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Abstract: In the present work, a methodology for wind field reconstruction based on the Meteo
Particle Model (MPM) from Numerical Weather Prediction (NWP) data is presented. The
development of specific wind forecast services is a challenging research topic, in particular for what
concerns the availability of accurate local weather forecasts in highly populated areas. Currently,
even if NWP Limited Area Models (LAMs) are run at spatial resolution of about 1 km, this level of
information is not sufficient for many applications, for example to support drone operation in urban
contexts. The coupling of MPM with the NWP Limited Area Model COSMO has been implemented
in such a way that the MPM reads the NWP output over a selected area and provides wind values
in the generical point considered for the investigation. The numerical results obtained reveal a good
behavior of the method in reproducing the general trend of wind speed, as confirmed also by the
power spectra analysis. The MPM is able to step over the intrinsic limitations of the NWP model in
terms of spatial and temporal resolution even if the MPM inherits the bias that inevitably affects the
COSMO output.

Keywords: Limited Area Models; wind field reconstruction; MPM

1. Introduction

The need of accurate wind predictions is particularly felt in many application fields since high
speed winds, capable to damage weak critical facilities, can occur anywhere in the world. For this
reason, the development of specific forecast services is a challenging research topic, in particular for
what concerns the availability of accurate local weather forecasts in highly populated areas. It is well
known that small drones are vulnerable to the action of winds, especially at low altitudes. In this
view, the SESAR U-SPACE program [1] was established in order to develop an UTM (Unmanned
Traffic Management) system, with an advanced introduction of procedures and services designed to
support an efficient and protected access to the air space for a high number of drones.

In the last decade, several methodologies for the estimation of winds at low altitudes in urban
areas have been developed. Some of them were originally developed for reconstruction at high
altitudes and successively adapted to treat different heights. Statistical data and techniques based on
the Kalman filter [2] were used in ref. [3] to estimate wind values aimed to the trajectory definition.
In 2014, de Jong et al. [4] introduced the algorithm AWEA (Airborne Wind Estimation Algorithm)
based on the fact that aircrafts are equipped with automatic systems (e.g. ADS-B [5]) for atmospheric
data, permitting the reception of information from vehicles in proximity and providing high-fidelity
and high-resolution user-tailored wind profiles. Recently, Kiessling et al. [6] developed the random
Fourier features, a novel interpolation model based on a machine learning approach, resulting
competitive with respect to other statistical interpolation models, such as kriging or other machine
learning methods e.g. random forests and neural networks. In 2018, Sun et al. [7] introduced the
Meteo Particle Model (MPM), aimed to provide an estimate of atmospherical variables inside the air
space using surveillance data from aircrafts. This model is based on the usage of a stochastic process
to obtain weather information (wind and temperature) on a short time range in areas where
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observations are lacking, starting from data collected along high density flight trajectories. Variables
are reconstructed using virtual particles that are generated every time new observations are available.
Successively, in the frame of the METSIS project [8], Sunil et al. extended the MPM to low altitudes,
evaluating the wind fields by using a Monte-Carlo approach and assuming that they are pseudo-
static on a short time scale, being able to consider the effects of the presence of obstacles (trees,
building). The applicability of the MPM at different altitudes was investigated by Zhu et al. [9]. In
ref. [10], Bucchignani analyzed the main methodologies used to estimate low altitude winds in urban
areas. The most promising technique among those examined was the one based on the MPM for its
flexibility features and accuracy in the results obtained: in fact, the MPM is able to address the
random characteristic of wind through particles and preserves the stability through the use of a large
number of particles.

