3,4,5,6,7,8,9,1°
1°1,1°2,1°3,1°4,1°5,1°6,1°7,1°8,1°9,2°
201,2°2,2°3,2°4,2°5,2°6,2°7,2°8,2°9, 3°
3°1,3°2,3°3,3°4,3°5,3°6,3°7,3°8,3°9,4°
4°1,4°2,4°3,4°4,4°5,4°6,4°7,4°8,4°9, 5°
5°1,5°2,5°3,5°4,5°5,5°6,5°7, 5°8, 5°9, 6°
6°1,6°2,6°3,6°4,6°5,6°6,6°7,6°8,6°9,7°
7°1,7°2,7°3,7°4,7°5,7°6,7°7,7°8,7°9, 8°
8°1,8°2,8°3,8°4,8°5,8°6,8°7,8°8,8°9,9°
9°1,9°2,9°3,9°4,9°5,9°6,9°7,9°8,9°9, 1°°

100/ 1002, 1003/ 1004, 1005, 1006/ 1007, 1008/ 1009/ 10010

100101[ 100102’ 100103, 100104[ 100105, 100106[ 100107, 100108’ 100109, 10020
100201, 100202, 100203, 100204, 100205’ 100206, 100207, 100208’ 100209, 10030
100301/ 100302, 100303, 100304, 100305/ 100306/ 100307, 100308, 100309, 10040


https://doi.org/10.20944/preprints202312.0573.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0573.v2

40f 15

900907 900gO) g00QgO3 O0QO4 O0QO5 GO0QOE GO0QOT §O0GOg gO0GOQ 1000

In the above representation any numeral is a sequence of digits and symbol ° for indicating the
end of a cycle (order or period). A number of k consecutive ° determines a period of level k, also called
k-period. For example, 1°°3°6 is the numeral of the second period at its first 1-period, at its third order,
in the sixth position. In fact, periods are arranged in increasing levels and within a period of level k > 1
there are ten k — 1-periods (nono-circled digits correspond to orders). These circled numerals correspond
to exponentials, but their forms resemble the linguistic expression of the periodical mechanism used
by Archimedes, where small circles provide the arrangement of a cyclic generation of numerals. The
translation of circled numerals in exponentials is the product of the exponential interpretation of the circled
digits, where: D° = 10P10, poo — 10P-100 4nd so on. For example, 1°°3°6 represents 6 - 10130,

The circle, which was the central topic of many Archimedes’ investigations [16], emerges in this
symbolism as the basic mechanism of a counting process, by adding to the already seen properties of
number enumerations (creativity, order, infinity) the property of recurrence. In fact, all numerals are
represented by a finite sets of symbols that continuously recur in the generation. Expressions such as
“third order” and “second prime period” translate respectively in 3° and 2.

An enumeration is complete when it generates the numerals of all numbers. In a complete
enumeration a number denoted by a numeral coincides with its position in the enumeration. It is
reasonable to suppose that John Wallis, who translated Arenarius, introduced in 1655 the symbol co for
infinity (a rotation of digit 8), because he was impressed by the enormous size of Archimedes” numbers,
and inspired by the Archimedean term “octad”, which refers to eight consecutive powers of ten. By the
way, the size of universe was evaluated by Archimedes at the eighth order of his first period with a value
around 10% (assuming 10%* particles in a sand grain, we obtain the modern evaluation for the particles
contained in our universe).

The enumeration given above can be defined as a linear ordering defined on monads, where we
call monad a circled digit, that is, a digit with a number of circles as exponents. Monads are ordered by
requiring that &« > f if « has a number of circles greater than 8, or when they have the same number of
circles, if the digit of a is greater than the digit of beta (9 >8 >7 > 6 >5>4 >3 > 2 > 1). A numeral is
a sequence of monads where any monad needs to have a smaller number of circles than those on its left.
Then, if v1, v; are numerals, v; > v, when their leftmost monads are yy and yp, and satisfy: pq > pus.

The Archimedes’ enumeration is not complete, because it represents numbers, but not all numbers of
the natural succession. In fact, only exponentials or multiples of them appear. However, if we change the
interpretation by considering each numeral as the successor of the previous one, then we get a complete
enumeration. The obtained system, which we call Decimal Archimedes’ System (DAS), results to be a
zeroless system very close to the usual decimal system, which we call 0-decimal system (0DS).

