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Article 
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1 Department of Electrical and Computer Engineering,1065, Ave de la Médecine, Université Laval, Quebec 
City, QC G1V 0A6, Canada. 

2 Computer Vision and Systems Laboratory, Department of Electrical and Computer Engineering,1065, Ave 
de la Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada. 
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Abstract: Industrial radiography is a pivotal non-destructive testing (NDT) method that ensures quality and 
safety in a wide range of industrial sectors. Conventional human-based approaches, however, are prone to 
challenges in defect detection accuracy and efficiency, primarily due to the high inspection demand from 
manufacturing industries with high production throughput. To solve this challenge, numerous computer-
based alternatives have been developed, including Automated Defect Recognition (ADR) using deep learning 
algorithms. At the core of training, these algorithms demand large volumes of data that should be 
representative of real-world cases. However, the availability of digital X-ray radiography data for open 
research is limited by non-disclosure contractual terms in the industry. This study presents a pipeline that is 
capable of modeling synthetic images based on statistical information acquired from X-ray intensity 
distribution from real digital X-ray radiography images. Through meticulous analysis of the intensity 
distribution in digital X-ray images, the unique statistical patterns associated with the exposure conditions 
used during image acquisition, type of component, thickness variations, beam divergence, anode heel effect, 
etc., are extracted. The realized synthetic images were utilized to train deep learning models, yielding an 
impressive model performance with mean intersection over union (IoU) of 0.93, and mean dice coefficient of 
0.96, on real unseen digital X-ray radiography images. This methodology is scalable and adaptable, making it 
suitable for diverse industrial applications. 

Keywords: non-destructive testing; synthetic data; deep learning; automated defect recognition 
(ADR); digital X-ray radiography 

 

1. Introduction 

Non-destructive Testing (NDT) plays a pivotal role in maintaining the safety and reliability of 
diverse structural components across multiple industries, including safety-critical sectors like 
aerospace [1] and automotive [2] sectors. NDT is crucial for identifying potential failures and defects 
without causing damage to the component being inspected. Among the diverse NDT techniques 
employed in the industry, X-ray radiography stands out due to its ability to provide details of the 
internal structures of components, enabling the visualization of flaws such as cracks, voids, inclusions, 
shrinkage cavities, etc. [3], within inspected components, offering a unique perspective that is 
unattainable through surface inspection methods. Digital X-ray radiography offers a fascinating 
blend of simplicity and complexity. Its simplicity lies in its basic operation: generated X-ray photons 
pass through an object under test and are captured by a detector, producing a two-dimensional (2D) 
image [4]. The generated digital X-ray radiography image is typically rendered in shades of gray 
having gray values ranging from 0 to 65535 for 16 bits images, or 0 to 255 gray values for 8 bits images. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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The principal factor influencing the noticeable gray value difference within an acquired radiographic 
image is X-ray beam attenuation [5], which is affected by factors such as differences in material 
thickness, density, foreign material inclusions, and the geometry of the components being inspected, 
among others [6]. However, the seemingly simple process of X-ray image acquisition conceals the 
intricate physics and engineering that underpin the technique. The processes of X-ray generation, 
exposure controls and effect on image quality, acquisition setup, type of detectors that accurately 
capture X-ray photons (scintillation-based or direct X-ray conversion digital detector arrays), 
conversion of detected signals to digital signals, digital processing, etc., are all governed by very 
complex scientific principles [7]. Furthermore, collapsing a three-dimensional (3D) test component 
into a 2D representation presents a notable complexity and challenge with X-ray radiography because 
it can lead to the superimposition of features such as porosities, shrinkage cavities, cold fills, and 
foreign inclusions, which may occur at different depths within test components. As a result, the 
interpretation of acquired images becomes more difficult and prone to misconceptions, hence 
necessitating the services of trained experts for interpretation [8]. 