At the Italian Aerospace Research Center (CIRA, Italy), an operational platform HW/SW is
currently available, made up of a ground element (Meteo Service Center) that, through MATISSE
software [11], collects, processes and prepares observational and atmospherical forecast data (on
different time ranges). Numerical forecasts are taken from the operational prediction system COSMO
[12] and the new generation system ICON [13]: a configuration for these models at resolution of about
1 km, including urban parameterizations for a proper representation of sub-daily dynamics behavior
in urban areas has been developed over an area located in southern Italy. Moreover, CIRA is carrying
out the EDUS project “Infrastrutture di elaborazione dati locali per U-SPACE”, aimed to enhance the
Meteo Service Center in order to integrate data and algorithms with newer ones suitable for the
treatment of urban wind. However, limitations in the applications of reconstruction methodologies
for wind fields are related to the fact that reliable estimations can be produced only if a sufficient
number of drones is already flying in the area considered and/or if a sufficient number of weather
stations is available; this limitation can be mitigated using data provided by NWPs. In fact, as stated
in ref. [10], a step forward would be represented by the coupling of an NWP model with the MPM,
due to the feasibility of MPM and accuracy in the results obtained with this model. Currently, even
if NWP Limited Area Models (LAMSs) are run at spatial resolution of about 1 km (thanks to the growth
of computational resources), this level of information is anyway not sufficient to support drone
operation in urban contexts. For this reason, further enhancements are still needed, as discussed in
the present work. The proposed coupling will ensure that estimations can be generated in any
geographical area, not only where an adequate number of drones are already flying. It is worth noting
that this approach for low-altitude wind reconstruction could also be applied to other practical
applications. The main aim of this work is the presentation of this coupled system, along with the
verification of its capabilities over a selected test case. This paper is organized as follows: Section 2
contains a description of the MPM. Section 3 describes examples of MPM applications reported in
literature. Section 4 contains a description of the NWP model adopted and observational data. The
methodology is described in Section 5, while in Section 6 the main results are presented. Conclusion
are then discussed in Section 7.

2. The Meteo Particle Model

This model was developed by Sun et al. [7] with the aim of providing a reconstruction of
atmospherical variables inside the air space using only surveillance data from aircrafts. The method
is exhaustively described in [7,8] and also summarized in ref. [10], so only the main steps are recalled
here:

Selection of Input Data

A reference domain D is chosen, in which periodic measurements are available from aircrafts or
drones flying inside it. The measurements performed by the different aircrafts are collected and
stored into a specific measurement array, then a probabilistic selection process is adopted to remove
the wrong measurements that could occur. In this way, data related to extreme values have low
probability to be selected. A Gaussian probabilistic function is defined starting from the current
observations (array x), once that mean p and variance o have been calculated:
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In which ki is a control parameter defined as acceptance probability factor. The numerical value
of k1 is defined in an empirical way, and its value can be augmented to allow a larger tolerance
(increase in the number of accepted measurements). The authors of the method proposed to assign
the value 3 to this parameter.

Construction of Particles

The method is based on the idea of using “particles”, which are virtual objects able to carry
information on the state of wind and temperature. Specifically, N particles (the integer number N is
selected by the user according to specific needs) are generated, close to the position of each aircraft,
every time that new measurements are available. Successively, the method assumes that particles
move according with a Gaussian random walk model in the horizontal direction, while along the
vertical direction the motion follows a zero-average gaussian track. The particles that for their motion
fall outside the domain are removed, while the remaining ones are classified according to their age.

Evaluation of Variables Value in a Generic Point

The main aim of the method is the evaluation of the values of wind in a generical point of the
domain D. This can be achieved as a weighted average of the values carried by the particles belonging
to an ensemble P, which includes all the particles whose coordinates are within a maximum distance
from the coordinates of the position being considered. The weight assigned to each particle is
calculated as a product of two exponential functions: the first one represents a relationship between
the weight itself and the distance between the particle and the position considered, the second one
establishes a relation between the weight and the distance of the particle from its origin.

