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Abstract: The role of land surface temperature (LST) is of utmost importance in multiple academic disciplines
such as climatology, hydrology, ecology, and meteorology. Until to now, many methods have been proposed
to estimate LST from satellite thermal infrared data. The Thermal Infrared Sensor (IRS) on the Chinese ZY1-
02E satellite is a pivotal instrument employed for gathering thermal infrared (TIR) data of land surfaces. The
objective of this research is to evaluate the feasibility of a single-channel approach based on water vapor scaling
(WVS) for deriving LST from ZY1-02E IRS data because of its wide spectrum range, i.e., 7~12um, affected
strongly by both atmospheric water vapor and ozone. Three study areas, namely Baotou, Heihe River Basin,
and Yantai-sea sites, were selected as validation sites to evaluate the LST inversion accuracy. This evaluation
was also conducted by cross-comparison between the retrieved LST and MODIS LST product. The results
revealed that the WVS-based method exhibited an average bias of 0.63K and an RMSE of 1.62K compared to
the in-situ LSTs. The WVS-based method demonstrated reasonable accuracy through cross-validation with the
MODIS LST product, with an average bias of 0.77K and RMSE of 2.0K. These findings provide that the WVS-
based method is effective to estimate LST from ZY1-02E IRS data.

Keywords: land surface temperature; WVS-based LST method; ZY1-02E IRS

1. Introduction

Land surface temperature (LST) is a crucial parameter in multiple fields of study, such as
climatology!], ecology!® 7], and surface energy 810, It is widely recognized as a significant Earth
surface parameter!'l and is considered one of the ten essential climate variables in the land biosphere,
as defined by the Global Climate Observing System 012131,

Satellite observations offer a precise method for obtaining LST on a global scale, thanks to their
large spatial resolution and regular temporal revisiting!'¥l. In the past decades, various algorithms
have been developed to retrieve LST from thermal infrared instruments carried on satellites, such as
the single-channel (SC) algorithm!'>17, the split-window (SW) algorithm!'® 1), multiple angle
methods('® 2022, and the temperature and emissivity separation (TES) algorithml??7], etc. A
comprehensive overview of LST retrieval methods can be seen in previous research!'> 4. Except for
the single-channel methods, all the other methods require two or more thermal infrared channels.
Single-channel method has been applied to the Landsat platform, which has one thermal channel.
Traditionally, the main disadvantage of this method is that it requires atmospheric parameters and
land surface emissivity as prior knowledge.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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ZY1-02E satellite was successfully launched on December 26, 2021, from the Taiyuan Satellite
Launch Centre, China, aboard a Long March-4 carrier rocket. Developed by the Fifth Academy of
Aerospace Science and Technology Corporation, the ZY1-02E satellite is classified as a medium-
resolution remote sensing satellite. Its primary purpose is to conduct land resources survey and
monitoring, providing domestic data support for the investigation, monitoring, supervision and
production capacity monitoring of land resources. Additionally, it contributes to disaster reduction,
environmental protection, housing and construction, transportation, agriculture, forestry, marine
surveying and mapping industries.

The ZY1-02E satellite carries a payload comprising three instruments —the Visible Near-Infrared
Multispectral Camera (VNIC), the Advanced Hyperspectral Imager (AHSI) and the Thermal Infrared
Sensor (IRS). The AHSI instrument features 166 bands, offering a resolution of 30 m and a width of
60 km. The VNIC sensors provide a panchromatic imagery at 2.5 m resolution and multispectral data
with 8 bands at 10 m resolution covering a width of over 100 km. The IRS has a single thermal infrared
band, providing a spatial resolution of 16 m and covering a width of 60 km.

Unlike traditional thermal sensor, ZY1-02E IRS sensor has a wider spectral coverage, i.e.,
7~12um, which includes a stronger atmospheric water vapor absorption and ozone absorption bands.
This study aims to evaluate the feasibility of temperature inversion using a single channel algorithm
based on WVS from ZY1-02E single-channel IRS data because of its wide spectrum range affected by
both atmospheric water vapor and ozone. The organization structure of paper is as follows: Section
2 introduces the used ZY1-02E IRS and VNIC data, atmospheric profiles, and in-situ field
measurements. Sections 3 shows the WVS-based LST inversion method. Section 4 and Section 5 gives
the results and discussion. Section 6 is the conclusions.

