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Abstract: Despite advances in the reliability of sensory devices used by drones, the integrity of
information from some devices is still considered an obstacle to ensuring successful flight plans. It is
widely known that GNSS can suffer attacks or lose the signal from satellites, which can cause the
drone to fail to complete its flight plan. In this context, we propose SiaN-VO, a Siamese network for
visual odometry prediction. In our initial studies, this approach proved satisfactory for flights in
static conditions (speed and height). Although interesting, these conditions do not reflect real flight
conditions. In this sense, we have advanced our studies to propose the SiaN-VO, which fuses data
from different sensors to enable displacement predictions to be made in dynamic flight conditions.

Keywords: visual odometry; drone; autonomous flight

1. Introduction

Unmanned Aerial Vehicles (UAV) use the Global Navigation Satellite System (GNSS) signals as
their primary location tool. Knowing the global position (latitude and longitude coordinates) allows
the flight control system to be able to perform missions in outdoor environments. However, this
system is susceptible to various types of attacks and also interruptions in signal reception [1,2].

During the aircraft’s flights, especially when the UAV is performing search and rescue (SAR)
missions, it is important to estimate the position of the aircraft even if the GNSS information is not
available [3]. Several approaches have been investigated, such as sensor fusion, Inertial Measurement
Units (IMUs) and image-based inference. Image-based navigation use several strategies to estimate
location: learning landmarks, optical flow, among other [4-7] Usually, these methods have high
computational cost due to the use of consuming image processing pipelines.

We find in the literature works that propose image-based methods to estimate the displacement
from a reference point (e.g., initial position) and avoid collision [8-10]. However, we did not find
related work on using only Convolutional Neural Networks (CNN) and dataflow to estimate the global
position of UAVs. The use of lightweight Artificial Neural Networks (ANN) models in image-based
strategies can allow the decrease of the computational cost in the inference step.

Additionally, CNNs have achieved great success in computer vision pipelines, becoming the
standard building block for image processing using machine learning techniques [11,12]. In comparison
with traditional fully connected ANN layers, CNNs make better use of local spatial patterns observed
in images, and require a much smaller number of parameters than the former [13].

In this regard, we present the Siamese Network for Visual Odometry (SiaN-VO) capable of
inferring the displacement between a pair of sequential images captured by the drone. SiaN-VO is an
evolved proposal of the method presented in a previous study [14]. The inferred displacement value
is used in the haversine formula to calculate the new geographic coordinate (latitude and longitude)
of the vehicle. We assume that the direction of flight and the height of the vehicle are obtained from
sensors (e.g. compass and radio altimeter). This new method allows the inference of displacement to
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be carried out on flights with variations in altitude, overcoming the limitation of the previous proposal
which required flights at a fixed altitude.

The remaining of this paper is organized as follows. Section 2, we describe the works found in
the scientific literature close to the proposal. Section 3 details the proposed system. Section 4 details
the methodology used to run the experiments, with information on the dataset, the training stage of
the proposed method and the test stage. Section 5 details the results. Finally, Section 6 we present our
conclusions and future work.

2. Scientific Literature

Numerous works in the literature highlight the importance of investigating methods and
approaches for different vehicles (ground or air) to have location information without the dependency
on external sources [8-10]. In general, these works investigate approaches that allow vehicles to move
safely and reach their goal.

Visual approaches, such as visual odometry, have attracted attention for several reasons, among
them price, accessibility, accuracy, and the independence on external signals, as in the case of
GNSS-based methods [15,16]. Visual odometry is the process of estimating the motion of an agent (e.g.,
vehicle, human, and robot) using only the input from a single or multiple cameras [17].

There are works describing good results on merging visual odometry information with other
information to achieve better accuracy in location inference [18,19]. The results show that merging
information from visual odometry with other sensors can increase the accuracy of the positioning and
movement information. Visual odometry commonly uses an important concept called optical flow.

