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Abstract: The role of land surface temperature (LST) is of utmost importance in multiple academic disciplines 

such as climatology, hydrology, ecology, and meteorology. Until to now, many methods have been proposed 

to estimate LST from satellite thermal infrared data. The Thermal Infrared Sensor (IRS) on the Chinese ZY1-

02E satellite is a pivotal instrument employed for gathering thermal infrared (TIR) data of land surfaces. The 

objective of this research is to evaluate the feasibility of a single-channel approach based on water vapor scaling 

(WVS) for deriving LST from ZY1-02E IRS data because of its wide spectrum range, i.e., 7~12μm, affected 

strongly by both atmospheric water vapor and ozone. Three study areas, namely Baotou, Heihe River Basin, 

and Yantai-sea sites, were selected as validation sites to evaluate the LST inversion accuracy. This evaluation 

was also conducted by cross-comparison between the retrieved LST and MODIS LST product. The results 

revealed that the WVS-based method exhibited an average bias of 0.63K and an RMSE of 1.62K compared to 

the in-situ LSTs. The WVS-based method demonstrated reasonable accuracy through cross-validation with the 

MODIS LST product, with an average bias of 0.77K and RMSE of 2.0K. These findings provide that the WVS-

based method is effective to estimate LST from ZY1-02E IRS data. 

Keywords: land surface temperature; WVS-based LST method; ZY1-02E IRS 

 

1. Introduction 

Land surface temperature (LST) is a crucial parameter in multiple fields of study, such as 

climatology[1-5], ecology[6, 7], and surface energy [8-10]. It is widely recognized as a significant Earth 

surface parameter[11] and is considered one of the ten essential climate variables in the land biosphere, 

as defined by the Global Climate Observing System [12, 13].  

Satellite observations offer a precise method for obtaining LST on a global scale, thanks to their 

large spatial resolution and regular temporal revisiting[14]. In the past decades, various algorithms 

have been developed to retrieve LST from thermal infrared instruments carried on satellites, such as 

the single-channel (SC) algorithm[15-17], the split-window (SW) algorithm[18, 19], multiple angle 

methods[18, 20-22], and the temperature and emissivity separation (TES) algorithm[23-27], etc. A 

comprehensive overview of LST retrieval methods can be seen in previous research[13, 14]. Except for 

the single-channel methods, all the other methods require two or more thermal infrared channels. 

Single-channel method has been applied to the Landsat platform, which has one thermal channel.  

Traditionally, the main disadvantage of this method is that it requires atmospheric parameters and 

land surface emissivity as prior knowledge. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
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ZY1-02E satellite was successfully launched on December 26, 2021, from the Taiyuan Satellite 

Launch Centre, China, aboard a Long March-4 carrier rocket. Developed by the Fifth Academy of 

Aerospace Science and Technology Corporation, the ZY1-02E satellite is classified as a medium-

resolution remote sensing satellite. Its primary purpose is to conduct land resources survey and 

monitoring, providing domestic data support for the investigation, monitoring, supervision and 

production capacity monitoring of land resources. Additionally, it contributes to disaster reduction, 

environmental protection, housing and construction, transportation, agriculture, forestry, marine 

surveying and mapping industries. 

The ZY1-02E satellite carries a payload comprising three instruments—the Visible Near-Infrared 

Multispectral Camera (VNIC), the Advanced Hyperspectral Imager (AHSI) and the Thermal Infrared 

Sensor (IRS). The AHSI instrument features 166 bands, offering a resolution of 30 m and a width of 

60 km. The VNIC sensors provide a panchromatic imagery at 2.5 m resolution and multispectral data 

with 8 bands at 10 m resolution covering a width of over 100 km. The IRS has a single thermal infrared 

band, providing a spatial resolution of 16 m and covering a width of 60 km.  

Unlike traditional thermal sensor, ZY1-02E IRS sensor has a wider spectral coverage, i.e., 

7~12μm, which includes a stronger atmospheric water vapor absorption and ozone absorption bands. 

This study aims to evaluate the feasibility of temperature inversion using a single channel algorithm 

based on WVS from ZY1-02E single-channel IRS data because of its wide spectrum range affected by 

both atmospheric water vapor and ozone. The organization structure of paper is as follows: Section 

2 introduces the used ZY1-02E IRS and VNIC data, atmospheric profiles, and in-situ field 

measurements. Sections 3 shows the WVS-based LST inversion method. Section 4 and Section 5 gives 

the results and discussion. Section 6 is the conclusions. 

2. Study Area and Data 

2.1. Study Area 

Field campaigns were conducted to validate the accuracy of the algorithms using ZY1-02E IRS 

data. For validation purposes, three field sites were chosen: Baotou, Heihe, and Yantai-Sea. The 

selection of these three sites mainly considers regional differences, climate differences and surface 

type differences, which can have a more comprehensive evaluation of temperature inversion. 

The Baotou site is located in Urad Front Banner, in western Inner Mongolia, with coordinates of 

approximately 40.85°N latitude and 109.6°E longitude. The Baotou site encompasses two different 

target categories for validation. The first category consists of a crop target measuring 300m×600m, 

primarily comprising corn, which is ideal for validating LST. The second category comprises a desert 

target, measuring around 300m×300m. Figure 1 shows both the crop target and natural desert target 

at the Baotou site, with a separation distance of approximately 6 km between them. Water bodies 

serve as natural targets for thermal infrared calibration and validation due to their high thermal 

inertia and minimal spatiotemporal temperature variability. Thus, Ulansuhai Lake, located in the 

Urad Qianqi, was used to obtain the water temperature for validation. Additionally, bare soil and 

Kubq desert surrounding Ulansuhai Lake were also selected for validation purposes. The Baotou site 

and Ulansuhai Lake have average ground elevations of 1290 m and 1021 m, respectively.  

The Heihe River Basin (HRB) serves as the second site in this study. Situated in the arid region 

of northwestern China, it is the second largest endorheic basin in China. The HRB is well-suited for 

investigating land surface processes due to its diverse landscapes[28]. The hydrometeorological 

observatory consists of over 20 observation stations that cover the main land surfaces in the HRB. 

These surfaces include alpine meadows, forestlands, croplands, deserts, bare lands, and wetlands. 

For the purposes of validation, two stations, namely Zhangye wetland and Desert, are chosen. These 

stations are located in the upstream region, midstream region and downstream region in the HRB, 

respectively.  