2. Study Area and Data

2.1. Study Area

Field campaigns were conducted to validate the accuracy of the algorithms using ZY1-02E IRS
data. For validation purposes, three field sites were chosen: Baotou, Heihe, and Yantai-Sea. The
selection of these three sites mainly considers regional differences, climate differences and surface
type differences, which can have a more comprehensive evaluation of temperature inversion.

The Baotou site is located in Urad Front Banner, in western Inner Mongolia, with coordinates of
approximately 40.85°N latitude and 109.6°E longitude. The Baotou site encompasses two different
target categories for validation. The first category consists of a crop target measuring 300mx600m,
primarily comprising corn, which is ideal for validating LST. The second category comprises a desert
target, measuring around 300mx=300m. Figure 1 shows both the crop target and natural desert target
at the Baotou site, with a separation distance of approximately 6 km between them. Water bodies
serve as natural targets for thermal infrared calibration and validation due to their high thermal
inertia and minimal spatiotemporal temperature variability. Thus, Ulansuhai Lake, located in the
Urad Qiangi, was used to obtain the water temperature for validation. Additionally, bare soil and
Kubq desert surrounding Ulansuhai Lake were also selected for validation purposes. The Baotou site
and Ulansuhai Lake have average ground elevations of 1290 m and 1021 m, respectively.

The Heihe River Basin (HRB) serves as the second site in this study. Situated in the arid region
of northwestern China, it is the second largest endorheic basin in China. The HRB is well-suited for
investigating land surface processes due to its diverse landscapesi?l. The hydrometeorological
observatory consists of over 20 observation stations that cover the main land surfaces in the HRB.
These surfaces include alpine meadows, forestlands, croplands, deserts, bare lands, and wetlands.
For the purposes of validation, two stations, namely Zhangye wetland and Desert, are chosen. These
stations are located in the upstream region, midstream region and downstream region in the HRB,
respectively.

The third site, Yantai-sea, is located in the eastern China at a latitude of 37.51°N and a longitude
of 121.47°E, which is close to the Yellow Sea and Bohai Sea, with an average elevation of 0 m. Yantai-
sea experiences a warm-temperature monsoonal continental climate, characterized by mild
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temperatures and abundant precipitation throughout the year. The Yantai-sea is selected as an
important validation site.

Table 1. Information of the seven stations selected in the study aera for validation.

No. Station Land cover Study Longitude Latitude Elevation

area ©) (°) (m)
1 Ulansuhai Water body Baotou 108.7706E 40.8476N 977
2 Bare soil Bare soil Baotou 108.8176E 40.7978N 977
3 Kubq desert Desert Baotou 108.6203E 40.4551N 977
4 Baotou sand Sand Baotou 109.6187E 40.8659N 1296
5 Baotou Crop Vegetation Baotou 109.5537E 40.8708N 1295
Zhangye
6 Reed wetland HRB 100.4464E 38.9751N 1460
wetland
7 Desert Reaumuria HRB 100.9872E  42.1135N 1054
desert
8 Yantai-sea Water body Yantai 121.4653E 37.5148N 0

Yantai-Sea

Heihe River Basin

Zhangye Desert
wetland

Figure 1. The study area used for validation.

2.2. ZY1-02E Data

The ZY1-02E satellite captures visible and infrared imagery to measure various parameters of
the land, atmosphere, and oceans. As a cutting-edge, operational high-resolution imaging
instrument, it belongs to a new generation of remote sensing technology. The ZY1-02E satellite
enables the generation of various critical environmental products, such as snow and ice cover, clouds
and city monitoring, sea and LST, vegetation and surface albedo, etc. Table 2 provides a
comprehensive summary of its detailed spectral characteristics in its 10 spectral bands, which range
from 0.45 to 12.0pum. The data is obtained from both the VNIC and IRS sensors. The VNIC sensor has
9 bands with a spatial resolution of 2.5m (Pan) and 10m (multispectral) at nadir. Additionally, the
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IRS sensor includes one thermal infrared band with a 16m spatial resolution at nadir, specifically
designed for LST retrieval. The ZY1-02E VNIC and IRS spectral response functions are shown in

Figure 2 and 3.
Table 2. Spectral Characteristics of ZY1-02E VNIC/IRS.
Spectral .
Bands Bands No. Range(um) Resolution(m) NEDT/SNR
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Figure 2. Relative spectral response function (a) ZY1-02E VNIC; (b) ZY1-02E IRS.
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Figure 3 shows the transmittance of atmospheric water vapor and ozone from 7 pm to 12 um
using MODTRAN US 1976 Standard atmosphere. The minimum of ozone transmittance ranging from
9 to 10 um is nearly 0.2. Meanwhile, the IRS channel covers both water vapor continues absorption
and line absorption, especially 8~9 um. Compared to traditional thermal infrared sensor used for LST
estimation, the ZY1-02E IRS channel is strongly influenced by water vapor and ozone.
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Figure 3. Total transmittance of H20 and ozone from 7 pm to 12 pm.

