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Abstract: In this study we introduce the new classes M, (sin) and M,(cos) of a-convex functions
associated with sine and cosine functions. Also, we obtain the initial coefficient bounds for the first
five coefficients of the functions that belong to these classes. Further, we determine the upper bound
of Zalecman functional for the class M, (cos) for the case n = 3, showing that the Zalcman conjecture
holds for this value. Moreover, the problem of the Fekete-Szeg® functional estimate for these classes
is studied.
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1. Introduction and Preliminaries

Let 7 be the class consists of all analytic and normalized functions f, where f has the form
f(z):z+azzz+a3z3+...,zE]D), (1)

and D := {z € C: |z| < 1} is the open unit disc; also, the subclass of 7 consisting of univalent
functions is denoted by S.

Let us consider two analytic functions P and Q in ID. The function P is said to be subordinated
to Q, written symbolically as P(z) < Q(z), if there exists an analytic function 7 in D, with #(0) = 0
and |7(z)| < 1forall z € D, such that P = Q o 7. Further, if Q is an univalent function in D, then the
following equivalence holds (see [1]):

P(z) < Q(z) & P(0) = Q(0) and P(D) C Q(D).

The family of functions p analytic in D satisfying the condition Re p(z) > 0, z € D, and of the
form

p(z) =1+ Z thz", z € D, )
n=1

is denoted by P, that represents the well-known Carathéodory function class.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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In [2] Mocanu introduced and studied the well-known class of a-convex functions, that is

My = {fGT:Re [(1_“)2;;22))+a<1+zj{/”(iz))>] >O,ZE]D)}, a>0,

and the properties of this class of functions was extensively studied during a long period by many
researchers (see, for example [3-5]). In [6] it was proved that all a-convex functions are univalent
and starlike, while the subclass $* := M is called the class of starlike (normalized) functions in I and
S := M represents the class of convex (normalized) functions in ID.

Definition 1. Let us now define the new classes M (sin) and M (cos), with a > 0, connected with the sine
and cosine functions, respectively, as follows:

M (sin) = {f eT -0, (1 + Zf”(z)> <1+sinz = (D(z)}, 3)

f(z) f'(z)
M, (cos) := {f €T :(1—n) ;{5 +a (1 + z}‘/((zz))> < cosz =: ‘I’(z)} . 4)

Remark 1. (i) Substituting the value of &« = 0 and « = 1 in (3) we obtain the following subclasses which were
studied in [7-9], respectively, that are

S;in =M (Sin) y Scin = My (sin) .

(i1) Tuking & = 0 in Equation (4) we obtain the subclass S}, 1= M (cos) defined in [10], and by taking
« = 1 in Equation (4) we obtain the subclass S&y 1= M1 (cos).

(iii) Since the functions ® and ¥ defined above have real positive parts in D, and moreover (see the
Figure 1A,B made with MAPLE™ computer software)

1 1
Re®(z) > 10’ Re¥(z) > 5 2€ D,

it follows that the classes My(sin) and M,(cos) are subsets of the class Mg, that is
M, (sin), My (cos) C M, C S*C S, a > 0.

2% 7n am s

72

iy
4

TR
4

t t

(a) The image of Re (reif), re[0,1], t € [0,27] (b) The image of Re ¥ (reif), re0,1],t € [0,27]
Figure 1. Figures for the Remark 1 (iii).
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The following lemmas are necessary to understand the proofs of our main results.
Lemma 1. If p € P has the form (2), then
|ta| <2, forn >1, ©)
Itiyj — ptitj] < 2max{1; |1 —2ul}, forn € C,, 6)
and for any complex number { we have
|t2 = ¢t7| < 2max {1;(2¢ —1[} @)

The inequality (5) is the well-known Carathéodory’s result (see [11,12]), while (6) may be found
in [1], and the inequality (7) is from [13] (see also [14], Lemma 2).

Lemma 2 ([7](Lemma 2.2)). If p € P has the form (2), then
|t} — Btrts + yts| < 2laf +2[p — 24| +2|w — B+ |- 8)

2. Initial Coefficients Estimates for the Classes M, (sin) and M,(cos)

In this section the coefficients of the functions of the classes M, (sin) and M, (cos) are analysed,
and the upper bounds for the first five coefficients is obtained.

