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Abstract: The ultimate analysis parameters including carbon (C), hydrogen (H), nitrogen (N), and oxygen (O) 

content in biomass was rarely found to be predicted by nondestructive tests until to date. In this research, we 

developed partial least squares regression (PLSR) models to predict the ultimate analysis parameters of chip 

biomass using near infrared (NIR) raw spectra of non-wood and wood samples from fast growing tree and 

agricultural residue and nine different traditional spectral preprocessing techniques. These techniques include 

first derivative (sd1), second derivative (sd2), constant offset, standard normal variate (SNV), multiplicative 

scatter correction (MSC), vector normalization, min-max normalization, mean centering, sd1 + vector 

normalization, and sd1 + MSC. Additionally, we employed a genetic algorithm (GA), successive projection 

algorithm (SPA), multi-preprocessing (MP) 5−range, and MP 3−range to develop a PLSR model for rapid 

prediction. A dataset consisting of 120 chip biomass samples was utilized for model development in which the 

samples was non-wood samples of 65-67% and wood samples was 33-35%, and the model performance were 

evaluated and compared. The selection of the optimum performing model was mainly based on criteria such 

as the coefficient of determination in the prediction set (R2P), root mean square error of the prediction set 

(RMSEP), and the ratio of prediction to deviation values (RPD). The optimal model for weight percentage 

(wt.%) of C was obtained using GA−PLSR, yielding R2P, RMSEP, and RPD values of 0.6954, 1.1252 wt.%, and 

1.8, respectively. Similarly, for wt.% of O, the most effective model was obtained using the multi-preprocessing 

PLSR−5 range method with R2P of 0.7150, RMSEP of 1.3088 wt.%, and RPD of 1.9. For wt.% of N, the optimal 

model was obtained using the MP PLSR−3 range method, resulting in R2P, RMSEP, and RPD values of 0.6073, 

0.1008 wt.%, and 1.6, respectively. However, wt.% of H model provided R2P, RMSEP, and RPD values of 0.5162, 

0.2322 wt.%, and 1.5, respectively. Notably, the limit of quantification (LOQ) values for C, H, and O were lower 

than the minimum reference values used during model development, indicating a high level of sensitivity. 

However, the LOQ for N, exceeded the minimum reference value, implying the samples to be predicted by the 

model must be in the range of reference range in calibration set. By scatter plot analysis, the effect of combined 

non-wood and wood spectra of biomass chips on rapid prediction of ultimate analysis parameters using NIR 

spectroscopy was investigated. To include different species in a model, the species have to be not only in the 

different values of the constituents to make a wider range for robust model but also they must provide their 

trend line characteristics in the scatter plot i.e. correlation coefficient (R), slope and intercept (same slope and 

slope approached to 1 and intercept is same (no gap) and approached zero, high R approached to 1). The effect 

of the R, slope and intercept to obtain the better optimized model were studied. The results show that the 

different species affected model performance of each parameter prediction in a different manner and by scatter 
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plot analysis which of these species were affecting the model negatively and how the model could be improved 

was indicated. This is the first time of the effect is studied by the principle of scatter plot. 

Keywords: biomass; ultimate analysis; near-infrared spectroscopy; partial least squares regression  

 

1. Introduction 

The world is undergoing a significant transition away from fossil fuels, embracing modern 

renewable energy technologies to meet its escalating energy needs and demands. Bioenergy, derived 

from sources such as woody biomass, agricultural residues, and organic materials and waste, is 

pivotal in this paradigm shift, constituting the largest share (two−thirds) of global renewable energy 

utilization [1]. It is anticipated that bioenergy continues to have a decisive share in future net zero 

emission scenarios and that its contribution to energy supply will further increase. This transition 

underscores the growing significance of biomass energy within the global energy landscape. 

However, it is worth noting that billions of people still rely on the inefficient use of traditional 

biomass for cooking and heating [1]. The combustion of biomass produces air pollutants similar to 

those emitted by fossil fuels, with the exception of sulfur oxides [2]. Furthermore, research has shown 

that the health impacts attributed to emissions from biomass and wood combustion can be more 

harmful than those from fossil fuels [3]. These emissions primarily result from incomplete biomass 

combustion and the release of solid particulate matter. 

The adoption of woody biomass and non-wood biomass such as agricultural residues, coupled 

with efficient combustion energy technologies, holds the potential to substantially reduce harmful 

emissions into the atmosphere while increasing its contribution to energy supply, making it a viable 

alternative to fossil fuels. Due to efficiency increase as compared to traditional biomass use, it is an 

important cornerstone of future scenarios. Despite significant investments in the research and 

development of biomass energy technologies, a knowledge gap persists, particularly concerning 

efficient, low cost determination of biomass properties, including its elemental compositions (carbon 

(C), hydrogen (H), nitrogen (N), oxygen (O), sulfur (S) and others). During inefficient and incomplete 

combustion, harmful pollutants such as carbon monoxide, sulfur oxides (SOx), nitrogen oxides 

(NOx), along with particulate matter (PM2.5 and PM10) are continuously released into the environment 

as smoke, posing significant health risks through indoor and outdoor exposure, with women and 

children being the most vulnerable [4−6].  

The elemental composition of biomass has a profound impact on combustion efficiency and the 

emission levels released into the environment. These emissions, in turn, carry significant 

consequences for both the energy industry and the natural surroundings. Energy release during 

biomass combustion correlates positively with carbon and hydrogen contents, as they are the primary 

contributors to its energy value [7]. High carbon content is desirable for energy production [8], and 

hydrogen's high energy content makes it valuable [9]. During combustion, oxygen reacts with carbon 

and hydrogen, reducing the available energy in biomass. Elevated oxygen and nitrogen contents 

decrease the calorific value, thereby reducing energy potential [10]. Nitrogen and sulfur are 

undesirable elements in biomass due to their contribution to the formation of harmful NOx and sulfur 

dioxide [11,12]. To minimize environmental impact and ensure sustainable operation and 

maintenance of combustion systems, low sulfur content in biomass is preferred [12]. Hence, it is 

crucial to rapidly, accurately, and non-invasively assess the elemental composition of biomass, 

including C, N, O, H, and S. This assessment is essential for understanding biomass elemental 

composition and the potential emissions risks during energy production. 

In our previous research [13], an investigation was conducted into the application of NIR 

spectroscopy (NIRS) for the comprehensive analysis of the ultimate analysis parameters of ground 

biomass intended for energy utilization. The study concludes that NIRS offers a reliable and non-

destructive alternative method for rapidly assessing the elemental composition of ground biomass 

for energy−related purposes. Despite the valuable findings from previous research, these finding 
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primarily served academic and research institutions. However, biomass normally is made into pellet 

form for export and to increase energy density where the grinding is necessary before making pellets 

Woodchips are especially useful, as they are easy to use and some time, ground wood is not suitable 

in power operations due to the high cost and length of time necessary for sample preparation, 

therefore, it is a popular source of energy for power plants because of low preparation costs [14]. 

Meanwhile, woodchip quality could be more effectively examined to achieve higher levels of plant 

efficiency [14]. Hence, this study aims at improving the applicability of NIR spectroscopy to assess 

the ultimate analysis parameters of chipped biomass, i.e. biomass with particle sizes commonly found 

in industrial applications. In consequence, this research outcome may directly benefit traders and 

energy companies, facilitating the utilization of research outcomes without the need for extensive 

biomass preparation such as grinding.  

