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Abstract: In this study we introduce the new classes Mα(sin) and Mα(cos) of α-convex functions
associated with sine and cosine functions. Also, we obtain the initial coefficient bounds for the first
five coefficients of the functions that belong to these classes. Further, we determine the upper bound
of Zalcman functional for the class Mα(cos) for the case n = 3, showing that the Zalcman conjecture
holds for this value. Moreover, the problem of the Fekete-Szegő functional estimate for these classes
is studied.
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1. Introduction and Preliminaries

Let T be the class consists of all analytic and normalized functions f , where f has the form

f (z) = z + a2z2 + a3z3 + . . . , z ∈ D, (1)

and D := {z ∈ C : |z| < 1} is the open unit disc; also, the subclass of T consisting of univalent
functions is denoted by S .

Let us consider two analytic functions P and Q in D. The function P is said to be subordinated

to Q, written symbolically as P(z) ≺ Q(z), if there exists an analytic function η in D, with η(0) = 0
and |η(z)| < 1 for all z ∈ D, such that P = Q ◦ η. Further, if Q is an univalent function in D, then the
following equivalence holds (see [1]):

P(z) ≺ Q(z) ⇔ P(0) = Q(0) and P(D) ⊂ Q(D).

The family of functions p analytic in D satisfying the condition Re p(z) > 0, z ∈ D, and of the
form

p(z) = 1 +
∞

∑
n=1

tnzn, z ∈ D, (2)

is denoted by P , that represents the well-known Carathéodory function class.
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In [2] Mocanu introduced and studied the well-known class of α-convex functions, that is

Mα :=
{

f ∈ T : Re
[
(1 − α)

z f ′(z)
f (z)

+ α

(
1 +

z f ′′(z)
f ′(z)

)]
> 0, z ∈ D

}
, α ≥ 0,

and the properties of this class of functions was extensively studied during a long period by many
researchers (see, for example [3–5]). In [6] it was proved that all α-convex functions are univalent
and starlike, while the subclass S∗ := M0 is called the class of starlike (normalized) functions in D and
S c := M1 represents the class of convex (normalized) functions in D.

Definition 1. Let us now define the new classes Mα(sin) and Mα(cos), with α ≥ 0, connected with the sine

and cosine functions, respectively, as follows:

Mα(sin) :=
{

f ∈ T : (1 − α)
z f ′(z)

f (z)
+ α

(
1 +

z f ′′(z)
f ′(z)

)
≺ 1 + sin z =: Φ(z)

}
, (3)

Mα(cos) :=
{

f ∈ T : (1 − α)
z f ′z
f (z)

+ α

(
1 +

z f ′′(z)
f ′(z)

)
≺ cos z =: Ψ(z)

}
. (4)

Remark 1. (i) Substituting the value of α = 0 and α = 1 in (3) we obtain the following subclasses which were

studied in [7–9], respectively, that are

S∗
sin := M0 (sin) , S c

sin := M1 (sin) .

(ii) Taking α = 0 in Equation (4) we obtain the subclass S∗
cos := M0 (cos) defined in [10], and by taking

α = 1 in Equation (4) we obtain the subclass S c
cos := M1 (cos).

(iii) Since the functions Φ and Ψ defined above have real positive parts in D, and moreover (see the

Figure 1A,B made with MAPLE™ computer software)

Re Φ(z) >
1

10
, Re Ψ(z) >

1
2

, z ∈ D,

it follows that the classes Mα(sin) and Mα(cos) are subsets of the class Mα, that is

Mα(sin), Mα(cos) ⊂ Mα ⊂ S∗ ⊂ S , α ≥ 0.

(a) The image of Re Φ
(

reit
)

, r ∈ [0, 1], t ∈ [0, 2π] (b) The image of Re Ψ
(

reit
)

, r ∈ [0, 1], t ∈ [0, 2π]

Figure 1. Figures for the Remark 1 (iii).
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The following lemmas are necessary to understand the proofs of our main results.