Now, we will translate DAS into another zeroless decimal system, which we call X-decimal system
(XDS). At this end, we translate monads in strings over the alphabet of digits 1, 2, 3,4, 5,6,7,8,9, X:

1°==>1X,2° ==>2X, ... Y ==>9X

100 ==> XX,200 ==> 2XX, e 900 ==> 9XX

and so on, for monads with greater number of circles (X, XX, ... abbreviates 1X, 1XX, ... respectively,
when they occur as first monads, from the left). In this way, the first period of DAS in XDS becomes:
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1,2,3,4,56,7,8,9,X

X1, X2, X3, X4, X5, X6, X7, X8, X9, 2X

2X1, 2X2, 2X3, 2X4, 2X5, 2X6, 2X7, 2X8, 2X9, 3X
3X1, 3X2, 3X3, 3X4, 3X5, 3X6, 3X7, 3X8, 3X9, 4X
4X1, 4X2, 4X3, 4X4, 4X5, 4X6, 4X7, 4X8, 4X9, 5X
5X1, 5X2, 5X3, 5X4, 5X5, 5X6, 5X7, 5X8, 5X9, 6X
6X1, 6X2, 6X3, 6X4, 6X5, 6X6, 6X7, 6X8, 6X9, 7X
7X1, 7X2, 7X3, 7X4, 7X5, 7X6, 7X7, 7X8, 7X9, 8X
8X1, 8X2, 8X3, 8X4, 8X5, 8X6, 8X7, 8X8, 8X9, 9X
9X1, 9X2, 9X3, 9X4, 9X5, 9X6, 9X7, 9X8, 9X9, XX

For example, the XDS translation of 1°°3°6 is XX3X6. The logic of XDS enumeration is based on
powers of ten. 1, X, XX, XXX, .... Any numeral is the concatenation of multiples of these powers, and
their sum provides the number expressed by the numeral. It is interesting to remark that this structure
resembles exactly the construction of numerals in many natural languages. However, neither DAS, nor
XDS are positional systems in the strict sense of our usual decimal system with zero, but could be better
characterized as polynomial systems (where monads are monomials). Polynomial system of number
representation occur, in primitive forms, in many ancient systems, and in the measurement of angles. The
mathematician and astronomer Claudius Ptolomaeus (first century, author of the Almagest) used circled
digits, and in some contexts his circle resembles zero.

Going back to DAS numerals, we could avoid to put circles to digits when in a numeral all the monads
smaller than the leftmost monad occur. In fact, in that case the level of any monad corresponds to its
position. For example, 1°°3°6 is completely expressed by 136. But, if circles are deleted in 1°°6° and 1°°6
we get, in both cases, 16, which does not distinguish between the two different numerals. However, we
can avoid circles if the missing monads are indicated.

Therefore zero, which was discovered at the end of fifth century within the Indo-Arabic mathematical
tradition [11], has a natural motivation in Archimedes’ periodical system, as a new digit 0 expressing
the absence of any monad having a number of circles corresponding to its position (distance from the
rightmost digit).

Nevertheless, zero digit is not necessary for having a positional systems, because zeroless positional
systems in the sense of 0DS can be defined. One of such systems is based on the strings that can be
constructed over a finite sets of digits [2,15]. Let us assume the ten digits (without zero) in the order:

1,2,3,4,5,6,7,8,9, X.

For each digit, the sting of two digits are generated according to the following square, where ordering is
from left to the right in the rows, and from the top to the bottom for the columns:

1(1,2,3,4,5,6,7,8,9,X)
2(1,2,3,4,5,6,7,8,9,X)
3(1,2,3,4,5,6,7,8,9,X)
4(1,2,3,4,5,6,7,8,9,X)
5(1,2,3,4,5,6,7,8,9,X)
6(1,2,3,4,5,6,7,8,9,X)
7(1,2,3,4,5,6,7,8,9,X)
8(1,2,3,4,5,6,7,8,9,X)
91,2,3,4,5,6,7,8,9,X)
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X(1,2,3,4,5,6,7,8,9,X)
In general, numerals are generated by orders L;, fori =1,2,....
L1=1,23,45,6,7,89, X.

and:
Liy1 =1L;,2L;, ... XL;

where numerals of L;, 1 follow those of L;, and for any digit D, the following equation holds:
DL; = {DD&|D€ S Li} 1)

with DB > Da forany p > ain Lj, and j > 1. This is the structure of any enumeration system, over strings,
based on orders and periods.

The ordering associated to this enumeration corresponds to the lexicographic ordering, characterized
by the following conditions (|| is the length of string &, and x, y are any digits):

o < Bl ==>a<p

o< B==>ax <Py
x < B ==>xa < xp.

