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Abstract: This paper considers the direction of arrival (DOA) estimation problem of phase ambiguity for 

unfolded coprime linear array (UCLA). The existing most common stacking subarray-based method can tackle 

the phase ambiguity problem. However, the method is not always true. For a given DOA, it has its 

corresponding steering vector, but if there are two DOAs which have the same steering vectors with the given 

DOA for different subarrays, the phase ambiguity problem still arises. A modified method, which defines a 

decision variable and uses the classic beamforming technique to estimate the DOAs is proposed. However, this 

method needs additional algorithm to distinguish the true DOAs besides multiple signal classification (MUSIC) 

spectrum. And sometimes this method is not reliable if the decision variable is not chosen appropriately. 

Therefore, based on the UCLA, we reconstruct the array to design an improved UCLA called IUCLA. With 

moving the reference element, the linear relationship among the directional vectors can be broken. In this way, 

we can directly utilize the MUSIC algorithm to estimate with no additional algorithm. The proposed method 

can solve the phase ambiguity problem and it does not demand other technique to decrease the complexity. 

Moreover, the Cramer-Rao Bound (CRB), as the lower bound of the unbiased estimation, is provided and 

numerical simulations are given to demonstrate the effectiveness and superiority of the proposed method. 

Keywords: direction of arrival estimation; improved array arrangement design; improved unfolded 

coprime linear array; cramer-rao bound; multiple signal classification  

1. Introduction

Direction of arrival (DOA) estimation using array processing has focused much attention in 

these years and has been widely applied in many fields, such as wireless communication, radar, 

sonar, medicine and other engineering applications [1–9]. In the past decades, numerous subspace

based DOA estimation algorithms, e.g., multiple signals classification (MUSIC) [10–17] and

estimation of signal parameters via rotational invariance techniques (ESPRIT) [18–22], have been

proposed for uniform linear arrays (ULA) [23,24] and attracted much attention due to their high 

resolution and performance. However, the adjacent antenna element spacing is required to be less 

than half wavelength so that the phase ambiguity problem [25] is avoided. But it limits the array 

aperture and consequently influences the mutual coupling [26] between the elements and the 

estimation performance. Therefore, a non-uniform linear array has been recently proposed to increase 

the degrees of freedom (DOF) of the array, known as a sparse array. The sparse array breaks the limit 

of half wavelength. Coprime arrays [27,28] have aroused wide attention due to the improvement of 

DOA estimation performance. Meanwhile, due to the larger array aperture, less mutual coupling 

effect arises. A coprime linear array (CLA) consists of two ULAs with the inter element spacing larger 

than half-wavelength, so a higher resolution, larger array aperture and less mutual coupling effect 

can be attained [29,30]. Recently, the coprime arrays have been thoroughly investigated. A subarray-
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based method to solve the ambiguity problem is proposed in [31]. The algorithm considers the total 

array as two subarrays and processes the two subarrays separately. By combining the estimates and 

finding the nearest spectral peaks from MUSIC spectrums of two subarrays, the phase ambiguity 

problem can be eliminated. However, this method suffers the severe computational complexity due 

to the global angular searching. Concerning this, a partial spectral search method is proposed in [32] 

to decrease the computational complexity, which employs the linear relationship among ambiguous 

DOA estimates and searches over a small sector. However, these mentioned methods estimate the 

DOAs by combing the results of the two subarrays of the CLA, so some problems result in: 

(i)DOF is limited by the subarray which has the smaller number of elements; (ii)only self 

information of two subarrays is exploited but mutual information is wasted, as a result, DOA 

estimation performance is affected and optimal DOA estimates can not be achieved; (iii)these 

methods need further process to eliminate the ambiguous angles. 

To solve these problem, an unfolded coprime linear array (UCLA) is proposed, which unfolds 

the two subarrays in two opposite directions so that the array aperture is extended [33]. For the 

UCLA, the array is processed as one total array. In this way, both self information and mutual 

information is utilized. Ambiguity problem is suppressed by stacking the two directional matrices of 

two subarrays. Also, the method can achieve the full DOFs due to the employment of the whole array. 