The third site, Yantai-sea, is located in the eastern China at a latitude of 37.51°N and a longitude 

of 121.47°E, which is close to the Yellow Sea and Bohai Sea, with an average elevation of 0 m. Yantai-

sea experiences a warm-temperature monsoonal continental climate, characterized by mild 
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temperatures and abundant precipitation throughout the year. The Yantai-sea is selected as an 

important validation site. 

Table 1. Information of the seven stations selected in the study aera for validation. 

No. Station Land cover 
Study 

area 

Longitude 

(°) 

Latitude 

(°) 

Elevation 

(m) 

1 Ulansuhai Water body Baotou 108.7706E 40.8476N 977 

2 Bare soil Bare soil Baotou 108.8176E 40.7978N 977 

3 Kubq desert Desert Baotou 108.6203E 40.4551N 977 

4 Baotou sand Sand Baotou 109.6187E 40.8659N 1296 

5 Baotou Crop Vegetation Baotou 109.5537E 40.8708N 1295 

6 
Zhangye 

wetland 
Reed wetland HRB 100.4464E 38.9751N 1460 

7 Desert 
Reaumuria 

desert 
HRB 100.9872E 42.1135N 1054 

8 Yantai-sea Water body Yantai 121.4653E 37.5148N 0 

 

Figure 1. The study area used for validation. 

2.2. ZY1-02E Data 

The ZY1-02E satellite captures visible and infrared imagery to measure various parameters of 

the land, atmosphere, and oceans. As a cutting-edge, operational high-resolution imaging 

instrument, it belongs to a new generation of remote sensing technology. The ZY1-02E satellite 

enables the generation of various critical environmental products, such as snow and ice cover, clouds 

and city monitoring, sea and LST, vegetation and surface albedo, etc. Table 2 provides a 

comprehensive summary of its detailed spectral characteristics in its 10 spectral bands, which range 

from 0.45 to 12.0μm. The data is obtained from both the VNIC and IRS sensors. The VNIC sensor has 
9 bands with a spatial resolution of 2.5m (Pan) and 10m (multispectral) at nadir. Additionally, the 
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IRS sensor includes one thermal infrared band with a 16m spatial resolution at nadir, specifically 

designed for LST retrieval. The ZY1-02E VNIC and IRS spectral response functions are shown in 

Figure 2 and 3. 

Table 2. Spectral Characteristics of ZY1-02E VNIC/IRS. 

Bands Bands No. 
Spectral 

Range(µm) 
Resolution(m) NEDT/SNR 

VNIC 

Pan 0.45~0.90 2.5 
≥28dB@sun 

altitude angle is 

30° and surface 

reflectance is 0.03 

≥48dB@sun 
altitude angle is 

70° and surface 

reflectance is 0.5 

B1 0.45~0.52 10 

B2 0.52~0.59 10 

B3 0.63~0.69 10 

B4 0.77~0.89 10 

B5 0.40~0.45 10 

B6 0.59~0.625 10 

B7 0.705~0.745 10 

B8 0.860~1.040 10 

IRS B9 7~12 16 NEΔT≤0.1K@300K  

 

 

Figure 2. Relative spectral response function (a) ZY1-02E VNIC; (b) ZY1-02E IRS. 
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Figure 3 shows the transmittance of atmospheric water vapor and ozone from 7 μm to 12 μm 
using MODTRAN US 1976 Standard atmosphere. The minimum of ozone transmittance ranging from 

9 to 10 μm is nearly 0.2. Meanwhile, the IRS channel covers both water vapor continues absorption 

and line absorption, especially 8~9 μm. Compared to traditional thermal infrared sensor used for LST 

estimation, the ZY1-02E IRS channel is strongly influenced by water vapor and ozone. 

 

Figure 3. Total transmittance of H2O and ozone from 7 μm to 12 μm. 

2.3. MODIS Data 

The Moderate Resolution Imaging Spectroradiometer (MODIS), onboard the NASA Aqua and 

Terra Earth Observing System satellites, is one of the key instruments mainly used to observe 

biological and physical processes around the world. MODIS provides per-pixel LST 

(https://modis.gsfc.nasa.gov/data/dataprod/mod11.php) and Sea Surface (SST, 

https://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sub=level3&prm=SST) products, covering from 5-

minute temporal to multi-day average  In this paper, two temperature products (i.e., MOD11_L2 

and SST data) were used to validate the accuracy of the  WVS-based method. The spatial resolution 

of both of temperature products is 1 km. MOD11_L2 LST product is retrieved by using the 

generalized split-window algorithm[29]. A comparison was performed between the MOD11_L2 LST 

and ground measurements at several sites: Brookings, Audubon, Canaan Valley, and Black Hills [30]. 

Results show that the absolute biases and RMSEs between MOD11_L2 LST and ground 

measurements were less than 0.8K and 1.7K, respectively. 

2.4. The ASTER Spectral Library 

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) spectral 

library v2.0 [31], developed jointly by the Jet Propulsion Laboratory (JPL), Johns Hopkins University 

(JHU), and the United States Geological Survey (USGS), comprises a comprehensive collection of 

data. It encompasses over 2300 spectra covering a broad range of materials, such as vegetation, man-

made materials, soil, minerals, rocks, water, ice, and snow. The wavelength range covered is from 0.4 

μm to 15.4 μm, with specific wavelengths falling between 3.0 μm and 14.5 μm. From this library, 108 
emissivity spectra were selected to represent various surface features including 70 soil/mineral types, 

28 vegetation types, and 10 man-made material types. 
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2.5. ERA5 Atmospheric Profiles 

In order to determine the LST, atmospheric correction is essential. In this paper, the European 

Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 atmospheric profile dataset was used 

to obtain the atmospheric parameters by using the radiative transfer code (MODTRAN 5.3) 

developed by AFRL/VSBT in collaboration with Spectral Sciences, Inc. ERA5, the fifth-generation 

ECMWF reanalysis, offers global climate and weather data spanning the past 8 decades. The dataset 

begins from 1940, replacing the ERA-Interim reanalysis. By leveraging the ERA5 profiles, 
atmospheric parameters such as atmospheric transmittance, atmospheric downwelling and 

upwelling radiances are derived.  

ERA5 profiles provide geopotential height, temperature, relative humidity information at 37 

pressure levels and total column ozone on a 0.25° × 0.25° grid, with updates every hour in UTC time. 