3. MPM: Examples of Practical Applications

The MPM has been used for practical applications in several contexts. In the frame of the METSIS
project (METeo Sensors In the Sky) [14], the model was used to support the wind nowcasting inside
the U-SPACE Weather Information Service. Specifically, wind data were generated on the area
considered starting from measurements performed by the drones themselves and were then
provided to the drone operators by using the mentioned information service. Evaluation of the
accuracy of wind estimations was carried out through a series of experiments and presented by Sunil
et al. in ref. [14]. Three measurement drones were used to collect data needed by MPM, located in
such a way to form an equilateral triangle, while a reference drone was used to determine the
accuracy of the methodology. A parametric analysis was conducted by varying the size of the
triangle, the altitude and considering the presence of different obstacles (none, trailer, tree). Results
showed that the performances for wind speed in terms of Mean Absolute Error (MAE) were
satisfactory, with MAE larger for the scenario including an obstacle. Accuracy for direction was
rather scarce, especially for smaller wind speeds.

The MPM was used by Sun et al. [15] for the reconstruction of wind fields starting from
observational data ADS-B [16] (an aviation surveillance technology in which an aircraft determines
its position via satellite navigation such as GNSS or other sensors) and Mode-S [17] for an area located
in the vicinity of Delft, of about 600 km of diameter. The model was validated using data provided
the analyses of the GFS meteorological model [18] for a week, starting from 27 July 2017. It was found
that for low wind speed result were less aligned with the reference data. This inaccuracy can be due
to the fact that GFS data are interpolated and smoothed over larger periods of time and areas.
Moreover, it was found that the correctness of the results is largely influenced by the input data
accuracy.

Finally, Zhu et al. [9] investigated the applicability of the method to different levels of altitude,
considering the same area used by Sun et al. [15]. The accuracy of MPM was evaluated against ERA-
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5 reanalysis [19] at resolution 0.25°. It was found that the MAE speed error increases with the altitude
(from 1 m/s at 1 km to 8 m/s at 12 km), while MAE related to the direction ranges between 4 and 14°.

4. The NWP Model and Observational Data

4.1. The LAM COSMO Model

Scientific and technological progresses have led to increasing the capabilities of weather
forecasting over the past 40 years. Mazzarella et al. [20] investigated if NWP-based weather forecasts
at high-resolution (including data assimilation) can improve the capability of predicting extreme
events, in order to understand if such models can be suitable to support air traffic management. They
found that, for a specific test case, the model was able to provide forecasts at least 1 h in advance,
giving ATM operators sufficient time to manage air traffic and calculate new landing trajectories
prior to an extreme event. In the present work, the MPM model has been coupled with the Limited
Area Models COSMO [12], which is a nonhydrostatic dynamic downscaling model for three-
dimensional compressible flows developed by the European consortium COSMO (COnsortium for
Small-scale MOdeling). This model treats the atmosphere as an ideal mixture of dry air, water vapor,
liquid and solid water, subject to the gravity and to the Coriolis forces [21]. A convective-scale model
configuration characterized by a horizontal resolution of about 1 km has been developed at CIRA
and is running daily over the area (12.22°-14.55° E; 40.63°-41.88° N) (Figure 1) located in southern
Italy. The computational domain has 260 x 138 points, while the number of vertical levels is set equal
to 60. The time step is set equal to 10 s. Initial and boundary conditions are provided by the ECMWEF
IFS global model [22] at spatial resolution of 0.075°.

The capabilities of the COSMO model over this domain in simulating the main atmospheric
variables have been already tested against data provided by the CIRA weather instrumentation and
other data and the results were presented in [23]. In particular, wind values were validated against
data provided by the wind profiler installed at CIRA (owned by ARPAC — Environmental Protection
Agency of Campania region) revealing good model performances, suggesting a great potential of the
model to support forecasts for drone flights.

.V 3
Pratica di Mare

Basilicata

©Google Maps

Figure 1. The computational domain considered, including part of Campania and Lazio regions. The
CIRA location is specified.