Lemma 1. If p ∈ P has the form (2), then

|tn| ≤ 2, for n ≥ 1, (5)

|ti+j − µtitj| ≤ 2 max{1; |1 − 2µ|}, for µ ∈ C, , (6)

and for any complex number ζ we have

|t2 − ζt2
1| ≤ 2 max {1; |2ζ − 1|} . (7)

The inequality (5) is the well-known Carathéodory’s result (see [11,12]), while (6) may be found
in [1], and the inequality (7) is from [13] (see also [14], Lemma 2).

Lemma 2 ([7](Lemma 2.2)). If p ∈ P has the form (2), then

|αt3
1 − βt1t2 + γt3| ≤ 2|α|+ 2|β − 2α|+ 2|α − β + γ|. (8)

2. Initial Coefficients Estimates for the Classes Mα(sin) and Mα(cos)

In this section the coefficients of the functions of the classes Mα(sin) and Mα(cos) are analysed,
and the upper bounds for the first five coefficients is obtained.

Theorem 1. If f ∈ Mα(sin) has the form (1), then

|a2| ≤
1

1 + α
,

|a3| ≤
1

2 (1 + 2α)
max

{
1;

3α + 1

(1 + α)2

}
,

|a4| ≤
1

6 (1 + 3α)

(
max

{
1;

6α(α − 1)
(1 + 2α) (1 + α)

}
+

−4α4 + 31α3 + 30α2 + 35α + 4

3 (1 + 2α) (1 + α)3

)
,

|a5| ≤
1

4 (1 + 4α)

[
1
2

(
max

{
1;

∣∣27α2 − 20α + 1
∣∣

9α2 + 12α + 3

}
+ 1

)

+
|Φ1(α)| |Φ2(α)|

18 (1 + 3α) (1 + 2α)2 (1 + α)2 + M(α)

]
.

where

Φ1(α) := −108α7 + 200α6 + 556α5 + 1042α4 + 631α3 + 409α2 + 145α + 5,

Φ2(α) := −180α5 − 8α4 + 69α3 + 187α2 + 75α + 1,

and

M(α) :=
8α2 + 1

9 (1 + 2α)2 max

{
1;

∣∣∣∣∣1 −
Φ2(α)

(1 + 3α) (1 + α)2 (8α2 + 1)

∣∣∣∣∣

}
.

Proof. If f ∈ Mα(sin), then there exists a function η that is analytic in D and satisfy the conditions
η(0) = 0 and |η(z)| < 1 for all z ∈ D, such that

(1 − α)
z f ′z
f (z)

+ α

(
1 +

z f ′′(z)
f ′(z)

)
= Φ (η(z)) = 1 + sin η(z), z ∈ D.
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Since f is of the form (1), it follows that

(1 − α)
z f ′z
f (z)

+ α

(
1 +

z f ′′(z)
f ′(z)

)
=1 + (1 + α) a2z +

(
−3αa2

2 + 4αa3 − a2
2 + 2a3

)
z2 (9)

+
(

7αa3
2 − 15αa2a3 + a3

2 + 9αa4 − 3a2a3 + 3a4

)
z3

+
(
−15αa4

2 + 44αa2
2a3 − a4

2 − 28αa2a4 − 16αa2
3

+4a2
2a3 + 16αa5 − 4a2a4 − 2a2

3 + 4a5

)
z4 + . . . , z ∈ D.

From the fact that η(0) = 0 and |η(z)| < 1 for all z ∈ D, if we define the function p by

p(z) :=
1 + η(z)

1 − η(z)
= 1 + t1z + t2z2 + . . . , z ∈ D,

we obtain that p ∈ P and

η(z) =
p(z)− 1
p(z) + 1

=
t1z + t2z2 + . . .

2 + t1z + t2z2 + . . .
, z ∈ D.

According to the above relation we get

1 + sin η(z) =1 +
1
2

t1z +

(
t2

2
− t2

1
4

)
z2 +

(
1
2

t3 −
1
2

t1t2 +
5

48
t3
1

)
z3

+

(
5

16
t2t2

1 −
1
32

t4
1 +

1
2

t4 −
1
2

t1t3 −
1
4

t2
2

)
z4 + . . . , z ∈ D, (10)

cos η(z) =1 − t2
1
8

z2 +

(
−1

4
t1t2 +

1
8

t3
1

)
z3

+

(
− 35

384
t4
1 −

1
8

t2
2 +

3
8

t2t2
1 −

1
4

t1t3

)
z4 + . . . , z ∈ D, (11)