Nevertheless, this technique is not always true. When the source signals satisfy some relations, the 

method will not work. In the case of three signals, for the two subarrays, when it exists two different 

signals having the same steering vectors as the given DOA, the phase ambiguity still exists. Aiming 

to tackle the problem, Yang et. al. proposed a beamforming based technique by defining a decision 

variable [34] to eliminate the phase ambiguity. However, this method employs other technique to 

distinguish the real DOAs besides MUSIC spectral searching, which can increase the computational 

complexity. Meanwhile, this method does not always work and it usually depends on the decision 

variable. When the decision variable is small, phase ambiguity problem still occurs. 

To solve the ambiguity problem, increase the detecting accuracy and decrease the computational 

complexity, we design to rearrange the position of the reference sensor so that the linear relation of 

the directional vectors is broken. Therefore, the MUSIC algorithm can be employed directly without 

ambiguous angles arising. Meanwhile, we can get the DOAs estimation and do not need any other 

technique to estimate. The method can achieve the full DOFs of the array. We compared the proposed 

method and the original methods and we notice that the proposed method can effectively tackle the 

phase ambiguity problem.  

The paper is organized as follows: Section II introduces the array configuration and the data 

model of the received signals. Section III, we detailed derive the ambiguity problem and present the 

proposed method, and analyze the DOFs and Cramer-Rao Bound (CRB) of the proposed method. In 

Section IV, it shows extensive simulation results and demonstrates the superiority of the proposed 

algorithm. And finally, we give the conclusions in Section VI. 

The main contribution of this paper can be concluded as follows. 

(1)The proposed method can effectively eliminate the phase ambiguity problem by rearranging 

the reference element spacing and breaking the spectral function with the directional matrix. 

(2)The designed array treats the array as a whole so that it can achieve the full DOFs hence 

improves estimation performance.  

(3)CRB, as the lower bound for unbiased estimation, is provided as a standard to measure the 

estimation performance. And it is validated that the designed array can achieve the lower CRB. 

(4)The designed array can achieve DOA estimation with an excellent DOA estimation 

performance and it does not need additional algorithms.  

Notations: Throughout this paper, we use uppercase (lowercase) bold characters to denote 

matrices (vectors). ( )T

, 
*( ) and ( )H

 represent the transpose, conjugate and transpose conjugate 

operators, respectively. And { }E  represents the expectation operator.  

2. Array Signal Model  
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As depicted in Figure 1, we consider an UCLA with 1 2 1T M M= + −  sensors. For the array, it is 

composed of two uniform linear subarrays. One subarray has 1M  sensors and the other one has 

2M  sensors, respectively. And 1M  and 2M  are a pair of coprime integers. Meanwhile, it has 

1 2M M . It can be noticed that the two subarrays are overlapping at the position of (0,0) , so we can 

compute the total sensors of the array as 1 2 1T M M= + − . In the Figure 1, the inter element spacing of 

the subarray 1 can be denoted as 1 2 2 / 2d M d M = = . And the inter element spacing of the subarray 2 

can be denoted as 2 1 1 / 2d M d M = = , where / 2d =  and   means the wavelength. 

.  .  .  .

Subarray 2 Subarray 1

M2d(0,0)M1d

.  .  .  .

M2-1 M1-1

Sk(t)

 

Figure 1. Unfolded Coprime Linear Array (UCLA). 

Assume that there are K narrowband sources impinging on the array which locates at 

1 2[ , , , ]K  =  with signal powers 
2 2 2

1 2 K  ， ，， . / 2, / 2k   −（ ） denotes the k-th signal 

where K T  and [1,2, , ]k K . Also, we suppose that these signals are far-field uncorrelated. The 

received signal at time t  is denoted as [10] 

1 1 1

2 2 2

( ) ( )
( ) ( )

( ) ( )

( ) ( )

t t
t t

t t

t t

     
= = +     
     

= +

x A n
x s

x A n

As n

                           (1) 

where 1 2[ , ]T T T=A A A . 1A  and 2A  are steering matrices of the two subarrays, respectively. 

1 1 1 1 2 1[ ( ), ( ), , ( )]K  =A a a a  and 2 2 1 2 2 2[ ( ), ( ), , ( )]K  =A a a a . 
2 sin

1( )=[1, , ,kjM

k e
 a

( )1 21 sin
]kj M M T

e
 −

 is steering vector for the subarray 1, and
( ) ( )2 1 2 1 1- -1 sin - -2 sin - sin

2( )=[ , ]k k k
j M M j M M jM T

k e e e
     a ，， ，1  is steering vector for the subarray 2, respectively. 