Theorem 1. If f € M, (sin) has the form (1), then

1
1+a’

2(1+2a) 1+
{ 6a(e—1) } —4a* +31a% 4 3042 + 35a + 4
max< 1; 3 ,
) (1+2a) (1+4a) 3(1+2a) (14 «)

05| < 1 L - 1“2702—200&4—1‘ 1
=41 +4a) |2 " 902+ 120+ 3

las] <

® ®
|1 (a)] | z(v;)I ; M(a)]'
18 (14 3a) (1 +24)* (1 +«)
where
@ (a) := —108a” + 200a® + 5564° + 1042a* + 6314 + 409a* + 1454 + 5,
@) (a) ;= —180a° — 8a* + 694> + 1874 + 754 + 1,
and

D, (a)
(1+3a) (1+a)* (842 +1)

2
M(a) := Mmax {1; 1-—

9(142a)

} |

Proof. If f € M,(sin), then there exists a function 7 that is analytic in D and satisfy the conditions
7(0) = 0and |5(z)| < 1forall z € D, such that

zf'z 2f"(z)\ _ PR
(1—uw) @ +u <1+ 72) > =® (y(z)) =1+siny(z), z € D.
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Since f is of the form (1), it follows that
zf'z ( zf”(z)) 2 2 2
1—« +all+ =1+ (14+a)arz+ | —3aa; +4aas — a5 +2a3 ) z 9)
1956 i ) = (e 3 20)
+ (7¢xag — 15aaya3 + a% + 9aay — 3azas + 3a4> 23
+ (—150“1‘2l + 44aadaz — aj — 28naya, — 16aa’
+4a%a3 + 16aas — 4aray — 2a§ + 4a5) 4., zeD.
From the fact that #(0) = 0 and |(z)| < 1 for all z € D, if we define the function p by
1+1(z2) 2
=—"t=1 D
(z) T=4(2) +tz+tz"+...,zeD,
we obtain that p € P and
_ 2
U(Z)ZP(Z) 1: t1z + trz —;— zeD.
p(z)+1 24 Hz+Hz2+...
According to the above relation we get
, o1 th BY , (1 1 535\ 3
S, b1a 1 Lo\ 4
£ 1 1
cos(z) =1— glzz + <—4t1t2 + 8t§’> z3
35 4, 1, 3, , 1 4
———1t] — =t —trt] — — 11t D 11
+< 3841 82+821 ghis zZ4+...,z€D, (11)
and equating the corresponding coefficients of (9) and (10) we obtain
t
_ 12
20 +a) 12
2(1+a)*t+a(l—a)t?
a3 = ( ) ( 2) 1 (13)
8(1+4+2a)(1+a)
L. _5(1+20) (1+a)®—6(1+7a) (1+24)+9(1+50x) (1 SOLY:
! 144 (1+3a) (1+2a) (1 + )’ !
6(14+5a)—8(1+2a)(1+a) 1
t1t t 14
8131 r2a)(1ra) 2T garam™ (14)
o5 = 1 Dy () - D, (w) 2t
4(1+4a) [288(1+3a) (1+20)* (1+a)* ~ 48(1+3a) (1+24)* (1+«)?
2(1+7a) —3(1 1 1 —2(1+2a), 1
6(1+3a)(1+a) 8 (1+2a) 2
Using (12) we get
1
tl,

o2 = 5w
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and from (5) we have |t;| < 2, hence
1

1+a’

laz| <
The relation (13) leads to

th a(a—1)8

4(1+20)  8(1+42a)(1+a)?|

|az| =

using triangle inequality we get

1 a(e—1)#
lag| < tr 5
4(1+20) 2(1+a)
and according to (7), since & > 0, we obtain
—1)# -1
lag| = L _ e )21 L 2max < 1;|2- % ( )2 1
4(1+420) 2(1+a) 4(1+420) 2(1+a)

The equality (14) leads to

1 ‘1( _4(1+2¢x)(1+¢x)—3(1+5zx)tt)
3(1+3a) 3 2(1+2a) (1+a) 12

lag| = 1

s 6(1+7a)(1+20) —5(1+20) (1+a)° —9(1+50) (1-a)a,

4 12(1+2a) (1+a)®

7

and using the triangle inequality we get

1 4(1+2a) (1+a)—3(1+5n)
ol <33y |3 ) 2(1+20) (1+a) tltz‘
t3]  6(1+7a) (142x) —5(1+2a) (1+a)®—9(1+5a) (1—a)a 31
+T+ 3 |t1| ’
12(1+2«) (1 +a)