2.3. MODIS Data

The Moderate Resolution Imaging Spectroradiometer (MODIS), onboard the NASA Aqua and
Terra Earth Observing System satellites, is one of the key instruments mainly used to observe
biological and physical processes around the world. MODIS provides per-pixel LST
(https://modis.gsfc.nasa.gov/data/dataprod/mod11.php) and Sea Surface (SST,
https://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sub=level3&prm=SST) products, covering from 5-
minute temporal to multi-day average In this paper, two temperature products (i.e., MOD11_L2
and SST data) were used to validate the accuracy of the WYVS-based method. The spatial resolution
of both of temperature products is 1 km. MOD11_L2 LST product is retrieved by using the
generalized split-window algorithm®l. A comparison was performed between the MOD11_L2 LST
and ground measurements at several sites: Brookings, Audubon, Canaan Valley, and Black Hills [30.
Results show that the absolute biases and RMSEs between MOD11_L2 LST and ground
measurements were less than 0.8K and 1.7K, respectively.

2.4. The ASTER Spectral Library

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) spectral
library v2.0 B4, developed jointly by the Jet Propulsion Laboratory (JPL), Johns Hopkins University
(JHU), and the United States Geological Survey (USGS), comprises a comprehensive collection of
data. It encompasses over 2300 spectra covering a broad range of materials, such as vegetation, man-
made materials, soil, minerals, rocks, water, ice, and snow. The wavelength range covered is from 0.4
pum to 15.4 pm, with specific wavelengths falling between 3.0 um and 14.5 pm. From this library, 108
emissivity spectra were selected to represent various surface features including 70 soil/mineral types,
28 vegetation types, and 10 man-made material types.
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2.5. ERA5 Atmospheric Profiles

In order to determine the LST, atmospheric correction is essential. In this paper, the European
Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 atmospheric profile dataset was used
to obtain the atmospheric parameters by using the radiative transfer code (MODTRAN 5.3)
developed by AFRL/VSBT in collaboration with Spectral Sciences, Inc. ERA5, the fifth-generation
ECMWEF reanalysis, offers global climate and weather data spanning the past 8 decades. The dataset
begins from 1940, replacing the ERA-Interim reanalysis. By leveraging the ERA5 profiles,
atmospheric parameters such as atmospheric transmittance, atmospheric downwelling and
upwelling radiances are derived.

ERAS5 profiles provide geopotential height, temperature, relative humidity information at 37
pressure levels and total column ozone on a 0.25° x 0.25° grid, with updates every hour in UTC time.
ERA5 atmospheric profiles provide the pressure, geopotential height, air temperature, relative
humidity, et al., which has 0.25° of the spatial resolution, 37 pressure levels (1, 2, 3, 5, 7, 10, 20, 30, 50,
70, 100, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 775, 800, 825, 850,
875, 900, 925, 950, 975, 1000), 48 km height, and 1-hour temporal resolution. It is worth noting that,
due to the wide spectrum of ZY1-02E covering the ozone absorption band, the total column ozone is
also applied in the algorithm process and simulation for WVS coefficients. The ERA5 profiles were
used to calculate the atmospheric transmittance, upwelling and downwelling radiances with the aid
of MODTRAN 5.3.

2.6. In Situ Data

At Baotou site, SI-111 thermometers with a spectral range of 8~12 um were employed to measure
the temperature of various surfaces, including sand, crop, Ulansuhai Lake, bare soil and Kubq desert,
etc. At Baotou site, two thermometers were distributed in sand area, bare soil, Kubq desert, and four
thermometers were distributed in crop area to capture the in-situ field LSTs, and the temporal
sampling interval is 2 second and an altitude of approximately 2.0 m. An additional SI-111
thermometer was used to observe the sky at an angle of 53° relative to the zenith and measure the
atmospheric downwelling radiance to correct for the atmospheric effect. For Ulansuhai Lake, a 102F
Fourier Transform Infrared Spectroradiometer (FTIR) with a spectrum ranging from 2 to 16 pm, a
spectral resolution of 4 cm™, and a field of view (FOV) of 4.8° and two thermometers were deployed
on boat to measure the water temperature. At Heihe River Basin, two SI-111 thermometers are
mounted at 6m, facing due south, with the probe facing straight down to measure the LST. Land
emissivity measurements were performed using the 102F FTIR.