ERA5 atmospheric profiles provide the pressure, geopotential height, air temperature, relative 

humidity, et al., which has 0.25° of the spatial resolution, 37 pressure levels (1, 2, 3, 5, 7, 10, 20, 30, 50, 

70, 100, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 775, 800, 825, 850, 

875, 900, 925, 950, 975, 1000), 48 km height, and 1-hour temporal resolution. It is worth noting that, 

due to the wide spectrum of ZY1-02E covering the ozone absorption band, the total column ozone is 

also applied in the algorithm process and simulation for WVS coefficients. The ERA5 profiles were 
used to calculate the atmospheric transmittance, upwelling and downwelling radiances with the aid 

of MODTRAN 5.3. 

2.6. In Situ Data 

At Baotou site, SI-111 thermometers with a spectral range of 8~12 µm were employed to measure 

the temperature of various surfaces, including sand, crop, Ulansuhai Lake, bare soil and Kubq desert, 

etc. At Baotou site, two thermometers were distributed in sand area, bare soil, Kubq desert, and four 

thermometers were distributed in crop area to capture the in-situ field LSTs, and the temporal 

sampling interval is 2 second and an altitude of approximately 2.0 m. An additional SI-111 

thermometer was used to observe the sky at an angle of 53° relative to the zenith and measure the 

atmospheric downwelling radiance to correct for the atmospheric effect. For Ulansuhai Lake, a 102F 

Fourier Transform Infrared Spectroradiometer (FTIR) with a spectrum ranging from 2 to 16 μm, a 
spectral resolution of 4 cm−1, and a field of view (FOV) of 4.8° and two thermometers were deployed 

on boat to measure the water temperature. At Heihe River Basin, two SI-111 thermometers are 

mounted at 6m, facing due south, with the probe facing straight down to measure the LST. Land 

emissivity measurements were performed using the 102F FTIR.  

Two automatic water observation buoys in Yantai-Sea, equipped with an automatic weather 

station to measure wind speed, wind direction, atmospheric temperature, humidity, pressure, 

rainfall. SI-111 thermometer is used to measure the sea temperature.  

Next equation was used to calculate the in situ LSTs from surface-leaving radiance and 

atmospheric downwelling radiance: 

1 atm
(1 )

( )
s

L L
T B




− 

− −
=  (1) 

Where, Ts represents LST, B denotes the Planck function, L is radiance measured by the SI-111 

radiometer, ε is the channel-effective Land Surface Emissivity (LSE) specifically for SI-111 

thermometer, and Latm↓ is atmospheric downwelling radiance calculated by the spectral response 

function of the SI-111 thermometer. 

In this study, several natural scenes (refer to Figure. 4) were selected to evaluate the accuracy of 

LST estimated from the ZY1-02E IRS data. Table 3 provides a summary of the main technical 

characteristics of the thermal instruments. Figure 4 illustrates the primary attributes of the 

measurement targets. 
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Table 3. Main technical specifications for the thermal instruments. 

Instrument 
Spectral 

Range (µm) 

Operating 

environment 

(°C) 

Accuracy  Resolution FOV (º) 

SI-111 8~14 -55~80 ±0.2 K 0.1 K 44 

KT-15 9.6~11.5 0~55 ±0.5 K 0.06 K 2 

102F 2~16 15~35 1 cm-1 4 cm-1 4.8 

 

    
(a) Ulansuhai lake (b) Baotou sand (c) Bare soil (d) Crop 

    
(e) Kubq desert (f) Yantai-Sea (g) Zhangye wetland (h) Zhangye desert 

Figure 4. Photos of targets in study area. 

3. Methodologyas 

3.1. WVS-Based LST Method 

The theoretical basis of radiative transfer in the TIR spectral region (8–14 m) has been 

developed[14]. In the case of a cloud-free atmosphere under local thermodynamic equilibrium, the 

radiative transfer equation (RTE) can approximately be expressed as: 

_ _( ) ( ) (1- )
s atm atm

L T B T L L         = +  +    (2) 

where, T is the at-sensor brightness temperature (BT), Lλ(T) is the at-sensor radiance at wavelength 

λ. τλ is the atmospheric transmittance at wavelength λ. ελ is the land surface emissivity. Bλ(Ts) is the 

Planck function of the wavelength λ. Ts is the LST. 
atm_

L   is the atmospheric upwelling radiance, 

and 
atm_

L   is the downwelling radiance. Obviously, the atmospheric parameters were estimated 

by using a radiative transfer code, such as MODTRAN, with atmospheric profiles and elevation data. 

Thus, the LST based on RTE method is derived from the at-sensor radiance. 
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As well-known, the existing single-channel method for LST retrieval, the reanalysis atmospheric 

profile dataset, such as European Centre for Medium-Range Weather Forecasts (ECMWF), National 

Centers for Environmental Prediction (NCEP), etc., is generally preferred to correct the atmospheric 

effect [32, 33]. However, the reanalysis of atmospheric profile data has certain uncertainty, which will 

influence the accuracy of atmospheric transmittance and atmospheric upward/downward radiance, 

and then the retrieval accuracy of LST will be affected. The WVS-based method proposed by Tonooka 
[34, 35] is based on the standard atmospheric correction algorithm for ASTER/TIR. A significant 

enhancement of this method involves determining a water vapor scaling factor γ, which serves to 

mitigate the errors resulting from multiple sources. These errors include not only a bias error in the 

water-vapor profile but also random errors in the water-vapor profile, errors in the air temperature 

profile, and elevation errors. Since all of these errors contribute to the bias error in the water-vapor 

profile. Once an appropriate γ is determined, the improved atmospheric parameters are calculated 

by: 

2 1 2 1 1 2( )/( ) ( )/( )

1 2( , ) ( , ) ( , )
                      − − − −=   (3) 

1_ _

1

1 ( , )
( , ) ( , )

1 ( , )atm atm
L L 

     
   

−
= 

−
 (4) 

2

_ _ _
( ) (0, ) (0, )

atm atm atm
L a bL cL      = + +  (5) 

( )
=

( )

U z

U z




 
=  (6) 

where,   is water vapor scaling factor . U  and U '  are the total water vapor content of 

atmospheric parameters for water-vapor profile P and P’, respectively, where P’ is a water-vapor 

profile scaled from a water-vapor profile P by a factor of  . ( )z  and ( )z '  are water-vapor 

amounts at an arbitrary height Z. 1  and 2  are appropriate different values (e.g., 1 =1 and 2
=0.7 in this paper). 