The challenges in interpreting digital X-ray images are additionally heightened by the nuance of 
some defects, which may not be prominent, especially in low-contrast radiographic images. 
According to ASTM 1316-17a [9], inspectors are typically tasked with accurately identifying 
radiographic indications, determining their relevance (flaws or not), evaluate if detected flaws 
constitute a defect, and reaching a decision on whether a component is to be accepted for use or 
rejected. Despite the post-processing assistance obtainable by computer-based operations, 
interpretations by experts are prone to human error, especially in the face of the high inspection 
demand occasioned by the high production throughput witnessed in manufacturing industries. This 
is especially evident in the aluminum die casting industry, where process automation facilitates high 
manufacturing throughput [10].  

1.1. Deep Learning in Digital X-ray Radiography Applications 

The advent of deep learning, a subset of machine learning marked by algorithms that can 
interpret and learn from data, has revolutionized feature recognition and image interpretation across 
different industrial sectors [11]. In nondestructive testing, for example, deep learning models have 
achieved remarkable success in tasks like flaw/defect detection in digital X-ray radiography 
applications [12]. Deep learning models, trained on extensive datasets of annotated images, show a 
convincing ability to detect patterns and anomalies, even those that are often difficult for the human 
eye. This cognitive capability of the algorithms is especially promising in NDT digital X-ray 
radiography, recording successes as highlighted by [13]. Hence, utilizing algorithms trained on large 
collections of digital X-ray images proffers a means of automating defect detection process. This 
automation has the potential to improve the accuracy and efficiency of inspections and reduce human 
error [14]. Furthermore, automating image interpretation could boost the inspection throughput to 
meet the rising demands witnessed in manufacturing industries, and ultimately lead to safer and 
more reliable outcomes. However, the application of deep learning in digital X-ray radiography is 
not without its challenges. A primary hurdle is the lack of large volumes of annotated datasets of 
digital X-ray images that are representative of the use case intended. Owing to the sensitive nature 
of X-ray images, especially in safety-critical industries like aerospace and automotive, stringent non-
disclosure confidentiality agreements are reached between clients and the industry, which 
inadvertently limit the availability of X-ray images for open research [15]. 

Without sufficient representative data for a given use case, the potential of deep learning in 
enhancing automated defect detection in X-ray radiography would remain largely untapped. To 
ameliorate the notable scarcity of large volume of annotated datasets, synthetic data generation 
through computational models have sufficed as a viable solution, offering a promising pathway to 
realizing a vast number of training data that closely mimic real-world conditions [16,17]. This 
approach can utilize simulations of the X-ray imaging process, incorporating different materials, 
defect types, and geometries in a bid to produce diverse and realistic datasets. However, the question 
remains: how effective is such an approach?  
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1.2. X-ray Radiography Simulation 

X-ray radiography simulators have proven to be very useful in NDT radiography due to the 
enormous values it brings, including enhancing NDT techniques, training experts, improving 
reliability and capability of testing approaches, inspection planning to efficiently analyze complex 
geometries, etc. The simulators play a crucial role in shortening the development time of new NDT 
techniques, especially in industries like aerospace where structural integrity is very critical. The 
simulators are developed with varying complexities, from ray-tracing-based simulators to Monte-
Carlo-based simulators [18,19]. At the core of the functionality of these simulators is an in-depth focus 
on the modeling of X-ray generation and photon-matter interaction. The seeming realism that X-rays 
simulators present has spurred research interest, especially within deep learning applications, to 
adopt such synthetic data to address the lack of real X-ray radiography dataset for training deep 
learning algorithms. This approach of using synthetic data as a data augmentation strategy is not 
new, as there have been published successes in literature, covering applications not limited to 
autonomous vehicle development [20], facial recognition technology [21], and NDT even digital X-
ray radiography (which this study is focused on). The primary objective of this approach is for the 
model, trained on synthetic data, to yield high performance in actual real-case scenarios. Therefore, 
the need to have a real-like synthetic data becomes pivotal, attracting research efforts aimed at 
generating real-like synthetic data. Studies conducted by [22–26], explored the utilization of synthetic 
images for digital X-ray radiography applications, nevertheless, mainly as an augmentation strategy, 
and a part of either the training or validation data. 

In contrast to the considered literature, our approach takes a distinctive stance by modeling 
synthetic images using statistical distribution of intensity values from real X-ray radiography images, 
to enhance overall model performance.  