The data structure of samples used for model development in this present work were in two 

forms i.e. non-wood and wood samples. As reported, the non-wood and wood species were different 

in their lignocellulosic constituents. Non−wood material of agricultural waste compost of lignin, 

holocellulose, α−cellulose, pentosan and ash [15]. For example, agricultural residues, such as hemp 

and sugarcane bagasse, contained higher concentrations of cellulose and lower levels of recalcitrant 

lignin when compared to the average woody biomass [16,17]. However, Hawanis et. al [18] reported 

the non-wood contained lower cellulose and lignin while wood contained higher [19,20]. Therefore, 

the wider range of energy parameters such as heating value and definitely the ultimate analysis 

parameters, C, H, N, O and S. This may make the model more robust. Though, the effect of combined 

non-wood and wood spectra of biomass chips on rapid prediction of ultimate analysis parameters 

using NIR spectroscopy was investigated in this study. 

Literatures which were explored in the Google Scholar data up to end 2023 base showed a few 

research has combined the non−wood such as agricultural residue and agricultural industrial residue 

and forest residue e.g., leaves, barks and so on and wood such as fast-growing tree and wood from 

forest. Generally, only one specific species of biomass was used for prediction modeling and the 

determination of ultimate analysis constituents by NIR spectroscopy was rarely reported. Only two 

reports were found including Posom and Sirisomboon [22], who optimized the PLS models using 

NIR spectra of 80 bamboo chip samples for evaluation of C, H, N, S and O content. The models 

showed the coefficient of determination of prediction set (R2P) and ratio of prediction to deviation 

(RPD) of 0.803 and 2.31 for C; 0.856 and 2.65 for H; 0.973 and 6.6 for N; 0.785 and 2.19 for S and 0.522 

and 1.46 for O, respectively. Similarly, the models developed by Zhang et al. (2017) [23] using 100 

accessions of sorghum biomass with R2P of 0.96 for wt.% of C, 0.87 for wt.% of H, 0.86 for wt.% of N, 

and 0.83 for wt.% of O. 

There were two reports found in the available data base that developed a model for two similar 

species to evaluate ultimate analysis parameters, C, H, N, O and S. A total of 222 rice straw and wheat 

straw, collected from 24 provinces of China, were used for NIRS calibration and validation in this 

study where R2P and standard error of predictions (SEP) of independent validation were, respectively, 

0.97 and 0.37% for C, 0.77 and 0.17% for H, 0.87 and 0.10% for N [24]. Saha et al [25] developed models 

by using 276 wood chip ground samples of pine tree of two species (Loblolly (Pinus taeda) and slash 

(Pinus elliottii)) where the biomass spectra (400 to 2498 nm at 2−nm intervals). The samples were a 

mix of bark, branch, needle, wood or whole tree biomass. The prediction results show for C (sample 

number (n) = 43; coefficient of R2P = 0.90; RPD = 3.14; ratio of prediction to interquartile (RPIQ) = 3.23); 

for N (n = 44; R2P = 0.95; RPD = 4.33; RPIQ = 5.96); and for S (n = 42; R2P = 0.93; RPD = 3.67; RPIQ = 3.24). 

There were two reports of our group contributed the research results of NIR prediction models 

for ultimate analysis parameters of the non-wood and wood samples including Pitak et al [26] who 

developed the PLS regression using the spectra obtained by line-scan NIR hyperspectral imager in 

which the most effective model for the prediction of C, H and N content of 160 non−wood and wood 

biomass pellets including filter cake (15 pellets), Leucaena leucocepphala (10 pellets), bamboo (15 

pellets), cassava rhizome (15 pellets), bagasse (15 pellets), sugarcane leaves (15 pellets), straw (15 

pellets), rice husk (15 pellets), eucalyptus bark (15 pellets), napier grass (15 pellets) and corn cob (15 

pellets) developed using iGA wavelength selection and standard normal variate (SNV) spectral 
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pretreatment and provided the highest accuracy with R2Pp and SEP of 0.83 and 1.33% for C; 0.84 and 

0.17% for H and 0.90 and 0.098% for N; respectively. The second report was contributed by Shrestha 

et al [13] where the ground non-wood and wood samples spectra which were 110 samples of 

agricultural residues and 90 samples of fast−growing trees were used to develop the PLSR models 

combined with multi-preprocessing methods for ultimate analysis showed R2P and RPD for C of 

0.7217 and 1.9, for N of 0.8410 and 2.7, for H of 0.7678 and 2.1 and for O of 0.6289 and 1.7, respectively. 

The main objectives of this research include: 

(1) develop PLSR models using NIR raw spectra, traditional preprocessing, MP 5−range, MP 

3−range, GA, and SPA for assessing chip biomass properties for energy usage by employing 

NIRS while the spectra of the biomass were from non−wood (agricultural residue and bamboo) 

and wood (fast growing trees) samples. 

(2) compare the performance of the PLSR models based on R2C, RMSEP, R2P, RMSEP, RPD, and bias. 

(3) study the effect of combined non-wood and wood species in model development on model 

performance by scatter plot analysis. 

(4) select the better performing PLSR−based model for each ultimate analysis parameter, compared 

with the performance of the ground biomass for rapidly assessing biomass properties for energy 

usage. 

(5) determine the limit of quantification (LOQ) value of the proposed model calibration set for each 

ultimate analysis parameter in chip biomass. 

2. Materials and Methods 

Figure 1 shows the overall research methodology for rapid predication of ultimate analysis 

parameters of chip biomass by NIRS using PLSR. 
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Figure 1. Flowchart of the overall research methodology for the rapid prediction of the ultimate 

analysis parameters of chip biomass for energy usage by NIRS using PLSR. 

2.1. Sample preparation 

A total of 120 samples were collected from ten different biomass varieties, which included wood 

samples and non−wood samples from various geographical locations in Nepal. Wood samples 

included four fast−growing species: (1) Alnus nepalensis, (2) Pinux roxiburghii, (3) Bombax ceiba, and (4) 

Eucalyptus camaldulensis. Non−wood were five agricultural residues: (1) Zea mays (cob), (2) Zea mays 

(shell), (3) Zea mays (stover), (4) Oryza sativa, and (5) Saccharum officinarun and one fast growing tree 

(6) Bombusa vulagris. The biomass samples were manually chipped for NIR scanning and for the 

reference measurement of ultimate analysis parameters [13].    

2.2. Spectral data collection 

All chip biomass samples were scanned using an FT−NIR spectrometer (MPA, Bruker, Ettlingen, 

Germany) in diffuse reflectance with sphere macro sample rotating mode, covering the wavelength 

range from 3594.87 to 12,489.48 cm−1, with a resolution of 16 cm−1. The scanning process consisted of 

32 scans (on average) for both sample and background scans to collect the raw spectra. These raw 

spectra were acquired in a controlled laboratory environment with air conditioning maintaining a 

room temperature of 25±2 °C. 
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To compensate for the ambient influence and instrument drift on the measurement setup, 

background scanning was regularly done on a gold plate as a reference for every new sample. Each 

biomass sample were scanned twice without changing its position, and the average of its absorbance 

values was calculated. All the spectra were logged as log (1/R) versus wavenumber (cm−1), where R 

is the diffuse reflectance from the biomass sample. 

Each sample was then subjected to a reference measurement of C, H, N, and S by a CHNS/O 

analyzer. 