We call this enumeration LXS (Lexicographic X-decimal System). LXS is a positional system, where digits
contribute to the value of the denoted number according to their positions.

An enumeration system based on orders and periods is an Archimedean Enumeration System (AES).
An AES is natural if it represents all the numbers, it is monotone if its numerals are non empty strings
over a finite set of symbols, and any numeral « followed by a digit x is a numeral too, such that the number
[[«]] denoted by it coincides with the number of orders before the order where ax occurs. Such a system
has period p if its initial order has p numerals. XDS, as well as the usual decimal positional system DOS,
are Archimedean natural monotone enumeration systems.

The following theorem easily generalizes a well-known theorem of positional systems to natural
monotone AES.

Theorem 1. Let E be an Archimedean monotone enumeration system of period p. Then, the following recurrent
equation holds in E, for any digit x:

[ax]] = [[a]p + [[x]]. 2

from which the base representation equation follows.

Proof. From the hypotheses on E, the product [[a]]p represents the number of numerals before the
order where ax occurs, then we have the asserted equation above. If we apply iteratively equation (2), we
get the fundamental base representation equation of a positional number systems of base b > 1:

[anap—1...a1]] = Y [[a]]b" .

i=1n
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4. The algorithmic value of digits

One of the main novelties of digits is the algorist trend as opposed to the abacist approach of ancient
methods of number calculation (from abacus). In 1585 Simon Stevin published a book in Flemish, entitled
De Thiende (the Tenth) [20], where the algorithms for computing the four arithmetical operation are
given, which correspond to the methods that are now taught in the primary schools. These methods are
independent from the particular basis, and essentially reduce the computation of any operation to the
knowledge of its results for all the pair of digits., that is, to a finite set of basic rules. The same situation
arises with zeroless positional systems.

Let us consider the zeroless lexicographic systems of four digits, having the following first 16
numerals:

-1 2 3 4 11 12 13 14 21 22 23 24 31 32 33 34
Tables 1 and 2 express sum and multiplication for a lexicographic systems of four digits.

Table 1. Table of sum for a lexicographic system of 4 digits.

+ 1 2 3 4

1 2 3 4 11
2 3 4 11 12
3 4 11 12 13
4 11 12 13 14

Table 2. Table of multiplication for a lexicographic system of 4 digits.

x 1 2 3 4
1 1 2 3 4
2 2 4 12 14
3 3 12 21 24
4 4 14 24 34

For example, 32 x 21 in the 4-lexicographic system is obtained from the above tables and provides
the same result obtained in the usual decimal system:

Table 3. A multiplication in the lexicographic system of base 4.

32x
21 =

32
124

1332
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32 —10 14

21 —10 9

14 X109 =126

32 x414=1332 =19 64 +3 x 16 +3 x 4+ 2 —19 126

In conclusion, zero is not necessary for having positional systems, even if it is essential for further
developments of mathematics: in the infinitesimal analysis, and in the algebraic structures. In fact, the
negative enumeration, which from zero goes back in the opposite direction of the natural (positive)
enumeration, giving the negative of any number, makes integers an additive group with zero as neuter
element.

In his 1585 book, Stevin introduces a notation essentially equivalent to usual decimal notation. Using
this notation, Stevin’s division algorithm applied to p : q, with p < g, provides a decimal representation of
type 0, x1x2x3 . .. for the fraction p/q, where x; are decimal digits.

The following theorem is an easy consequence of the pigeonhole principle, where (p;|i > 1) is the
succession of prime numbers (if 7 objects are distributed among m < n cells, then there exists some cell
containing more than an object).

Theorem 2. Fori > 3 the fraction 1/ p; has a decimal representation with infinite digits, obtained by the division
algorithm, where a sequence of digits, called period, repeat indefinitely, and the length of the period is surely lesser
than p;.

In virtue of the above theorem any fraction has a finite decimal representation or an infinite one, but
periodical. Therefore, an infinite decimal representation that is not periodical represent a number that is
not a fraction, and is called an irrational number (Greek mathematicians use the term Logoi for irrationals).
In conclusion, the existence of irrational numbers follow from Stevin’s representation.

The following theorem is the converse of the above theorem, that is, for any periodical decimal
representation there is an equivalent fraction.

Theorem 3. For every fraction p/q with p,q € Z (set of integers) there exist r,n, m, k € Z such that:
p/q=k+r/(10" —1)10"
with r < (10" —1)10™.