Two automatic water observation buoys in Yantai-Sea, equipped with an automatic weather
station to measure wind speed, wind direction, atmospheric temperature, humidity, pressure,
rainfall. SI-111 thermometer is used to measure the sea temperature.

Next equation was used to calculate the in situ LSTs from surface-leaving radiance and
atmospheric downwelling radiance:

L-(-¢)L

T =B( ) (1)

s

5

Where, Ts represents LST, B denotes the Planck function, L is radiance measured by the SI-111
radiometer, ¢ is the channel-effective Land Surface Emissivity (LSE) specifically for SI-111
thermometer, and L., is atmospheric downwelling radiance calculated by the spectral response
function of the SI-111 thermometer.

In this study, several natural scenes (refer to Figure. 4) were selected to evaluate the accuracy of
LST estimated from the ZY1-02E IRS data. Table 3 provides a summary of the main technical
characteristics of the thermal instruments. Figure 4 illustrates the primary attributes of the
measurement targets.
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Table 3. Main technical specifications for the thermal instruments.

Spectral Operating
Instrument P environment  Accuracy Resolution FOV ()
Range (um) o
O
SI-111 8~14 -55~80 +0.2K 01K 44
KT-15 9.6~11.5 0~55 #0.5K 0.06 K 2
102F 2~16 15~35 1 cm? 4 cm™ 4.8

(a) Ulansuhai lake (b) Baotou sand (c) Bare soil (d) Crop

(e) Kubq desert 4 (f)antai—Sea (g) Zhangye wetland ‘ (h) Zhangye desert

Figure 4. Photos of targets in study area.
3. Methodologyas

3.1. WVS-Based LST Method

The theoretical basis of radiative transfer in the TIR spectral region (8-14 m) has been
developed!'. In the case of a cloud-free atmosphere under local thermodynamic equilibrium, the
radiative transfer equation (RTE) can approximately be expressed as:

L/I(T) = T,I I:gﬂ.Bl (7;)+(1-81)Latm_ﬂ. \Li|+Latm_/1 T (2)

where, Tis the at-sensor brightness temperature (BT), LA(T) is the at-sensor radiance at wavelength
A. 71 is the atmospheric transmittance at wavelength A. €1 is the land surface emissivity. BA(Ts) is the

Planck function of the wavelength A. Tsis the LST. L . is the atmospheric upwelling radiance,

and L is the downwelling radiance. Obviously, the atmospheric parameters were estimated
atm_ 4

by using a radiative transfer code, such as MODTRAN, with atmospheric profiles and elevation data.
Thus, the LST based on RTE method is derived from the at-sensor radiance.
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As well-known, the existing single-channel method for LST retrieval, the reanalysis atmospheric
profile dataset, such as European Centre for Medium-Range Weather Forecasts (ECMWF), National
Centers for Environmental Prediction (NCEP), etc., is generally preferred to correct the atmospheric
effect 132 331, However, the reanalysis of atmospheric profile data has certain uncertainty, which will
influence the accuracy of atmospheric transmittance and atmospheric upward/downward radiance,
and then the retrieval accuracy of LST will be affected. The WVS-based method proposed by Tonooka
134 3] is based on the standard atmospheric correction algorithm for ASTER/TIR. A significant
enhancement of this method involves determining a water vapor scaling factor y, which serves to
mitigate the errors resulting from multiple sources. These errors include not only a bias error in the
water-vapor profile but also random errors in the water-vapor profile, errors in the air temperature
profile, and elevation errors. Since all of these errors contribute to the bias error in the water-vapor
profile. Once an appropriate y is determined, the improved atmospheric parameters are calculated
by:

2(0.7)=7(0.7)" 7T (@, ) AT ©
L, +@.r=L, +.7) % (4)
L, .(=a+bL, . O.9)+cL, ,0,7)’ )

where, ¥ is water vapor scaling factor . U and U’ are the total water vapor content of
atmospheric parameters for water-vapor profile P and P, respectively, where P’ is a water-vapor

profile scaled from a water-vapor profile P by a factor of y. a)(z) and a)(z )' are water-vapor

amounts at an arbitrary height Z. ¥, and }, are appropriate different values (e.g., ;=1 and },

