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Abstract: ERK1/2 phosphorylation is frequently downregulated in the early phase of colon
tumorigenesis with subsequent activation of ERKS. In the current work, we studied the advantage
of ERK1/2 downregulation for tumor growth by dissecting the individual functions of ERK1 and
ERK2. The patient sample data demonstrated decreased ERK1/2 phosphorylation in the early phase
of tumorigenesis followed by upregulation of the phosphorylation in late-stage colon
adenocarcinomas with intratumoral invasion or metastasis. In vitro results indicated SOD3-
mediated coordination of small GTPase RAS regulatory genes in the inhibition of RAS-ERK1/2
signaling. In vitro and in vivo studies suggested that ERK2 has a more prominent role in chemotactic
invasion, collective migration, and cell proliferation than ERK1. Noteworthily, simultaneous ERK1
and ERK2 expression inhibited collective cell migration and proliferation but tended to promote
invasion, therefore suggesting that ERK1 controls ERK2 function. According to the present data,
phosphorylated ERK1/2 at the early phase of colon adenocarcinoma limits tumor mass expansion,
whereas reactivation of the kinases at the later phase of colon carcinogenesis is associated with the
initiation of metastasis. Additionally, our results suggest that ERK1 is a regulatory kinase, which
coordinates ERK2-promoted chemotactic invasion, collective migration, and cell proliferation. Our
findings indicate that ROS, especially H20:, are associated with the regulation of ERK1/2
phosphorylation in colon cancer either increasing or decreasing the kinase activity. The data
suggesting a growth-promoting role for ERK2 and a regulatory role for ERK1 could result in new
avenues in the developmental strategies for cancer therapy.
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1. Introduction

The four main MAPKSs responding to stress signaling, p38 MAPK, extracellular-signal-regulated
kinase (ERK1/2), Big MAP kinase (ERK5), and c-jun N-terminal kinase (JNK), have a pivotal function
in cancer progression (Koul et al., 2013). The kinase p38 MAPK has been shown to have a profound
effect in the early phase of inflammation-associated colon tumorigenesis stimulating inflammatory
cytokine and chemokine production, thereby modulating the innate immune system and
contributing to the initiation of tumorigenesis (Del Reino et al., 2014). Correspondingly, it has been
shown that the inhibition of p38 MAPK activates epidermal growth factor receptor ErbB3 with
subsequent activation of MEK1/2-ERK1/2 independently of RAS or RAF (Pattingre et al., 2003).

In metastatic colon cancer, deregulation of the RAS-MEK1/2-ERK1/2 signaling pathway
downstream of epidermal growth factor receptor by RAS-associated mutations confers a selective
growth and survival advantage to tumor cells giving them an acquired resistance to anti-EGFR
therapy (Van Emburgh et al,, 2014). ERK1/2 are intermediator molecules in signal transduction
contributing to oncogene-induced senescence (OIS) (Leikam et al., 2008), the transformation of
primary cells (Mitsushita et al., 2004), increased superoxide anion (Oz) and hydrogen peroxide
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(H202) levels by stimulating nox1 mRNA synthesis, NOXO1 activation, and extracellular superoxide
dismutase (SOD3) production (Parascandolo and Laukkanen, 2019). ERK1/2 kinases not only
promote growth but also contribute to migration, cell cycle arrest, survival, and differentiation
correlating on the cellular location of phosphorylated ERK1/2 and the type the activated downstream
target molecules (Del Reino et al., 2014, Guo et al., 2011, Hacohen Lev-Ran and Seger, 2023, Lemieux
et al., 2011, Wu et al., 2020).

Previous studies have demonstrated downregulation of ERK1/2 phosphorylation in colon
tumorigenesis in adenomas and early phase adenocarcinomas (Eggstein et al., 1999, Park et al., 1999),
with a subsequent increase in ERK5 phosphorylation to maintain the progression of tumorigenesis
(de Jong et al., 2016) and the stem cell-like malignant phenotype of cancer cells (Pereira et al., 2019).
The ERK1/2 activation is regulated by a complex network of tyrosine kinase receptors, cellular
kinases, small GPTases and their regulatory proteins, protein scaffolds, phosphatases, mutations in
the oncogenes, and ROS (Andreyev et al., 2001, Balmanno and Cook, 2009). RAS-ERK1/2 feedback
regulatory mechanisms contribute to redox balance through fine-tuning of small GTPase activity,
consequently affecting the activation status of the signaling pathway (Cammarota et al.,, 2015b,
Laukkanen et al., 2015, Laurila et al., 2009).