and equating the corresponding coefficients of (9) and (10) we obtain

a2 =
t1

2(1 + α)
, (12)

a3 =
2 (1 + α)2 t2 + α (1 − α) t2

1

8 (1 + 2α) (1 + α)2 , (13)

a4 =
5 (1 + 2α) (1 + α)3 − 6 (1 + 7α) (1 + 2α) + 9 (1 + 5α) (1 − α) α

144 (1 + 3α) (1 + 2α) (1 + α)3 t3
1

+
6 (1 + 5α)− 8 (1 + 2α) (1 + α)

48 (1 + 3α) (1 + 2α) (1 + α)
t1t2 +

1
6 (1 + 3α)

t3, (14)

a5 =
1

4 (1 + 4α)

[
Φ1(α)

288 (1 + 3α) (1 + 2α)2 (1 + α)4 t4
1 −

Φ2(α)

48 (1 + 3α) (1 + 2α)2 (1 + α)2 t2
1t2

+
2 (1 + 7α)− 3 (1 + 3α) (1 + α)

6 (1 + 3α) (1 + α)
t1t3 +

(1 + 8α)− 2 (1 + 2α)2

8 (1 + 2α)2 t2
2 +

1
2

t4

]
. (15)

Using (12) we get

|a2| =
1

2 (1 + α)
|t1|,
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and from (5) we have |t1| ≤ 2, hence

|a2| ≤
1

1 + α
.

The relation (13) leads to

|a3| =
∣∣∣∣∣

t2

4 (1 + 2α)
− α (α − 1) t2

1

8 (1 + 2α) (1 + α)2

∣∣∣∣∣ ,

using triangle inequality we get

|a3| ≤
1

4 (1 + 2α)

∣∣∣∣∣t2 −
α (α − 1) t2

1

2 (1 + α)2

∣∣∣∣∣ ,

and according to (7), since α ≥ 0, we obtain

|a3| =
1

4 (1 + 2α)

∣∣∣∣∣t2 −
α (α − 1) t2

1

2 (1 + α)2

∣∣∣∣∣ ≤
1

4 (1 + 2α)
2 max

{
1;

∣∣∣∣∣2 ·
α (α − 1)

2 (1 + α)2 − 1

∣∣∣∣∣

}

=
1

2 (1 + 2α)
max

{
1;

3α + 1

(1 + α)2

}
.

The equality (14) leads to

|a4| =
1

3 (1 + 3α)

∣∣∣∣
1
4

(
t3 −

4 (1 + 2α) (1 + α)− 3 (1 + 5α)

2 (1 + 2α) (1 + α)
t1t2

)

+
t3

4
− 6 (1 + 7α) (1 + 2α)− 5 (1 + 2α) (1 + α)3 − 9 (1 + 5α) (1 − α) α

12 (1 + 2α) (1 + α)3 t3
1

∣∣∣∣∣ ,

and using the triangle inequality we get

|a4| ≤
1

3 (1 + 3α)

[
1
4

∣∣∣∣t3 −
4 (1 + 2α) (1 + α)− 3 (1 + 5α)

2 (1 + 2α) (1 + α)
t1t2

∣∣∣∣

+
|t3|
4

+
6 (1 + 7α) (1 + 2α)− 5 (1 + 2α) (1 + α)3 − 9 (1 + 5α) (1 − α) α

12 (1 + 2α) (1 + α)3 |t1|3
]

.

From (5), (6) and of Lemma 1, the above inequality implies that

|a4| ≤
1

6 (1 + 3α)

(
max

{
1;

6α(α − 1)
(1 + 2α) (1 + α)

}
+

−4α4 + 31α3 + 30α2 + 35α + 4

3 (1 + 2α) (1 + α)3

)
.
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By rearranging (15) we get

|a5| =
1

4 (1 + 4α)

∣∣∣∣
1
4

(
t4 −

6 (1 + 3α) (1 + α)− 4 (1 + 7α)

3 (1 + 3α) (1 + α)
t1t3

)

+
1
4


t4 −

−7
(
(1 + 8α)− 2 (1 + 2α)2

)