=(.7 in this paper).
=) Vg
N oy L )
N 8 _
y= | T 1-2(7) /h{’%)j -
7(71)}/2 B(TS L (7/1) T(71)

ensor)
1-7(y,)

where, B(T,) is at-surface radiance, i.e, B (Tg )=¢B(T,)+(1- &‘)L¢ )

From Figure 3, it can be found that the IRS sensor has been influenced by atmospheric water
vapor and ozone. Therefore, in this paper, the WVS coefficients were simulated by using the global
atmospheric profile library, i.e. the Thermodynamic Initial Guess Retrieval (TIGR) database,
including band model parameter f3, regression coefficient a@ , b and ¢ of atmospheric

downward radiation. The TIGR atmospheric profile database contain 2311 representative
atmospheric situation. Each profile records the atmospheric pressure, temperature, humidity and
ozone content. The atmospheric transmittance under different water vapor scaling factors y (0.7, 0.9
and 1.0, respectively) was obtained by MODTRAN 5.3 in band model parameter, and the parameters

doi:10.20944/preprints202312.0301.v1
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[} were obtained by least-square regression. [ is equal to 1.4072 calculated from large amount of

simulation data. The coefficients a, b and ¢ canbe obtained from the simulated the atmospheric
downwelling and upwelling data, where whose are -0.3630, 2.2013 and -0.1080, respectively.
Obviously, the calculation of atmospheric parameters takes into account the influence of water vapor
and ozone, which provides more accurate atmospheric data for LST inversion.

3.2. Land Surface Emissivity Inversion

The estimation of land surface emissivity (LSE) relies on the fraction vegetation coverage method
(FVC), which integrates two constant emissivity values representing the bare ground and full
vegetation conditions of each pixel. The real-time emissivity is then adjusted according to the FVC.
The classification of land surface into distinct types necessitates the adoption of varied processing
approaches owing to their diverse thermal emission characteristics. The inland water and full
vegetation emissivities are directly converted from the mean value determined according to ASTER
spectral library dataset, and bare soil emissivity is calculated based on the relationship between

emissivity and reflectance of red band (Tang et al. 2015), i.e, € =a+b- Peq - Where a and b

are the channel-dependent regression coefficients, and Pred s the reflectance of red band. For
mixed pixel, the emissivity can be expressed as a linear relationship between the bare soil and
vegetation fraction (6l

e=¢f,+e(-f)+de 8)

where &, and & are the emissivity of the vegetation and bare soil, respectively, and f, is the
Fractional Vegetation Coverage (FVC) 171:

NDVI — NDVI

= )
NDVI__— NDVI

where Normalized Difference Vegetation Index(NDVI) is acquired from the target pixel, where
NDVI — and NDVI

image.

are calculated from the full vegetation and bare soil pixels in the whole

n

de =4(1-¢&)e Ff,(A— f)’ (10)

where, F is the shape factor depending on the vegetation structure information, in which F is set up
to be 0.550%1,

In total, the emissivity can be written as Eq. (11), where pixels with NDVI values below 0 are
considered as water body (e=ewater). The pixels with NDVI values below 0.2 are considered as bare
soil. NDVI values above 0.5 represents fully vegetation pixels. Therefore, the pixels with NDVI values
range from 0.2 to 0.5 are considered as mixture of soil and vegetation 1% 4,

waer>  NDVI<O

e=a+b-p,, O0<NDVI<O0.2
E= 11
e.f +e(l-f)+ds, 0.2<NDVI<0.5 -

g, NDVI>O0.5

v

&g

where, & is emissivity of water, & is emissivity of soil, and & is emissivity of vegetation.

water

Peq is reflectance of red band.
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3.3. Atmospheric Parameters Inversion

To obtain the atmospheric parameters for each pixel of ZY1-02E IRS image, the interpolation of
atmospheric profiles in time and space must be performed. Temporal linear interpolation of the
atmospheric ~ parameters in  terms of the time of the ERA5  profiles
(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=form) and
the ZY1-02E acquisition time. Spatial interpolation of the atmospheric parameters in terms of
geographic latitude and longitude of the closest four grid points. In addition, there is a certain
uncertainty in the reanalysis of atmospheric profile data, water vapor scaling factor 7 should be
calculated by simulation data using WVS-based LST method. Then, the modified atmospheric
parameters can be obtained.

3.4. WVS-Based LST Retrieval

DN values in ZY1-02E IRS band data should be converted to top of the atmosphere (TOA)
radiance using the calibration coefficients provided in the metadata file.