1( ) [ ( ),t s t=s 2( ), , ( )]T

Ks t s t  is the signal emitted by the k -th target at time t , where 1,2, ,t L=  

and L  means the sampling number. ( )tn  stands for the additive white Gaussian noise and obeys 

the normal distribution 
20, kN （ ） and is independent from source signals. 1 ( )tn  is the noise vectors 

of subarray 1. And 2( )tn  denotes the noise vectors of subarray 2.  

3. Ambiguity Problem Demonstration and Resolution 

This section introduces the cause of phase ambiguity problem and illustrates the existing 

methods. Then the proposed improved array is presented and the full DOFs are achieved.   

Preview 

Generally, to avoid ambiguity problem, the inter element spacing is usually set to be no larger 

than half-wavelength, however, in this way, the array aperture is restricted. Coprime array, which is 

made up of two uniform linear arrays and the inter element spacing is larger than half wavelength.  

Figure 2 depicts the relationship between the element spacing and the number of DOA 

estimation. It considers that there is one signal coming from 1 24 =  . From the picture, we can get 
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that when the element spacing is set to be / 2,d = no ambiguous angle results in. And when 
3 / 2d =  or 5 / 2d = , the ambiguous angles result in.  

 

Figure 2. The relation between the phase ambiguity problem and the inter element spacing. 

Case 1 

In the case 1, we consider that there are two signals coming from 1 2[ , ] = .  

Assume that there are two signals 1  and 2  which are real angles. The corresponding 

directional vectors 1( )a  and 2( )a  can be attained. And we can get 

1 1 1 2 1( )= ( ), ( )
T

T T    a a a                                (2) 

2 1 2 2 2( )= ( ), ( )
T

T T    a a a                               (3) 

Assume 1   and 2   are ambiguous angles of 1  and 2 .Therefore, corresponding steering 

vectors 1( ) a  and 2( ) a  can be attained. Then we can get 

1 1 1 1 2 1 1 1 2 1( )= ( )= ( ), ( ) = ( ), ( )
T T

T T T T             a a a a a a                   (4) 

2 2 1 2 2 2 1 2 2 2( )= ( )= ( ), ( ) = ( ), ( )
T T

T T T T             a a a a a a                  (5) 

Correspondingly, we have  

1 1 1 1

2 1 2 1

1 2 1 2

2 2 2 2

( )= ( )

( )= ( )

( )= ( )

( )= ( )

 
 
 
 


 
 
 

a a

a a

a a

a a

                                   (6) 

Then we have 
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2 1 2 1 1

1 1 1 1 2

2 2 2 2 1

1 2 1 2 2

sin sin 2

sin sin 2

sin sin 2

sin sin 2

M M k

M M k

M M k

M M k

    
    
    
    

= +
 = +
 = +
 = +

                            (7) 

where 1 2 2( 1), , 1,1, ,( 1)k M M= − − − −  and 2 1(k M= −  1),− 1, 1,1, ,( 1)M− − 。 

Then we can get  

1 1 1 2

1 1 2 1

2 2 1 2

2 2 2 1

sin sin 2 /

sin sin 2 /

sin sin 2 /

sin sin 2 /

k M

k M

k M

k M

 
 
 
 

= +
 = +
 = +
 = +

                               (8) 

Then we have 

1 2

2 1

2 2
=

k k

M M
                                      (9) 

Due to the coprime property of 1M  and 2M , the Eq. (9) is not satisfied. That is to say, in the 

case of two signals of 1  and 2 , phase ambiguity problem does not occur. 

Figure 3 depicts spectrums without ambiguity by the method proposed in [33]. The two signals 

are 1 210 , 37 =  =  . SNR and the snapshots are set to be SNR 5dB=  and 200L = , respectively. We 

can draw a conclusion that the method proposed in [33] can tackle the phase ambiguity problem with 

case 1.  