From (5), (6) and of Lemma 1, the above inequality implies that

1 6a(a —1) —4a* + 314 4 30a% + 354 + 4
lay| <————~ | max< 1; 3 .
6 (1+3a) (1+2a) (1+4a) 3(1+2a) (1+a)
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By rearranging (15) we get

1 6(1+30)(1+a)—4(1+7)
las] = 4(1+4a)|4 (t”‘_ 3(1+3a)(1+a) t1t3>

+i (t4— —7((1+8o¢) —2(1+2a)2) t%)

18 (1 4 2a)°
B 5@2(0&) t2t2 qDl(“) t4
144 (1430) (1+20)> (1+a)® "~ 288(1+3a) (1+20)2(1+a)* '
C2(1+2a)* — (1+8a) b <t2 B @ (a) t2>
36 (1 +20)° 2(1+30) (10 (2(1+20)2 — (148x))

7

and using triangle inequality we get

1

6(1+3a)(1+a)—4(1+7x)
~4(1+4a) B

3(1+3x) (1+a)

|as| < f1t3

1
ik
( (1+20) — (1+88)) _
18 (14 24)°
5/®;(a)]
144 (14 3a) (14 24) (1 + @)

82 +1
2|t2|
36 (1 +24)

-
4

2

Dute)] o
288 (14 3a) (1 +2a)? (1 +a)*
(Dz(lX) 5
2(1+43a) (1+a)? (erz—i—l))tl 1 (16)

7 t1l?ta] +

tr —

Now we will find an upper bound for the each term of the right hand side of the above inequality,
as follows.
(i) According to (6) we have

6(1+3a)(1+a)—4(1+7a) 12(143a) (1+a) —8(1+7a)
ty — titz| <2 11—
4 3(1+3a) (1+a) 173] = cmax 3(1+3x) (1+a)
omad 1 270% — 200 + 1
B "1 902 +12a +3

whenever o > 0.
(if) Using again the inequality (6) a simple computation shows that

7 (201420 = (1+8)) <2max{l' 7(2(1—}—20&)2—(14-804))‘}

ty — t
18 (1 + 2a)? 2 9 (1 +2a)?

= 2max {1; } =2,

whenever o > 0.

(iii) For the sum of the third with the fourth term, using the inequality (5) we obtain

1—

2(10a? — 18 — 1)
9(1+42a)

5|q)2(’x)| |t1|2|t2|+ |(D1(0‘)| |t |4
144 (14 3a) (14 2a)* (1 +a)? 288 (1+3a) (1 +2a)% (1 +a)*
|1 (a)] [P2(a)]

<

18 (1+3a) (1 +24)* (1 +a)*
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(v) To get a majorant for the last term of the sum, according to (5) and (7) we have
8a2 +1
— bl - >
36 (14 2a) 2(1+3a) (1+a)

2
9(1+2n)

P, (a) 12

(214202 - 1+80c))1}
(

} = M(a).

Finally, using the upper bounds found to the items (i)—(v), from the inequality (16) we

conclude that
1 1 |27a2 — 20a + 1]
< - = Loo————— 1841
|”5|4(1+4a){2<max{ 922 + 120+ 3 }+ )
@ @
| 1(06)" 2(02‘)‘ 2+M(0¢)}.
18 (1+3a) (1424)* (1 +a)

(I)z 0()

1—
(1+3a) (1+a)* (842 +1)

O

Remark 2. A simple computation shows that the upper bounds obtained in the Theorem 1 could be written in
the following forms:

3a+1 .
, 0<a<l,
Aoy T O0ses
|a3|§ 1
- ’ >
201+ 24’ fazl,
and A 5 )
20* + 5243 + 57 +5O“+Z/ i 0§a§9+\/97
il 18 (14 3a) (1+2a) (1 +a) 8
4] >
140* + 4903 + 1202 + 170 +4 . 9+97

180130 (1120 (1) 1 %7

For « = 0 and a« = 1, Theorem 1 reduces to the following corollary:

Corollary 1. (i) If f € 8, has the form (1), then

S

1 25
<
2] <1, as| < 5 |ag| < 18 |as| < 7
(ii) If f € S, has the form (1), then
1 1 7 145
- - <L
<3 ol <y lul<Z, i< e

Remark 3. The upper bounds given by Theorem 1 are not the best possible, excepting those for the first two
coefficients.
(i) Thus, for the case « = 0, the function