L=a-DN +b (12)

Where, L is TOA radiance, DN is digital number of IRS data, a and b are calibration coefficients.

In addition, the TOA radiance should be converted to TOA brightness temperature (BT).
Considering the wide spectral range (7~12um) of ZY1-02E IRS sensor, the look-up table between
radiance and temperature of ZY1-02E should be set up from 200K to 400K with a step of 0.1K. The
flow chart of LST retrieval from ZY1-02E IRS data is shown in Figure 5.

ZY-1F VNICdata ZY-1F IRS data ERAS profile data
Atmospheric correction Calibration MODTRAN
from MODTRAN anbratio
Land surface TOA radiance Temporal and‘ spatial wve
reflectance interpolation
NDVI and FVC Look Up Table Atmospheric —>»  WVS adjustment
parameters
Land surface emissivity TOA BT Adjusted Atmospheric <
parameters

A

Land surface temperature retrieval
method

¢

LST image

Figure 5. Flow chart of LST retrieval from ZY1-02E IRS data.
4. Results

4.1. LST Results

The LST was estimated from ZY1-02E IRS data usinga WYVS-based method. Based on the FVC
and NDVI calculated with land surface reflectance, the emissivity for Ulansuhai, Kubq desert, Baotou
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desert, Zhangye wetland, Desert and Yantai-sea sites are estimated. Emissivity measurements for
bare soil were obtained on three different days (July 7th, 10th, 13th) due to variations in local FVC
and NDVL

The inversed LST images of study area A (Baotou site) derived from ZY1-02E IRS data, are
presented in Figure. 6. We selected two specific days (i.e.,July 7%, 10th, 2022) of ZY1-02E IRS images
that cover the Baotou site. The average UTC time of ZY1-02E overpass at the Baotou site is 03:50.
Figure 6 demonstrates that the temperature of Ulansuhai lake during local noon is typically lower
than other landscapes, while bare soil and sand exhibit higher temperatures. The reflectance of water
bodies exceeds that of other land cover types.
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Figure 6. The retrieved LST images of study area A (Baotou site) from ZY1-02E IRS data based on
WVS method; (a, ¢) The retrieval LST images of Ulansuhai lake, Baotou sand, crop and Bare soil. (b,
d) The retrieval LST images of Kubq desert.

4.2. Validation

Two validation methods are selected, i.e., based on in-situ data and based on cross-validation
with MODIS LST product, employed to evaluate the LST inversion accuracy.

4.2.1. Validation Based on In-Situ Data

The LST derived from the WVS-based method was evaluated by the comparison with ground
measurements (GM) LST obtained from the Baotou, HRB and Yantai-Sea sites. The in-situ averaged
LST before and after 10 minutes against ZY1-02E overpass time was selected as validation data
compared with the inversed LST from these sites. Figure 7 shows scatterplots depicting the inversed
LST versus the in situ LST at the eight sites. To quantitatively describe the accuracy of LST inversion,
the bias and RMSE are calculated as evaluation index. The results in Figure. 7(a) reveal that the
average bias and root mean square error (RMSE) between the WVS-based method and in situ LSTs
are 0.63K and 1.62K, respectively. It shows a high agreement between the WVS method and field
measurement data. Additionally, the results in Figure 7(b) indicate that the LSTs inversion in water
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body, desert, sand, reed wetland and vegetation exhibit the closest proximity to the measured
temperature data, with an average LST bias of 0.24, -0.17, -0.7, 0.27 and 0.27K, respectively.
Comparatively, the average LST biases for the bare soil is 1.7K. And the RMSEs of these six land
surface types (water body, bare soil, desert, sand, reed wetland and vegetation) are 1.39K, 1.77K,
0.53K, 0.99K, 0.42K and 0.42K, respectively.

(a)

330 ~
@ water body #
@ bare soil .‘ ‘
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@ reed wetland| '
310 vegetation ,
2 -
= L7
o | 3
3 300 %"
E o,
& ' £
290 1 & WVS-based method
o X Average Bias=0.63 K
280 .7 RMSE=1.62 K
-
70 o’ 1 . 1 . 1 . 1 . 1 .
270 280 290 300 310 320 330
In situ T, (K)
4 B 25%-75%
] T Min-Max
34 = Average value
—~ 21
4
£
[
[¥2] . *
— 0-
-1
g,
T T T T T T
water bare soil desert sand reed vegetation
body wetland

Figure 7. (a) Scatterplots of the inversed LST using WVS-based method versus the in-situ LST at six
land surface types (water body, bare soil, desert, sand, reed wetland and vegetation). (b) LST bias
between WVS-based method and ground measurements.