2.3. Reference analysis  

The wt.% of C, H, N, and S on a dry basis in the chip biomass were determined at the Scientific 

and Technological Research Equipment Center (STREC) at Chulalongkorn University, Bangkok, 

Thailand, using CHNS/O analyzer (Thermo Scientific TM FLASH 2000, Waltham, MA, USA). The 

wt.% of O on a dry basis is calculated as: 

wt.% O = 100 – wt.% C – wt.% H – wt.% N – wt.% S – wt.% ash (1)

Here, wt.% ash is determined using a thermogravimetric analyzer (TG 209 F3 Tarsus, Netzsch, 

Bavaria, Germany) by combusting biomass within the temperature range between 35 to 700 °C. 

2.4. Outlier and standard error of laboratory  

Outliers on the reference data were identified and removed using following equation: ሺX୧ − Xഥሻ
SD

≥ | ± 3| (2)

where, Xi is the measured value of sample i, Xഥ is the average, and SD is the standard deviation 

of the measured values of all samples [13,27]. 

2.5. Spectral preprocessing and model development   

As shown in Figure 1, this study incorporates nine different types of spectral preprocessing 

applied to the raw spectra. These methods include constant offset, SNV, MSC, sd1, sd2, vector 

normalization, mean centering, sd1 + vector normalization, and sd1 + MSC. 

Five different types of PLSR−based regression models, namely Full−PLSR, MP PLSR−5 range, 

MP PLSR−3 range, GA−PLSR, and SPA−PLSR, were developed to compare and select the 

best−performing model for each ultimate analysis parameter to establish a reliable and 

non−destructive alternative method for rapidly assessing biomass properties for energy usage [13].  

The primary objective of the MP method is to optimize model performance by applying various 

preprocessing techniques to different divided sections within the entire wavenumber range. A 

built−in code in MATLAB R2020b was utilized to obtain a combination set of different preprocessing 

techniques based on the desired number of random pairs. The optimal combination set for each 

selected number of random pairs is determined through a cross−validation procedure using PLSR on 

reference and spectroscopic data. Using the selected combination set of preprocessing techniques, 

PLSR model were developed. Here, we generate a combination set of preprocessing techniques using 

seven different options: 0 = empty (all absorbance values = 0), 1 = raw spectra, 2 = SNV, 3 = MSC, 4 = 

first derivative, 5 = second derivative, and 6 = constant offset. In the MP approach, two methods were 

adopted: in the MP PLSR−5 range method, the spectral range is divided into five equal sections, while 

in the MP PLSR−3 range method, it is divided into three sections. The best MP combination set for 

model development is then determined [13]. 

Both GA and SPA were employed to select concise and influential wavenumbers, aiming to 

prevent overfitting and result in an improved prediction model [28]. GA, inspired by Charles 

Darwin's theory of natural selection, utilizes an optimization technique that generates a population 

of potential solutions and evolves them over multiple generations through selection, crossover, and 

mutation. Starting with one wavenumber, each iteration adds a new one to the selection, ultimately 
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reducing redundant information in the chosen wavenumbers [29]. Similarly, SPA is a forward feature 

selection method that begins with an empty set and iteratively adds one wavelength at a time to the 

subset. In each iteration, the wavelength contributing the most to the model, based on correlation, is 

selected and added to the subset. This process effectively reduces dimensionality by eliminating 

multicollinear and redundant variables using SPA [30−32]. 

2.6. Limit of quantification (LOQ)   

Based on the SD of the response to slope method from the calibration model, LOQ which 

represent the lowest concentration of the analyte that can be detected and quantified with an 

acceptable level of accuracy and precision [27,33] is calculated as follow: 

LOQ = 10 
ఙ೎ௌ೎, (3)

where, σC is the residual standard deviation, i.e., the precision obtained from measured and 

predicted values of the calibration set, and SC is the slope of the model regression line. 

3. Results and Discussion 

Table 1 shows the number of non-wood samples and wood samples in calibration set and 

validation set. The wood sample number is about 33-35% of total sample number, hence, non-wood 

samples number is 65-67%. Out of 120 samples, the number of outlier samples can be evaluated by 

the data in Table 1. 

Table 2 presents statistical data for the ultimate analysis parameters of chip biomass obtained 

using CHNS/O elemental analyzer (Thermo ScientificTM FLASH 2000). This data was used in both 

the calibration and prediction sets for model development. S content in the chip biomass was not 

detected, possibly due to its very low content falling below the detection threshold. Therefore, a 

PLSR−based model for S content in the chip biomass was not developed in this study. The wt.% of O 

is calculated using equation (1). 

Table 1. The number of non-wood samples and wood samples in calibration set and validation set. 

Parameter   Total 

Sample 

Calibration set Validation set 

Wood 
Non-

Wood 
Total Wood 

Non-

Wood 
Total 

wt.% C 111 31 58 89 8 14 22 

wt.% H 119 32 63 95 8 16 24 

wt.% N 116 31 62 93 9 14 23 

wt.% O 102 28 54 82 8 12 20 

Table 2. The statistical data of the ultimate analysis parameters of the chip biomass obtained using 

CHNS/O elemental analyzer used in PLSR model development. 

Paramete

r 
NT 

Calibration set   Validation set 

N

C 
Max Min Mean SD   

N

P 
Max Min Mean SD 

C (wt.%) 
11

1 
89 

48.750

0 

38.930

0 

44.633

0 

2.138

0 
  22 

47.280

0 

49.755

0 

44.443

9 

2.087

8 

H (wt.%) 
11

9 
95 6.6200 4.9100 5.7620 

0.348

5 
 24 6.5700 4.9500 5.6490 

0.341

1 

O (wt.%) 
10

2 
82 

51.120

0 

37.360

0 

44.632

2 

2.852

1 
 20 

48.800

0 

38.850

0 

45.115

9 

2.514

9 

N (wt.%) 
11

6 
93 0.9100 0.0000 0.2987 

0.225

0 
  23 0.6200 0.0000 0.2714 

0.164

5 
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Table 3 shows results of the PLSR-based model for ultimate analysis (wt.%) of chip biomass, 

where bolded model showing the best performance. However, it is essential to consider the 

recommendation provided by Williams et al. [34], where with an R2P value between 0.66-0.81, the 

model can be used for rough screening and other suitable calibration purposes. Therefore, C, O and 

N model were. For H model, by Williams et al. guideline [34], a model with a R2P value between 

0.50−0.64 is only suitable for very rough screening. Likewise, every model of biomass chips for 

ultimate analysis parameters was in alignment with the recommendation from Zornoza et al. [35], 

which any model with an RPD value below 2 was deemed insufficient for any application. 

Table 3. Results of the PLSR-based model for ultimate analysis (wt.%) of chip biomass, bolded 

model showing the best performance. 