Optical flow has been used to detect the motion of objects and scenery to help to autonomously
drive vehicles and avoid collisions [20]. An example of this scenario can be seen in [21], where the
proposed method (named LiteFlowNet2) is evaluated on datasets from different contexts. The MPI
Sintel dataset is a dataset derived from the open source 3D animation short film, Sintel. In this setting
the method receives a pair of sequential images and its output is a segmented image of the regions
occupied by the characters’ movements in the time interval between the images received as input.
Another dataset used is KITTI [20,22], which is a set of images captured by a car on urban routes. In
this dataset, the method is evaluated for the goal of detecting the surrounding scenery in motion.

One can observe in the literature works that use the concepts above to estimate the movement
of unmanned aerial vehicles [23,24]. The proposed methods can be used in outdoor and indoor
environments.

However, it is common for navigation systems to use geographic coordinate information to
manage UAV flight. Considering this context, we were not able to find works with the objective of
inferring the geographic coordinate of UAVs during flight.

3. Siamese Network for Visual Odometry (SiaN-VO)

In this section, we describe the proposed new ANN model and its training procedure. It is
important to emphasize that the proposed method presents the evolution of previously published
work and the overcoming of the limitation on flight dynamics.

3.1. Network Architecture

The proposed neural network model must be able to receive two images and two other matrices
as input. One of them must contain the height value, while the other matrix must contain data from
the yaw sensor!. The matrices have the same dimensions as the images and their values are repeated
in all the cells. The transformation of the unit values into matrices with the value repeated in all the

1 The angle at which the front of the drone is facing, based on magnetic north
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cells aims to provide stimulation similar to that of the images. This prevents the height and yaw data
stimuli from being ignored because they are weak stimuli compared to the number of values in the
image pair.

Pixel values are normalized between 0 and 1 for the image pairs. Yaw is also normalized between
0 and 1, where 0 represents where 0.5 means magnetic north, 0 means —180 degrees, and 1, 180 degrees.
Altitude input that the aircraft flies with maximum height / from the ground. So, we divide the input
by & so its maximum value is also 1.

Our network can be decomposed in two parts:

1. In the first part, we have a Siamese network, where the model receives a pair of images taken
at consecutive time steps, and pass these images thorough identical neural network layers and
weights. We chose the such a design assuming that the images can be processed independently.
The neural network can find useful coarse patterns in them, like edges, before joining both images.
Parallel to the Siamese network, there is an AveragePooling step that will adjust the dimensions
of the height and yaw matrices to the same dimensions as the feature maps resulting from the
Siamese network.

2. The results of the Siamese network and AveragePooling are concatenated, effectively overlaying
the image maps and the two complementary data matrices. The concatenated feature maps
then pass through a normal CNN pipeline, ending in a prediction head containing three fully
connected layers, the last of which has only a single output — the displacement output.

During the search of the best hyperparameters for the neural network, we find that larger filter
sizes work best for our problem, and we ultimately employ 7 x 7 filters throughout the network. Apart
from the filter size, our design choices took inspiration from the VGGNet architecture [25]: at every
new set of convolutional layers we double the number of filters, as well as reducing by half the spatial
dimensions of the image maps by means of applying MaxPooling layers with kernel size of 2 x 2. In
summary, our model is composed by 6 convolutional layers (2 layers in the Siamese network and 4
sequential convolutional layers) and 3 fully connected layers. Dropout layers are set in 20%. In total,
the neural network is 9 layers deep. The detailed architecture can be seen at Figure 1. It is important to
note that the Siamese network is encapsulated in the figure within the “Feature extractor” element.

Once the model is to be employed in a small unmanned aircraft, computational power and storage
are important restrictions. With this in mind, we design our neural network to receive gray-scale
images of dimensions 32 x 32. The use of gray-scale images should sulffice for the task of displacement
prediction, once the color information transmitted by the red, green and blue channels should not
give any significant insights about the movement of the vehicle. We would point out that we have
reduced the size of the images used compared to the method proposed previously, allowing for a less
computationally expensive execution.
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Figure 1. Architecture of the Siamese Network for Visual Odometry (SiaN-VO).
4. Methodology for the experiments

In this section we will describe the dataset used and the methodology employed in the training
and testing stages to evaluate SiaN-VO.

4.1. Dataset

In order to develop a large-scale simulated dataset to the task of UAV displacement estimation,
we leverage the capabilities of AirSim [26], which is an open-source simulator for autonomous vehicles,
including self-driving cars and drones.