1 2

1

2

1/
( )

1

2 1 2

111
sensor

1

( )
( )

( ) 1 ( ) ( )
= ln / ln

( )( )( )
( )

1 ( )

g

L
B T

L
B T

 






 






     

  
 

−



     −    −         −   −   

 (7) 

where， ( )
g

B T  is at-surface radiance, i.e., ( )= ( ) (1 )
g s

B T B T L  + − . 

From Figure 3, it can be found that the IRS sensor has been influenced by atmospheric water 

vapor and ozone. Therefore, in this paper, the WVS coefficients were simulated by using the global 

atmospheric profile library, i.e. the Thermodynamic Initial Guess Retrieval (TIGR) database, 

including band model parameter  , regression coefficient a , b  and c  of atmospheric 

downward radiation. The TIGR atmospheric profile database contain 2311 representative 

atmospheric situation. Each profile records the atmospheric pressure, temperature, humidity and 

ozone content.  The atmospheric transmittance under different water vapor scaling factors γ (0.7, 0.9 
and 1.0, respectively) was obtained by MODTRAN 5.3 in band model parameter, and the parameters 
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  were obtained by least-square regression.   is equal to 1.4072 calculated from large amount of 

simulation data. The coefficients a , b  and c  can be obtained from the simulated the atmospheric 

downwelling and upwelling data, where whose are -0.3630, 2.2013 and -0.1080, respectively. 

Obviously, the calculation of atmospheric parameters takes into account the influence of water vapor 

and ozone, which provides more accurate atmospheric data for LST inversion. 

3.2. Land Surface Emissivity Inversion 

The estimation of land surface emissivity (LSE) relies on the fraction vegetation coverage method 

(FVC), which integrates two constant emissivity values representing the bare ground and full 

vegetation conditions of each pixel. The real-time emissivity is then adjusted according to the FVC. 

The classification of land surface into distinct types necessitates the adoption of varied processing 

approaches owing to their diverse thermal emission characteristics. The inland water and full 

vegetation emissivities are directly converted from the mean value determined according to ASTER 

spectral library dataset, and bare soil emissivity is calculated based on the relationship between 

emissivity and reflectance of red band (Tang et al. 2015), i.e., red
a b = +  . Where a  and b  

are the channel-dependent regression coefficients, and red


 is the reflectance of red band. For 

mixed pixel, the emissivity can be expressed as a linear relationship between the bare soil and 

vegetation fraction [36]: 

v v s v(1 )f f d   = + − +  (8) 

where v  and s
  are the emissivity of the vegetation and bare soil, respectively, and vf  is the 

Fractional Vegetation Coverage (FVC) [37]: 

min

max min

v

NDVI NDVI

NDVI NDVI
f

−

−
=  (9) 

where Normalized Difference Vegetation Index(NDVI) is acquired from the target pixel, where

max
NDVI  and 

min
NDVI  are calculated from the full vegetation and bare soil pixels in the whole 

image. 

24(1 ) (1 )
s v v v

d Ff f  = − −  (10) 

where, F is the shape factor depending on the vegetation structure information, in which F is set up 

to be 0.55[38]. 

In total, the emissivity can be written as Eq. (11), where pixels with NDVI values below 0 are 

considered as water body (ε=εwater). The pixels with NDVI values below 0.2 are considered as bare 

soil. NDVI values above 0.5 represents fully vegetation pixels. Therefore, the pixels with NDVI values 

range from 0.2 to 0.5 are considered as mixture of soil and vegetation [39, 40]. 

water

v v s v

v

ΝDVΙ
ΝDVΙ

ΝDVΙ
ΝDVΙ

, <0

0.2

(1 ) , 0.5

, 0.5

red
a b

f f d


 


  


   
 = +           =  + − +     
       

 (11) 

where, water  is emissivity of water, s
  is emissivity of soil, and v

  is emissivity of vegetation. 

red  is reflectance of red band. 
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3.3. Atmospheric Parameters Inversion 

To obtain the atmospheric parameters for each pixel of ZY1-02E IRS image, the interpolation of 

atmospheric profiles in time and space must be performed. Temporal linear interpolation of the 
atmospheric parameters in terms of the time of the ERA5 profiles 
(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=form) and 

the ZY1-02E acquisition time. Spatial interpolation of the atmospheric parameters in terms of 

geographic latitude and longitude of the closest four grid points. In addition, there is a certain 

uncertainty in the reanalysis of atmospheric profile data, water vapor scaling factor  should be 

calculated by simulation data using WVS-based LST method. Then, the modified atmospheric 

parameters can be obtained. 

3.4. WVS-Based LST Retrieval 

DN values in ZY1-02E IRS band data should be converted to top of the atmosphere (TOA) 

radiance using the calibration coefficients provided in the metadata file. 

L a DN b=  +  (12) 

Where, L is TOA radiance, DN is digital number of IRS data, a and b are calibration coefficients. 

In addition, the TOA radiance should be converted to TOA brightness temperature (BT). 

Considering the wide spectral range (7~12μm) of ZY1-02E IRS sensor, the look-up table between 

radiance and temperature of ZY1-02E should be set up from 200K to 400K with a step of 0.1K. The 

flow chart of LST retrieval from ZY1-02E IRS data is shown in Figure 5. 

ZY-1F IRS data

Calibration

TOA radiance

Look Up Table

TOA BT

ERA5 profile data

MODTRAN

Temporal and spatial 

interpolation

Atmospheric 

parameters

ZY-1F VNICdata

Atmospheric correction 

from MODTRAN

Land surface 

reflectance

NDVI and FVC

Land surface emissivity

WVS adjustment

WVC

Adjusted Atmospheric 

parameters

Land surface temperature retrieval 

method

LST image

 

Figure 5. Flow chart of LST retrieval from ZY1-02E IRS data. 

4. Results 

4.1. LST Results 

The LST was estimated from ZY1-02E IRS data using a  WVS-based method. Based on the FVC 

and NDVI calculated with land surface reflectance, the emissivity for Ulansuhai, Kubq desert, Baotou 
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desert, Zhangye wetland, Desert and Yantai-sea sites are estimated. Emissivity measurements for 

bare soil were obtained on three different days (July 7th, 10th, 13th) due to variations in local FVC 

and NDVI. 