2. Intensity distribution: Real vs Simulated images 

A radiography image is a 2D matrix of pixel intensities, which represents the X-ray photons 
detected by a sensor during acquisition. Each pixel in this matrix corresponds to a specific finite area 
on the detector, and its value corresponds to the intensity of the photons detected at that specific area 
during image acquisition. When a test component is positioned between the source and the detector, 
the detected signal, converted to pixel intensity, is primarily indicative of the interactions that the X-
ray photons have undergone while transmitting through the test component. Higher pixel intensity 
implies more photons were detected, which usually corresponds to areas in the test component that 
absorbed fewer X-ray photons (like porosities or shrinkage cavities), while lower intensity indicates 
fewer X-ray photons were detected, typically in areas where more X-rays were attenuated (like 
regions with higher material thickness). In principle, the X-ray beam originates from a small focal 
spot in the X-ray tube and assumes a divergent orientation as it travels towards the detector [27]. This 
beam divergence or spread, makes it possible to attain beam coverage over a wider 2D area of the 
detector. Therefore, this divergence affects the photon intensity detected by the sensor, where the 
highest intensities are recorded at the central beam position, as this area receives the most direct and 
concentrated beam of X-ray photons. If this position is at the center of the detector, an observation 
across the entire detector should reveal a decrease in detected X-ray photon intensity that spans 
radially away from the center of the detector towards its edges. This decrease in intensity is attributed 
to the photons being more spread out and less concentrated towards the sides of the detector. 

Another phenomenon that further influences the distribution of photon intensity across 
radiographic images is the anode heel effect [28]. In most X-ray tubes, the anode (the component that 
emits X-rays) is positioned at an angle, leading to the generation of X-ray beam intensity distribution 
that is not uniform when the X-ray photons are sensed by the detector. This is because the angled 
anode partially absorbs some of the X-rays on its side, resulting in a reduction in intensity towards 
the anode side of the beam. In addition, the interaction of X-ray photons with a component could 
lead to scatter radiation, which also influences intensity distribution in radiographic images. This 
scattered radiation can reach the detector and contribute to image formation, but it does not carry 
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useful information about the test component's internal structure. Instead, it adds a level of noise to 
the image, which can reduce image quality. Scatter radiation is more significant in thicker and denser 
objects. All the above image intensity altering factors discussed assume a uniform detector response 
across all the pixels of a detector. Hence, it is possible to theoretically model and implement the 
physics of X-ray imaging in such an ideal manner. However, there are a lot of other factors that 
influence intensity distribution as seen on acquired X-ray radiography images. 

2.1. Pixel based contributions: 

The response of these pixels may vary, even at the same level of X-ray photon exposure. 
Furthermore, with continuous use of the detector, there is an increasing possibility of degradation of 
the pixel performance across the detector. Common pixel-based defects of the X-ray detectors include 
noisy pixel, overresponding pixel, under responding pixel, dead pixel, non-uniform pixel, lag pixel, 
and bad neighborhood pixel. Depending on the type of pixel defect, a single pixel or a cluster of pixels 
could be affected. Detailed information is offered in ASTM E2597 Standard Practice for 
Manufacturing Characterization of Digital Detector Arrays [29]. Ideal practices employ correction for 
defective pixels through interpolation of neighboring pixels. In addition, further processing of the 
acquired image is necessary, which includes averaging of different raw images, flat fielding of the 
images to correct anode heel effect and uneven detector panel response, application of lookup tables 
(where necessary), etc. Figure 1 shows an example of raw intensity distribution detected by the digital 
detector array and the outcome after necessary processes of pixel intensity corrections have been 
performed. Considering that the mentioned steps are unique to specific X-ray imaging systems, it 
becomes daunting to obtain a single simulation solution that will be robust enough to fully mimic all 
acquisition environments and image outputs. 

  

(a) (b) 

Figure 1. (a) shows a raw image that was acquired by a flat panel detector, showing inhomogeneous 
intensity distribution; (b) shows the final image after pixel corrections and flat-fielding operations. 