For the purposes of the present work, COSMO output data over a 10 x10 subgrid have been
extracted for the MPM application. This subgrid is centred over the target point located at CIRA
facilities (14.160 E; 41.120N) (shown in Figure 1). The original coordinate values in degrees have been
converted in meters, assuming the bottom-left point of the subgrid as origin (0,0).
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4.2. Observational Data

Model evaluation has been conducted using 10-metres wind values provided by two weather
stations MAWS301 installed at CIRA. They are produced by Vaisala, powered by photovoltaic panels
and equipped with a 12 V 27 Ah buffer battery. Specifically, Weather Station 1 is equipped with
various sensors for measuring several atmospheric variables while Weather Station 2 is only
equipped with an anemometer for measuring the wind at 10 meters (direction and intensity). For
each of the two weather stations, data reception occurs via a data logger positioned at the base of the
pole, which communicates via radio-modem with an antenna positioned on the roof of the CIRA
main building, in line of sight with the two transmitting antennas. These communications take place
in UHF and the frequency used is set at 395 MHz. Furthermore, a dedicated software automatically
creates two text files per day (one for each station) in which all the measurements taken over the
course of 24 hours are saved, with a time resolution of 1 m.

5. Description of the Methodology

The coupling of MPM with the LAM COSMO has been realized in such a way that the MPM
reads the hourly NWP output at high resolution over the considered subgrid, generates particles at
each grid points and provides wind values every minute in the generical point considered for the
investigation.

The tool works through the following steps:

e the daily output NWP files related to a subgrid are read. This subgrid is made up of n x n points
(in the present study, as already stated, n has been set equal to 10) centered over the location
object of investigation and contains 24 hourly values of 10-metres wind velocity (horizontal u
and v components).

e  for each of the 24 hours, a family of N particles is generated, which are initially located in the
grid points (Figure 2a) and are characterized by a velocity equal to the wind velocity in the
corresponding points. The age of this family (a) is initially equal to zero, but at each successive
hour its age is increased by 1 unit.

e for each of the 60 minutes of the current hour, the updated position of the particles is calculated,
considering their own velocity components ui, vi (with i=1 ... N):

Xpit+at = Xpit + DPyit 2
Ypit+at = Vpit T APy ;¢ 3)
in which the AP factors are calculated as:
APx,i,t = kzauiAt (4)
APy,i,t = kZO'UiAt (5)

meaning that the particles move according with a random track horizontal motion, characterized by
a small bias (o), conveniently controlled by the k factor (particle random walk factor), which was
originally set equal to 10 in ref. [7], but modified for other applications (e.g. it was set equal to 8 in
ref. [9]). The time step At is equal to 1 m.

Then, the three particles closest to the target point are individuated by means of an exhaustive
research and the provisional velocity in the target point is calculated as weighted mean of the velocity
values of these three particles (Figure 2b). The weight to be assigned to each particle is calculated as
function of the distance of the target point from the particle itself.

e finally, the velocity in the target point is calculated as weighted mean among the provisional
values associated to the families generated until now. The weight to be assigned to each
provisional value is calculated as function of the age (a) of the corresponding family:
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where a is a number that represents the age of the particle and Cu is a control parameter (aging
parameter) chosen by the user. It could be set equal to 30, according with the indications of the
authors of the method. The algorithm is summarized in Figure 3.

O
D D
0 @)
C Jan)
) ) O ®
T T
O O D o °
@)

(a) (b)

Figure 2. (a) An example of grid points and initial location of the particles. (b) Location of the particles
after some steps and individuation of the three particles (black) closest to the target point T.

for each of the 24 hours:

Generation of a family of N particles |

for each of the 60 minutes:

for each particle family generated until now:

| Calculation of the updated position of the particles |

| Individuation of the three particles close to the target point |

| Calculation of the provisional velocity in the target point |

end loop particle family

| Calculation of the velocity in the target point

v

end loop minutes

v

end loop hours
Figure 3. Graphical representation of the algorithm used.