Parame

ter 
Algorithm Preprocessing 

LV

s 

Calibration 

Set 
  Prediction Set 

R2C 
RMS

EC 
  R2P 

RMS

EP 

RP

D 
bias 

wt.% C Full−PLSR 
Second derivative 

(g = 5, s = 5) 
10 

0.82

15 
0.8982  0.64

89 
1.2081 1.7 

0.085

4 

 GA−PLSR 
Second derivative 

(SW:306) 
9 

0.80

78 
0.9320  0.69

54 
1.1252 1.8 

0.005

3 

 SPA−PLSR 
Second derivative 

(SW: 634) 
10 

0.80

30 
0.9435  0.65

20 
1.2028 1.7 

0.103

6 

 MP−PLSR: 3 

range 

Combination set: 

4,2,4 
9 

0.71

32 
1.1386  0.55

14 
1.3655 1.5 

−0.14

33 

 MP−PLSR: 5 

range 

Combination set: 

4,1,4,3,1 
13 

0.86

28 
0.7875  0.54

67 
1.3727 1.5 

−0.12

26 
           

wt.% H Full−PLSR 
First derivative 

(g = 5, s= 5) 
6 

0.50

86 
0.2429  0.49

96 
0.2361 1.5 

−0.06

60 

 GA−PLSR 

Vector 

normalization (SW: 

67) 

11 
0.54

56 
0.2336  0.51

62 
0.2322 1.5 

−0.07

81 

 SPA−PLSR 
Second derivative 

(SW: 22) 
15 

0.51

72 
0.2408  0.44

78 
0.2481 1.4 

−0.05

86 

 MP−PLSR: 3 

range 

Combination set: 

5,5,0 
7 

0.51

79 
0.2406  0.47

11 
0.2428 1.4 

−0.06

44 

 MP−PLSR: 5 

range 

Combination set: 

5,4,4,0,4 
8 

0.59

64 
0.2201  0.48

77 
0.2389 1.4 

−0.06

25 
           

wt.% O Full−PLSR 
Second derivative 

(g = 5, s = 5) 
8 

0.62

43 
1.7376  0.63

62 
1.4788 1.7 

0.081

4 

 GA−PLSR 
Mean Centering 

(SW: 1025) 
11 

0.63

47 
1.7134  0.60

64 
1.5381 1.6 

0.241

4 

 SPA−PLSR 

Min−max 

normalization 

(SW:354) 

11 
0.58

00 
1.8370  0.58

15 
1.5860 1.6 

0.346

6 

 MP−PLSR: 3 

range 

Combination set: 

4,5,0 
11 

0.65

72 
1.6597  0.61

53 
1.5207 1.6 

0.106

4 

 MP−PLSR: 5 

range 

Combination set: 

2,5,2,1,5 
15 

0.80

97 
1.2366  0.71

50 
1.3088 1.9 

0.073

3 
           

wt.% N Full−PLSR MSC 10 
0.72

32 
0.1177  0.58

65 
0.1035 1.6 

−0.00

65 

 GA−PLSR SNV (SW: 39) 10 
0.59

16 
0.1429  0.56

25 
0.1064 1.5 

−0.01

32 
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 SPA−PLSR 

Min−max 

normalization 

(SW:413) 

7 
0.63

96 
0.1343  0.58

69 
0.1034 1.6 

−0.01

90 

 MP−PLSR: 3 

range 

Combination set: 

4,0,0 
15 

0.86

56 
0.0820  0.60

73 
0.1008 1.6 

0.019

1 

  
MP−PLSR: 5 

range 

Combination 

set:1,4,4,1,0 
7 

0.64

36 
0.1335   

0.57

00 
0.1055 1.5 

0.014

3 

3.1. wt.% of C 

Table 3 presents the results of the PLSR−based model within the full wavenumber range of 

3594.87–12,489.48 cm−1 for the wt.% C of chip biomass, with the best−performing model highlighted 

in bold.  

The model, developed using GA−PLSR with spectrum preprocessing involving the sd2, a gap, 

and segments of five each, along with nine LVs, provided better results. It achieved R2C, RMSEC, R2P, 

RMSEP, RPD, and bias values of 0.8078, 0.9320 wt.%, 0.6954, 1.1252 wt.%, 1.8, and 0.0053 wt.%, 

respectively. By determining RMSEP, these results represent a 6.8566 % improvement in the model 

performance compared to Full−PLSR. Utilizing equation (3), the LOQ value was calculated as 9.3724 

wt.% for C. Notably, the LOQ value is lower than the minimum wt.% C value used during model 

development, indicating that the model exhibits high sensitivity and can reliably detect and quantify 

wt.% C starting from 9.3724 wt.%.  

Figure 2a shows a scatter plot comparing the predicted and measured wt.% of C, which was 

obtained using GA−PLSR. The trend line for the prediction set and calibration set is overlap 

indicating same slope. The slope shows the rate of change of Y (measured value) as a function of the 

rate of change of X (predicted values) [34] or vice versa, hence, indicating predicted values of both 

sets of data have changed with the same rate and this characteristic is same for the models for O and 

N shown in Figure 2c,d. 

Figure 3 displays the average sd2 absorbance values obtained after preprocessing, highlighting 

306 selected wavenumbers (marked in red) identified through GA. These wavenumbers fall within 

the full spectral range of 3594.87–12,489.48 cm−1. Peaks were observed at 3722, 4091, 5181, and 5285 

cm−1, all of which might have the potential to enhance the model's performance. The wavenumbers 

3722 cm−1 and 4091 cm−1 are associated with the C−H aromatic functional group, specifically C−H aryl 

material type. The peak at 5181 cm−1 corresponds to a combination of O−H stretching and HOH 

bending, indicative of polysaccharides. Similarly, the peak at 5285 cm−1 is associated with the 

functional group of O−H hydrogen bonding between water and exposed polyvinyl alcohol OH 

groups [36].  

Previous studies by Zhang et al. [37] and Posom and Sirisomboon [38] have demonstrated that 

vibrational bands related to C−H aromatic, C−H stretching, N−H stretching, N−H deformation, O−H 

stretching, HOH bending, O−H hydrogen bonding, and similar factors play a crucial role in 

predicting the wt.% of C in various biomass varieties. These findings align with the vibration bands 

observed in our study, providing support for our results and suggesting that these selected peaks 

likely have a significant influence on the model performance. 
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Figure 2. Measured versus predicted value in calibration and prediction sets for (a) wt.% of C, (b)wt.% 

of H, (c) wt.% of O, and (d) wt.% of N. 

 

Figure 3. The second derivative absorbance value of studied biomass obtained using the sd2 

preprocessing with a selection of important wavenumber obtained from GA for prediction of wt.% of 

C, within the full wavenumber range of 3594.87 −12,489.48 cm−1. 
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3.2. wt.% of H 

The model developed using GA−PLSR with vector normalization as preprocessing showed the 

best performance with 11 LVs (Table 3). It selected 67 important wavenumbers using GA. The model's 

performance, in terms of R2C, RMSEC, R2P, RMSEP, RPD, and bias values, was 0.5456, 0.02336 wt.%, 

0.5162, 0.2322 wt.%, 1.5, and −0.0781 wt.%, respectively. Compared with Full−PLSR, the GA improved 

the PLSR model accuracy by 1.6743 %. The LOQ value was calculated as 2.3484 wt.%, which is lower 

than the minimum reference value used for the model development. This suggests that the selected 

model is sensitive and can sensitively quantify H from 2.3484 wt.%.  

Figure 2b displays a scatter plot comparing the predicted and measured wt.% of H, which was 

obtained using GA−PLSR. It is clear that the trend line for the prediction set exhibits an offset in 

relation to the trend line of the calibration set and the 45−degree line. This offset raises concerns about 

the model constant bias along the range of the data indicating the over−estimating model.   

Figure 4 displays the average absorbance values within the range of 3594.87–12,489.48 cm−1. 