2.2. Bridging the Research Gap 

This research aims to develop a pipeline for generating synthetic digital X-ray images and 
utilizing these images to train a deep learning algorithm for detection and segmentation of flaws in 
NDT digital X-ray radiography. Our approach has the potential not only to overcome the limitations 
posed by the scarcity of datasets, but also to revolutionize the way training data is curated, 
consequently enhancing flaw detection models, and in effect enhancing the safety and reliability of 
various industrial components. 
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3. Materials and Methods 

In our research, we employed aluminum plates for data collection purposes, each plate 
measuring 300mm x 300mm x 6.5mm. Distributed across each of the six plates used in this study are 
25 flat-bottom holes, resulting in a total of 150 flat-bottom holes. These holes were drilled using end 
milling machining procedure and varied in shape: being either cylindrical or cuboidal. The 
cylindrical holes had a diameter ranging from 9mm to 20mm, while the square holes had side 
dimensions ranging from 7mm to 20mm. The depth of the holes also varied from a minimum depth 
of 0.5mm, with 0.5mm incremental steps, to a maximum depth of 5.5mm. Figure 2 shows examples 
of the plates used in the study. By varying the depth of these flat bottom holes, the dataset captures 
a wide range of potential defect scenarios that is of interest in this study. This variability is crucial for 
training a model capable of generalizing over a broad range of defect representations in real X-ray 
images to be later considered.  
 

  
(a) (b) 

Figure 2. Examples of aluminum plates with cylindrical (a) and cuboidal (b) flat-bottom holes. 

Furthermore, we utilized a digital X-ray radiography acquisition system having a maximum 
tube voltage of 150kV and a maximum tube current of 0.5mA. The system included a scintillation-
based 2D digital detector array (DDA) with an active detection area of 3098 × 3097 pixels (9,594,506 
number of pixels), and pixel size of 100 microns. Throughout the imaging of the aluminum plates, 
we consistently used a Source-to-Detector Distance (SDD) of 600 mm, with each plate placed directly 
on the detector during acquisition. The idea of using a consistent setup was to ensure similar gray 
value distribution across all plates for a given exposure factor, particularly at areas of equal thickness. 
Due to the expansive size of the DDA, the entire size of an aluminum plate (as considered in this 
study) could be captured in a single acquisition. However, it is important to note that the diverging 
nature of the X-ray beam from the tube's focal spot to the detector results in an inhomogeneous 
distribution of X-ray intensity across the detector. Reasons for this inhomogeneity include inverse 
relationship of the radiation intensity to the square of the beam’s travel distance from the source [30]. 
Additionally, the anode heel effect earlier discussed contributes to the inhomogeneity in GV 
distribution. Therefore, by implication, the gray value distribution we observed differed across the 
plate, even at regions with the same thickness. Table 1 provides the exposure factors utilized for each 
plate. Varying the exposure factors significantly varied the intensity distribution across each 
acquisition, altering the image quality parameters such as the Signal-to-Noise ratio and Contrast-to-
Noise ratio values across the defective areas (flat-bottom holes) and non-defective regions of the 
plates. 
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Table 1. A list of 20 different exposure factors used during acquisition. 

SN Kilovoltage (kV) Amperage (A) Time (s) 