In the current work, we studied the advantage of ERK1/2 inactivation for the progression of
colon tumorigenesis. Our data corroborated previous observations (Eggstein et al., 1999) showing
downregulation of the phosphorylation of ERK1/2 in adenomas and in early phase adenocarcinomas,
which, based on our in vitro data, could be caused by ROS-mediated downregulation of RAS-BRAF-
MEK1/2-ERK1/2 signaling cascade. Simultaneous ERK1 and ERK2 expression significantly inhibited
cell proliferation but it enhanced in vitro cancer cell chemotactic invasion through extracellular
matrix and metastasis observed in patients. In vitro and in vivo data suggested a more pronounced
role for ERK2 tumorigenesis as compared to ERK1, which could function as a regulatory kinase
promoting or inhibiting ERK2 function.

Therefore, the data may suggest that the downregulation of ERK1/2 phosphorylation is needed
for the initial colon tumor expansion, whereas upregulation of ERK1/2 activation promotes the
metastasis.

2. Methods

2.1. Tissue staining

Human adenocarcinoma sections were stained with ERK1/2 (Cell Signaling, Danvers, MA, USA)
and hematoxylin-eosin (Sigma-Aldrich, St. Louis, MO, USA). The ethical permissions for the study
were approved by Clinica Mediterranea ethical committee, Naples, Italy, Monaldi Hospital ethical
committee (Deliberazione del Direttore Generale n:o 1239), Naples, Italy, and by the University of
Federico II of Naples ethical committee (protocol number 394/19), Naples, Italy. Informed consent
was asked from patients participating the study.

2.2. Cells

Normal colon epithelial CCD841cells (ATCC, Manassas, VA, USA) were cultured in EMEM/10%
FBS/L-alanine-I-glutamine/ penicillin-streptomycin (ATCC). DLD1 cells (ATCC) were cultured in
RPMI/10% FBS/L-alanine-l-glutamine (Life Technologies, Grand Island, NY, USA), penicillin-
streptomycin (Sigma, St. Louis, MO, USA). HCT116 cells (ATCC) were cultured in DMEM/10%
FBS/L-alanine-l-glutamine/ penicillin-streptomycin. Human colon cells were transduced with GFP,
human ERKI1, or ERK2 lentiviruses (MOI 1) or RNAi viruses for the kinases (MOI 1) (ABM,
Vancouver, Canada). Mouse embryonic fibroblasts (MEF) clones (MEF GFP, MEF SOD3 cl6, MEF
SOD3 cl8, and MEF SOD3 cl5) (Castellone et al., 2014) were cultured in xMEM (Mediatech, Manassas,
VA, USA) supplemented with 10% FBS (Hyclone, Logan, UT, USA), non-essential amino acids
(Mediatech) and L-alanine-l-glutamine (Life Technologies), and penicillin-streptomycin (100 mg/L)
(Sigma).
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Normal colon CCD841 epithelial cells is a cell line with limited life span of less than 100
population doublings. DLD1 cells, derived from adenocarcinoma, are tumorigenic in nude mice
carrying several activated oncogenes. The culture contains 0.2-0.4% of Side Population (SP) stem cells
and 1% of CD133 positive cells (Kai et al., 2009, Tavaluc et al., 2007) indicating their undifferentiation
status. HCT116 cells lack the differentiation capacity almost completely, form primary tumors in
nude mice, and have been demonstrated to metastasize. Analysis of HCT116 has suggested that the
cultures are formed almost solely of CD166 positive cancer stem cells explaining their highly
aggressive nature (Kai et al., 2009, Rajput et al., 2008) (Supplemental Figure S1). MEF clones cl5, cl6,
and cl8 were derived from individual mouse embryos transduced with an ecotropic retrovirus
containing GFP marker gene or rabbit sod3 cDNA (Castellone et al., 2014, Parascandolo and
Laukkanen, 2021).

2.3. Gene expression analysis

RNA isolated using a RNeasy mini kit (Qiagen, Hilden, Germany) was reverse transcribed to
cDNA by QuantiTect reverse transcription kit (Qiagen). The quantitative PCR was done using SYBR
green PCR master mix (Applied Biosystems, Foster City, CA, USA). The primers are listed in the
Supplemental Table S1.