Case 2 

In the case 2, consider three signals with 1 2 3[ , , ]  = . Similarly, we suppose 1   and 2   to 

be ambiguous angles of 1  and 2 , respectively. Corresponding directional vectors can be denoted 

as 1( ) a  and 2( ) a . If the relationship that the sine function of the third signal 3  equals to 1( ) a  

and 2( ) a  is satisfied, the phase ambiguity problem results in. Figure 4 shows the spectrums of the 

method in [33], where it has three target signals with 1 10 =  and 2 320 , 30 . =  =   We set the 

number of snapshot to be 200L =  and SNR 5dB= . It is depicted clearly in Figure 3 that the method 

proposed in [33] still has no difficulty to resolve the three source signals. However, this method is 

not always true. When these three source signals satisfy relationship that the sine function of third 

signal 3  equals to 1( ) a  and 2( ) a , the method in [33] will not work and we will illustrate in case 

3. 
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Figure 3. No ambiguous angle arises with 2 source signals, where 1 210 , 37 . =  =  . 

 

Figure 4. No ambiguous angle arises with the given 3 source signals, where 1 2 310 , 20 , 30 .  =  =  = 

. 

Case 3 

From the case 2, we notice that the method in [33] can effectively detect three signals without 

the ambiguous angles, whereas it is not always working. Then we illustrate the case 3 in the following. 

Consider three target signals impinging the array with 1 2 3[ , , ]  = . Similar to case 2, we 

suppose 1   and 2   to be ambiguous angles of 1  and 2 , respectively. Corresponding 

directional vectors can be denoted as 1( ) a  and 2( ) a . When it satisfies that the sine function of the 

third signal 3  equals to 1( ) a  and 2( ) a , the ambiguous angle will arise. In other words, phase 

ambiguity problem results in, which is invalidated in the following. 
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Suppose that the third angle 3  whose corresponding sine function equals to 1( ) a  and 2( ) a

. It has  

3 1 1 2

3 2 2 1

sin sin 2( ) /

sin sin 2( ) /

k M

k M

 
 

= + −
 = + −

                            (10) 

Then we can get the relationship which exists among 1 , 2  and 3  

2 3 2 1 1

1 3 1 2 2

sin sin 2( )

sin sin 2( )

M M k

M M k

    
    

= + −
 = + −

                        (11) 

where 1 2(k M= − − 21), , 1,1, ,( 1)M− −  and 2 1(k M= −  1),− , 1,1, ,− 1( 1)M − 。 

It has 

1 3 1 1

2 3 2 2

( )= ( )

( )= ( )

 
 





a a

a a
                                  (12) 

so we have 

1 1 1 2 1 3 1 2

2 1 2 2 2 3 2 1

( )+ ( )- ( )= ( )

( )+ ( )- ( )= ( )

   
   





a a a a

a a a a
                           (13) 

Then we define 

1 4 1 1 1 2 1 3

2 4 2 1 2 2 2 3

( )= ( )+ ( )- ( )

( )= ( )+ ( )- ( )

   
   





a a a a

a a a a
                           (14) 

It has 

1 4 1 2

2 4 2 1

( )= ( )

( )= ( )

 
 





a a

a a
                                 (15) 

It is obvious that the forth angle 4  arises. That is to say, phase ambiguity problem results in. 

Simulation is presented to demonstrate the analysis. 

Figure 5 depicts the scenery that three signals 1 12.37 , =   2 30 =   and 3 64.16 =   come to 

the array. The SNR and the number of the snapshots are set to be SNR 5dB=  and 200L = , 

respectively. It can be found that these three signals satisfy 1 3 1 1( )= ( ) a a  and 2 3( )=a 2 2( )a . And it 

is validated that the method in [33] is not effective. From Figure 5, we can notice that other than the 

three signals are detected while it exists the forth spectrum. Aiming at solving the ambiguity problem, 

Yang et. al. proposed a modified method by defining a decision variable[34]. Meanwhile, the method 

combines the beamforming technique with MUSIC. However, this method is not always effective. 

Figure 6 depicts that five signals come to the array. And by using the method in [34], the five signals 

can be detected successfully, but it still has ambiguous angle, which can increase the ineffectiveness 

of the DOA estimation performance. To tackle this problem, we design an improved ambiguity–free 

array, where there are three coprime integers. By moving the reference element, the linear 

combination relation of the steering vectors can be broken. In this way, MUSIC algorithm can be 

applied directly and no additional algorithm needs. The method is illustrated in the following part. 
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Figure 5. With the method in [33], ambiguous angle arises with 3 source signals which satisfy Eq. 

(10). 