1 50kV 100µA 0.2 

2 50kV 100µA 0.5 

3 50kV 200µA 0.2 

4 50kV 200µA 0.5 

5 50kV 450µA 1 

6 60kV 100µA 0.2 

7 60kV 100µA 0.5 

8 60kV 200µA 0.2 

9 60kV 200µA 0.5 

10 60kV 400µA 0.5 

11 60kV 450µA 0.5 

12 60kV 450µA 1 

13 70kV 100µA 0.2 

14 70kV 100µA 0.5 

15 70kV 200µA 0.2 

16 70kV 200µA 0.5 

17 70kV 400µA 0.5 

18 70kV 450µA 0.5 

19 75kV 450µA 0.5 

20 150kV 50µA 0.5 

Flat-bottom holes with different depths relative to the plate’s thickness show distinct features 
representing higher signal intensity at their respective regions, demonstrating the effect of differential 
X-ray beam attenuation. This can be seen in Figure 3. Given the planner nature of the plate, the 
rendering of the 3D features (actual holes on the plate), on 2D X-ray images acquired through 
transmission X-ray radiography are described as follows: the cylindrical holes appear as circular 
features, while the cuboidal flat-bottom holes appear as square shaped features. This is particularly 
true when the central X-ray beam is parallel and at the central axis of the holes. However, due to the 
divergent nature of the X-ray beam as discussed earlier, the resultant morphology of the rendered 
features is influenced by two factors: the depth of the flat-bottom holes and their proximity to the 
central X-ray beam path. Holes with more depth and positioned farther away from the central beam 
tend to increase the deviation from the ideal morphology (circle or square). Additionally, the edges 
are blurred due to effects such as X-ray beam scattering [31], the finite size of the focal spot, and 
geometry of the setup [32]. Figure 4 offers an example of these effects.  
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Figure 3. A color-spectrum representation of an acquired grayscale x-ray radiography image, 
showing inhomogeneous intensity distribution across same thickness regions of the plate. 

 

 
Figure 4. A cropped X-ray radiography image showing the edge effect due to the geometry of the 
cylindrical flat-bottom hole and the X-ray beam divergence. 

Due to the inhomogeneity witnessed in the acquired images, it was important to consider 
regions on each image that are statistically different. Hence, a total of 3,000 cropped images were 
realized: 25 x 20 x 6 (features per plate x number of exposures x number of plates), to have a robust 
representation during synthetic image generation. However, it was important to identify and isolate 
images with saturated pixels where 698 implicated images were isolated from the dataset, leaving a 
total of 2,311 candidate real cropped digital X-ray images (1,411 circular features and 900 with square 
features).  

3.1. Synthetic Image Generation 

The generation of synthetic digital X-ray images forms the cornerstone of this research, offering 
a viable approach to bridging the gap in the availability of data for training deep learning models in 
NDT digital X-ray radiography applications. The first step in this process involves a comprehensive 
analysis of real X-ray radiography images. This analysis focused on understanding the statistical 
distribution of gray values within real digital X-ray images considered. The intensity distribution of 
the 1,411 digital X-ray images with circular flaws were analyzed. Statistical measures were obtained 
of the gray values at the background, and at the features which represent areas with different 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 December 2023                   doi:10.20944/preprints202312.0306.v1

https://doi.org/10.20944/preprints202312.0306.v1


 8 

 

thicknesses of the plates because of the presence of flat-bottom holes. These statistical measures 
included the following: Minimum GV, Maximum GV, Mean GV, Standard Deviation of GV, and 
Variance. The background had a defined Region of Interest (ROI) for all the images. The ROI for each 
feature within an image was determined by maximum inscribed polygons within the edges of 
annotated features in the ground truth masks. To obtain statistical representation of the actual 
remaining thickness of the plate, it was crucial to reduce the size of the inscribed polygons by 6 pixels, 
considering the effect described in Figure 4. 

Figure 5 shows a superimposed histogram plot of the mean gray values of the assessed 1,411 
real X-ray images with circular features, measured at the regions of the features and backgrounds. 
The distribution of the measured values stems primarily from the different exposure conditions used, 
and the varying thicknesses of the flat-bottom holes in the imaged plates. Additionally, the 
inhomogeneity of the X-ray intensity further influences the distribution of these measured values. 

 

 

Figure 5. Superimposed histogram representation of the mean gray values measured in the 
considered 1,411 real X-ray radiography images with circular features. 

The box-and-whiskers plot in Figure 6. offers a unique presentation of the assessed data that is 
relevant in understanding how robust, or not, our data is in terms of feature representation. It could 
be observed that the interquartile ranges of the mean GV of the features which represent 50% of our 
data lie around 7,000 to 28,000 GV. The upper whisker which ranges between the 3rd quartile and the 
maximum (representing 25% of the data) has values ranging from 28,000 to around 58,000 gray values. 
Outliers could be observed above the 58,000 gray values. Depending on the expectations in a real 
scenario, this distribution could be used strategically to build the dataset. 
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Figure 6. Box-and-whiskers plot of the mean gray values measured in the considered 1,411 real X-ray 
radiography images with circular features. 