2.4. Western blot analysis

The proteins were isolated from the tissues and cells were homogenized in lysis buffer (50
mmol/L HEPES pH 7.5, 150 mmol/L NaCl, 10% glycerol, 1% Triton X-100, 1 mmol/L EGTA, 1.5
mmol/L MgCl2, 10 mmol/L NaF, 10 mmol/L sodium pyrophosphate, 1 mmol/L Na3VO4, 10 ug
aprotinin/ml, and 10ug leupeptin/ml) (Sigma). The following antibodies were used: phospho-ERK1/2
(Thr202/Tyr204) (Cell Signaling), ERK1/2 (Cell Signaling), phospho-MEK1/2 (Ser217/221) (Cell
Signaling), MEK1/2 (Cell Signaling), phopho-ERK5 (Thr218/Tyr220) (Merck KGaA, Darmstadt,
Germania), ERKS5 (Cell Signaling), RAS (Cell Signaling), RAC (Cell Signaling), RHO (Cell Signaling),
CDC42 (Cell Signaling), and TUBULIN (Cell Signaling). The intensity of Western blot bands was
analyzed using Image]J software.

2.5. Pull-down assay for MEF SOD3 clones

Cells were grown to 60% confluence and were collected for small GTPase RAS and RAC pull-
down analysis. The cells were lysed using an ice-cold buffer containing 20 mM HEPES (pH 7.4), 0.1
M NaCl, 1% Triton X-100, 10 mM EGTA, 40 mM glycerophosphate, 20 mM MgCl2, 1 mM Na3VO4, 1
mM dithiothreitol, a mixture of protease inhibitors, and 1 mM phenylmethylsulfonyl fluoride. The
lysates were shaken gently for 15 min with a purified GST-fusion protein containing the CRIB domain
of PAK1 (p21 activated kinase) bound to glutathione-Sepharose beads. The mix was washed three
times using lysis buffer. The GTP-bound forms of RAS (Santa Cruz, Dallas, TX, USA) and RAC
(Millipore, Burlington, MA, USA) were analyzed by Western blotting.

2.6. Growth analysis

To analyze cell proliferation, 10 000 cells were seeded on 24-well plates in triplicates and counted
daily for four days.

2.7. Matrigel migration

To study the cellular invasion towards chemo-attractant using transwell migration assay, 100 pl
of Matrigel (Corning, Corning, NY, USA) at 1 mg/ml was added to the migration chambers (8
microns, BD, San Jose, CA, USA) and allowed to stabilize at room temperature for 30 minutes. To
analyze the invasion, 50000 cells were seeded on the Matrigel in 5% FBS medium and let to migrate
toward 10% FBS medium for 48 to 72 hours depending on the cell line characteristics. To detect the
migrated cells, Matrigel was removed from the chambers, cells were fixed with 7% paraformaldehyde
(Sigma), washed with PBS, and stained with Cristal violet (Sigma). The migrated cells were counted
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from the high-power microscope fields (Leica DMI3000B microscope and Leica Application Suite
camera software, Leica, Wetzlar, Germany). We used naive counterpart fibroblasts isolated from the
same patients as TAFs as controls.

2.8. Wound healing

For the collective cell migration assay, cells on 6-well plates (Corning) were grown to 60%
confluency, the culture was broken with a scratch, and images (Leica) of the culture were taken at 24-
hour intervals. The distance between the edges of the scratch was measured for the calculation of the
closure percentage.

2.9. Mice

BALB/c Nude Mice (Plaisant, Rome, Italy) were xenografted with HCT116 cells transduced with
GFP (n=6 xenografts), ERK1 (n=6 xenografts), ERK2 (n=6 xenografts), or ERK1/2 (n=6 xenografts). To
study the specific effect of individual ERK1 or ERK2 kinases, we used 1x10¢ cells, which was the
lowest number of cells resulting in tumorigenesis in GFP control animals. Tumor growth was
measured with caliber twice a week for five weeks. Animal ethical permission was requested and
approved by Plaisant.

2.10. Statistical analysis

The experiments were repeated three times. The p-values (*p<0.05, **p<0.01, ***p<0.001) were
determined by two-tail independent samples t-tests. The results are expressed as the mean + SD.

3. Results

3.1. Inverse correlation of ERK/2 phosphorylation and progression of colon tumorigenesis

A recent mouse model study emphasized the adaptability of colon cancer signaling suggesting
increased ERK5 kinase phosphorylation to compensate for an abrogation of ERK1/2 activation in
colon tumorigenesis in maintaining cell proliferation (de Jong et al, 2016). To dissect the
characteristics of ERK1/2 kinase activation in colon tumorigenesis, were stained human normal colon,
adenoma, and adenocarcinoma tissue sections with phosho-ERK1/2 antibody. We observed robust
ERK1/2 phosphorylation in the normal mucosa, most prominently at the luminal regions, and
markedly reduced phosphorylation of the kinase in adenomas and adenocarcinomas (Figure 1a,b).