Both theorems above can be easily extended to any positional system with zero and base > 1.
However, computing the exact periodical representation of a fraction and showing its correctness is not an
easy task. After Stevin’s work and Napier’s formulation, in his second book on logarithms [21], a tradition
of works on decimal fractions was developed in 17th and 18th centuries [1].

Now we show as a simple theorem can give an efficient solution for a systematic and reliable
determination of the exact periodical representation of fractions. In fact, the following theorem, which
can be easily proven, is the basis for efficient algorithms (extensible to any base) for computing fraction
periods and for checking their correctness.

Theorem 4 (Concatenation Theorem). Stevin algorithms for the basic arithmetical operations can be
“concatenated”. Let us express this fact only for division and multiplication (concatenation of additions and
subtractions are obvious), where Greek letters denote strings of digits of decimal representations.

1) 1/9=0,aB
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if r : q = o with remainder r and r : q = B with remainder 1.

For some natural n:
2) ax(Bs)=9"

if for some naturals k, j, i:

ax B =9y
ox6=90y
y+n=9

with |y| = |y| =iandn =k +j+1i.

By using the theorem above, when arithmetic operations have a precision of p decimal digits, then
operations can be concatenated by obtaining periodical representations of any period length, and the
correctness of the obtained results can be easily proved.

Given the length limits of computer number representation, no computer can directly compute the
exact decimal value of a simple fraction such as 1/19. The representation of fraction 1/p; for p; < 100,
based on division and multiplication concatenations, are given below, where periods are indicated within
brackets, and stars mark periods that reach the maximum possible length.

1/2=0,5=0,4[9]

1/3=0,[3]

1/5=0,2=0,1[9]

1/7 = 0,[142857]*

1/11=0,[09]

1/13 = 0,[076923]

1/17 = 0,[0588235294117647]*

1/19 = 0,[0526315789473684211*

1/23 = 0,[0434782608695652173913]

1/29 = 0,[0344827586206896551724137931*

1/31 =0,[032258064516129]

1/37 =0,[027]

1/41 = 0,[02439]

1/43 = 0,[023255813953488372093]
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1/47 = 0,[0212765957446808510638297872340425531914893617]*

1/53 =0,[0188679245283]

1/59 = 0,[0169491525423728813559322033898305084745762711864406779661]*
1/61 = 0,[016393442622950819672131147540983606557377049180327868852459]*
1/67 = 0,[014925373134328358208955223880597]

1/71 = 0,[01408450704225352112676056338028169]

1/73 =0,[013698630136986301369863]

1/79 =0,[01265822784810126582278481]

1/83 =0,[01204819277108433734939759036144578313253]

1/89 = 0,01123595505617977528089887640449438202247191]

1/97 = 0,[0103092783505154639175257731958762886597938144329896907216494
845360824742268041237113402061855671*

All these representations were checked by using multiplication concatenation. Moreover they coincide
with those, up to 1/67, of Johann III Bernoulli’s table (1771-1773) reported in [1]. We remark that fraction
periodical representations is an issue extensively investigated by Carl Friedrich Gauss, who introduced an
entire theory for their calculation [1].

As an example, the computation of 1/17 is here reported, by using operations reliable up 12 digits.
1:17 = 0,05882352941

Remainder =3
3:17 = 0,17647[058823

where the open bracket is put after the last digit of the period. Namely, digits 058823 coincide the initial
digits of the first division. Therefore, by concatenating the two divisions, according to Concatenation
Theorem, we have:

1:17 = 0,0588235294117647

Now, we prove the correctness of the above periodical representation, by concatenating two multiplications:
1/17 = 588235294117647 / 9999999999999999

that is:
17 x 588235294117647 = 9999999999999999
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in fact, 17 x 58823529 = 999999993 and 17 x 4117647 = 69999999, and the concatenation of the two results,
according to Concatenations Theorem, is just 9999999999999999.

Gauss spent years in computing decimal periods of prime fractions. For this purpose, he developed a
theory [1] (of indices), which was the seed of his theory of congruences. The biggest fraction he computed
was 1/997, which we computed in seconds with the following Python program, by using Stevin’s division
algorithm going up until a remainder is obtained that was already generated. By the way, it is interesting to
observe that unitary division is the essence of any division, which is always equivalent to a multiplication
of the result of a unitary division.
def compute-period(p):

results = []

remainders = []

d=1

0

q
r=1
while r not in remainders:
results.append(str(q))
remainders.append(r)
d =110
q=int(d/p)
r=d%p
remainders.append(r)
results.append(str(q))
steps = len(results)-1
res = " join(results)
res ="(" + res[1:]+ ")"
return sleps,tes/remai.nders
p = int(input("Input a natural number p: "))
period = compute-period(p)
print("Period Length: ", period[0])
print("Period: ", period[1])

A python program computing periods.