The variations in gray value distribution are indicative of various material thicknesses (normal 
plate thickness and plate thickness at regions with flaws). With the statistical data extracted from the 
1,411 real digital X-ray images with circular features, we employed a specialized algorithm to 
generate synthetic images. This algorithm randomly generates gray values for the synthetic images, 
but within the confines of the statistical distribution that were sampled in the real digital X-ray images. 
This approach ensures that the synthetic images, while randomly generated, still adhere to realistic 
patterns witnessed in the real X-ray images. The pipeline employs techniques from computational 
modeling and stochastic processes. It incorporates randomness to simulate the natural variability 
found in real-world scenarios but remains guided by the statistical confines derived from the 
preceding analysis of real images. Key steps in the generation of the synthetic data are described as 
follows: 

Poisson distribution is used to model the pixel intensity values in a fixed interval. The 
probability mass function (PMF) of the Poisson distribution is given by equation 1. 𝑃ሺ𝑋 ൌ 𝑘ሻ ൌ ⋋ೖ௘ష⋋௞!              (1) 

In the Poisson distribution formula, 𝑃ሺ𝑋 ൌ 𝑘ሻ represents the probability of observing 𝑘 events. The 
symbol ⋋ stands for the average number of events in an interval, equivalent to the mean gray value 
in this context. The term 𝑒 refers to Euler's number, approximately 2.71828, and  𝑘! denotes the 
factorial of  𝑘, which is the product of all positive integers up to 𝑘. 𝑓ሺ𝑥|𝜇, 𝜎ሻ ൌ ଵఙ√ଶగ 𝑒ିሺೣషഋሻమమ഑మ     

(2) 

In equation 2, the context for introducing Gaussian noise, 𝑥 refers to the variable or pixel value. The 
mean, denoted as 𝜇, is set to zero, and the standard deviation, represented by 𝜎, is set to 5% of the 
mean gray value. 
Furthermore, the values are standardized and converted to a standard normal distribution (mean = 
0, standard deviation = 1) using the operation described in equation 3. Ζ ൌ  ௑ିఓ௫ఙ௫    (3) 

Where 𝑍 is the standardized value, 𝑥 is the original value, 𝜇𝑥 is the mean of the original values, 
and 𝜎𝑋 is the standard deviation of the original values. 
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To attain the desired mean and standard deviation for the synthetic image, the standardized values 
in the preceeding step are recalled using the equation 4. 𝑌 ൌ 𝑍 ⋅ 𝜎ௗ௘௦௜௥௘ௗ ൅ 𝜇ௗ௘௦௜௥௘ௗ (4) 𝑌 represents the rescaled value, 𝑍 the standardized value, 𝜎𝑑𝑒𝑠𝑖𝑟𝑒𝑑 is the desired standard deviation, 
desired 𝜇𝑑𝑒𝑠𝑖𝑟𝑒𝑑 is the desired mean. The minimum and maximum values are clipped to ensure a 
more representative simulated data for a given case.  

In our approach, we chose to use binary representation as can be seen in the procss chart in 
Figure 7, to define the target regions of interest to be used by the simulation pipeline for the 
determination of the feature and background. This is practicable because only two thicknesses are 
considered in each image. This binary representation was realized by thresholding a thickness map 
acquired from a CAD model with cuboidal features representing flat-bottom holes.   

 

 

Figure 7. High-level schematic representation of the processes involved in synthetic data generation. 

A detailed description of the synthetic data generation pipeline can be found in Figures A1 and 
A2. Our statistical modelling approach ensures that the synthetic images reflect realistic presentation 
of flaws, potentially enhancing the model's applicability in digital X-ray radiography images. 
Additionally, this method allows for the creation of a large and diverse dataset, essential for the 
robust training of a deep learning model. Boundary characteristics between features and background 
are very crucial for deep learning training. In real X-ray radiography acquisition, factors that worsens 
edge delineation include scatter radiation effects, the geometric configuration of the acquisition setup, 
penumbra formation resulting from the finite size of the focal spot, etc. To address this concern, in 
our synthetic images, we implemented a methodology that successfully mimic the edge 
characteristics observed in real X-ray images in our simulated images, to potentially improve model 
performance. This was achieved by feathering the boundaries between features and background 
through the operations described as follows: 

The Gaussian function utilized in our approach is two-dimensional, to cover an area of 9 × 9 
pixel dimension. It is mathematically expressed by equation 5, where 𝜎 is the standard deviation of 
the distribution, which controls the spread of the blur. 
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𝐺ሺ𝑥, 𝑦ሻ ൌ 12𝜋𝜎ଶ 𝑒ି௫మା௬మଶఙమ  
(5) 

The convolution process for a point ሺ𝑖, 𝑗ሻ in the image is mathematically expressed in equation 6. 