2 3 4

-~ Z sin(ct) ¢4 5 .
— dr) - < .z €D, with || =1,
f(z) :==zexp (/0 ; ) z4cz + 22 + g% ~ i T z € D, with |c|

doi:10.20944/preprints202312.0543.v1
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. — . . . zf'(z) . _ S ex
is the solution f € T of the differential equation e = 1+sin(cz), [c| = 1, therefore f € S, =
z
Mo(sin). For f we have
@l =1, lasl =5, Jasl =2 < =, las| = o5 < o
2 — 4 3*21 4*9 18/ 5*72 70’
hence the estimations given by Theorem 1 are not sharp for |ay| and |as)|.
(ii) Similarly, for « = 1, the function
~ z ¥ sin(ct) )]
z) 1= ex dt || dx
er= [ low (0
2 3 4
:z+%zz+%z3+§—624f;ﬁz5ff..., z €D, with |c] =1,
. .= ) . . zf”(z) . =
is the solution f € T of the differential equation 1 + 0 = 1+sin(cz), [c| = 1, hence f € S5, :=
z
M (sin). For this function
ol =3, lasl = g laal = 5 < o5, las| = 55 < =0
AT W M Ee 7 T 360 18
thus the estimations of Theorem 1 are not sharp for |ay| and |as|.
Theorem 2. If f € M,(cos) has the form (1), then
a2l =0, las| € gy
AT B = a0 ey
1 1 3all—a| 11
< — < — .
94 < 33 1950 = s ((1+2a)2 + 3>

Proof. If f € M,(cos), then equating the corresponding coefficients of (9) and (11) we obtain

ay =0, (17)
2
O (18)
16(1 + 2a)
_ f f
M= T 121+ %) (tz 2 ) (19)
4a(1—a) 4 t (1 3 1 3) ts
as = t— Rt S DY Hpy ) [ E— 20
> T512(1+4a) (1 +20)? ' B(1+4a) \2° Al R YTy 20)
Using (18) we get
a3l = et |
N 16 (1+20)
and from (5) we have |t;| < 2, hence
1
9] < 320

The relation (19) leads to

lag| =

7

¢ 2

1 1
t2

12 (1 + 3a) ( 2 )
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and according to (5) and (7), we obtain

1
< —.
194 < 3330y
From the equality (20) we have

4a(1—a) 4 t ( , . +1t3> t2
- 53— 72 - e raeal
512(1+4a) (1+20)2 0 8(1+4a) \2° 412761 32(1+4a)

|as| =

and using the triangle inequality we get

|ta]?

da |1 —«f 4 |t1]
t 2L
I+ 32 (1 + 4a)

1. 3 1,
U Sty 4t
512 (1 + 4a) (1 + 20)? 8(1 + 4a) ‘2 a7 e

4 6 *

las| <

From (5) and Lemma 2 for the appropriate values « = %, B = Z, and y = 1 , the above inequality
implies that

las| < 1 3a|l — «f L L
=81 +4a) \(1+22)2 " 3
and all the estimations are proved. [

For &« = 0 and a = 1 the Theorem 2 leads us to the following corollary.

Corollary 2. (i) If f € Siyg has the form (1), then

11

1
|a2| - Ol |a3| 4 |ﬂ4‘ 3 |a5| —_ 24

(ii) If f € S& has the form (1), then

11

1 1
a2 =0, |as] < =12’ las| < 120

1’ lag] <

Remark 4. The estimations given by Theorem 2 are not the best possible, excepting those for the first
two coefficients.

(i) Thus, for « = 0 and if f € S&, then the inequality |az| < — L zs sharp and it is attained for the function

zfi(2)
fe(2)

fr € S& that satisfies the differential equation = cos(c z), lc| =1, that is

2

Zcos(ct) —1 c c* 5 470 .
#\2) = — =z— 2+ 20— =7 +. D, =1
fi(z) == zexp (/0 ; dt) 2= Z3 Y 864OZ , z €D, with|c|

(ii) Also, for « = 1 and if f € SC, then the inequality |az| < iz is sharp being attained for the function

1
fo € Sios that it is the solution of the differential equation 1 + J{, ((Z)) =cos(cz), [c| =1, and
z *cost—1
o(z) == ———dt )| dx
foe)i= [ few ([ <5 a)]
2 4 6
—z—c—z +C— 5_ A7c 2 +..., zeD, with le] = 1.

12 120 60480
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3. The Fekete-Szeg6 Inequality for the Classes M, (sin) and M, (cos)

In this section we determine upper bounds for the Fekete-Szegd functional for the new defined
classes M, (sin) and M (cos).

