

1 Supplementary Materials

5

6

7

8

9

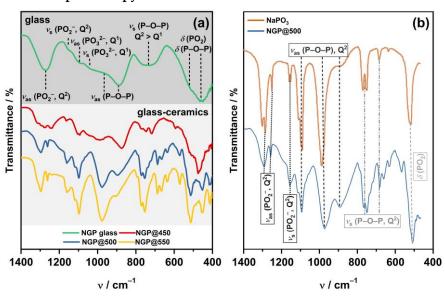
10

11

12

13

14


15

Crystallization Behavior of Na₂O-GeO₂-P₂O₅ Glass System:

(Micro)Structural, Electrical, and Dielectric Study

- Sara Marijan 1, Marta Razum 1, Kristina Sklepić Kerhač 1, Petr Mošner 2, Ladislav Koudelka 2, Jana Pisk 3, Andrea
- Moguš-Milanković ¹, Željko Skoko ^{4,*} and Luka Pavić ^{1,*}
 - Division of Materials Chemistry, Ruder Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; smarijan@irb.hr, mrazum@irb.hr, ksklepickerhac@gmail.com, mogus@irb.hr, lpavic@irb.hr
 - ² Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice, Czech Republic; petr.mosner@upce.cz, ladislav.koudelka@upce.cz
 - ³ Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; jana.pisk@chem.pmf.hr
 - Department of Physics, Faculty of Science, University of Zagreb, Bijenička 32, 10000 Zagreb, Croatia; zskoko@phy.hr
 - * Correspondence: L. P. (lpavic@irb.hr), Ž. S. (zskoko@phy.hr)

1. IR-ATR spectroscopy

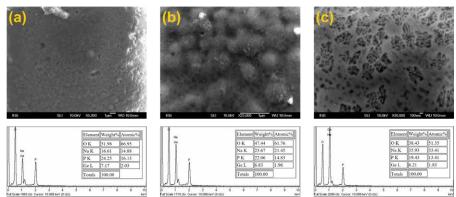
Figure S1. (a) IR-ATR spectra of all samples from this study and (b) comparison of IR-ATR apectra of **NGP@500** GC and NaPO₃.

The IR-ATR spectrum of NGP glass, see Figure S1(a), exhibits distinct bands characteristic of metataphosphate (Q²) glasses, and it also reveals indications of pyrophosphate units (Q¹), which is consistent with the O/P ratio of 3.1 [1]. The intense band observed at 1275 cm⁻¹, followed by shoulder at 1110 cm⁻¹ is indicative of the asymmetric and symmetric stretching of non-bridging oxygen atoms in Q² units, respectively [2,3], while the bands at 970 cm⁻¹ and 890 cm⁻¹ can be attributed to the asymmetric stretching vibrations of P–O–P groups in metaphosphate units, manifesting as chains, rings, and terminal groups [2,3]. Additionally, low intensity shoulders at 1150 cm⁻¹ and 1035 cm⁻¹ can be assigned to asymmetric and symmetric stretching of non-bridging oxygen atoms in Q¹ units, respectively, which presence in small quantities is in accordance with O/P ratio in studied glass. Furthermore, the symmetric stretching vibrations of P–O–P within Q² and Q¹ units are found in the range between 640–810 cm⁻¹

Citation: To be added by editorial staff during production.

Academic Editor: Firstname 17
Lastname 18

Received: date
Revised: date
19
Accepted: date
20
Published: date
21


Copyright: © 2023 by the authors. Submitted for possible open access publication under the terms 250 conditions of the Creative Commons. Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

22

[2,3]. Moreover, the bands around ~460 cm⁻¹ and ~520 cm⁻¹ can be ascribed to the bending vibrations of P–O–P and PO₂ units within the metaphosphate framework[2,3]. Notably, the IR-ATR spectroscopy results for the initial glass correlate well with prior Raman spectroscopy findings[1].

In contrast to the broad and diffuse bands observed in the spectrum of the initial glass, the spectra of the prepared glass-ceramics exhibit well-defined, sharp signals characteristic of crystalline materials. As the heat-treatment temperature is elevated from 450°C to 550°C, a notable transformation in the appearance of the spectra becomes apparent. The spectrum of NGP@450 glass-ceramic exhibits initial signs of crystallization and the presence of a glass matrix. In contrast, the spectra of NGP@500 and NGP@550 glass-ceramics display remarkable similarity, reflecting a notably advanced stage of crystallization. Here, it's noteworthy to highlight that the acquired IR-ATR spectra of GC samples, characterized by a substantial amount of NaPO3 crystal phase, exhibit a striking similarity to the results of the structural analysis of NaPO3 documented in [4]. Additionally, the strong agreement observed between the IR-ATR spectra of the prepared GCs and the IR spectrum of the NaPO3 crystal phase (SpectraBase®), see Figure S1(b), provides additional confirmation that NaPO3 is the predominant phase within the samples.

2. SEM-EDS analysis

Figure S2. SEM images and EDS spectra of the **NGP@450** glass-ceramic surface: (a) area, (b) surface – separation and (c) surface – separation 2.