In addition, according to each surface types, the statistical analysis shows that LSTs inversion in
water body, bare soil, desert, sand, reed wetland and vegetation exhibit the closest proximity to the
measured temperature data, with an average LST bias and RMSE of 0.24K and 1.39K, 1.7K and 1.77K,
-0.17K and 0.53K, -0.7K and 0.99K, 0.27K and 0.42K, 0.27K and 0.42K, respectively.
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4.2.2. Cross-Validation Compared to MODIS LST and SST Product

As well-known, the MODIS LST product offers a high accuracy, making the MODIS Terra daily
LST product (MOD11_L2) with a spatial resolution of 1km suitable for cross-validation. According
to satellite overpass time, the time differences between the MOD11_L2 and ZY1-02E data range from
0 to 50 minutes for the study area A and B. To minimize the error caused by the difference due to
overpass time, a temporal correction method was considered to correct the MODIS temperature
product using the measured surface temperatures over the two satellites overpass time, i.e., LST =
axtime + b. The coefficients a and b can be calculated by field measurement data. This is because the
surface temperature shows a certain change rule over a short period of time. The ground
measurement temperature data was plotted as a function of viewing time in Figure 8, and then the
time-corrected MODIS LST values were obtained by a linear function expression.

(a) LST change in Desert site (b) LST change in Kubq desert site
300.0 315
® Insitu Ts (K) B InsituTs (K)
Linear fit: Ly Linear fit: ™
209.64 LST=04*At+298.1 3144 LST=04*A143093
—_ 3134
2£299.2 4 )
& &
] = 3124
E 298.8 4 E
3114
298.4 4 5]
| |
298.0 T T T T T 309 T T T T T
11:50 12:00 12:10 12:20 12:30 11:10 11:20 11:30 11:40  11:50

Local Time Local Time

Figure 8. (a) LST change in Desert site on October 22, 2022. (b) LST change in Kubq desert site on
July 7, 2022.

The results in Figure 9(a) indicates that the average bias and RMSE between the inversed LSTs
from WVS-based method and MODIS LST/SST product are 0.77K and 2.0K, respectively. Figure 9(b)
reveals that the LST biases between WVS-based method and MODIS LST product are consistent
across five land surface types (water body, bare soil, desert, sand and reed wetland), with average

biases of 0.88K, 1.5K, -0.73K, 1.3K and 3.9K, respectively. And the RMSEs are 1.75K, 1.51K, 0.71K,
1.86K and 4.05K, respectively.

doi:10.20944/preprints202312.0301.v1
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Figure 9. (a) Scatterplots of the inversed Ts (LST) versus the MODIS LST product at five land surface
types (water body, bare soil, desert, sand, reed wetland). (b) LST bias between WVS-based method
and MOD11_L2.

To mitigate positioning accuracy errors during the validation of the LST retrieval, we employed
the average LST value of 3x3 pixels surrounding the target site in the ZY1-02E IRS images. The data
collection period for the ZY1-02E IRS scenes spanned from July 2022 to March 2023. For evaluating
the accuracy of LST retrieval from ZY1-02E IRS data, Figure 10 presents the results that the absolute
errors (AE) between WVS-based method and ground measurement range from 0.1K to 3.5K, with an
average AE of 1.31K. Moreover, the average absolute error between WVS-based method and MODIS
LST&SST productis 1.82K. The dissimilarity in spatial resolution accounts for another possible reason
since the ZY1-02E has a resolution of 16m, while the MODIS temperature product has a resolution of
1KM. This discrepancy can result in inaccuracies when observing bare soil, mainly due to scaling
effects within the area-averaged FOV 111,

To validate the reliability of the WVS-based LST method, we conducted calculations on the
variance of the LST values for the target sites and their surrounding eight pixels in the retrieval LST
images, with a spatial resolution of 48m for the variance statistics. The results in Figure 10
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demonstrate that the average variance of LST at the target site was 0.134K, indicating a minimal
deviation in the retrieved LST for the target stations. These findings affirm that the proposed method
can accurately retrieve LST from single-channel TIR data.

6
J AE(WVS-GM)
AE(WVS-MODIS)
5 Variance(WVS)
4 -]

LST bias (K)
w
1

*

° 0.134
0 f

T
AE(WVS-GM) AE(WVS-MODIS) Variance(WVS)

Figure 10. Evaluating accuracy of LST retrieval using WVS-based method. The boxplots are centered
on the errors of retrieved LST using WVS-based method and other retrieval LST methods.