The reduced activation of the kinases in adenomas and adenocarcinomas was confirmed by
Western blot analysis, thereby corroborating the previous observations (Figure 1d,e) (Eggstein et al.,
1999, Park et al., 1999). We further demonstrated recovery of the ERK1/2 phosphorylation in patients
diagnosed with advanced pT3 and pT4 adenocarcinoma with intratumoral or peritumoral invasion
to the vasculature, perineural invasion, or metastasis in lymph nodes (Figure 1c—e). Therefore, the
patient data suggested that ERK1/2 activation contributes to the migration or invasion of colon cancer
cells.
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Figure 1. ERK1/2 staining in histological tissue sections. a. Histological staining of normal colon,
low- and high-grade adenoma, and stage 1-IV adenocarcinoma. b. Description of the staining data.
Normal colon tissue close to the lumen of the colon was intensely positive suggesting a high
endothelial cell proliferation rate. The positivity decreased in stages I-IIl. In stage III there was
intensive staining in neoplastic glands. In stage IV the most intensive staining was observed in the
infiltration areas near the fibroblast-rich region. c. Diagnosis of patients used for Western blot analysis
in the panel d. Patient 1, patient 2, and patient 6 had intratumoral invasion or metastasis. Patient 3
had moderately differentiated adenocarcinoma without metastasis. Patient 4 had lipomatosis, and
patient 5 had moderately differentiated adenocarcinoma without metastasis d. Western blot analysis
of patients. We used normal tissue, adenoma, and adenocarcinoma tissues from each patient for the
analysis. e. Intensity analysis of phosphoERK1/2 staining from the Western blot. All patients
demonstrated reduced ERK1/2 activation in adenomas. The reduction was further augmented in
patients 3, 4, and 5. Patients 1, patient 2, and patient 6 showed increased phosphorylation as compared
to adenomas. The p-values are *p<0.05, **p<0.01, ***p<0.001, and ***p<0.0001. To see this illustration
in color, the reader is referred to the online version of this article.


https://doi.org/10.20944/preprints202312.0533.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 December 2023 doi:10.20944/preprints202312.0533.v1

3.2. ERK1 and ERK2 expression in vitro models

The mitogen signal transduction can be mediated by ROS, such as SOD3-produced H202, which
modifies the activation of phosphotyrosine phosphatases (PTPs) (Oshikawa et al., 2010), small
GTPases (Laukkanen et al., 2015), and their downstream kinases. To study the SOD3-related signaling
involved in ERK1/2 phosphorylation we used a mouse embryonic fibroblast (MEF) model composed
of MEF clones cl6, cl8, and cI5 and a GFP control (Castellone et al, 2014) demonstrating
downregulation of ERK1/2 phosphorylation in cl5 with corresponding upregulation of ERK5
activation in MEF SOD3. The Western blot analysis further suggested moderately upregulated
MEK1/2 and ERK1/2 activation in the cI8 (Figure 2a) confirming previous results demonstrating a
regulatory role for the enzyme in mitogen signaling (Laukkanen et al., 2015). The analysis of the
expression and activation of ERK1/2 in CCD841 normal colon cells, DLD1 colon adenocarcinoma
cells, aggressive HCT116 colon carcinoma cells suggested downregulation of both the
phosphorylation and the expression of total ERK1/2 proteins in DLD1 and HCT116 cells (Figure 2b).