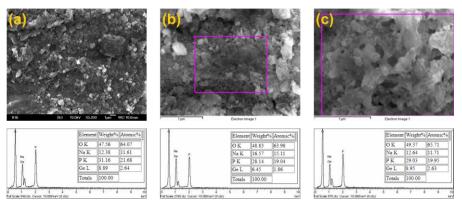


Figure S3. SEM images and EDS spectra of the NGP@500 glass-ceramic surface.

58

59

60 61

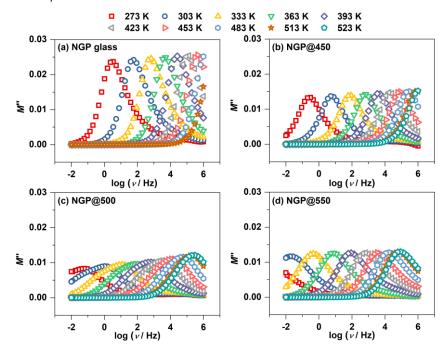
68

66 67

69

3. Electrical analysis

3.1. Complex impedance plane- electrical equivalent circuit modelling


Table S1. Fitting parameters obtained from EEC modeling of complex impedance spectra measured at 150 °C for the initial glass and glass-ceramics from this study

Parameters	NGP	NGP@450	NGP@500	NGP@550
$R_{1^{\mathbf{a}}}(\Omega)$	3.65×10 ⁵	3.06×10 ⁶	5.03×10 ⁷	1.96×10 ⁸
A_1 ^b (s $^{\alpha}$ Ω^{-1})	2.27×10^{-11}	9.41×10^{-12}	4.29×10^{-11}	1.42×10^{-11}
α_1^{c}	0.90	0.94	0.86	0.84
C_1^d (F)	6.22×10^{-12}	4.92×10^{-12}	1.50×10^{-11}	4.63×10^{-12}
$R_{2^{\mathbf{a}}}\left(\Omega ight)$	-	6.51×10^{6}	3.59×10^{8}	2.58×10 ⁸
A 2 $^{\mathrm{b}}$ (s lpha Ω^{-1})	-	9.23×10 ⁻¹⁰	6.56×10^{-11}	2.09×10^{-10}
$\alpha_2^{\rm c}$	-	0.60	0.71	0.66
$C_{2^{\mathbf{d}}}(\mathbf{F})$	-	2.95×10 ⁻¹¹	1.38×10^{-11}	4.80×10^{-11}
$R_{3^{\mathbf{a}}}\left(\Omega ight)$	-	-	-	4.12×10 ⁸
A 3 $^{\mathrm{b}}$ (s lpha Ω^{-1})	-	-	-	2.77×10 ⁻⁹
$lpha_3^{ m c}$	-	-	-	0.49
$C_{3^d}(F)$	-	-	-	3.18×10 ⁻⁹
$A_4^{ m b}$ (s lpha Ω^{-1})	8.85×10 ⁻⁶	2.81×10 ⁻⁷	2.37×10 ⁻⁸	7.16×10 ⁻⁸
$\alpha_4^{ m c}$	0.91	0.67	0.40	0.81

^a Individual resistance (*R*) values for each R-CPE circuit element in the proposed model. ^b A – a constant (CPE capacitance) derived from the empirical impedance function, Z_{CPE^*} = $1/A(i\omega)^\alpha$, measured in s^α Ω^{-1} unit. ^c α – a constant ($0 \le \alpha \le 1$) determined from the empirical function, Z_{CPE^*} = $1/A(i\omega)^\alpha$. When α = 1 (true capacitor), the unit becomes s Ω^{-1} = F. ^d Individual capacitance (*C*) values calculated for each R-CPE circuit element in the proposed model using the formula $C = A(\omega_{\text{max}})^{\alpha-1}$.

4. Dielectric analysis

4.1. Complex Modulus Formalism

Figure S4. Spectra of imaginary moduli, $M''(\omega)$, for all samples.

References

72

73

74

75

76

77

78

79

80

81

- 1. Sklepić, K.; Tricot, G.; Mošner, P.; Koudelka, L.; Moguš-Milanković, A. Sodium Ion Conductivity in Mixed Former Na₂O-P₂O₅-GeO₂ and Na₂O-B₂O₃-P₂O₅-GeO₂ Glasses. *J. Phys. Chem. C* **2021**, 125, 10593–10604, doi:10.1021/acs.jpcc.1c00072.
- 2. Moustafa, Y.M.; El-Egili, K. Infrared Spectra of Sodium Phosphate Glasses. *J. Non-Cryst. Solids* **1998**, 240, 144–153, doi:10.1016/S0022-3093(98)00711-X.
- 3. Sahar, M.R.; Hussein, A.W.M.A.; Hussin, R. Structural Characteristic of Na₂O-P₂O₅-GeO₂ Glass Systems. *J. Non-Cryst. Solids* **2007**, 353, 1134–1140, doi:10.1016/j.jnoncrysol.2006.12.032.
- 4. Trivedi, S.; Pamidi, V.; Fichtner, M.; Reddy, M.A. Ionically Conducting Inorganic Binders: A Paradigm Shift in Electrochemical Energy Storage. *Green Chem.* **2022**, 24, 5620–5631, doi:10.1039/D2GC01389D.