These values were obtained after preprocessing using vector normalization and highlight 67 selected 

wavenumbers, marked in red, which were identified using GA. Significant peaks were observed at 

the wavenumbers 4019, 4850, 5155, and 9852 cm−1, respectively, and these may have an influence on 

the model performance. The peak at 4019 cm−1 is associated with the spectra−structure combination 

of C–H stretching and C–C stretching, with the material type being cellulose. The peak at 4850 cm−1 

corresponds to the functional group of N–H combination bands found in secondary amides within 

proteins. The peak at 5155 cm−1 is related to the combination of O–H stretching and HOH bending, 

with the material type being water. Finally, the peak at 9852 cm−1 is associated with the second 

overtone of the fundamental stretching band of N–H asymmetric stretching, and the material type is 

aromatic amine [36].  

In comparison to previous studies conducted by Shrestha et al. [13], Zhang et al. [37], and Posom 

and Sirisomboon [38] that focused on measuring the wt.% of H in biomass using NIRS, our study 

discovered similar peaks within the range of 4000−9900 cm−1 and vibration bands such as O–H 

stretching, HOH bending, C–H stretching, and C–C stretching. Therefore, our study findings align 

with these earlier studies on this specific aspect. However, when evaluating the overall performance 

of various PLSR−based models, this study suggests that the wt.% of H was not sufficiently explained 

by the vibration of those mentioned bonds. 

 

Figure 4. The vector normalization absorbance value of studied biomass obtained using the vector 

normalization preprocessing with a selection of important wavenumber obtained from GA for 

prediction of wt.% of H, within the full wavenumber range of 3594.87 −12,489.48 cm−1. 
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3.3. wt.% of O 

Assuming that the S content in chip biomass is negligible, as its wt.% is too low to be detected 

by the instrument, we calculated the wt.% of O in the chip biomass for 120 samples using equation 

(1). The wt.% of ash content for each biomass was determined using a TGA. Table 3 presents the 

optimal results from five different types of PLSR−based models. The most effective model was 

developed using the MP PLSR 5−range method, incorporating a spectral preprocessing combination 

set of 2, 5, 2, 1, and 5, which corresponded to the following ranges: 3625.72–5392.30 cm−1 with SNV, 

5400.02–7166.59 cm−1 with the sd2, 7174.31–8940.89 cm−1 with SNV, 8948.60–10,715 cm−1 with raw 

spectra, and 10,722.9–12,489.48 cm−1 with the sd2. This model employed 15 LVs. Figure 2c illustrates 

the scatter plot comparing measured versus predicted wt.% of O obtained from the MP PLSR 5−range 

method. This method yielded R2C of 0.8097, RMSEC of 1.2366 wt.%, R2P of 0.7150, RMSEP of 1.3088 

wt.%, RPD of 1.9, and a bias of 0.0733 wt.%. Compared with Full−PLSR method performance, the MP 

PLSR 5−range method significantly improved the model accuracy by 11.4913 %. The LOQ value for 

wt.% of O was calculated as 12.4424 wt.%, which is lower than the minimum wt.% of O used during 

model development. This indicates that the model is highly sensitive and can accurately quantify O 

content in chip biomass from 12.4424 wt.%.  

Figure 5 displays the regression coefficient plot for wt.% of O content in chip biomass, obtained 

from the MP PLSR 5−range method. Several notable peaks were observed at 3650, 4405, 8163, and 

8621 cm−1, each potentially exert a significant influence on the model’s performance. Specifically, the 

peak at 3650 cm−1 corresponds to the O–H functional group found in the primary alcohols, 

characterized by the fundamental stretching vibrational absorption band of O–H. The peak at 4405 

cm−1 represent the combination of O–H stretching and C–O stretching, with cellulose as the material 

type. The peaks at 8163 cm−1 and 8621 cm−1 are associated with the second overtone of the 

fundamental stretching band of C–H and the fourth overtone of the fundamental stretching band of 

C=O, respectively, which are typically found in hydrocarbons and aliphatic compounds [36].  

 

Figure 5. The regression coefficient for the wt.% O of chip biomass using the MP PLSR 5−range 

method. 

When compared with previous studies on wt.% of O in biomass, such as those by Shrestha et al. 

[13], Zhang et al. [37], and Posom and Sirisomboon [38], this study reveals some contradictory peaks. 

However, the vibrational bands, such as O−H from primary alcohol, C=O stretching, and C−H 

stretching, among others, were similar. These finding supports the research result of this study, 

suggesting that the significant peaks observed in this study have an impact on the development of 

the model for assessing wt.% of O in chip biomass. 
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3.4. wt.% of N 

The best model for rapid prediction of wt.% of N was obtained using the MP PLSR 3−range 

method with a spectral preprocessing combination set of 4, 0, and 0 (Table 3). This set corresponds to 

the sd1 from 3594.87 to 5492.59 cm−1, and zero absorbance from 7498.314 to 12,489.48 cm−1. Figure 2d 

illustrates the scatter plot of measured versus predicted wt.% of N content in the chip biomass, 

obtained from the MP PLSR 3−range method with 15 LVs, the best−performing model achieved an 

R2C of 0.8656, RMSEC of 0.0820 wt.%, R2P of 0.6073, RMSEP of 0.1008 wt.%, RPD of 1.6, and a bias of 

0.0191 wt.%. These results indicate that within the range 3594.87-5492.59 cm−1 (refer Figure 6), by 

effectively correcting baseline shifts, and assigning zero absorbance value within the remaining 

wavenumber range, the model performance is enhanced. Compared with full−PLSR using RMSEP 

value, the MP PLSR 3−range method improved the model performance by 2.5473%. However, based 

on R2C and R2P values, the selected model indicates overfitting. This suggests that out model fits the 

training data too closely, capturing noise and irrelevant patterns that do not hold true in the other 

dataset. Therefore, we highly recommend research for the error occurred during scanning and 

reference measurement. 

Figure 6 illustrates the regression coefficient plot for the wt.% of N in chip biomass, obtained 

using the multi−preprocessing PLSR 3−range method. Significant peaks that could potentially 

influence the model performance were observed within the wavenumber range of 3594.87–5492.59 

cm−1 only. These significant peaks were noticed at wavenumbers 3693, 4019, 4365, 4505, 4701, and 

5285 cm−1. Specifically, the peak at 3693 cm−1 is associated with function group of C–H aromatic C–H 

bands, characterized by the material type C–H aryl. At 4019 cm−1, the peak represents functional 

groups with a combination of C–H stretching and C–C stretching from cellulose as the material type. 

The peak at 4365 cm−1 corresponds to CONH2, specifically due to C=O bonded to the N–H of the 

peptide link termed the α−helix structure. The peak at 4505 cm−1 is associated with the N–H 

combination band. Similarly, the peak at 4701 cm−1 corresponds to the function group of N–H/C=O 

combination from polyamide II. Lastly, the peaks at 5285 cm−1 are associated with O–H hydrogen 

bonding between water and exposed polyvinyl alcohol OH. These peaks are crucial in understanding 

the composition of the chip biomass and are important for model development and analysis. 

Furthermore, in the range of 7498.314–12,489.48 cm−1, the regression coefficient value equals zero. 

This indicates an insufficient linear relationship between the dependent (spectral information) and 

independent (reference value) variables in this range, and it does not significantly contribute to the 

predictive model for prediction of wt.% of N. 