We simulated drone flying in three different scenarios: a mountainous arctic region (mountains),
a tropical forest (forest) and a city with green area (downtown). These scenarios include artifacts like
lakes, rivers, different sizes of streets, buildings and vegetation. Besides the inherent heterogeneity of
these choices of maps, we also varied the weather conditions, adding dust, mist and rain, creating a
diversified range of settings. This variability in the scenarios are important if we want the machine
learning model trained on this data to be able to generalize well to scenes never seen before, which is
paramount once we employ these models in real-world applications. We also vary the flight dynamics,
characteristics such as: height, acceleration, direction and environment. Figure 2 shows an example of
the images in the dataset.
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Downtown

Figure 2. Examples of images considering the environments in which the flights were simulated.

Table 1 shows details of the flights simulated in AirSim. The length of the flights varies, as do
their maximum and minimum heights. It is important to note that the “map” column refers to the
region in which the flight took place. So the environment may be forest, but in regions other than
forest. It is important to note that in some cases the number of flights is less than the standard 50
flights. This is because the map we used was smaller and we didn’t want to use it to exhaustion.

Table 1. Details of the flights that make up the simulated dataset.

Environment Map Number of routes

Downtown A 50
Downtown B 50
Downtown C 50
Forest A 12
Forest B 10
Forest C 50
Mountains A 50
Mountains B 50
Mountains C 50

The images taken from the drone have resolution of 720x480 pixels. Even though most applications
may need smaller resolution, the operation of resizing in the data pipeline is very cheap, and
on the plus side, the choice of a large resolution gives the user a choice to apply operations of
data-augmentation, like random-cropping, that need an image larger than the input of the network. The
use of data-augmentation operations in the preprocessing step can greatly increase the generalization
ability of the models trained, as well as virtually increasing the dataset size.

The images are taken from a camera mounted under the vehicle, pointing vertically to the ground.
In this configuration the captured images should obtain the maximum information about the drone
movement in the horizontal plane. Additionally, the images are taken with approximately 3 frames
per second, a slow rate but which is sufficient to obtain enough superposition between each pair of
images, and which is easy to be replicated.

Unlike the previous work, the current study shows variation in the drone’s horizontal position
and also in its height. In addition, the speed sampled for each flight segment comes from a uniform
distribution.

Also, each image has an associated file with the ground truth information of the complete status
of the drone in the instant the picture was taken, which includes linear and angular speeds, linear
and angular accelerations, position, latitude and longitude, and attitude of the vehicle. We explicitly
annotated the images with this set of information to the prediction of the vehicle displacement.

4.2. Training

For training our model, we employed ReLU activation functions throughout the network, except
in the last layer, where we used a linear activation function. Additionally, we used batch-normalization
layers after every weight layer, and dropout layers with probability 0.2.
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We trained the network on Tensorflow framework, and applied Adam optimizer with a learning
rate of 0.001. For our loss function, we used Mean Squared Error, and we trained the network for 30
epochs. At the end of each epoch during the training stage, the model is evaluated against a validation
group. The model that shows an improvement in the value of the metric (considering the validation
group) is saved as the best model found. This is the model used for the testing stage.

The data set is divided into three sets for training: training, validation and testing. To make up
the test set, 1 flight made on each map of each environment is preserved with the complete sequence
of images. In this way, the prediction and its impact during the flight can be evaluated. For the other
sets, 80% was set aside for the training set and 20% for the validation set. In the training stage, the sets
used are the training and validation sets. Thus, the training set is presented to the model and, at the
end of each epoch, the model is evaluated on the validation set. If it shows an improvement in the
value of the metric, the model is saved as the best model found so far.

Additionally, during training the image pairs were shuffled before been presented to the neural
network: This assures that we do not feed correlated data to the model, once the image pairs seen in
a single batch will not be all from the same flight or will not have been taken in a sequence by the
camera mounted on the drone.