18 (1 + 2α)2 t2
2




− 5Φ2(α)

144 (1 + 3α) (1 + 2α)2 (1 + α)2 t2
1t2 +

Φ1(α)

288 (1 + 3α) (1 + 2α)2 (1 + α)4 t4
1

− 2 (1 + 2α)2 − (1 + 8α)

36 (1 + 2α)2 t2

(
t2 −

Φ2(α)

2 (1 + 3α) (1 + α)2
(

2 (1 + 2α)2 − (1 + 8α)
) t2

1

)∣∣∣∣,

and using triangle inequality we get

|a5| ≤
1

4 (1 + 4α)

[
1
4

∣∣∣∣t4 −
6 (1 + 3α) (1 + α)− 4 (1 + 7α)

3 (1 + 3α) (1 + α)
t1t3

∣∣∣∣

+
1
4

∣∣∣∣∣∣
t4 −

7
(

2 (1 + 2α)2 − (1 + 8α)
)

18 (1 + 2α)2 t2
2

∣∣∣∣∣∣

+
5|Φ2(α)|

144 (1 + 3α) (1 + 2α)2 (1 + α)2 |t1|2|t2|+
|Φ1(α)|

288 (1 + 3α) (1 + 2α)2 (1 + α)4 |t1|4

+
8α2 + 1

36 (1 + 2α)2 |t2|
∣∣∣∣t2 −

Φ2(α)

2 (1 + 3α) (1 + α)2 (8α2 + 1))
t2
1

∣∣∣∣

]
. (16)

Now we will find an upper bound for the each term of the right hand side of the above inequality,
as follows.

(i) According to (6) we have

∣∣∣∣t4 −
6 (1 + 3α) (1 + α)− 4 (1 + 7α)

3 (1 + 3α) (1 + α)
t1t3

∣∣∣∣ ≤ 2 max
{

1;

∣∣∣∣1 −
12 (1 + 3α) (1 + α)− 8 (1 + 7α)

3 (1 + 3α) (1 + α)

∣∣∣∣
}

= 2 max
{

1;

∣∣∣∣
27α2 − 20α + 1
9α2 + 12α + 3

∣∣∣∣
}

,

whenever α ≥ 0.
(ii) Using again the inequality (6) a simple computation shows that

∣∣∣∣∣∣
t4 −

7
(

2 (1 + 2α)2 − (1 + 8α)
)

18 (1 + 2α)2 t2
2

∣∣∣∣∣∣
≤ 2 max



1;

∣∣∣∣∣∣
1 −

7
(

2 (1 + 2α)2 − (1 + 8α)
)

9 (1 + 2α)2

∣∣∣∣∣∣





= 2 max

{
1;

∣∣∣∣∣
2(10α2 − 18α − 1)

9 (1 + 2α)2

∣∣∣∣∣

}
= 2,

whenever α ≥ 0.
(iii) For the sum of the third with the fourth term, using the inequality (5) we obtain

5|Φ2(α)|
144 (1 + 3α) (1 + 2α)2 (1 + α)2 |t1|2|t2|+

|Φ1(α)|
288 (1 + 3α) (1 + 2α)2 (1 + α)4 |t1|4

≤ |Φ1(α)| |Φ2(α)|
18 (1 + 3α) (1 + 2α)2 (1 + α)2 .
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(v) To get a majorant for the last term of the sum, according to (5) and (7) we have

8α2 + 1

36 (1 + 2α)2 |t2|
∣∣∣∣t2 −

Φ2(α)

2 (1 + 3α) (1 + α)2
(

2 (1 + 2α)2 − (1 + 8α)
) t2

1

∣∣∣∣
}

≤ 8α2 + 1

9 (1 + 2α)2 max

{
1;

∣∣∣∣∣1 −
Φ2(α)

(1 + 3α) (1 + α)2 (8α2 + 1)

∣∣∣∣∣

}
:= M(α).

Finally, using the upper bounds found to the items (i)–(v), from the inequality (16) we
conclude that

|a5| ≤
1

4 (1 + 4α)

{
1
2

(
max

{
1;

∣∣27α2 − 20α + 1
∣∣

9α2 + 12α + 3

}
+ 1

)

+
|Φ1(α)| |Φ2(α)|

18 (1 + 3α) (1 + 2α)2 (1 + α)2 + M(α)

}
.