𝐼௕௟௨௥௥௘ௗሺ𝑖, 𝑗ሻ ൌ ෍ ෍ 𝐺ሺ𝑢, 𝑣ሻ ∙ 𝐼ሺ𝑖 െ 𝑢, 𝑗 െ 𝑣ሻ௞௩ୀି௞௞௨ୀି௞  (6) 

Here, 𝐼 represents the original image, 𝐼௕௟௨௥௥௘ௗ  ሺ𝑖, 𝑗ሻ represents the intensity of the blurred image 
at the pixel location ሺ𝑖, 𝑗ሻ, and 𝐾 corresponds to the kernel size. 𝐺ሺ𝑢, 𝑣ሻ indicates the value from the 
Gaussian kernel at position ሺ𝑢, 𝑣ሻ, while 𝐼ሺ𝑖 െ 𝑢, 𝑗 െ 𝑣ሻ represents the intensity of the original image 
at a location offset by ሺ𝑢, 𝑣ሻ from ሺ𝑖, 𝑗ሻ. The sums over 𝑢 and 𝑣 iterate over the kernel size, which is 
defined by 𝑘. For the 9𝑥9 kernel, 𝑘 would be 4 (as the kernel extends 4 pixels in each direction 
from the center). 

Furthermore, it was essential to scale the blurred image to a range between 0 and 1, inversely 
for the background and directly for the feature. This was achieved as expressed by equations 7 and 8 𝑏𝑙𝑢𝑟𝑟𝑒𝑑_𝑚𝑎𝑠𝑘 ൌ 1 െ 𝑏𝑙𝑢𝑟𝑟𝑒𝑑_𝑚𝑎𝑠𝑘

255
 

(7) 

 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑚𝑎𝑠𝑘 ൌ  𝑏𝑙𝑢𝑟𝑟𝑒𝑑_𝑚𝑎𝑠𝑘
255

 
(8) 

Finally, to achieve a blending of the background and feature regions of the synthetic data using these 
masks, the approach is mathematically expressed in equation 9. 𝐼௢௨௧௣௨௧ ൌ 𝑏𝑔௩௔௟௨௘௦ ∙ 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑_𝑚𝑎𝑠𝑘 ൅ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒௩௔௟௨௘௦ ∙ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒௠௔௦௞ (9) 

These operations ensure boundary transition between the background and feature, to mimic 
what is obtainable in real X-ray radiography images. A comparison of real and synthetic data is 
described in Figure 8. 

 

  

(a) (b) 
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(c) 

 

(d) 

Figure 8. (a) Shows line profile pixel intensity readings represented by the yellow line in across the 
edge of the zoomed in X-ray radiography image presented in (c); while image (b) shows line profile 
pixel intensity readings represented by the yellow line in across the edge of the zoomed in synthetic 
image in (d). Analysis done using ImageJ 1.53e [33]. 

3.2 Deep Learning Model Training 

YOLOv8, an acronym for You Only Look Once version 8, is a state-of-the-art deep learning 
model designed for real-time object detection, image segmentation, and classification tasks. It is 
known for its efficiency and speed in processing images. YOLOv8 incorporates a deep neural 
network architecture, combining the advantages of the YOLO framework with advancements in 
model design and training strategies. The model utilizes a single neural network to simultaneously 
predict bounding boxes, object classes, and segmentation masks for each detected object within an 
input image. The architecture is built upon a backbone of convolutional layers, enabling it to 
effectively capture hierarchical features in images. To train the model, we utilized pretrained weights 
from yolov8n with about 3.4 million parameters, which was trained on COCO dataset. This implies 
that the initial weights used for training were not random. This transfer-learning approach was 
chosen in a bid to facilitate the training of the model with our purely synthetic data.  A single class 
was used, called FB_Hole, which represented the square shaped features in both the synthetically 
generated dataset used for the training, as well as the real X-ray radiography test data.   
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Figure 9. Model training description, showing the neural network trained only synthetic data and 
tested two distinct times on both synthetic and real test data. 