4.3. Test

The model generated in the training stage is evaluated in the test stage. In this stage, we use 1
route from each map (and from each environment) to predict displacement, considering execution
during a flight. Table 2 shows the size of each route used in this stage. The name of the route was
composed of the name of the environment and the conversion of the map into a numerical value (such
as, Ais1and B is 2).

Table 2. Details of the name and size of each route used in the test stage.

Name Flight size (m)
Downtownl 346.03
Downtown2 674.80
Downtown3 458.49
Forestl 783.77
Forest2 321.01
Forest3 1,001.24
Mountains1 906.62
Mountains2 784.24
Mountains3 569.84

Three levels of prediction were made for the final parts of each route. This approach allows us to
better represent the negative impact of prediction on the completion of the mission. The three levels of
prediction correspond to 20%, 40% and 60%. Finally, the flight was also predicted for the entire route,
assuming that only the initial displacement coordinate was known.

It's important to note that although the drone is subject to unknown influences (such as weather
conditions) during flight, causing it to move in an undesired direction, we use the data from the yaw
sensor to calculate the drone’s new geographical position. Thus, we use a sensor on the drone to
estimate the direction of displacement. This approach allows us to avoid knowing the exact direction
of movement, which could reduce the error of our proposal inadequately.

5. Results

We emphasize that we carried out the experiments in order to assess the ability of the proposed
method to estimate the displacement based on the inputs received. Therefore, the method is used to
infer the aircraft’s displacement and we calculate the new geographical coordinates (lat and long). It
is important to mention that in this case study we consider that heading and height are obtained by
other sensors, such as yaw and radio altimeter.
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Firstly, Figure 3 shows the routes used in this test stage. The green dot on each route indicates the
starting point of the flight. The expected route is outlined by the blue line, while the red line represents
the route taken using the displacement estimation model. In the flights shown in this picture, doom
was suffered in the final 20% of the flight. It's important to note that the flights used speed variations,
meaning that the distance covered during the prediction varied in size.

Downtownl Downtown2 Downtown3
47.643
47.6426
47.643
47.6424 826428
47.6422 "1542/ 47,6425
47.642 47.6415
] 47.642
47.6418 47.641
47.6416 47.6405
R 47.641
-122.141  -122.1405  -122.14  -122.139 ~122.1405 -122.14 -122.1395 ~122.139 -122.14 -122.1395 -122.139
Forestl Forest2 Forest3
47,6415 47,6415
47.6425
47,641
47.641
47.642
47.6405
47.6405 47.6415
47.64
47.641,
47.64
47.6395
47.6405
-122.141 -122.14 -122.139 -122.1425 -122.142 -122.1415 -122.141 -122.1405 -122.142 -122.141 -122.14 -122.139 -122.138
Mountains1 Mountains2 Mountains3
47.643
47.6425 47.642
47.6425 P—
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47.642 AR
47.6415 X
47.6415 47.6414
47.641 gliok 47.6412
47.6405 47.6405 i
s 47.6408
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~122.142  -122.141  -122.14  -122.139 -122.138 -122.142 -122.141 -12214 122139 -122 -122.143 -122.142 -122.141 -122.14 -122.139 -122.138

Figure 3. Example of expected routes (blue line) compared with routes that used prediction (red line)
for 20% of the flight. The green dot signals the starting position of the flight.

More details of the flights can be seen in Table 3, which summarizes the size of the route, the
number of predictions made, the distance of the drone’s final position from the expected position
and the average distance between each inferred and expected geographical position of the drone. It
should be noted that this last piece of information is calculated based only on the period in which the
displacement was inferred. The Tables 4-6 present similar information to the Table 3. This makes it
possible to compare the changes that occurred at different points in the prediction.
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Table 3. Summarization of results for flights with 20% predictions.

Route Number of Distance between Average distance between expected

predictions endpoints (m) and predicted position (m)
Downtownl 136 11.15 5.03
Downtown?2 193 5.07 3.99
Downtown3 111 36.71 17.74
Forestl 72 1.17 6.28
Forest2 72 42.66 27.74
Forest3 83 19.14 21.17
Mountains1 197 13.32 21.17
Mountains2 275 52.84 43.68
Mountains3 195 55.71 48.33

Table 4. Summarization of results for flights with 40% predictions.