The inversed LST images of study area A (Baotou site) derived from ZY1-02E IRS data, are 

presented in Figure. 6. We selected two specific days (i.e.,July  7th, 10th, 2022) of ZY1-02E IRS images 

that cover the Baotou site. The average UTC time of ZY1-02E overpass at the Baotou site is 03:50. 

Figure 6 demonstrates that the temperature of Ulansuhai lake during local noon is typically lower 

than other landscapes, while bare soil and sand exhibit higher temperatures. The reflectance of water 

bodies exceeds that of other land cover types. 

  
(a) (b) 

  
(c) (d) 

Figure 6. The retrieved LST images of study area A (Baotou site) from ZY1-02E IRS data based on 

WVS method; (a, c) The retrieval LST images of Ulansuhai lake, Baotou sand, crop and Bare soil. (b, 

d) The retrieval LST images of Kubq desert. 

4.2. Validation 

Two validation methods are selected, i.e., based on in-situ data and based on cross-validation 

with MODIS LST product, employed to evaluate the LST inversion accuracy. 

4.2.1. Validation Based on In-Situ Data 

The LST derived from the WVS-based method was evaluated by the comparison with ground 

measurements (GM) LST obtained from the Baotou, HRB and Yantai-Sea sites. The in-situ averaged 

LST before and after 10 minutes against ZY1-02E overpass time was selected as validation data 

compared with the inversed LST from these sites. Figure 7 shows scatterplots depicting the inversed 

LST versus the in situ LST at the eight sites. To quantitatively describe the accuracy of LST inversion, 

the bias and RMSE are calculated as evaluation index. The results in Figure. 7(a) reveal that the 

average bias and root mean square error (RMSE) between the WVS-based method and in situ LSTs 

are 0.63K and 1.62K, respectively. It shows a high agreement between the WVS method and field 

measurement data. Additionally, the results in Figure 7(b) indicate that the LSTs inversion in water 
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body, desert, sand, reed wetland and vegetation exhibit the closest proximity to the measured 

temperature data, with an average LST bias of 0.24, -0.17, -0.7, 0.27 and 0.27K, respectively. 

Comparatively, the average LST biases for the bare soil is 1.7K. And the RMSEs of these six land 

surface types (water body, bare soil, desert, sand, reed wetland and vegetation) are 1.39K, 1.77K, 

0.53K, 0.99K, 0.42K and 0.42K, respectively. 

 

 

 

Figure 7. (a) Scatterplots of the inversed LST using WVS-based method versus the in-situ LST at six 

land surface types (water body, bare soil, desert, sand, reed wetland and vegetation). (b) LST bias 

between WVS-based method and ground measurements. 

In addition, according to each surface types, the statistical analysis shows that LSTs inversion in 

water body, bare soil, desert, sand, reed wetland and vegetation exhibit the closest proximity to the 

measured temperature data, with an average LST bias and RMSE of 0.24K and 1.39K, 1.7K and 1.77K, 

-0.17K and 0.53K, -0.7K and 0.99K, 0.27K and 0.42K, 0.27K and 0.42K, respectively.  
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4.2.2. Cross-Validation Compared to MODIS LST and SST Product 

As well-known, the MODIS LST product offers a high accuracy, making the MODIS Terra daily 

LST product (MOD11_L2) with a spatial resolution of 1km suitable for cross-validation. According 

to satellite overpass time, the time differences between the MOD11_L2 and ZY1-02E data range from 

0 to 50 minutes for the study area A and B. To minimize the error caused by the difference due to 

overpass time, a temporal correction method was considered to correct the MODIS temperature 

product using the measured surface temperatures over the two satellites overpass time, i.e., LST = 

a×time + b. The coefficients a and b can be calculated by field measurement data. This is because the 

surface temperature shows a certain change rule over a short period of time. The ground 

measurement temperature data was plotted as a function of viewing time in Figure 8, and then the 

time-corrected MODIS LST values were obtained by a linear function expression. 

 

Figure 8. (a) LST change in Desert site on October 22, 2022. (b) LST change in Kubq desert site on 

July 7, 2022. 

The results in Figure 9(a) indicates that the average bias and RMSE between the inversed LSTs 

from WVS-based method and MODIS LST/SST product are 0.77K and 2.0K, respectively. Figure 9(b) 

reveals that the LST biases between WVS-based method and MODIS LST product are consistent 

across five land surface types (water body, bare soil, desert, sand and reed wetland), with average 

biases of 0.88K, 1.5K, -0.73K, 1.3K and 3.9K, respectively. And the RMSEs are 1.75K, 1.51K, 0.71K, 

1.86K and 4.05K, respectively. 
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. 

Figure 9. (a) Scatterplots of the inversed Ts (LST) versus the MODIS LST product at five land surface 

types (water body, bare soil, desert, sand, reed wetland). (b) LST bias between WVS-based method 

and MOD11_L2. 

To mitigate positioning accuracy errors during the validation of the LST retrieval, we employed 

the average LST value of 3×3 pixels surrounding the target site in the ZY1-02E IRS images. The data 

collection period for the ZY1-02E IRS scenes spanned from July 2022 to March 2023. For evaluating 

the accuracy of LST retrieval from ZY1-02E IRS data, Figure 10 presents the results that the absolute 

errors (AE) between WVS-based method and ground measurement range from 0.1K to 3.5K, with an 

average AE of 1.31K. Moreover, the average absolute error between WVS-based method and MODIS 

LST&SST product is 1.82K. The dissimilarity in spatial resolution accounts for another possible reason 

since the ZY1-02E has a resolution of 16m, while the MODIS temperature product has a resolution of 

1KM. This discrepancy can result in inaccuracies when observing bare soil, mainly due to scaling 

effects within the area-averaged FOV [41].  

To validate the reliability of the WVS-based LST method, we conducted calculations on the 

variance of the LST values for the target sites and their surrounding eight pixels in the retrieval LST 

images, with a spatial resolution of 48m for the variance statistics. The results in Figure 10 
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demonstrate that the average variance of LST at the target site was 0.134K, indicating a minimal 

deviation in the retrieved LST for the target stations. These findings affirm that the proposed method 

can accurately retrieve LST from single-channel TIR data. 

 

Figure 10. Evaluating accuracy of LST retrieval using WVS-based method. The boxplots are centered 

on the errors of retrieved LST using WVS-based method and other retrieval LST methods. 