Theorem 3. If f € M, (sin) has the form (1), then

1 120 (14 2a) — (1 + 3a)|
— 2 < .
las — paz| < 3+ 20) max{l, 1o ,peC.

Proof. If f € M,(sin), then from (12) and (13) we get

1+ 3u £ 1 £
3t by | P
(1+20)4(14a)> 4(1+20) 2 4(1+a)

v (2t 20 —a(la),
4(1+20) 20+ )

o2 —
a3 — pay =3

and using (7) it follows that

20 (14+2a) —a (1 —a)

(14—0&)2 !

2

1
— a3 <2 1
lag — pa3| ST max < 1;

—#max 1 [20 (1 +2a) — (14 3«)|
JEIEERT Rl AT |

O

For & = 0 and a = 1, the following special are obtained.

Corollary 3. (i) If f € S, then

sin’
5 1
las — pas| < Emax{1;|2p—1|}, peC.

(i) If f € S,,, then

|as — pa3| < imaX{l; |3p2_2’}, peC

Remark 5. 1. According to the Remark 3, the upper bounds given by Theorem 3 are the best possible for « = 0
and o = 1.

2. If f € My/(cos) has the form (1), from (17), (18) and (5) we get

It
16(1+24) — 4(1+ 2a)

a5 — pa3 | = |as| = ,pEC,

hence to find the upper bound of the Fekete-Szeg6 functional is obvious.

4. The Zalcman Functional Estimate for the Class M, (cos)

Zalcman conjectured in 1960 that the coefficients of the functions f € S having the form (1)
satisfies the inequality

a2 —az,q,l‘ <(n-1)2% n>2.
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Further, the equality is obtained only for the Koebe function k(z) = 5 and its rotations. Like it

z
==
was shown in [15,16] it implies the Bieberbach conjecture, that is |a,| < n, n > 2. It is noteworthy that
for n = 2 the above inequality is a well-known consequence of the Area Theorem and could be found in
[1, Theorem 1.5]. In the recent years the Zalcman functional has been given a special interest by many
researchers (see, for example, [17-19]).

In the next result, for n = 3 we find the Zalcman functional upper bound for the class M (cos)
that allows us to prove that the Zalcman conjecture is holds in this case.

Theorem 4. If f € M,(cos) has the form (1), then

(21)

) 17042 + 170a + 41
‘”3 - ‘15‘ < 3
96 (1 +4a) (14 2n)

Proof. For f € M,(cos), using the equalities (18) and (20) it follows that

) 70a +70a +19 4 1 <1 1,
{13—115

32
= - “hbz+ 15— =t t2>,
76820+ 1)2 (4a+1) | 8(1+4a)\271° 42 4!
t 706> + 706 +19 5 3 1 1 )
= —Shbh+ ot )+ 15,
8(1+40c)< 96 2at1)? 1 a1 B ) T AT

and from the triangle inequality we get

1

|t1] 700c2+700c—|—19t3 3 1

2 2
asz —as| < — -ttty + st3| + o5 12|
5 =] <5+ 4 9%(2c+12 1 41727 B+ a)
Using the inequalities (5) of Lemma 1 and (8) of Lemma 2, the above relation leads easily
to(21). O
Since

17042 +170a +41 614403 + 7510a% + 2902 + 343
(96 + 384) (1 4 2a)? (96 + 384a) (1 4 2a)?

>0, foralla > 0,

using the result of the Theorem 4 we deduce that:
Corollary 4. If f € M,(cos) has the form (1), then

3 —as| <4,
therefore the Zalcman conjecture hold for the class M (cos) if n = 3.

5. Conclusions

This paper mainly focuses on finding the upper bounds of the first five coefficients for the classes
M, (sin) and M, (cos) of a-convex functions connected with the sine and cosine function. Also, we
obtained the estimate for Fekete-Szeg6 functional for these classes, we found the upper bound for
Zalcman functional for these class M, (cos) for the case n = 3, and this allows us to prove that the
Zalcman inequality holds for this case.

Like we mentioned in the Remarks 3 and 4 the upper bounds we get for |a4| and |as| for
the functions that belong to the classes M, (sin) and M, (cos) are not the best possible, hence the
estimation given in Theorem 4 is not sharp. The problem of finding the best bounds of the above
mentioned coefficients and functionals for these classes remains an interesting open question.
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