Route Number of Distance between Average distance between expected

predictions endpoints (m) and predicted position (m)
Downtownl 271 8.64 7.28
Downtown2 386 28.55 19.48
Downtown3 221 16.87 27.93
Forestl 143 1.00 5.94
Forest2 143 65.17 36.05
Forest3 166 36.05 23.79
Mountains1 393 22.46 23.33
Mountains2 550 94.10 56.95
Mountains3 390 58.78 34.87

Table 5. Summarization of results for flights with 60% predictions.

Route Number of Distance between Average distance between expected

predictions endpoints (m) and predicted position (m)
Downtownl 406 7.44 12.18
Downtown2 579 7.22 18.19
Downtown3 331 24.75 36.70
Forestl 214 15.96 16.82
Forest2 214 91.74 48.61
Forest3 249 34.53 19.67
Mountains1 589 28.07 32.06
Mountains?2 825 129.05 69.73
Mountains3 585 49.05 49.85

Table 6. Summarization of results for flights with 100% predictions.

Number of Distance between Average distance between expected

Route predictions endpoints (m) and predicted position (m)
Downtownl 677 17.73 19.28
Downtown2 985 16.96 27.06
Downtown3 551 30.40 29.33
Forestl 357 15.58 12.23
Forest2 357 81.69 25.93
Forest3 415 48.94 28.81
Mountains1 981 22.82 15.31
Mountains2 1375 127.61 54.67
Mountains3 975 146.51 115.04

In these results, it was not possible to find a clear link between the number of predictions and the
metrics relating to the comparison between the final position and the average positional error during
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in-flight predictions. In other words, even if the number of predictions is higher on one flight than
on another, it doesn’t mean that the errors will also be higher. This growth characteristic between
the metrics mentioned cannot be affirmed when we analyze the increase in the prediction period
considering isolated flights. This behavior occurs because apparently the errors are generated by a
normal distribution with the center close to the expected value, causing predictions with positive
(greater than expected) and negative (less than expected) error polarities. Figure 4 makes it possible to
compare the predicted values with the expected values, preserving the order in which the predictions
were made during the flight.

Forestl

Expected
Predicted

2.5

Meters

1.5

O'50 100 200 300

Figure 4. Predicted and expected displacement values along the route Forest 1.

With the variation in environments and routes used in the experiments presented, we believe
that the SiaN-VO method is capable of predicting displacement in a variety of conditions (even with
a change in height.) Another interesting feature presented by the method in the data set used is its
ability not to accumulate noise in its prediction.

6. Conclusions

Inferring the position of a UAV with high accuracy without the use of GNSS is an obstacle with
several studies in the scientific literature. The increasing evolution of UAVs and the high range of
possible contexts in which they can be applied further highlights the need for independence from the
GNSS signals for safe navigation.

The evolution provided by the proposed new architecture, giving rise to the SiaN-VO method, was
able to infer the drone’s displacement and allow the value to be used to calculate the new geographical
position. SiaN-VO makes the prediction based on a sequential pair of ground images, height and yaw
data.

The results suggest that noise does not accumulate (or is imperceptible) in the predictions during
flights on the routes described. Although we bear in mind that it is possible that noise accumulation
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becomes noticeable on long journeys and that this characteristic needs to be investigated further, we
would like to emphasize that this characteristic is exciting and makes us believe that the SiaN-VO
method is a promising approach in the field of visual odometry.

Furthermore, it is important to emphasize that the SiaN-VO method was able to overcome the
obstacle of predicting drone displacement on routes with height variation. The successful prediction
of displacement in these flight characteristics means that SiaN-VO surpasses the previous proposal,
which exclusively uses images. Another point that surpasses the current approach is the possibility of
using images with smaller dimensions (1/4 of the previous size), which allows for less computational
processing.

In view of the results obtained in this work, we aim to advance our studies in the following
directions:

¢ Evaluate the performance of SiaN-VO with real flight data;

e Evaluate SiaN-VO on long routes and with more variations in flight dynamics;

* Measuring the performance of SiaN-VO in the face of data failures and inconsistencies;
¢ Test our proposed model during a UAV flight.
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