5. Discussion 

In this study, the single channel algorithm based on a water vapor scaling (WVS) method 

proposed by Tonooka [34] to correct the error caused by uncertain atmospheric profile data was used 

to estimate LST from ZY1-02E thermal infrared data. In terms of the validation based on in-situ data, 

the WVS-based method exhibits poorer performance at bare soil and Zhangye wetland sites, as 

illustrated in Figure 11. The challenge of accurately defining the emissivity of Zhangye wetland and 

Baotou bare soil sites results in significant LST deviation, leading to reduced accuracy in LST 

inversion for these locations. The average LST biases between the WVS-based method and in situ 

LSTs for Ulansuhai, Bare soil, Kubq desert, Baotou sand, Zhangye wetland, Desert and Yantai-sea are 

as follows: 1.3K, 1.4K, -1.3K, 1.3K, 3.9K, -0.69K and 0.65K, respectively. Therefore, the WVS-based 

method demonstrates higher accuracy for the uniform land cover, such as water bodies, deserts. The 

results show the effectiveness of LST inversed from ZY1-02E IRS data using the WVS-based method. 

Although comparing to MODIS LST product, the spatial resolution of Landsat 9’s Thermal Infrared 

Sensor 2 (TIRS-2) and ECOTRESS LST product are higher, with 100m and 70m, respectively, the 

transit dates for either Landsat or ECOTRESS are different with ZY1-02E. The cross-validation based 

on MODIS LST and SST products were performed. To ensure comprehensive coverage of the 

corresponding areas in the MODIS LST product, we analyzed the average LST value and LST 

variance using 63 pixels per site in ZY1-02E IRS images. Figure 11 illustrates that the average LST 

biases between the WVS-based method and MODIS are lower in Baotou sites compared to HRB sites 

and Yantai-sea. The vegetation area of Baotou Crop site is less than the MODIS single pixel size of 

1km*1km, so the retrieval LST of the Baotou Crop was not considered in the comparison with MODIS 

LST product. The results of average LST bias between the WVS-based method and MODIS product 

for each study site indicate that the homogeneity of land cover types plays a critical role in LST 

retrieval across various spatial scales. This is evident that the lower LST biases can be found in water 

bodies, deserts, and vegetated areas compared to other mixed surface features. 

This study employed two validation methods to assess the LST accuracy. The results 

demonstrated a close approximation between the WVS-based method and the in-situ LST, exhibiting 

an average bias of 0.63K. However, the study’s focus was limited to six types of landscapes across 
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three study areas. Future research should explore a wider range of landscape types to 

comprehensively assess the applicability of the WVS-based LST method. Additional data samples 

should be collected for specific stations in future research. 

 

Figure 11. The LST bias retrieved by WVS-based method and MODIS in all study areas. 

6. Conclusion 

In this study, a water vapor scaling (WVS-based) method was used to estimate the LST from 

ZY1-02E IRS data and evaluate its feasibility. The ERA5 atmospheric profile dataset and the radiative 

transfer code were used to correct atmospheric effects. A water vapor scaling factor was used to 

reduce the errors in atmospheric correction caused by various atmospheric factors. Additionally, the 

LSE was estimated based on NDVI and FVC data. The estimated LST was validated by collecting in 

situ LST data from three study areas. For study area A (Baotou site), the WVS-based method showed 

an absolute bias of approximately 0.2 to 3.3K compared to the in situ LST, with the RMSEs ranging 

from 0.42 to 2.3 K. In study area B (Heihe River Basin), the LST biases ranged from 0.1 to 2.9 K, with 

the RMSEs between 0.5 and 2.4 K. In study area C (Yantai-sea), the SST biases ranged from 0.1 to 1.6 

K, with the RMSE of ~0.8 K. In addition, according to each surface types, the statistical analysis shows 

that LSTs inversion in water body, bare soil, desert, sand, reed wetland and vegetation exhibit the 

closest proximity to the measured temperature data, with an average LST bias and RMSE of 0.24K 

and 1.39K, 1.7K and 1.77K, -0.17K and 0.53K, -0.7K and 0.99K, 0.27K and 0.42K, 0.27K and 0.42K, 

respectively. These results show that the WVS-based method can accurately retrieve LST from single-

channel Thermal Infrared data though there is a wide spectrum range, i.e., 7~12μm, affected strongly 
by both atmospheric water vapor and ozone. However, further validation work is necessary to 

evaluate the method’s performance across different land-cover types and geographical locations. 

Acknowledge: The authors sincerely acknowledge the support of China Centre for Resources Satellite 

Data and Application for providing the Yantai Sea data.  

Funding: This work was supported in part by the Key Program of National Natural Science 

Foundation of China under Grant 42130108; in part by the National Natural Science Foundation of 

China under Grant 42022045, International Cooperation in Science and Technology Innovation 

among Governments under Grant 2019YFE0127200, and Shan’xi Key Research and Development 
Program under Grant 2022ZDLSF06-09. 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 December 2023                   doi:10.20944/preprints202312.0301.v1

https://doi.org/10.20944/preprints202312.0301.v1


 17 

 

References 

1. Bechtel, B., A New Global Climatology of Annual Land Surface Temperature[J]. Remote Sensing, 2015. 7(3): p. 

2850-2870. 

2. Bright, R.M., et al., Local temperature response to land cover and management change driven by non-

radiative processes[J]. Nature Climate Change, 2017. 7(4): p. 296-302.https://doi.org/10.1038/nclimate3250  

3. Cai, M., et al., Investigating the relationship between local climate zone and land surface temperature using an 

improved WUDAPT methodology – A case study of Yangtze River Delta, China[J]. Urban Climate, 2018. 24: p. 

485-502.https://doi.org/https://doi.org/10.1016/j.uclim.2017.05.010  

4. Keenan, T.F. and W.J. Riley, Greening of the land surface in the world’s cold regions consistent with recent 
warming[J]. Nature Climate Change, 2018. 8(9): p. 825-828.https://doi.org/10.1038/s41558-018-0258-y  

5. Shen, Y., et al., Generating Comparable and Fine-Scale Time Series of Summer Land Surface Temperature for 

Thermal Environment Monitoring[J]. IEEE Journal of Selected Topics in Applied Earth Observations and 

Remote Sensing, 2021. 14: p. 2136-2147.https://doi.org/10.1109/JSTARS.2020.3046755  

6. Myneni, R.B., et al., Increased plant growth in the northern high latitudes from 1981 to 1991[J]. Nature, 1997. 

386(6626): p. 698-702.https://doi.org/10.1038/386698a0  

7. Peng, S.-S., et al., Afforestation in China cools local land surface temperature[J]. Proceedings of the National 

Academy of Sciences, 2014. 111(8): p. 2915-2919.https://doi.org/doi:10.1073/pnas.1315126111  

8. Tajfar, E., et al., Estimation of surface heat fluxes via variational assimilation of land surface temperature, air 

temperature and specific humidity into a coupled land surface-atmospheric boundary layer model[J]. Journal of 

Hydrology, 2020. 583: p. 124577.https://doi.org/https://doi.org/10.1016/j.jhydrol.2020.124577  

9. Xu, T., et al., Evaluation of twelve evapotranspiration products from machine learning, remote sensing and land 

surface models over conterminous United States[J]. Journal of Hydrology, 2019. 578: p. 