To dissect the factors regulation ERK1/2 phosphorylation in SOD3 overexpressing cells, we first
turned our focus on the expression of dual specific phosphatases (dusps) 5, 6, 7, and 9, which regulate
the activation of mitogen-activated protein kinase (MAPK) family, especially ERK1/2 kinases.
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Figure 2. Characterization of ERK1/2 expression in vitro models. a. Western blot analysis of MEF
GFP, MEF SOD3 cl6, MEF SOD3 cl8, and MEF SOD3 cl5. The analysis demonstrated moderately
increased ERK1/2 phosphorylation in cl8 and markedly decreased phosphorylation in cl5. MEK1/2
staining supported the ERK1/2 activation results. The phosphorylation of ERK5 was moderately
increased in MEF SOD3 cl5 cells. b. ERK1/2 phosphorylation in CCD841, DLD1, and HCT116 cells.
Both the phosphorylation and total ERK1/2 levels are lower in DLD1 and HCT116 adenocarcinoma
cells as compared to CCD841 normal colon epithelial cells. c. The mRNA expression analysis for dusp5,
6, 7, and 9 showed significantly decreased expression in all MEF SOD3 clones. d. Small GTPase
regulatory gene expression analysis showed decreased rgl1, rgs4, adap2, and rasal mRNA levels in
MEF SOD3 cl6 and cl8. In MEF SOD3 cl5 adap2 expression was at the same level as in MEF GFP
controls, while rasal expression was significantly increased. e. Pull down assay for RAS, RAC, CDC42,
and RHO in MEF GFP, MEF SOD3 cl6, MEF SOD3 cl8, and MEF SOD3 cl5. f-i. Intensity measurement
of small GTPase pulldown assay. j. RAS, RAC, and ERK1/2 Western blot in MEF SOD3 cl5 cell
overexpressing ras or rac. The p-values are *p<0.05, **p<0.01, **p<0.001, and ***p<0.0001. The p-value
was determined using GFP expressing cells as a comparison control.
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As shown in Figure 2c, the mRNA expression of the studied dusps was not increased in MEF
SOD3 clones, thereby suggesting other factors causing the reduced ERK1/2 phosphorylation in MEF
SOD3 cl5 (Figure 2c). The analysis of the expression of small GTPase and heterotrimeric G protein
regulatory genes RGL1 (Ral guanine nucleotide dissociation stimulator-like 1), adap2 (ArfGAP with dual
PH domains 2), rgs4 (regulator of G protein signaling 4), and rasal (RAS GAP activating protein)
demonstrated significantly (p>0.001) upregulated rasal mRNA synthesis in MEF SOD3 cl5 (Fig, 2d).
The data, therefore, suggested the contribution of small GTPase RAS regulatory protein GAP in the
downregulation of ERK1/2 phosphorylation.

Next, to analyze the activation status of small GTPases we performed a pull-down assay for
RAS, RAC, RHO, and CDC42, demonstrating a significant (p>0.001) downregulation of RAS GTP
loading in all MEF SOD3 clones (Figure 2e—i). RAC activation was upregulated in MEF SOD3 clone
6 and significantly downregulated in clones 8 and 5. RHO was significantly (p<0.001) upregulated in
all clones and CDC42 in clones 6 and 5, respectively (Figure 2e-i). To further characterize the
contribution of SOD3 on ERK1/2 activation, we studied the effect of small GTPase RAC and RAS
transient overexpression on the activation of ERK1/2 in the MEF SOD3 cI5 (Figure 2j). RAS had a
pronounced role in the phosphorylation of ERK1/2 kinases although also RAC stimulated the
activation, suggesting parallel RAS and RAC signaling in ERK1/2 activation.

3.3. ERK1 and ERK2 have different functions in cell migration and proliferation in vitro

Next, we studied the individual effect of ERK1 and ERK2 kinases in the colon in vitro models.
The chemotactic invasion assay suggested different capacities for ERK1 and ERK2 to promote the
cellular invasion towards chemo-attractant through extracellular matrix (Figure 3a—j). In normal
colon CCD&841 cells both ERK1 and ERK2 supported cell migration (p<0.001) that was further
enhanced by the combined expression of ERK1/2 (p<0.001) (Figure 3a,b). RNA interference abolished
the stimulatory effect of ERK1 and significantly (p<0.01) decreased the invasion in ERK2 and ERK1/2
cells as compared to GFP control cells (Figure 3c,d). In DLD1 cells ERK1 demonstrated a complete
deficiency to promote invasion, whereas ERK2 significantly (p<0.01) stimulated invasion, which was
further enhanced by simultaneous ERK1 and ERK2 expression similar to CCD841 cells (Figure 3e,f).
In HCT116 cells, ERK2 demonstrated increased migration potential (p<0.001), whereas ERK1 and
ERK1/2 invasion was at the level of control cells (Figure 3g,h). To study the effect of ERKI and ERK2
in MEFs, we used MEF SOD3 cl5 cells that from now on are called MEF SOD3 GFP, MEF SOD3 ERK1,
MEF SOD3 ERK2, or MEF SOD3 EKR1/2. The analysis of MEF clones further corroborated the results
suggesting a more prominent role for ERK2 in the stimulation of invasion, which was further
enhanced by simultaneous expression of ERK1 and ERK2 (Figure 3i,j).
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Figure 3. Characterization of the effect of ERK1/2 overexpression on migration in vitro in CCD841,
CCD84 RNAi, DLD1, HCT116, and MEF SOD3 cells. a-e. Chemotactic invasion through Matrigel.
According to the results, ERK2 overexpression resulted in a higher invasion rate as compared to ERK1

overexpression. RNAIi significantly reduced the invasion potential of ERK2 and ERK1/2 cells below
GFP control cells. The p-values are *p<0.05, **p<0.01, ***p<0.001, and ****p<0.0001. The p-value was
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determined using GFP expressing cells as a comparison control. (* refers to ERK1, # refers to ERK2, ¢
refers to ERK1/2).