Decimal Period of 1/997 (166 digits)
d =001003009027081243731193580742226680040120361083249749247743229689067
201604814443 329989969909729187562688064192577733199598796389167502507522
5677031093279839518555667
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Table 4. Proving that decimal period of 1/997 is correct: The column on tn the left gives, in consecutive rows,
blocks of the period d of 1/997. In each equation of the second column, the last 3 digits added to the first 3
digits of the number below provides 999, therefore, according to the Concatenation Theorem, the equations
above prove that 0,d x 997 = 0,9217. whence, being 9%17 a period, it follows that 0, [927] =0, [9] = 1.

00100300902  x 997 = 999 — 95 — 294
7081243731 X 997 =705 —97 — 807
1935807422 X 997 =192 —97 —734
266800401 X 997 = 265 — 96 — 797
2036108324 X 997 =202 —97 — 028
97492477432  x 997 =971 — 98 — 704
29689067201  x 997 = 295 — 98 — 397
60481444332  x 997 = 602 — 98 — 004
99899699097  x 997 = 995 — 98 — 709
2918756268 X 997 =290 — 97 — 196
8064192577 X 997 =803 — 97 — 269
7331995987 X 997 =730 — 97 — 039
96389167502  x 997 = 960 — 98 — 494
507522567703 x 997 = 505 — 99 — 891
10932798395  x 997 = 108 — 98 — 815
18555667 X 997 =184 — 98 — 999

Let us conclude the section, by shortly reporting other crucial passages that are based on the diffusion
in Europe of the positional representation of numbers, after the publication by Leonardo Fibonacci, in
1202, of his Liber Abaci, along a process of four centuries in the conceptual and notational development of
modern mathematics [3,13].

In 1591 Frangois Viete’s book [23] appeared where expressions with symbol for indeterminates appear,
and ars speciosa is also the name of a new arithmetic perspective that is the seed of modern algebra. In
1619 John Napier introduces logarithms [21], where he provides a synchronization between geometrical
and arithmetical progressions covering with good approximation a real interval. This passage in modern
mathematics is crucial and full of practical and theoretical consequences.

The passage from symbols with numeric meanings to indeterminates of unknown numeric values,
on which operations can be performed independently from their meaning, is a crucial step toward
variables, which become the main tool of Cartesian geometry. where in 1637 René Descartes introduces
coordinates, by reversing the Greek relationship between space and numbers. From this point, the process
of arithmetization of mathematics starts, toward the foundational perspectives of 19th and 20th centuries.

5. Enumerations in ordinals and in computability

Archimedes’ mark is not only in the roots of moderne mathematics, and in the infinitesimal calculus,
for his introduction of geometric representation of infinitesimals, especially in his Method, a book that got
lost and was discovered at beginning of twentieth century (and lost again during the second world war,
but now completely restored) [17]. In fact, the crucial role of recurrence in Archimedes’ enumeration is
apparent in Cantor’s ordinal numbers [4], and in the theory of computability [22]. Rigorous foundations
of numbers were provided by Dedekind, Frege, and Peano [5,8,18], but the most synthetic and expressive
definition of numbers is that one given in terms of set theory, according to a construction due to John von
Neumann: a number is the set of numbers that precede it, in a number enumeration. In this way 0 coincides
with the empty set @, 1 is the set containing the empty set {@}, 2 is the set {©{@}} = {0,1}, and so on.
In this formulation, even if “a number enumeration” is mentioned, the numbers stem prescinding from
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any specific system of counting, in a very abstract manner, where the process of counting results the true
essence of numbers. In factif e1, ey, . .. is any enumeration and [[e1]], [[e2]] . . . the corresponding numbers,
then [[e1]] = @, [[e2]] = {2} = {[[ea]]}, [[e2]] = {@,{D}} = {[[e1]}, [[e2]]}, and 50 o, by obtaining exactly
what von Neumann defined. Moreover, the theory of ordinals can be expressed in terms of enumerations
of enumerations, in the same way as Archimedes’ periods are generated, because the essence of a recurrent
enumeration is that a number is the position where its numeral is, and this position is completely identified
by the numeral that precede it. In this way, if a name a given to an entire enumeration, this name is a sort
of hypernumeral that we can imagine as the last position of its numerals. Then, let us call w the natural
enumeration
w=0,12...