Remark 2. A simple computation shows that the upper bounds obtained in the Theorem 1 could be written in

the following forms:

|a3| ≤





3α + 1
2(1 + 2α)(1 + α)2 , if 0 ≤ α ≤ 1,

1
2(1 + 2α)

, if α ≥ 1,

and

|a4| ≤





2α4 + 52α3 + 57α2 + 50α + 7

18 (1 + 3α) (1 + 2α) (1 + α)3 , if 0 ≤ α ≤ 9 +
√

97
8

,

14α4 + 49α3 + 12α2 + 17α + 4

18 (1 + 3α) (1 + 2α) (1 + α)3 , if α ≥ 9 +
√

97
8

.

For α = 0 and α = 1, Theorem 1 reduces to the following corollary:

Corollary 1. (i) If f ∈ S∗
sin has the form (1), then

|a2| ≤ 1, |a3| ≤
1
2

, |a4| ≤
7
18

, |a5| ≤
25
72

.

(ii) If f ∈ S c
sin has the form (1), then

|a2| ≤
1
2

, |a3| ≤
1
6

, |a4| ≤
7
72

, |a5| ≤
145
18

.

Remark 3. The upper bounds given by Theorem 1 are not the best possible, excepting those for the first two

coefficients.

(i) Thus, for the case α = 0, the function

f̂ (z) := z exp
(∫ z

0

sin(c t)

t
dt

)
= z + cz2 +

c2

2
z3 +

c3

9
z4 − c4

72
z5 − . . . , z ∈ D, with |c| = 1,
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is the solution f̂ ∈ T of the differential equation
z f̂ ′(z)

f̂ (z)
= 1 + sin(c z), |c| = 1, therefore f̂ ∈ S∗

sin :=

M0(sin). For f̂ we have

|a2| = 1, |a3| =
1
2

, |a4| =
1
9
<

7
18

, |a5| =
1

72
<

25
72

,

hence the estimations given by Theorem 1 are not sharp for |a4| and |a5|.
(ii) Similarly, for α = 1, the function

f̃ (z) :=
∫ z

0

[
exp

(∫ x

0

sin(c t)

t
dt

)]
dx

= z +
c

2
z2 +

c2

6
z3 +

c3

36
z4 − c4

360
z5 −− . . . , z ∈ D, with |c| = 1,

is the solution f̃ ∈ T of the differential equation 1 +
z f̂ ′′(z)

f̂ ′(z)
= 1 + sin(c z), |c| = 1, hence f̃ ∈ S c

sin :=

M1(sin). For this function

|a2| =
1
2

, |a3| =
1
6

, |a4| =
1

36
<

7
72

, |a5| =
1

360
<

145
18

,

thus the estimations of Theorem 1 are not sharp for |a4| and |a5|.

Theorem 2. If f ∈ Mα(cos) has the form (1), then

|a2| = 0, |a3| ≤
1

4(1 + 2α)
,

|a4| ≤
1

3 (1 + 3α)
, |a5| ≤

1
8(1 + 4α)

(
3α|1 − α|
(1 + 2α)2 +

11
3

)
.

Proof. If f ∈ Mα(cos), then equating the corresponding coefficients of (9) and (11) we obtain

a2 =0, (17)

a3 =− t2
1

16(1 + 2α)
, (18)

a4 =− t1

12 (1 + 3α)

(
t2 −

t2
1
2

)
, (19)

a5 =
4α(1 − α)

512 (1 + 4α) (1 + 2α)2 t4
1 −

t1

8(1 + 4α)

(
1
2

t3 −
3
4

t1t2 +
1
6

t3
1

)
− t2

2
32 (1 + 4α)

. (20)

Using (18) we get

|a3| =
1

16 (1 + 2α)
|t1|2,

and from (5) we have |t1| ≤ 2, hence

|a3| ≤
1

4 (1 + 2α)
.

The relation (19) leads to

|a4| =
∣∣∣∣∣

t1

12 (1 + 3α)

(
t2 −

t2
1
2

)∣∣∣∣∣ ,
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and according to (5) and (7), we obtain

|a4| ≤
1

3 (1 + 3α)
.