 

Figure 6. Using the method in [34] of beamforming technique sometimes is not effective. 

4. Proposed Method for DOA Estimation 

This section presents the proposed method to tackle the phase ambiguity problem with case 3. 

In the proposed method, we consider to rearrange reference sensor. Figure 7(a) presents an UCLA, 

which is composed of two subarrays, including subarray 1 with 1M  sensors and subarray 2 with 

2M  sensors. Figure 7(b) presents a rearranged reference point instead of (0, 0). From the Figure 7(b), 

for the new array, it still consists of two subarrays which contain 1M  and 2M  sensors, respectively. 

And position of the reference element is changed from (0, 0) to 3( ,0)M d , where 3M  is the third 

coprime integer besides 1M  and 2M . Due to the change of the reference sensor, it can be found that 

the steering vectors have changed correspondingly. In this way, two different directional vectors can 

be attained. By using this property, the resulted ambiguity can be broken. 
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.  .  .  . .  .  .  .

Subarray 2 Subarray 1

.  .  .  . .  .  .  .

Subarray 2 Subarray 1

(-M1d,0)

M2d

(M2d,0)

(M2d,0)

(M3d,0)(0,0)

(0,0)

M1d

M1d M2d

(-M1d,0)

(a)

(b)

 

Figure 7. (a)The unfolded coprime linear array. (b)The designed improved unfolded coprime linear 

array. 

In the rearranged array, denote the directional vectors of two subarrays with the k-th signal as  
2 2 1 23 sin sin ( 1) sin

11( )=[ , , ]k k kj M jM j M M T

k e e e
      −

a ，                       (16) 

2 1 2 1 1 2- ( -1) sin - ( -2) sin - sin - 3 sin

22( )=[ , ]k k k kj M M j M M jM j M T

k e e e e
       a ，， ，                (17) 

So we can ger the steering vectors of source signal 3  
2 3 2 3 1 2 33 sin sin ( 1) sin

11 3( )=[ , , ]
j M jM j M M T

e e e
      −

a ，                       (18) 

( ) ( )2 1 3 2 1 3 1 3 2 3- -1 sin - -2 sin - sin - 3 sin

22 3( )=[ , ]
j M M j M M jM j M T

e e e e
       a ，， ，               (19) 

( )ka  denotes the directional vector of the total array . 

11 22( )= ( ), ( )
T

T T

k k k    a a a                            (20) 

Similar to Eq. (1), we can get the received signal 

1 11 11

2 22 22

( ) ( )
( ) ( )

( ) ( )

( ) ( )

iu

iu

iu

iu iu

t t
t t

t t

t t

     
= = +     

    
= +

x A n
x s

x A n

A s n

                      (21) 

where 11 22[ , ]T T T

iu =A A A . 11A  and 22A  are steering matrices of the two subarrays for IUCLA, 

respectively. 11 11 1[ ( ),=A a  11 2 11( ), , ( )]K a a  and 22 22 1 22 2 22[ ( ), ( ), , ( )],K  =A a a a  where 11( )ka  

and 22( )ka  are denoted as Eq. (16) and Eq. (17). 11 22( ) [ , ]T T T

iu t =n n n is the total array noise vector.  

The corresponding total covariance matrix can be computed with L snapshots 

1

ˆ (1 / )
L

H

iu iu iu

l

L
=

= R X X                                 (22) 

The eigenvalue decomposition result of the total covariance matrix 
ˆ

iuR  can be denoted as 

ˆ ˆ ˆ ˆ ˆ ˆ ˆH H

iu siu siu siu niu niu niu= +R E D E E D E                             (23) 

where 
ˆ

siuE and 
ˆ

niuE  are the signal subspave and noise subspace matrix. And 
ˆ

siuD and 
ˆ

niuD  

include the eigenvalues. 

Referring to the orthogonality between the signal subspace and the noise subspace, the spectral 

peak function of MUSIC can be denoted as [10] 
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1
( )

( ) ( )H H

iu niu niu iu

f 
 

=
a E E a

                            (24) 

where 11 22( )= ( ), ( )
T

T T

iu     a a a
. 

Referring to the derivation above, when there are three sinals coming to the array and they 

satisfy  11 3 11 1( )= ( ) a a  and 22 3 22 2( )= ( ) a a , phase ambiguity problem arises. In the following, we 

focus on proving and resolving the ambiguity problem. 