5. Discussion

In this study, the single channel algorithm based on a water vapor scaling (WVS) method
proposed by Tonooka B4 to correct the error caused by uncertain atmospheric profile data was used
to estimate LST from ZY1-02E thermal infrared data. In terms of the validation based on in-situ data,
the WVS-based method exhibits poorer performance at bare soil and Zhangye wetland sites, as
illustrated in Figure 11. The challenge of accurately defining the emissivity of Zhangye wetland and
Baotou bare soil sites results in significant LST deviation, leading to reduced accuracy in LST
inversion for these locations. The average LST biases between the WVS-based method and in situ
LSTs for Ulansuhai, Bare soil, Kubq desert, Baotou sand, Zhangye wetland, Desert and Yantai-sea are
as follows: 1.3K, 1.4K, -1.3K, 1.3K, 3.9K, -0.69K and 0.65K, respectively. Therefore, the WVS-based
method demonstrates higher accuracy for the uniform land cover, such as water bodies, deserts. The
results show the effectiveness of LST inversed from ZY1-02E IRS data using the WVS-based method.
Although comparing to MODIS LST product, the spatial resolution of Landsat 9's Thermal Infrared
Sensor 2 (TIRS-2) and ECOTRESS LST product are higher, with 100m and 70m, respectively, the
transit dates for either Landsat or ECOTRESS are different with ZY1-02E. The cross-validation based
on MODIS LST and SST products were performed. To ensure comprehensive coverage of the
corresponding areas in the MODIS LST product, we analyzed the average LST value and LST
variance using 63 pixels per site in ZY1-02E IRS images. Figure 11 illustrates that the average LST
biases between the WVS-based method and MODIS are lower in Baotou sites compared to HRB sites
and Yantai-sea. The vegetation area of Baotou Crop site is less than the MODIS single pixel size of
1km*1km, so the retrieval LST of the Baotou Crop was not considered in the comparison with MODIS
LST product. The results of average LST bias between the WVS-based method and MODIS product
for each study site indicate that the homogeneity of land cover types plays a critical role in LST
retrieval across various spatial scales. This is evident that the lower LST biases can be found in water
bodies, deserts, and vegetated areas compared to other mixed surface features.

This study employed two validation methods to assess the LST accuracy. The results
demonstrated a close approximation between the WVS-based method and the in-situ LST, exhibiting
an average bias of 0.63K. However, the study’s focus was limited to six types of landscapes across
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three study areas. Future research should explore a wider range of landscape types to
comprehensively assess the applicability of the WVS-based LST method. Additional data samples
should be collected for specific stations in future research.

WVS-based — MODIS
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Figure 11. The LST bias retrieved by WVS-based method and MODIS in all study areas.

6. Conclusion

In this study, a water vapor scaling (WVS-based) method was used to estimate the LST from
ZY1-02E IRS data and evaluate its feasibility. The ERA5 atmospheric profile dataset and the radiative
transfer code were used to correct atmospheric effects. A water vapor scaling factor was used to
reduce the errors in atmospheric correction caused by various atmospheric factors. Additionally, the
LSE was estimated based on NDVI and FVC data. The estimated LST was validated by collecting in
situ LST data from three study areas. For study area A (Baotou site), the WVS-based method showed
an absolute bias of approximately 0.2 to 3.3K compared to the in situ LST, with the RMSEs ranging
from 0.42 to 2.3 K. In study area B (Heihe River Basin), the LST biases ranged from 0.1 to 2.9 K, with
the RMSEs between 0.5 and 2.4 K. In study area C (Yantai-sea), the SST biases ranged from 0.1 to 1.6
K, with the RMSE of ~0.8 K. In addition, according to each surface types, the statistical analysis shows
that LSTs inversion in water body, bare soil, desert, sand, reed wetland and vegetation exhibit the
closest proximity to the measured temperature data, with an average LST bias and RMSE of 0.24K
and 1.39K, 1.7K and 1.77K, -0.17K and 0.53K, -0.7K and 0.99K, 0.27K and 0.42K, 0.27K and 0.42K,
respectively. These results show that the WVS-based method can accurately retrieve LST from single-
channel Thermal Infrared data though there is a wide spectrum range, i.e., 7~12um, affected strongly
by both atmospheric water vapor and ozone. However, further validation work is necessary to
evaluate the method’s performance across different land-cover types and geographical locations.
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