The model was trained for a total of 100 epochs, where the performance of the best-trained model 
was tested on real X-ray radiography images that were not included in either the training or 
validation datasets, and compared the result with the model’s performance on synthetic data that 
was also not included in the training and validation data. Relevant metrices of the training are 
presented in Figures 10 and 11.  
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Figure 10. Training curves from YOLOv8. Showing the trend over 100 epochs. 

  
(a) (b) 

 

 
(c) (d) 
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Figure 11. (a) Precision–Recall curve (b) F1-Confidence score (c) Precision-Confidence curve (d) 
Confusion Matrix. 

Detection time for the test images was very fast- about 8 milliseconds per image. Samples of the 
predictions are presented in Figure 12, where it could be observed that the bounding boxes of the 
class FB_Hole are displayed with associated confidence score which represents the model's certainty 
that the predicted class is present in the bounding box. This probability score ranges from 0 to 1, 
where 0 indicates low confidence (the model is not sure about the prediction), and 1 indicates high 
confidence (the model is very confident in the prediction). For easier visualization of the GV 
distribution in real Xray image tested, a corresponding color spectrum images are also provided. 
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(a) (b) (c) 

Figure 12. A cross section of results of the model performance on real X-ray radiography images. 
Images on the same row represent a single entry, with columns (a), representing prediction, (b) is the 
original input image, and (C) is a conversion of the input images to color spectrum, for easier 
visualization of the pixel intensity distribution. . 

4. Discussion 

One of the noteworthy offerings of this research work is the ability of our model, trained on only 
synthetic data, to generalize well on real-world digital X-ray radiography scenarios. Our approach of 
building a synthetic image generation pipeline that incorporate the statistical characteristics of real 
X-ray images ensures that the synthetic data not only mimics these statistical properties of the real-
world X-ray radiography images, but also the nuances and complexities present in such real X-ray 
radiography images. Since generalization of out trained model is at the core of our interest, for the 
synthetic data, we used a different morphological representation (square shaped features), compared 
to the circular features of the dataset analyzed for the extraction of statistical parameters. 
Additionally, for the real X-ray radiography test images that were used to evaluate the model’s 
performance, a random selection of images was done from a dataset of 900 cropped images that were 
acquired with 20 different exposure conditions. These images had square feature representations that 
varied in gray values due to the differing thicknesses of the flat-bottom holes in the imaged aluminum 
plates. Notwithstanding the measures employed, the trained model attained a mean IoU of 0.93, and 
mean dice coefficient of 0.96 showcasing the effectiveness of our synthetic data generation approach 
and underscores the adaptability of same in industrial contexts, particularly those involving 
manufactured components of similar dimensions.  

5. Conclusions and Future Work 

In conclusion, our research contributes to the growing body of evidence supporting the efficacy 
of synthetic data in training deep learning models. The unique integration of the statistical 
distribution of intensity values as seen in real X-ray radiography images, into the simulation pipeline 
in the manner expressed in this work represents a unique approach that enhances the deep learning 
model's ability to generalize to real-world scenarios. By adopting our approach to industries that 
fabricate components with similar dimensions (such as aluminum die casting industry), we envision 
a revolution in quality assurance processes involving digital X-ray radiography inspections. As 
industries continue to embrace automated defect recognition (ADR), our methodology has the 
potential to become pivotal in ensuring consistent and high-quality assessment of digital X-ray 
radiography images of manufactured components.  

While our approach has demonstrated promising advancements, it is essential to acknowledge 
its current limitations, particularly in terms of generalizability to very complex geometries. This 
recognition of constraints lays the foundation for future research and improvement.  As part of our 
future work, we intend to focus on addressing these limitations by incorporating methodologies 
specifically designed to accommodate complex geometries. This includes the further exploration of 
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modeling techniques to address edge variations, and geometry induced scattering effects in curved 
structures. 
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Figure A1. Process flow for acquiring statistical measurements from real digital X-ray radiography, 
to be utilized in synthetic image generation. 
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Figure A2. Important steps in synthetic image generation. 
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