Proof: Assume 11 3 11 1( )= ( ) a a . 11 3( )a  and 11 1( )a represent the steering vectors of 3  and 1  

with subarray 1, respectively. It has 

2 3 2 1 1

2 3 2 1 1

3 sin 3 sin 2

sin sin 2

M M k

M M k

    
    

= +
 = +

                       (25) 

where 1 2 2,k M M= −（ ）. So it exists 11 3 11 1( ) ( ) a a .  

Similarly, we can get that 22 3 22 2( ) ( ) a a , where 22 3( )a  and 22 1( )a represent the steering 

vectors of 3  and 1  with subarray 2, respectively. And we can get that spectral peak function is 

broken, in this way, we can get the accurate DOAs estimation without ambiguous angle 4 , which 

means that the phase ambiguity problem is solved.  

DOF Analysis 

In this part, we will provide the DOF performance of the proposed method. The method can 

achieve the full DOFs. The Figure 8 depicts there are three signals coming to the array with 

1 23 =2M M= ， . And the signals are 1 210 , 27.35 =  =   and 3 35.01 =  .  

The Figure 9 depicts there are seven signals coming to the array with 1 25 =4M M= ， . And the 

signals are denoted as 1 2 3 4 5 630 , 10 , 10 , 30 , 35 , 40     = −  = −  =  =  =  = ， and 7 50 =  . From the 

Figure 8 and the Figure 9, we can see the proposed method can achieve the full DOF.  

 

Figure 8. The reconstructed array configuration can achieve the full DOFs of 3 sources signals. 
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Figure 9. The reconstructed array configuration can achieve the full DOFs of 7 sources signals. 

Cramer-Rao Bound 

The Cramer-Rao Bound (CRB), which is the lower bound for unbiased estimation, is provided 

as a standard to measure the estimation performance [35,36]. In this section, we derive the CRB of the 

designed IUCLA. 

Construct the steering matrix of IUCLA as 

11




 
=  
 

A
A

A
                                      (26) 

where A
 represents a sub-matrix containing the second row to the last one of 22A  since these 

two subarrays of IUCLA share the same element at the original point. 

Referring to [36], we can get the CRB as 

 
2

1
1Re [ ( ) ]

2

H H Hn
s

L
   

 −− = −  CRB D I A A A A D R                   (27) 

where 1

1
( ) ( )

L
H

s

t

t t
L =

= R s s

, 

,1 ,2 ,

1 2

, , ,
K

K

  

  
   

=     

a a a
D

 and ,ka
 denotes the k-th column of A . 

5. Simulation Results And Discussion 

In the simulation section, we validate the reliability of the proposed method compared with the 

methods in [33] and [34], where we employ an UCLA. And subarray 1 is with 1 5M = sensors. And 

subarray 2 is with 2 =7M  sensors. Also, we present the computational complexity comparison of the 

methods mentioned above and CRB comparison of UCLA, CLA and the designed IUCLA.   

A. Reliability Comparison 

Example 1: Assume three signals 1 212.37 , 30 =  =   and 3 64.16 =   coming to the array. It 

can be noticed that these signals satisfy the Eq. (10). In the simulation, we set SNR -5dB= and the 

number of snapshot 200L = . We provide the simulation result of method in [33] with the proposed 

method. From Figure 10(a), we can see that using the designed method has no ambiguity when three 

sources satisfy the Eq. (10), whereas the ambiguity-free method still has ambiguity problem. It 

concludes that the proposed method can tackle the phase ambiguity problem of case2. 
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Example 2: Assume three signals 1 220 , 38.88 =  =   and 3 47.90 =   coming to the array. It 

can be noticed that these signals satisfy the Eq. (10). In the simulation, we set SNR -5dB= and the 

number of snapshot 200L = . We provide the simulation result of method in [34] with the proposed 

method. From Figure 10(b), we can see that method in [34] is not that effective and the designed array 

using the spectral peak search algorithm has no ambiguity.  