From the equality (20) we have

|a5| =
∣∣∣∣∣

4α(1 − α)

512 (1 + 4α) (1 + 2α)2 t4
1 −

t1

8(1 + 4α)

(
1
2

t3 −
3
4

t1t2 +
1
6

t3
1

)
− t2

2
32 (1 + 4α)

∣∣∣∣∣ ,

and using the triangle inequality we get

|a5| ≤
4α |1 − α|

512 (1 + 4α) (1 + 2α)2 |t1|4 +
|t1|

8(1 + 4α)

∣∣∣∣
1
2

t3 −
3
4

t1t2 +
1
6

t3
1

∣∣∣∣+
|t2|2

32 (1 + 4α)
.

From (5) and Lemma 2 for the appropriate values α =
1
6

, β =
3
4

, and γ =
1
2

, the above inequality

implies that

|a5| ≤
1

8(1 + 4α)

(
3α|1 − α|
(1 + 2α)2 +

11
3

)
,

and all the estimations are proved.

For α = 0 and α = 1 the Theorem 2 leads us to the following corollary.

Corollary 2. (i) If f ∈ S∗
cos has the form (1), then

|a2| = 0, |a3| ≤
1
4

, |a4| ≤
1
3

, |a5| ≤
11
24

.

(ii) If f ∈ S c
cos has the form (1), then

|a2| = 0, |a3| ≤
1
12

, |a4| ≤
1
12

, |a5| ≤
11

120
.

Remark 4. The estimations given by Theorem 2 are not the best possible, excepting those for the first

two coefficients.

(i) Thus, for α = 0 and if f ∈ S∗
cos, then the inequality |a3| ≤

1
4

is sharp and it is attained for the function

f∗ ∈ S∗
cos that satisfies the differential equation

z f ′∗(z)
f∗(z)

= cos(c z), |c| = 1, that is

f∗(z) := z exp
(∫ z

0

cos(c t)− 1
t

dt

)
= z − c2

4
z3 +

c4

24
z5 − 47c6

8640
z7 + . . . , z ∈ D, with |c| = 1.

(ii) Also, for α = 1 and if f ∈ S c
cos, then the inequality |a3| ≤

1
12

is sharp being attained for the function

f◦ ∈ S∗
cos that it is the solution of the differential equation 1 +

z f ′′◦ (z)
f ′◦(z)

= cos(c z), |c| = 1, and

f◦(z) :=
∫ z

0

[
exp

(∫ x

0

cos t − 1
t

dt

)]
dx

= z − c2

12
z3 +

c4

120
z5 − 47c6

60480
z7 + . . . , z ∈ D, with |c| = 1.
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3. The Fekete-Szegő Inequality for the Classes Mα(sin) and Mα(cos)

In this section we determine upper bounds for the Fekete-Szegő functional for the new defined
classes Mα(sin) and Mα(cos).

Theorem 3. If f ∈ Mα(sin) has the form (1), then

|a3 − ρa2
2| ≤

1
2 (1 + 2α)

max

{
1;

|2ρ (1 + 2α)− (1 + 3α)|
(1 + α)2

}
, ρ ∈ C.

Proof. If f ∈ Mα(sin), then from (12) and (13) we get

a3 − ρa2
2 =

1 + 3α

2 (1 + 2α)

t2
1

4 (1 + α)2 +
1

4 (1 + 2α)

(
t2 −

t2
1
2

)
− ρ

t2
1

4 (1 + α)2 ,

=
1

4 (1 + 2α)

(
t2 −

2ρ (1 + 2α)− α (1 − α)

2 (1 + α)2 t2
1

)
,

and using (7) it follows that

|a3 − ρa2
2| ≤

1
4 (1 + 2α)

2 max

{
1;

∣∣∣∣∣
2ρ (1 + 2α)− α (1 − α)

(1 + α)2 − 1

∣∣∣∣∣

}
,

=
1

2 (1 + 2α)
max

{
1;

|2ρ (1 + 2α)− (1 + 3α)|
(1 + α)2

}
.

For α = 0 and α = 1, the following special are obtained.