 

Figure 6. The regression coefficient for the wt.% N of chip biomass using the MP PLSR 3−range 

method. 
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The previous study conducted by Posom and Sirisomboon [38], which aimed to evaluate the 

wt.% of N in bamboo, also revealed significant peaks within the range of 4424 to 6920 cm−1. Similarly, 

Shrestha et al. [13] conducted a study on wt.% of N in ground biomass from the same source and 

exhibited important peaks within a similar range, specifically within 4019 to 6711 cm−1. This finding 

aligns with the results of our study, providing additional support for our research. It is noteworthy 

that in both studies, common vibrational bands, such as N–H stretching, C=O stretching, C–H 

stretching, C–C stretching, aromatic C–H, and O–H bonds between water and alcohol, among others, 

were identified. This consistency in vibration bonds reinforces our study findings and suggests that 

these specific peaks likely play a crucial role in influencing the model performance. 

4. Effect of non-wood and wood samples on model performance 

Table 4 shows the reference values of wt.% of C, H, N and O of non-wood and wood samples in 

calibration and validation sets. From Figure 2 and Table 4, it is obvious that the range of every element 

content is wider after the two sets were combined for modeling. Therefore, the models can now be 

regarded as robust models. From Figure 2a,c the range of wt.% of C and O of wood samples was 

narrower than those of the non-wood samples which were extended more to the lower wt%. Figure 

2d illustrates in the opposite way where the value range of N of wood samples was lower and 

narrower than those of the non-wood samples. Therefore, models for wt% of C, O and N were better 

performance than that of H model. The wood sample reference values of H were group together and 

more or less had the same range to the range of non-wood samples. (Figure 2b). 

Table 4. The range of wt.% of C, H, N and O of non-wood and wood samples in calibration and 

validation sets. 

Parameter  
Calibration set Validation set 

Wood Non-Wood Wood Non-Wood 

wt.% C 47.77-42.33 48.75-39.93 47.28-41.02 47.24-39.76 

wt.% H 6.36-4.91 6.62-4.97 6.57-4.95 5.87-5.36 

wt.% N 0.60-0.00 0.91-0.00 0.40-0.00 0.62-0.12 

wt.% O 47.40-41.68 51.12-37.36 47.43-45.14 48.80-38.85 

Literatures show that the one specie model of non-wood which were bamboo wood chips [22] 

and sorghum [23] for evaluation of ultimate analysis parameters, C, H, N, O and S had better 

performance than our combined non-wood and wood model as the results described in Introduction 

of this manuscript. Similarly, the two similar species of rice straw and wheat straw model [24] and 

pine tree of two species (Loblolly (Pinus taeda) and slash (Pinus elliottii)) model [25] indicated the 

better prediction performance, though they were homogeneous ground samples which might make 

their model performance better than the chip ones due to less scattering problem. Shrestha et al [13] 

worked with ground samples of the same batch of non-wood and wood samples. Spectra from this 

experiment showed better R2P and RPD for C, N, H and O which is clamied to be due to the same 

merit of homogeneous samples. 

Using larger biomass particles sizes, Pitak et al [26] combined the non−wood and wood biomass 

pellet NIR spectra obtained by averaging every pixel spectrum of the pellets from hyperspectral 

image (HSI). This approach provided better performance in predicting elements from the ultimate 

analysis than our model, i.e. in detail data collection by the HSI leads to significant improvements. 

Figure 7 shows the scatter plots of the highest performance models in this study in predicting 

the C, H, O and N content of the wood and non-wood samples which is same as Figure 2 but the 

different is Figure 7 shows the simple regression lines of each group of non-wood and wood samples 

both for calibration set and prediction set. For better vision, Table 5 shows the numeric data of R2, 

slope, intercept calculated from the scatter plots of wood and non-wood calibration and prediction 

sets. Williams et al explained that the slope of the trend line plotted between Y (measured value) and 
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X (NIR predicted value) indicated the rate of change of Y as a function of the rate of change of X [34]. 

The intercept of different species illustrated the same trend as slope interpretation especially when 

the slope is more than 1 the intercept was with minus sign and if less than 1 the intercept was with 

plus sign. While the slope was 1 the intercept was low closed to zero and when the slope was more 

or less than 1 the intercept was high far from zero. 

The perfect relationship of the reference values and the predicted values is when the correlation 

coefficient (R) and slope equal to 1 and the intercept equal to zero [34].  

From Table 5, for C model, the non-wood samples contributed slightly more merit on calibration 

model performance than wood samples for more R and slope was more closed to 1 and intercept was 

more closed to zero. But the prediction set of non-wood provided steeper slope and intercept far more 

from zero.  

By the same way of interpretation, the model for H got more merit from non-wood samples, 

while the wood samples, the R of the trend line was very low and the slope was far from 1 and the 

intercept was slightly far from zero. The incongruous of the trend lines of both sets make overall 

performance of the model worst as shown in Table 3.  

For N model, the wood and non-wood calibration set samples more or less had the same trend 

line characteristics which supplement the good calibration model performance, though the prediction 

sample set of both biomass species trend line characteristics shows less R and slope far from 1 led to 

overfit calibration models of both biomass groups (Table 5). 

For O model, the non-wood group had better trend line characteristics contributed good merit 

to model while the poorer trend line characteristics of the wood group made the overall model 

inferior but by small portion due to the number of samples in non-wood group was much more (Table 

5). By the strong merit of non-wood group the overall model performance for O prediction was fairly 

acceptable (Table 3). 

Table 5. The trend line characteristics of the wood and non-wood species in scatter plots of the best 

models for C, H, N, and O. 

Element 
Wood   Non-wood 

R2C R2P  SlopeC SlopeP InterceptC InterceptP  R2C R2P  SlopeC SlopeP InterceptC InterceptP 

C 0.7243 0.6456 0.8353 1.0139 7.5532 -0.8994  0.7962 0.7681 1.0243 1.2109 -1.0960 -9.1465 

H 0.2683 0.5028 0.7876 0.7066 1.2085 1.7444  0.6111 0.7185 1.0342 1.1318 -0.1925 -0.9224 

N 0.8335 0.5486 0.8915 0.7670 0.0197 0.0502  0.8454 0.6289 1.0368 0.8541 -0.0139 0.0708 

O 0.6187 0.0992 0.8272 0.1840 7.8316 37.2740   0.8311 0.8063 1.0209 0.9519 -0.9462 2.3866 

R2C: Coefficient of determination in the calibration set, R2P: Coefficient of determination in the validation set, 

SlopeC: Slope of trendline in the calibration set, SlopeP: Slope of trendline in the validation set, InterceptC: 

Intercept in the calibration set, InterceptP: Intercept in the validation set 
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Figure 7. The scatter plots of optimized model for wt% of C, H, O and N where the simple regression 

lines of non-wood group and wood group illustrated both in calibration set and validation set. 

Tables 6–9 show the trend line characteristics including R2, slope and intercept of each specific 

plant of wood and non-wood samples used in the optimized models for evaluation of C, N, H and O, 

respectively. It was observed that most of the R2P of every plant was equaled to 1 for the samples of 

those plants in the optimized model was only 2 samples connected to straight line. Therefore, we 

ignored to interpret the trend line characteristics of prediction set and only R2C , slope and intercept of 

calibration set will be interpreted. As indicating by Williams et al [34] when the R approached to 1 

and slope approached to 1 and intercept approached to zero, the model was approached excellent. 

Therefore, to include different species in a model the species have to be not only in the different 

values of the constituents to make a wider range for robust model but also they must provide the 

characteristic of the same rate of change of NIR predicted values with the measured values (same 

slope and slope should approached to 1 and intercept is same (no gap) and approached zero). As 

expected, the trend of R2, of slope and of intercept of different species were not the same for their 

different characteristics. However, some species which their characteristics were similar, the trends 

were in common but depend on the element the model was used for prediction.  