 
 (a) 

 

(b) 

Figure 10. (a)Comparison of the proposed method with the method in [33] and (b)Comparison of the 

proposed method with the method in [34]. 
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Estimation Properties Analysis 

For the same simulation scenario mentioned above, we utilize the Root Mean Square Error 

(RMSE) to validate the estimation accuracy of the proposed method, which is defined as [37] 

( )2

,1 1

ˆ /
Q K

k p kp k
RMSE PK 

= =
= −                          (28) 

where P  is the number of Monte Carlo simulations, ,k̂ p


 stands for the estimate of the p -th 

trial for the k -th theoretical angle k
 . And in this paper, we set P =1000. Figure 11 and Figure 12 

show the RMSE versus SNR and the number of snapshots, respectively. And the CRB is provided. It 

is observed that the estimaiton accuracy of the proposed method improves with the increase in SNR 

and the number of snapshots owing to its robustness against noise. And it is close to the CRB.  

 

Figure 11. The RMSE versus SNR of the proposed method. 

 

Figure 12. The RMSE versus snapshots of the proposed method. 

Computational Complexity Analysis 

We compute the complexity of the proposed method. And compare the complexity with 

methods in [33] and [34]. The complexity of the propoded method is similar as the method in [33], 
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which is denoted as is 
2 3(O T L T GT T K+ + ( - ) ) , where 1 2 1T M M= + − . And 180 /G =   is the 

number of spectrum searching, where  is the searching step and we usually set 0.1 =  . L  is the 

number of the snapshots. And the method in [34] needs additional algorithm to distinguish the true 

DOAs besides MUSIC spectrum. So the complexity exceeds the method in [33] and the proposed 

method, which is 
2 3 2(O T L T GT T K QT+ + ( - ) + ) . Q is the number of searching of the additional 

beamforming technique. Table 1 presents the computational complexity comparison and the running 

time of the methods above, which is computed by the MATLAB R2015b under the condition of Intel 

(R) Xeon (R) CPU E430 @3.10GHz and 8GB random access memory, where 200, 3,L K= =

1 1( , ) (20 ,38.88 ,47.90 ),  =    1 25, 4,M M= =  which presents clearly that the proposed method is 

similar to the method in [33], and outperforms the method in [34]. Figure 13 depicts the complexity 

comparison versus the number of the subarray 2, where the number of the subarray 1 is 1 5M = . As 

the proposed method does not need additional procedure to identify the targets, it shows clearly that 

its complexity is much lower than the method in [34] and near to the method in [33].  

Table 1. Comparison of computational complexity. 

Algorithms Computational Complexity Running Time 

Method in [33] 
2 3(O T L T GT T K+ + ( - ) )  4.11ms 

Method in [34] 
2 3 2(O T L T GT T K QT+ + ( - ) + )  6.01ms 

The proposed 
2 3(O T L T GT T K+ + ( - ) )  4.12ms 

 

Figure 13. The RMSE versus snapshots of the proposed method. 

CRB Analysis  

We compare the estimation performance of the proposed method with IUCLA, UCLA and 

conventional ULA. In the simulation, for fair comparison, assume all arrays with the same number 

of sensors. We can conclude from Figure 14 and Figure 15 that the CRB and estimation performance 

of the proposed method with the 10 sensors is superior than the other two arrays.  
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Figure 14. The RMSE versus SNR based on different arrays. 

 

Figure 15. The RMSE versus Snapshot based on different arrays. 

6. Conclusions 

Coprime array, due to its advantages, attracts much attention in recent years. Since the element 

spacing is larger than half wavelength, the phase ambiguity problem results in. An ambiguity-free 

method is proposed in [33], which can tackle the ambiguity problem. In the case of two signals, this 

method can detect the targets effectively, neverthless, this method is not always true. In the case of 

three signals of which two signals have the same directional vector as the third DOA, ambiguous 

angle will arise. Aiming at resolving this problem, Yang. et. al proposed a modified method [34] 

which defines a decision variable  and combines the classic beamforming technique and MUSCI to 

eliminate the ambiguous angle. However, the accuracy of this method depends on the decision 

variable, and sometimes it is not true. Meanwhile, this method should need  additional algorithm 

to detect the real DOAs other than MUSIC spectrum. So we design an improved ambiguity-free 
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method by rearrangeing the reference sensor to change the relation of the directional vectors of 

subarrays. And MUSIC algorithm can be applied directly with no additional algorithm. Simulation 

results demonstrate that the proposed method can estimate DOAs effectively without ambiguous 

angles compared with the original methods. 
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