The collective cell migration assay, which regulates the cellular movement as structural and
functional unit (Friedl and Gilmour, 2009), corroborated the more prominent function of ERK2. The
ERK?2 overexpression demonstrated faster scratch recovery in all time points analyzed in CCD841,
DLD1, HCT116, and MEF SOD3 as compared to ERK1 expressing cells, which had no effect on cell
migration (Figure 4a,b,e—j). RNA interference in CCD841 cells decreased the migration capacity of
ERK?2 cells below the control cells, whereas it significantly (p<0.001) increased the collective migration
of ERK1 and ERK1/2 expressing cells (Figure 4c,d). It is noteworthy that the combined expression of
ERK1 and ERK2 in DLD1, HCT116, and in MEF SOD3 cells significantly (p<0.001) reduced cellular
movement as compared to GFP transduced controls (Figure 4i,j).

a c e g I
ccD84t CCD841 RNAI DLD1 HCT118 MEF SOD3
12001 e 100 100 100
+- - GFP e 2 oo ap e
@ —
& 80 S8 { —o—ERK2 880
5 < bl ERK1/2 ]
5 5 5
= 60 ® 60 2 60
40 40 40
- - == GFP
20 20 20 o= SRR
~——0—— ERK2
0 1o i} 0 e 0 i ERK1/2
Oh 24h 48h 72h Oh 24h 48h T2h Oh 24h 48h T72h Oh 24h 48h 72h

[« DB41 Sr.rb! HCT116 GFP |

'
v
'4

ke i 5 4 %
= ; !B | ' i
D841 shERK1" B . oy HCT1,1,6 ERK? .
i el L, - B

CRR N S i .

= ta {

i

]

ST T

.: |' . K it
ceoast ERK2 . D841shER
ccna41 shERK112 v

Da41 ERK1/2 e
]
"'i ) ’hf >

Figure 4. Collective cell migration in wound healing assay. ERK2 overexpression promoted
significantly higher migration in CCD841, DLD1, and MEF SOD3 cells as compared to gfp expressing
controls. ERK1 overexpression had an obsolete effect on cell movement, whereas simultaneous ERK1
and ERK2 overexpression reduced collective cell migration in DLD1, HCT116, and MEF SOD3 cells.
RNAI for ERK1 and ERK2 significantly reduced the collective migration of RNAi ERK2 cells below
the GFP control cells, whereas it significantly increased migration of RNAi ERK1/2 cells. The p-values
are *p<0.05, *p<0.01, **p<0.001, and ****p<0.0001. The p-value was determined using gfp expressing
cells as a comparison control. (* refers to ERK1, # refers to ERK2, ¢ refers to ERK1/2).

H T116 ERKZ

The analysis of the cell proliferation further strengthened the tumor promoter role of ERK2 in
cancer cells. The ERK2 overexpression resulted in a higher proliferation rate as compared to the
overexpression of ERK1 or GFP control gene in all cell lines studied (Figure 5a,c—e). The combined
overexpression of ERK1 and ERK?2 increased growth in CCD841 normal colon cells (Figure 5a) but
decreased the growth in DLD1 and MEF SOD3 cultures as compared to GFP controls (Figure 5c,e),
similar to collective cell migration (Figure 4e,fij). RNAi in CCD841 cells eliminated the growth
stimulatory role of ERK2 and increased cell proliferation in ERK1 and ERK1/2 cells as compared to
control cells (Figure 5b).
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Figure 5. Characterization of the effect of ERK1/2 overexpression on cell proliferation in vitro and in
vivo in CCD841, CCD84 RNAi, DLD1, HCT116, and MEF SOD3 cells. a—e. ERK2 overexpression
significantly increased cell proliferation in all cell models studied, whereas ERK1 overexpression had
an obsolete effect. Simultaneous ERK1/2 expression promoted cell proliferation in CCD841 cells,
whereas it inhibited growth in DLD1 and MEF SOD3 cells. Similarly to collective migration, RNAi
significantly reduced cell proliferation of RNAi ERK2 cells and increased RNAi ERK1/2 cells. f. In
vivo tumorigenesis of HCT116 cells overexpressing GFP, ERK1, ERK2 or ERK1/2 in nude mice. ERK2
overexpressing cells demonstrated the highest tumor formation capacity corroborating in vitro data.
g-h. Tumor size and tumor initiation capacity further strengthened the obtained results suggesting
moderately reduced tumor sizes in ERKI overexpressing cells and highest tumor sizes in ERK2
expressing cells. The tumor formation capacity data showed two tumors out of six transplantations
for GFP control cells, three tumors out of six transplantations for ERK1 cells, four tumors out of six
transplantations for ERK2 cells, and two tumors out of six transplantations for ERK1/2 cells. The p-
values are *p<0.05, **p<0.01, **p<0.001, and ****p<0.0001. The p-value was determined using GFP
expressing cells as a comparison control. (* refers to ERK1, # refers to ERK2, ¢ refers to ERK1/2).