124105.https://doi.org/https://doi.org/10.1016/j.jhydrol.2019.124105  

10. Li, K., et al., A Four-Component Parameterized Directional Thermal Radiance Model for Row Canopies[J]. IEEE 

Transactions on Geoscience and Remote Sensing, 2022. 60: p. 1-

15.https://doi.org/10.1109/TGRS.2021.3090451  

11. Li, Z.-L., et al., Satellite-derived land surface temperature: Current status and perspectives[J]. Remote Sensing of 

Environment, 2013. 131: p. 14-37.https://doi.org/https://doi.org/10.1016/j.rse.2012.12.008  

12. Hollmann, R., et al., The ESA Climate Change Initiative: Satellite Data Records for Essential Climate Variables[J]. 

Bulletin of the American Meteorological Society, 2013. 94(10): p. 1541-

1552.https://doi.org/https://doi.org/10.1175/BAMS-D-11-00254.1  

13. Li, Z.-L., et al., Satellite Remote Sensing of Global Land Surface Temperature: Definition, Methods, Products, and 

Applications[J]. Reviews of Geophysics, 2023. 61(1): p. 

e2022RG000777.https://doi.org/https://doi.org/10.1029/2022RG000777  

14. Li, Z., et al., Satellite-derived land surface temperature: Current status and perspectives[J]. Remote Sensing of 

Environment, 2013. Vol.131: p. 14-37.https://doi.org/10.1016/j.rse.2012.12.008  

15. Qin, Z., A. Karnieli, and P. Berliner, A mono-window algorithm for retrieving land surface temperature from 

Landsat TM data and its application to the Israel-Egypt border region[J]. International Journal of Remote Sensing, 

2001. 22(18): p. 3719-3746.https://doi.org/10.1080/01431160010006971  

16. Jiménez-Muñoz, J.C. and J.A. Sobrino, A generalized single-channel method for retrieving land surface 

temperature from remote sensing data[J]. Journal of Geophysical Research: Atmospheres, 2003. 

108(D22).https://doi.org/https://doi.org/10.1029/2003JD003480  

17. Jimenez-Munoz, J.C., et al., Revision of the Single-Channel Algorithm for Land Surface Temperature Retrieval 

From Landsat Thermal-Infrared Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009. 47(1): p. 

339-349.https://doi.org/10.1109/TGRS.2008.2007125  

18. McMillin, L.M., Estimation of Sea Surface Temperatures From Two Infrared Window Measurements With Different 

Absorption[J]. Journal of Geophysical Research. Part C: Oceans, 1975. Vol.80(No.36): p. 5113-

5117.https://doi.org/10.1029/JC080i036p05113  

19. Atitar, M. and J.A. Sobrino, A Split-Window Algorithm for Estimating LST From Meteosat 9 Data: Test and 

Comparison With In Situ Data and MODIS LSTs[J]. IEEE Geoscience and Remote Sensing Letters, 2009. 6(1): 

p. 122-126.https://doi.org/10.1109/LGRS.2008.2006410  

20. BECKER, F., The impact of spectral emissivity on the measurement of land surface temperature from a satellite[J]. 

International Journal of Remote Sensing, 1987. Vol.8(No.10): p. 1509-

1522.https://doi.org/10.1080/01431168708954793  

21. Barton, I.J., et al., Theoretical algorithms for satellite-derived sea surface temperatures[J]. Journal of Geophysical 

Research, 1989. Vol.94(D3): p. 3365-3375.https://doi.org/10.1029/JD094iD03p03365  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 December 2023                   doi:10.20944/preprints202312.0301.v1

https://doi.org/10.1038/nclimate3250
https://doi.org/https:/doi.org/10.1016/j.uclim.2017.05.010
https://doi.org/10.1038/s41558-018-0258-y
https://doi.org/10.1109/JSTARS.2020.3046755
https://doi.org/10.1038/386698a0
https://doi.org/doi:10.1073/pnas.1315126111
https://doi.org/https:/doi.org/10.1016/j.jhydrol.2020.124577
https://doi.org/https:/doi.org/10.1016/j.jhydrol.2019.124105
https://doi.org/10.1109/TGRS.2021.3090451
https://doi.org/https:/doi.org/10.1016/j.rse.2012.12.008
https://doi.org/https:/doi.org/10.1175/BAMS-D-11-00254.1
https://doi.org/https:/doi.org/10.1029/2022RG000777
https://doi.org/10.1016/j.rse.2012.12.008
https://doi.org/10.1080/01431160010006971
https://doi.org/https:/doi.org/10.1029/2003JD003480
https://doi.org/10.1109/TGRS.2008.2007125
https://doi.org/10.1029/JC080i036p05113
https://doi.org/10.1109/LGRS.2008.2006410
https://doi.org/10.1080/01431168708954793
https://doi.org/10.1029/JD094iD03p03365
https://doi.org/10.20944/preprints202312.0301.v1


 18 

 

22. Caselles, V., C. Coll, and E. Valor, Land surface emissivity and temperature determination in the whole HAPEX-

Sahel area from AVHRR data[J]. International Journal of Remote Sensing, 1997. Vol.18(No.5): p. 1009-

1027.https://doi.org/10.1080/014311697218548  

23. Gillespie, A., et al., A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission 

and Reflection Radiometer (ASTER) images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998. 