From Tables 6– 9, as expected the intercept of different species illustrated the same trend as slope 

interpretation especially when by the fact, the slope is more than 1 the intercept was with minus sign 

and if less than 1 the intercept was with plus sign. While the slope was 1 the intercept was low closed 

to zero and when the slope was more or less than 1 the intercept was high far from zero. 
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Therefore, the following were the effects of specific species on performance of the optimized 

models interpreted by scatter plot analysis using the R2 and slope of the trend line of the specific plant 

in the model developed. 

For C (Table 6), by R2C interpretation, most of non-wood species (agricultural waste) except 

bagasse and bamboo show un-acceptable trend lines compared to wood species samples except pines. 

Therefore, to include the mentioned non-wood species caused the poor effect on C model. By 

interpretation of slope, there were 3 groups of slope (by value round up) i.e. 1 including Eucalyptus, 

Alnus and Bombax in wood species and corn cob, corn shell, rice husk and bamboo in non-wood 

species, less than 1 including pine in wood specie and more than 1 including corn stover and bagasse 

indicating unequal slope different species in the same optimized model show the effect of specific 

species on model performance. These can be summarized that for model to be better, pine and corn 

stover should not be included in modeling for C prediction. 

By the same way of interpretation, from Table 7, the optimized model for N, pine and bagasse 

should be not included, from Table 8, for H, pine, Alnus, corn shell and bagasse should not be 

included and from Table 9, for O, pine should not be included for better performance of the models. 

These were due to the poor both R and slope of the eliminated species which were not in accordance 

with the other species.  

These results show that the different species affected the model performance of each parameter 

prediction in a different manner and by scatter plot analysis which of these species were affecting the 

model negatively and how to improve the model performance were indicated.   

Table 6. The trend line characteristics of specific biomass species for Carbon evaluation optimized 

model. 

Particular Biomass Species R
2
C R

2
P SlopeC SlopeP InterceptC InterceptP

Euca 0.6779 1.0000 0.9808 5.4617 0.8006 -202.6600

Pine 0.2502 1.0000 0.2264 1.0848 36.2520 -3.7219

Alnu 0.7491 1.0000 0.7254 -16.8990 12.7000 819.4200

Bombax 0.8110 1.0000 1.1270 0.9097 -5.3606 4.1430

Zea May-Cob 0.2480 0.9542 0.6228 1.8112 16.7390 -35.8510

Zea May-Stover 0.6332 1.0000 1.7168 0.2151 -32.1370 33.6140

Zea May- Shell 0.3300 0.4618 0.8945 0.2524 5.0232 34.2500

Ricehusk 0.3770 1.0000 0.9257 2.5087 2.9918 -62.7580

Bagass 1.0000 1.0000 2.6090 -0.1076 -70.2900 48.2050

Bamboo 0.9313 1.0000 1.3789 7.6002 -17.0530 -297.8600

Non-Wood

Carbon (wt.%)

Wood
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Table 7. The trend line characteristics of specific biomass species for Nitrogen evaluation optimized 

model. 

Particular Biomass Species R
2

C R
2

P SlopeC SlopeP InterceptC InterceptP

Euca 0.5701 1.0000 0.7531 0.4663 0.0233 -0.0135

Pine 0.2317 1.0000 0.2828 0.8790 0.0283 0.0543

Alnu 0.5878 0.9633 0.5742 1.2687 0.1426 -0.1337

Bombax 0.9410 1.0000 1.1614 -2.0520 -0.0748 0.6245

Zea May-Cob 0.6807 0.5554 0.8615 1.1809 0.0443 -0.0372

Zea May-Stover 0.6200 1.0000 0.9025 0.2654 0.0472 0.4721

Zea May- Shell 0.8641 0.6536 1.1203 1.0135 -0.0629 0.0569

Ricehusk 0.8848 1.0000 1.1485 0.2615 -0.0518 0.2394

Bagass 0.4801 1.0000 0.2992 -1.7907 0.0333 0.5128

Bamboo 0.8200 1.0000 1.4186 1.6937 -0.1260 -0.0966

Non-Wood

Nitrogen (wt.%)

Wood

 

Table 8. The trend line characteristics of specific biomass species for Hydrogen evaluation 

optimized model. 

Particular Biomass Species R
2
C R

2
P SlopeC SlopeP InterceptC InterceptP

Euca 0.7289 1.0000 1.5193 0.8197 2.9877 0.9851

Pine 0.0462 N/A 0.4235 - 3.3450 5.7900

Alnu 0.0701 1.0000 -0.9476 -0.0456 11.1870 6.0566

Bombax 0.1629 1.0000 0.5887 0.2547 2.5182 4.4059

Zea May-Cob 0.2752 1.0000 1.4447 -0.7296 -2.6372 9.7617

Zea May-Stover 0.1173 0.7335 1.2590 1.2413 -1.5538 -1.7143

Zea May- Shell 0.0404 0.6033 0.3791 6.5956 3.8515 -34.5000

Ricehusk 0.7273 0.9896 1.5136 -1.5656 -2.7759 13.3580

Bagass 0.0067 1.0000 -0.1394 -4.9031 6.4990 34.7330

Bamboo 0.4456 0.7685 0.9438 1.0741 0.4841 -0.4794

Non-Wood

Hydrogen (wt.%)

Wood

 

Table 9. The trend line characteristics of specific biomass species for Oxygen evaluation optimized 

model. 

Particular Biomass Species R
2

C R
2

P SlopeC SlopeP InterceptC InterceptP

Euca 0.3842 1.0000 0.5993 0.3416 18.5080 29.7010

Pine 0.2854 1.0000 0.3913 -0.0362 27.5290 47.1430

Alnu 0.4993 1.0000 0.5014 0.9362 23.0630 4.5052

Bombax 0.7459 1.0000 1.3490 -1.1972 -15.4990 100.4800

Zea May-Cob 0.6501 1.0000 1.3700 8.9169 -17.1250 -368.0300

Zea May-Stover 0.8611 1.0000 1.5098 -0.3972 -22.8340 64.3960

Zea May- Shell 0.3063 0.7989 0.8399 2.0886 6.9934 -48.2230

Ricehusk 0.9499 1.0000 1.0623 0.3529 -2.3570 25.9720

Bagass 1.0000 NA 0.0784 NA 42.8950 NA

Bamboo 0.9301 1.0000 1.1793 3.0761 -8.5173 -95.5720

Non-Wood

Oxygen (wt.%)

Wood
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5. Comparison of model performance between using chipped and ground biomass spectra 

In this section, the model performance of chipped biomass for ultimate analysis parameters to 

the model of ground biomass [13] derived from the same sample varieties is compared. The 

comparison is based on the metrics R2C, RMSEC, R2P, RMSEP, and RPD. The results demonstrate that 

chipped biomass generally performs less effectively in these models compared to ground biomass, 

except for wt.% of O. 

For wt.% of C and wt.% of H, both chipped and ground biomass models demonstrated better 

performance when employing the GA−PLSR model. This outcome aligns with expectations, as GA 

optimizes feature selection to maximize fitness, while PLSR maximizes covariance between 

absorbance values and areas of interest [39]. 