6. Results

The coupled NWP-MPM system has been tested for each day of the period from 1 to 30 June
2020 considering three different MPM configurations. Each configuration is characterized by specific
values of the control factors defined in the previous sections, as summarized in Table 1. These values
have been chosen according with experiments performed and considering recommendations
provided in specific literature works. As described later, the first configuration (Config 1) provided
the best results and was selected for a more detailed analysis. Figure 4 shows the position of the first
family of particles for 1 June 2020 respectively at (a) the beginning of the simulation at 1:00 am (which
is assumed as t =0) and after (b) 1 m, (c) 2 m and (d) 10 m. The velocity vectors that characterize each
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particle are shown too. The 10 x 10 subgrid extracted from COSMO is visible in Figure 4a: in fact, as
already described, at the beginning of the simulation the position of the particles coincides with those
of the grid points. Figure 5 shows the wind field reconstruction performed by the MPM after 1 m in
the neighborhood of the target point (5560 m, 4670 m). The wind vectors reconstructed in sample
points at a distance of 100 m one another in the two directions are represented by red arrows, while
the original wind vectors provided by COSMO are represented by black arrows.

Table 1. Values of the control factors defined in MPM for the three configurations tested.

Factor Config 1 Config 2 Config 3
Acceptance probability factor ki 3 4 7
Particle Random walk factor k2 10 9 8
Aging parameter Co 180 250 500
) o
| 17
Y [ 40 | 6000 L ] {‘ i . :
4000 4 =t > 1 4000 |
: > / 7 l v’ 1/
N O W e 8 SN 4 A A B
x (m) x (m)
a b

y (m)

y (m)

Figure 4. Position of the first family of particles for 1 June 2020, respectively at (a) the beginning of
the simulation at 1:00 am and after (b) 1 m, (c) 2 m and (d) 10 m, along with the velocity vectors that
characterize each particle.
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Figure 5. Wind field reconstruction (red arrows) in the neighborhood of CIRA site (5560 m, 4670 m).
The original wind vectors provided by COSMO are represented by black arrows.

Figure 6 shows the time series of wind speed for the days from 1 to 6 June 2020, provided by
MPM and by the weather station at frequency of 1 m. The original COSMO data (for the grid point
closest to the target one) are also shown (identified by green asterisks), which are available every
hour. These plots reveal a good behavior of the MPM in reproducing the general trend of wind speed
over the whole days considered, in particular the wind increase that is observed almost every day
between 600 and 800 m (i.e. between 11 am. and 1 p.m.) is well captured. Non-negligible
discrepancies are however observed in some days, in particular in the last hours of each simulation,
along with some overestimations in the central part of the day, in particular on 1 June2020. It is worth
noting that most of inaccuracies are inherited by the COSMO model output, however MPM is able to
overperform the NWP model, as discussed later. The time series have been processed by using an
FFT aimed to produce a power spectrum of wind at regularly spaced bins, to measure the amounts
of variability occurring in different frequency bands. Figure 7 shows the mean power spectra (log-
log representation) related to the time series of 1 June 2020, respectively related to observational data
(left) and MPM data (right). It can be observed that the two spectra appear similar and that the main
observed frequency (0.0027, corresponding to a period of 6 hours) is well captured by the model.
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Figure 6. Time series of wind speed for the days from 1 to 6 June 2020, provided by MPM and by the
weather station at frequency of 1 m. Original COSMO data are also shown (identified by green
asterisks), which are available every hour.
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Figure 7. Mean power spectra (log-log representation) related to the time series of 1 June 2020,
respectively related to observational data (left) and MPM data (right).


https://doi.org/10.20944/preprints202312.0391.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 December 2023 d0i:10.20944/preprints202312.0391.v1

10

In order to quantify model performances, standard indices for performance evaluation have been
calculated: mean bias (BIAS) and root-mean-square error (RMSE), defined as:

N
1
BIAS = N;(Si ~0) (7)

RMSE = ()]

where Si and O: are, respectively, the simulated and observed values at the i-th time step. N is the
number of time steps considered (1440 for each day).