if we assume w as the first infinite order, we can go further with the following orders in an analogous way
as Archimedes’ periodical system:

0,1,2,...,w
w+1l,w+2,...,2w
2w+ 1,2w+2...,3w

where the name of any (infinite) enumeration is put at the end of it, and usual symbols for ordinals are
intended as names of the consecutive enumerations preceding them (enumerations of enumerations, and
so on, at successive levels). It is not our intention to go into further details of such an approach to ordinals,
but this short outline suggests clearly as ordinals are a natural generalization of Archimedes’ periods.

It can be shown that a 1-to-1 correspondence can be established between the natural enumeration w
and ordinals at any exponential level (w®,w®“" ...), but no 1-to-1 correspondence exists between w and
real numbers, which are represented by infinite sequences of decimal digits (and the set of ordinals 1-to-1
with w is an ordinal that is not 1-to-1 with w). This crucial result, based on a famous diagonal argument, is
the access gate to cardinal numbers and abstract sets, or Cantor Paradise, as Hilbert defined set theory
[10], within which any mathematical theory can be expressed.

In 1936 Turing published an epochal paper on computable numbers, that is, real numbers where the
sequence of digits can be generated by means of a computing device, a Turing machine. Sets of numbers
that can be generated by Turing machine, as outputs of computing process, are called Turing enumerable,
or recursively enumerable, sets. However, in general, there is no Turing machine that, given a Turing
enumerable set A and a number 7, is able to tell, in a finite number of steps, if a does belong or not to A.
The sets for which this is possible ale called decidable or recursive. The recursively enumerable sets for
which this decision possibility does not hold are called semidecidable. A function is computable if, and only
if its graphic is recursively enumerable.

What is really surprising is that Turing proves the existence of recursively enumerable sets, by
adapting Cantor’s diagonal argument according to which real numbers are not 1-to-1 with any natural
enumeration. This story tells us that an infinity line [12] links, along centuries, Archimedes with Cantor
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and Turing: these three giants follow a common idea: counting the infinite: according to an arithmetical
perspective, to a more general set theoretic perspective, or to a computational perspective of symbolic
manipulation processes, performed by machines.

A function on natural numbers is Turing computable if it is computed by some Turing machine
(giving as output the image of the function in correspondence to any argument given as input). Turing
machines are identified by Turing programs, which are strings, which when put in a lexicographic ordering
provide an enumeration. From this, again by a diagonal argument, the following theorem can be proved.

Theorem 5. Turing computable functions surely include partial functions, which do not give results in
correspondence of some arguments, and no Turing machine can exist that can always tell, in finite time, if a
Turing machine gives a result in correspondence to a given argument.

6. Conclusions

Numbers need numerals to be expressed and manipulated, but numerals are strings, that is, linear
forms of information representation, able to encode any kind of data. On the other hand, strings, when
considered in a lexicographic order represent numbers, with the empty string naturally associated to
zero. Therefore, an intrinsic circularity links numbers to strings, or equivalently numbers to information.
Nevertheless, while numbers are abstract entities, independent from any physical reality, symbols and
strings are necessarily based on physical realities. At the same time, their physicality even if necessary
is not essential, in the sense that any physical support can be replaced equivalently by another one, and
similarly any encoding of data as strings can be translated in another one. The theory of information, which
together with computability is the basis to the new informational age, according tho Shannon’s perspective,
introduced in his famous booklet of 1948 [19], discovered the possibility of measuring information
independently from specific codes and from specific physical supports. In this approach, information is
expressed in terms of negative logarithms of probabilities. But probabilities are pure numbers (between 0
and 1), therefore “pure” information coincides with numbers, and conversely, numbers coincide with pure
information, because their essence abstracts from any specific system of numerals. This simple remark
explains why number theoretic properties are so crucial in information processing, at many different levels,
from cryptography to the theory of codes, and to the algebraic and algorithmic perspectives of computer
science. This means that Arithmetics, the oldest mathematical theory, is strongly linked to the youngest
theory of information, computation and communication, born in the twentieth century. Then, the image of
circle, so often evoked in this paper, is a very appropriate image for the conclusion of this bird fly over the
landscape of mathematics, going from Archimedes, to Fibonacci, Stevin, Viete, Napier, Descartes, Gauss,
Cantor, Turing, and Shannon, just for reminding the great minds mentioned in our travel.
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