Vol.36(No.4): p. 1113-1126.https://doi.org/10.1109/36.700995  

24. Gillespie, A.R., et al., Residual errors in ASTER temperature and emissivity standard products AST08 and 

AST05[J]. Remote Sensing of Environment, 2011. 115(12): p. 3681-

3694.https://doi.org/https://doi.org/10.1016/j.rse.2011.09.007  

25. Jiménez-Muñoz, J.C., et al., Improved land surface emissivities over agricultural areas using ASTER NDVI[J]. 

Remote Sensing of Environment, 2006. 103(4): p. 474-

487.https://doi.org/https://doi.org/10.1016/j.rse.2006.04.012  

26. Malakar, N.K. and G.C. Hulley, A water vapor scaling model for improved land surface temperature and emissivity 

separation of MODIS thermal infrared data[J]. Remote Sensing of Environment, 2016. 182: p. 252-

264.https://doi.org/https://doi.org/10.1016/j.rse.2016.04.023  

27. Ma, C., et al., Temperature and Emissivity Retrieval From Hyperspectral Thermal Infrared Data Using Dictionary-

Based Sparse Representation for Emissivity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023. 61: 

p. 1-16.https://doi.org/10.1109/TGRS.2023.3268860  

28. Liu, S., et al., The Heihe Integrated Observatory Network: A Basin-Scale Land Surface Processes Observatory in 

China[J]. Vadose zone journal VZJ, 2018. Vol.17(No.1): p. 1-21.https://doi.org/10.2136/vzj2018.04.0072  

29. Wan, Z., MODIS Land Surface Temperature Algorithm Theoretical Basis Documentation[J]. 1999. 

30. Wang, W., S. Liang, and T. Meyers, Validating MODIS land surface temperature products using long-term 

nighttime ground measurements[J]. Remote Sensing of Environment, 2008. Vol.112(No.3): p. 623-

635.https://doi.org/10.1016/j.rse.2007.05.024  

31. Baldridge, A.M., et al., The ASTER spectral library version 2.0[J]. Remote Sensing of Environment, 2009. 

Vol.113(No.4): p. 711-715.https://doi.org/10.1016/j.rse.2008.11.007  

32. Yang, J., et al., Evaluation of Seven Atmospheric Profiles from Reanalysis and Satellite-Derived Products: 

Implication for Single-Channel Land Surface Temperature Retrieval[J]. Remote Sensing, 2020. 12(5): p. 791. 

33. Skoković, D., J.A. Sobrino, and J.C. Jiménez-Muñoz, Vicarious Calibration of the Landsat 7 Thermal Infrared 

Band and LST Algorithm Validation of the ETM+ Instrument Using Three Global Atmospheric Profiles[J]. IEEE 

Transactions on Geoscience and Remote Sensing, 2017. 55(3): p. 1804-

1811.https://doi.org/10.1109/TGRS.2016.2633810  

34. Tonooka, H., An atmospheric correction algorithm for thermal infrared multispectral data over land-a water-vapor 

scaling method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001. 39(3): p. 682-

692.https://doi.org/10.1109/36.911125  

35. Tonooka, H., Accurate atmospheric correction of ASTER thermal infrared imagery using the WVS method[J]. IEEE 

Transactions on Geoscience and Remote Sensing, 2005. 43(12): p. 2778-

2792.https://doi.org/10.1109/TGRS.2005.857886  

36. Sobrino, J.A., J.C. Jimenez-Munoz, and L. Paolini, Land surface temperature retrieval from LANDSAT TM 5[J]. 

Remote Sensing of Environment, 2004. Vol.90(No.4): p. 434-440.https://doi.org/10.1016/j.rse.2004.02.003  

37. Shobairi, O. and M. Li, Dynamic Modelling of VFC from 2000 to 2010 Using NDVI and DMSP/OLS Time Series: 

A Study in Guangdong Province, China[J]. Journal of Geographic Information System, 2016. 08: p. 205-

223.https://doi.org/10.4236/jgis.2016.82019  

38. Zhao, E., et al., An Operational Land Surface Temperature Retrieval Methodology for Chinese Second-Generation 

Huanjing Disaster Monitoring Satellite Data[J]. IEEE Journal of Selected Topics in Applied Earth Observations 

and Remote Sensing, 2022. 15: p. 1283-1292.https://doi.org/10.1109/JSTARS.2022.3143552  

39. Sobrino, J.A., N. Raissouni, and Z.-L. Li, A Comparative Study of Land Surface Emissivity Retrieval from NOAA 

Data[J]. Remote Sensing of Environment, 2001. 75(2): p. 256-

266.https://doi.org/https://doi.org/10.1016/S0034-4257(00)00171-1  

40. Tang, B.H., et al., An improved NDVI-based threshold method for estimating land surface emissivity using MODIS 

satellite data[J]. International Journal of Remote Sensing, 2015. 36(19-20): p. 4864-

4878.https://doi.org/10.1080/01431161.2015.1040132  

41. Obata, K., T. Miura, and H. Yoshioka, Analysis of the Scaling Effects in the Area-Averaged Fraction of Vegetation 

Cover Retrieved Using an NDVI-Isoline-Based Linear Mixture Model[J]. Remote Sensing, 2012. Vol.4(No.7): p. 

2156-2180.https://doi.org/10.3390/rs4072156  

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 December 2023                   doi:10.20944/preprints202312.0301.v1

https://doi.org/10.1080/014311697218548
https://doi.org/10.1109/36.700995
https://doi.org/https:/doi.org/10.1016/j.rse.2011.09.007
https://doi.org/https:/doi.org/10.1016/j.rse.2006.04.012
https://doi.org/https:/doi.org/10.1016/j.rse.2016.04.023
https://doi.org/10.1109/TGRS.2023.3268860
https://doi.org/10.2136/vzj2018.04.0072
https://doi.org/10.1016/j.rse.2007.05.024
https://doi.org/10.1016/j.rse.2008.11.007
https://doi.org/10.1109/TGRS.2016.2633810
https://doi.org/10.1109/36.911125
https://doi.org/10.1109/TGRS.2005.857886
https://doi.org/10.1016/j.rse.2004.02.003
https://doi.org/10.4236/jgis.2016.82019
https://doi.org/10.1109/JSTARS.2022.3143552
https://doi.org/https:/doi.org/10.1016/S0034-4257(00)00171-1
https://doi.org/10.1080/01431161.2015.1040132
https://doi.org/10.3390/rs4072156
https://doi.org/10.20944/preprints202312.0301.v1


 19 

 

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 

products referred to in the content. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 December 2023                   doi:10.20944/preprints202312.0301.v1

https://doi.org/10.20944/preprints202312.0301.v1