Corollary 3. (i) If f ∈ S∗
sin, then

|a3 − ρa2
2| ≤

1
2

max {1; |2ρ − 1|} , ρ ∈ C.

(ii) If f ∈ S c
sin, then

|a3 − ρa2
2| ≤

1
6

max
{

1;
|3ρ − 2|

2

}
, ρ ∈ C.

Remark 5. 1. According to the Remark 3, the upper bounds given by Theorem 3 are the best possible for α = 0
and α = 1.

2. If f ∈ Mα(cos) has the form (1), from (17), (18) and (5) we get

∣∣∣a3 − ρa2
2

∣∣∣ = |a3| =
|t1|2

16(1 + 2α)
≤ 1

4 (1 + 2α)
, ρ ∈ C,

hence to find the upper bound of the Fekete-Szegő functional is obvious.

4. The Zalcman Functional Estimate for the Class Mα(cos)

Zalcman conjectured in 1960 that the coefficients of the functions f ∈ S having the form (1)
satisfies the inequality ∣∣∣a2

n − a2n−1

∣∣∣ ≤ (n − 1)2, n ≥ 2.
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Further, the equality is obtained only for the Koebe function k(z) =
z

(1 − z)2 and its rotations. Like it

was shown in [15,16] it implies the Bieberbach conjecture, that is |an| ≤ n, n ≥ 2. It is noteworthy that
for n = 2 the above inequality is a well-known consequence of the Area Theorem and could be found in
[1, Theorem 1.5]. In the recent years the Zalcman functional has been given a special interest by many
researchers (see, for example, [17–19]).

In the next result, for n = 3 we find the Zalcman functional upper bound for the class Mα(cos)
that allows us to prove that the Zalcman conjecture is holds in this case.

Theorem 4. If f ∈ Mα(cos) has the form (1), then

∣∣∣a2
3 − a5

∣∣∣ ≤ 170α2 + 170α + 41

96 (1 + 4α) (1 + 2α)2 . (21)

Proof. For f ∈ Mα(cos), using the equalities (18) and (20) it follows that

a2
3 − a5 =

70α2 + 70α + 19

768 (2α + 1)2 (4α + 1)
t4
1 +

1
8 (1 + 4α)

(
1
2

t1t3 +
1
4

t2
2 −

3
4

t2
1t2

)
,

=
t1

8 (1 + 4α)

(
70α2 + 70α + 19

96 (2α + 1)2 t3
1 −

3
4

t1t2 +
1
2

t3

)
+

1
32 (1 + 4α)

t2
2,

and from the triangle inequality we get

|a2
3 − a5| ≤

|t1|
8 (1 + 4α)

∣∣∣∣
70α2 + 70α + 19

96 (2α + 1)2 t3
1 −

3
4

t1t2 +
1
2

t3

∣∣∣∣+
1

32 (1 + 4α)
|t2|2.

Using the inequalities (5) of Lemma 1 and (8) of Lemma 2, the above relation leads easily
to (21).

Since

4 − 170α2 + 170α + 41

(96 + 384α) (1 + 2α)2 =
6144α3 + 7510α2 + 2902α + 343

(96 + 384α) (1 + 2α)2 > 0, for all α ≥ 0,

using the result of the Theorem 4 we deduce that:

Corollary 4. If f ∈ Mα(cos) has the form (1), then

∣∣∣a2
3 − a5

∣∣∣ ≤ 4,

therefore the Zalcman conjecture hold for the class Mα(cos) if n = 3.

5. Conclusions

This paper mainly focuses on finding the upper bounds of the first five coefficients for the classes
Mα(sin) and Mα(cos) of α-convex functions connected with the sine and cosine function. Also, we
obtained the estimate for Fekete-Szegő functional for these classes, we found the upper bound for
Zalcman functional for these class Mα(cos) for the case n = 3, and this allows us to prove that the
Zalcman inequality holds for this case.

Like we mentioned in the Remarks 3 and 4 the upper bounds we get for |a4| and |a5| for
the functions that belong to the classes Mα(sin) and Mα(cos) are not the best possible, hence the
estimation given in Theorem 4 is not sharp. The problem of finding the best bounds of the above
mentioned coefficients and functionals for these classes remains an interesting open question.
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