Table 2 shows the numerical values of these indicators related to the wind speed for COSMO
and MPM (three configurations) with respect to observations, obtained considering the whole period
(1-30 June 2020). Specifically, BIAS and RMSE speed are obtained considering daily values first and
then averaging them over the thirty days considered. Max BIAS speed is the maximum values among
the thirty daily values. The analysis of Table 2 reveals that the best performances of MPM are obtained
with Config 1 and that MPM is able to overperform the NWP COSMO on average, even if in some
days the MPM is characterized by larger biases.

Table 3 shows the numerical values of the same indicators related to the wind direction (°) for
COSMO and MPM (three configurations) with respect to observations, over the same period. It can
be seen that even if the model overperforms the COSMO output, direction accuracy in some days is
rather scarce, as also observed in [14], especially at smaller wind speeds.

Table 2. Numerical values of BIAS and RMSE of wind speed (m/s) for COSMO and MPM for three
different configurations with respect to observations, obtained as average values over the period 1-30

June 2020.
Model BIAS Speed Max BIAS Speed RMSE Speed
COSMO 0.10 0.24 0.46
MPM 1 0.03 0.84 0.37
MPM 2 0.04 0.88 0.39
MPM 3 0.07 0.92 0.52

Table 3. Numerical values of BIAS and RMSE of wind direction (°) for COSMO and MPM for three
different configurations with respect to observations, obtained as average values over the period 1-30

June 2020.
Model BIAS Direction Max BIAS Direction RMS Direction
COSMO 14 81 26
MPM 1 12 72 24
MPM 2 16 68 32
MPM 3 19 88 36

7. Conclusions

In the present work, a methodology for wind field reconstruction based on the Meteo Particle
Model from Numerical Weather Prediction data was presented. The problem of wind forecasting is
particularly felt for aeronautical applications; in fact, several studies (e.g. [24]) have examined the
effect of errors in wind forecasting on Continuous Descent Operations, finding that an accurate
knowledge of wind conditions is important since about 2/3 of the errors is due to an incorrect wind
forecast. Moreover, meteorological conditions in urban environments require detailed analysis
because of the influence that the characteristics of the urban fabric can have on local meteorological
conditions. The impact can be more or less significant, depending on the field of applications. Beyond
applications to drones, the present approach for low-altitude wind reconstruction can also be applied
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to other cases, e.g. Ship Helicopter Operational Limitation analysis [25], crane safety in the
construction industry [26], and as a further input to national meteorological services.

The coupling of MPM with the LAM COSMO has been implemented in such a way that the
MPM reads the NWP output at high resolution over a selected and provides wind values in the
generical point considered for the investigation. The numerical results obtained revealed a good
behavior of the method in reproducing the general trend of wind speed, as confirmed also by the
power spectra analysis. The MPM is able to step over the intrinsic limitations of the NWP model in
terms of spatial and temporal resolution even if, as expected, the MPM inherits the bias that inevitably
affects the COSMO output. For this reason, in the opinion of the author, a step forward will be
represented by the application of a bias correction technique [27] to the NWP output, performed
considering a validation period in which observed and modelled time series are available and
overlapped. In fact, the NWP post-processing has become a standard practice, for example by using
the Model Output Statistics (MOS) that model the bias as a function of input variables or the Kalman
filter, a technique that estimates the true state of a dynamical system from noisy measurement data
[28].

Although not within the scope of the present project, it would also be useful to open a future
perspective where the training of the MPM methodology can start to consider the structures and
obstacles present in specific urban environments. Given that the training of particles still requires a
specific task for the single urban area, it could be useful to underline the importance of installing
specific sensors capable of measuring wind variations in the vicinity of obstacles or structures to
configure particles more appropriately.
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