The previous reports have suggested that ERK1/2 could influence differentiation of the cells,
such as PKC-Ca*-stimulated differentiation of epidermal keratinocytes and stem cell factor-
erythropoietin-mediated maturation and expansion of erythroid progenitor cells (Lemieux et al.,
2011, Seo et al., 2004, Sui et al., 1998). To dissect the function of ERK1 in colon tumorigenesis, we
analyzed OCT4, VIMENTIN, CHI3, and CDX2 differentiation marker mRNA expression. According
to the analysis, ERK1 overexpression does not promote differentiation DLD1 cells (Supplemental
Figure S2).

To enforce the data showing variable growth potential of ERK1 and ERK2 expressing cells, we
injected 1x106 HCT116 cells subcutaneously in BALB c¢/A nude mice. HCT116 cells expressing ERK2
cells resulted in larger tumors as compared to ERK1 or ERK1/2 cells, thereby validating the in vitro
data (Figure 5f,g). Besides their increased tumorigenic potential, ERK2 cells had a higher incidence of
tumor initiation: 66% (four out of 6 injections) of HCT116 ERK2 transplantations resulted in
detectable tumors, whereas 50% (three out of 6 injections) of HCT116 ERK1 cells, 33% (two out of 6
injections) of HCT116 ERK1/2 cells transplantations, and 33% (two out of 6 injections) of HCT116 GFP
cells yielded tumors (Figure 5h).

4. Discussion

The ability of RAS-ERK1/2 signaling to coordinate diverse cellular processes is essential for
different biological functions including ontogenesis (Cammarota et al., 2015a). In cancer, ROS,
predominantly H20z, along with Oz, coordinate cell signaling, tumor initiation, oncogene-induced
senescence, and benign to malignant transformation (Irani et al., 1997, Kamiya et al., 2016, Mitsushita
et al., 2004, Parascandolo and Laukkanen, 2019, Sarkisian et al., 2007). ROS and redox enzymes, such


https://doi.org/10.20944/preprints202312.0533.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 December 2023 doi:10.20944/preprints202312.0533.v1

10

as SOD3, are involved in a variety of cellular phenomena ranging from DNA damage and point
mutations to tissue-level metabolic disorders (Chini et al., 2021, Laukkanen et al., 2001, Lee et al.,
2019, Parascandolo and Laukkanen, 2021). SOD3, by balancing the local concentrations of Oz~ and
H:0;, forms a positive feedback loop to regulate the RAS-MEK1/2-ERK1/2 signaling pathway (Laurila
et al., 2009) through the coordination of guanine nucleotide exchange factor (GEF), GTPase activating
protein (GAP), and guanosine nucleotide dissociation inhibitor (GDI) expression (Laukkanen et al.,
2015). The current data demonstrating SOD3-derived downregulation of ERK1/2 phosphorylation
(Figure 2) suggest the involvement of H202 in the coordinated interaction of RAS, ERK1/2, and ERK5
in colon tumorigenesis.

ERK1 and ERK2 kinases are generally co-phosphorylated by the same extracellular stimuli,
although the kinases are suggested to have different biological functions ranging from a severe
abnormality of the placenta, with subsequent embryonic lethality (Hatano et al., 2003), to a distinct
expression pattern in the adult murine brain (Di Benedetto et al., 2007). After the activation, ERK1
and ERK2 are generally translocated to the nucleus, although they can be also detected at the
cytoplasmic compartment, e.g., at Golgi and the cell membrane (Casar et al., 2008, Kondoh et al.,
2005). The inactivation of ERK1 and ERK2 isoform phosphorylation in the early phase of colon
tumorigenesis (Eggstein et al., 1999, Park et al., 1999) with subsequent increased phosphorylation of
ERKS5 (de Jong et al., 2016) is an intriguing phenomenon proposing an inhibitory function for ERK1/2
in the initial phases of adenocarcinoma development. Another ambiguous phenomenon is the
activation of ERK1/2 kinases in metastatic patients (Figure 1).