For wt.% of C, the GA−PLSR model applied to ground biomass yield an R2C of 0.7851, RMSEC 

of 0.9753 wt.%, R2P of 0.7217, RMSEP of 0.9740 wt.%, and RPD of 1.93 [13]. In contrast, the model 

applied to chipped biomass performed less effectively (refer Table 2). Therefore, it is recommended 

to adopt the GA−PLSR model with sd2 preprocessing on ground biomass when evaluating wt.% of 

C.  

Similarly, the GA−PLSR model applied to ground biomass outperforms that of chipped biomass 

for wt.% of H. Ground biomass yielded an R2C of 0.8814, RMSEC of 0.1041 wt.%, R2P of 0.7678, RMSEP 

of 0.1434 wt.%, and RPD of 2.14 [13], whereas chipped biomass lagged behind (refer Table 2). Hence, 

for wt.% of H, the GA−PLSR model with spectral preprocessing from SNV on ground biomass is 

recommended.  

Regarding wt.% of N, the MP PLSR 5−range method exhibited superior model performance on 

ground biomass, as evidenced by R2C, RMSEC, R2P, RMSEP, and RPD values of 0.8682, 0.0675 wt.%, 

0.8410, 0.0973 wt.%, and 2.65, respectively [13], when compared to chipped biomass performance 

obtained from the MP PLSR 3−range method (refer Table 2). This underscores the suitability of 

ground biomass for evaluating wt.% of N.  

Surpricingly, in contrast, for wt.% of O, the model derived from chipped biomass excelled, 

despite both models utilizing the MP PLSR 5−range method. In ground biomass, R2C, RMSEC, R2P, 

RMSEP, and RPD values were 0.6674, 1.4461wt.%, 0.6289, 1.5275 wt.%, and 1.71 respectively [13], 

which fell short of chipped biomass results. Hence, it is recommended to adopt the MP PLSR−5 range 

method with the preprocessing combination set of 2, 5, 2, 1, and 5 for assessing wt.% of O in chipped 

biomass. This could be due to ash determination where ash directly influences %O determination 

based on Eq 1. Also, ash is typically accumulating in small particles, i.e. time of grinding in 

conjunction with subsampling can have an influence on ash determination. 

All the above comparison and findings underscore the importance of selecting the appropriate 

PLSR−based model for precise analysis of ultimate analysis parameters, depending on the specific 

parameter of interest. There could be several factors that contribute to the lower performance of the 

chipped biomass model, which can be addressed to improve the model performance. The key 

contributing factor to this performance difference is obviously the particle size of the biomass 

samples. Chipped biomass typically consists of larger and different sizes of particles, leading to 

increased scattering of NIR light during sample scanning [40]. Consequently, the spectra generated 

from chipped biomass can be of lower quality, resulting in weaker correlations between spectral data 

and reference data [41]. Additionally, ground biomass exhibits a more compact and uniform sample 

structure, reducing the likelihood of NIR light leakage during scanning. Another significant factor 

affecting the lower model performance is the moisture content in biomass samples. Chipped biomass 

often contains higher moisture levels, and water has the property of absorbing NIR light in the 

near−infrared region [42]. This NIR absorption interferes with the measurements and can introduce 

inaccuracies, particularly for elements like C, H, O and N.  

In the chipped biomass models, it is evident that the performance of the prediction set 

consistently lags behind that of the calibration set. This suggests that the model closely overfits the 

calibration data, capturing both valuable information and noise or random variations [43]. In the 

machine learning context, Cawley and Talbot [44] emphasized that overfitting in model selection is 

likely to be most severe when the sample size is small and the number of hyperparameters to be 
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tuned is relatively large [45]. Like in our case, the number of latent variables of the best models were 

high. 

Consequently, when new samples are introduced into the prediction set, the model may struggle 

to generalize and provide accurate predictions. Furthermore, the presence of outliers in the prediction 

set, which were not accounted for in the calibration set, can further negatively impact the model 

performance [46].  

The performance of ground biomass is better compared to chipped biomass due to several 

factors. Ground biomass allows for better sample homogenization, ensuring uniformity and 

consistent composition. Additionally, it offers more control over sample thickness, as chips may vary 

in thickness, affecting accuracy. Moreover, ground samples reduce light scattering effects and enables 

improved penetration of the NIRS signal, allowing for precise and accurate logging of spectral 

information. 

6. Conclusion 

In this study, PLSR−based models were developed and compared using FT−NIRS to analyze the 

ultimate analysis parameters of combined non-wood and wood chip biomass, specifically focusing 

on wt.% of C, H, O, and N content. All chipped biomass samples were scanned within 

3594.87−12,489.48 cm−1 on the diffuse reflectance with sphere macro sample rotating mode, with a 

particular emphasis on their suitability for energy application. The model with the optimum 

performance was selected based on trade off parameters of R2C, RMSEC, R2P, RMSEP, RPD and bias. 

The optimum model performance analysis reveals that the model selected for predicting the 

wt.% of C, H, N, and O in chipped biomass are suitable primarily for initial rough screening. It is 

recommended to adopt the multi−preprocessing PLSR 5−range method chipped biomass model for 

wt.% of O content analysis as an alternative method for rapid assessment. However, for evaluation 

of wt.% of C, H, and N content, the chipped biomass model performance falls short of the model 

developed for ground biomass by Shrestha et al. [13]. Thus, it is advisable to use the chipped biomass 

model solely for initial screening before biomass trading. For a more comprehensive and accurate 

analysis, it is recommend grinding the chip biomass samples and employing the GA−PLSR model 

with sd1 for wt.% of C, GA−PLSR with SNV for wt.% of H and the multi-preprocessing PLSR 5−range 

method with combination set of 4, 4, 5, 3, and 4 for wt.% of N, as developed by Shrestha et al. [13]. 

The LOQ values for C, H, and O were below the model minimum reference value, demonstrating 

high model sensitivity. However, the LOQ value for N exceeds the minimum reference value, 

indicating the model detection limit to the minimum value in the calibration sample set range. 

By analysis of scatter plot of measured constituent and NIR predicted constituent, the effect of 

including different biomass species (non-wood and wood species) in the modeling samples was 

studied. It was concluded that to include different species in a model, the species had to be not only 

in the different values of the constituents to be predicted to make a wider range for robust model but 

also the different sample species must provide the same rate of change of NIR predicted values with 

the measured values in the scatter plot (same slope and slope approached to 1 and intercept is same 

(no gap) and approached zero) for the high performance model if R is approached to one. The results 

show that the different species affected on model performance of each parameter prediction in a 

different manner and by scatter plot analysis, which of the species affecting the model negatively 

were identified and dictated how to improve the model performance.  
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Abbreviations 

% percentage R Correlation coefficient 

C carbon R2 coefficient of determination 

CHNS CHNS Elemental analyzer R2C 
coefficient of determination of calibration

set 

GA genetic algorithm R2P 
coefficient of determination of validation

set 

H hydrogen RMSEC root mean square error of calibration set 

LVs latent variable number RMSEP root mean square error of prediction set 

LOQ Limit of quantification RPD ratio of prediction to deviation 

Max maximum S sulfur 

Min minimum SD standard deviation 

MP multi-preprocessing sd1 first derivative  

MSC multiplicative scatter correction sd2 second derivative 

N nitrogen SEC standard error of calibration set 

NT total number of samples SEP standard error of validation set 

Nc number of samples in calibration set SNV standard normal variate 

NIRS near infrared spectroscopy  SPA successive projection algorithm 

Np number of samples in validation set SW selected wavenumber 

O oxygen TGA thermogravimetric analysis 

PLSR partial least squares regression wt.% weight percentage 
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