In the current work, we demonstrated a more pronounced role for ERK2 than for ERK1 in
promoting chemotactic invasion, collective migration, and proliferation (Figures 3-5). Notably, ERK1
alone had only a minor, if any, stimulatory role on cellular functions or differentiation marker
expression (Supplemental Figure 52), whereas the simultaneous overexpression of ERK1 and ERK2
reduced collective migration and cell proliferation. The reduced cellular growth caused by ERK1/2
transduction could be a growth limiting factor in the early phase of tumor expansion and therefore a
reason for the downregulation of ERK1/2 phosphorylation in colon adenomas. The loss of ERK1/2
phosphorylation at the early benign phase of colon tumorigenesis (Eggstein et al., 1999, Park et al,,
1999) with subsequent ERKS activation (de Jong et al., 2016) could provide newly transformed cancer
cells with a growth advantage.

ERK1/2 have at least 49 direct nuclear and cytoplasmic downstream substrates, mostly
transcriptional factors Ets family members, including Ets-1 and Elk1, Smad proteins, c-Fos, c-Myc,
and ATF2, and a markedly higher number of indirect targets, which, as a network, coordinate cellular
functions (Whitehurst et al., 2004, Yang et al., 2019). Therefore, the decreased cell proliferation of
simultaneous ERK1/2 expression in our data could result from the inhibition of nuclear translocation
of the kinases. The entry into the cell cycle, G1 to S phase progression, occurs only after nuclear
translocation of phosphorylated ERK1/2 that stimulates ELK1 transcription and reinitiation of DNA
replication (Brunet et al, 1999, Mebratu and Tesfaigzi, 2009), which then activates the DNA
replication machinery.

Another plausible explanation for reduced growth and collective cell migration caused by
simultaneous ERK1 and ERK2 expression could be the inhibition of dimerization of ERKSs, which has
been reported to halt cell proliferation. Dimerization enhances ligand binding in the nucleus with
subsequent entry to cell cycling. Correspondingly, inhibition of dimerization inhibits loss of cellular
differentiation, growth, and tumorigenesis (Casar et al., 2008, Khokhlatchev et al., 1998).

The present data showing increased chemotactic invasion in cells transduced with both ERK1
and ERK2 kinases (Figure 3a—j) may suggest that the kinases are needed for the initiation and
progression of metastasis in colon carcinogenesis. This is supported by a previous article suggesting
that KRAS and BRAF mutations with consequent activation of MEK1/2-ERK1/2 signaling, increase
the risk of lung metastasis of colorectal cancer patients (Tie et al., 2011). A recent work consolidates
the current results by proposing increased risk of colon cancer liver metastasis caused by the ERK1/2-
stimulated upregulation of ANGPT2 and CXCR4 (Urosevic et al, 2020), therefore proving a
mechanism of how ERK1/2 signaling may promote colon cancer cell invasion.
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According to our results, ERK1 expressed alone had a minor or no role in colon cancer behavior
but together with ERK2 expression, the kinase pair had an impact on in vitro invasion, migration,
proliferation and in vivo tumorigenesis. Correspondingly, RNA interference of both ERK1 and ERK2
in CCDA481 cells abolished the ability of cells to invade through extracellular matrix, and significantly
increased the collective migration and cell proliferation as compared to CCD841 cells overexpressing
ERK1 and ERK2. Therefore, ERK1 could be a regulatory kinase coordinating the activity of ERK2
either by enhancing or inhibiting the ERK2 response in the cells.

In conclusion, we demonstrated that in colon adenocarcinoma in vitro and in vivo models ERK2
stimulates migration and proliferation of cells, while ERK1 alone has minor or no effect on cellular
functions. Simultaneous ERK1/2 expression in cancer cells markedly reduced colon cancer cell
proliferation and tumor formation, therefore suggesting that ERK1 regulates ERK2. The growth
disadvantage of ERK1/2 expressing cells could explain the inhibition of the kinase phosphorylation
in the early stages of colon tumorigenesis. Lastly, the variable function for ERK1 and ERK2 kinases
in colon cancer models could result in novel innovations as part of future anti-cancer therapies for
colon cancer.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org.
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