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Abstract: The ultimate analysis parameters including carbon (C), hydrogen (H), nitrogen (N), and oxygen (O)
content in biomass was rarely found to be predicted by nondestructive tests until to date. In this research, we
developed partial least squares regression (PLSR) models to predict the ultimate analysis parameters of chip
biomass using near infrared (NIR) raw spectra of non-wood and wood samples from fast growing tree and
agricultural residue and nine different traditional spectral preprocessing techniques. These techniques include
first derivative (sd1), second derivative (sd2), constant offset, standard normal variate (SNV), multiplicative
scatter correction (MSC), vector normalization, min-max normalization, mean centering, sd1 + vector
normalization, and sd1 + MSC. Additionally, we employed a genetic algorithm (GA), successive projection
algorithm (SPA), multi-preprocessing (MP) 5-range, and MP 3-range to develop a PLSR model for rapid
prediction. A dataset consisting of 120 chip biomass samples was utilized for model development in which the
samples was non-wood samples of 65-67% and wood samples was 33-35%, and the model performance were
evaluated and compared. The selection of the optimum performing model was mainly based on criteria such
as the coefficient of determination in the prediction set (R%), root mean square error of the prediction set
(RMSEP), and the ratio of prediction to deviation values (RPD). The optimal model for weight percentage
(wt.%) of C was obtained using GA-PLSR, yielding R?, RMSEP, and RPD values of 0.6954, 1.1252 wt.%, and
1.8, respectively. Similarly, for wt.% of O, the most effective model was obtained using the multi-preprocessing
PLSR-5 range method with R? of 0.7150, RMSEP of 1.3088 wt.%, and RPD of 1.9. For wt.% of N, the optimal
model was obtained using the MP PLSR-3 range method, resulting in R?, RMSEP, and RPD values of 0.6073,
0.1008 wt.%, and 1.6, respectively. However, wt.% of H model provided R%», RMSEP, and RPD values of 0.5162,
0.2322 wt.%, and 1.5, respectively. Notably, the limit of quantification (LOQ) values for C, H, and O were lower
than the minimum reference values used during model development, indicating a high level of sensitivity.
However, the LOQ for N, exceeded the minimum reference value, implying the samples to be predicted by the
model must be in the range of reference range in calibration set. By scatter plot analysis, the effect of combined
non-wood and wood spectra of biomass chips on rapid prediction of ultimate analysis parameters using NIR
spectroscopy was investigated. To include different species in a model, the species have to be not only in the
different values of the constituents to make a wider range for robust model but also they must provide their
trend line characteristics in the scatter plot i.e. correlation coefficient (R), slope and intercept (same slope and
slope approached to 1 and intercept is same (no gap) and approached zero, high R approached to 1). The effect
of the R, slope and intercept to obtain the better optimized model were studied. The results show that the
different species affected model performance of each parameter prediction in a different manner and by scatter
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plot analysis which of these species were affecting the model negatively and how the model could be improved
was indicated. This is the first time of the effect is studied by the principle of scatter plot.

Keywords: biomass; ultimate analysis; near-infrared spectroscopy; partial least squares regression

1. Introduction

The world is undergoing a significant transition away from fossil fuels, embracing modern
renewable energy technologies to meet its escalating energy needs and demands. Bioenergy, derived
from sources such as woody biomass, agricultural residues, and organic materials and waste, is
pivotal in this paradigm shift, constituting the largest share (two—thirds) of global renewable energy
utilization [1]. It is anticipated that bioenergy continues to have a decisive share in future net zero
emission scenarios and that its contribution to energy supply will further increase. This transition
underscores the growing significance of biomass energy within the global energy landscape.
However, it is worth noting that billions of people still rely on the inefficient use of traditional
biomass for cooking and heating [1]. The combustion of biomass produces air pollutants similar to
those emitted by fossil fuels, with the exception of sulfur oxides [2]. Furthermore, research has shown
that the health impacts attributed to emissions from biomass and wood combustion can be more
harmful than those from fossil fuels [3]. These emissions primarily result from incomplete biomass
combustion and the release of solid particulate matter.

The adoption of woody biomass and non-wood biomass such as agricultural residues, coupled
with efficient combustion energy technologies, holds the potential to substantially reduce harmful
emissions into the atmosphere while increasing its contribution to energy supply, making it a viable
alternative to fossil fuels. Due to efficiency increase as compared to traditional biomass use, it is an
important cornerstone of future scenarios. Despite significant investments in the research and
development of biomass energy technologies, a knowledge gap persists, particularly concerning
efficient, low cost determination of biomass properties, including its elemental compositions (carbon
(C), hydrogen (H), nitrogen (N), oxygen (O), sulfur (S) and others). During inefficient and incomplete
combustion, harmful pollutants such as carbon monoxide, sulfur oxides (SOx), nitrogen oxides
(NOx), along with particulate matter (PM25 and PMio) are continuously released into the environment
as smoke, posing significant health risks through indoor and outdoor exposure, with women and
children being the most vulnerable [4-6].

The elemental composition of biomass has a profound impact on combustion efficiency and the
emission levels released into the environment. These emissions, in turn, carry significant
consequences for both the energy industry and the natural surroundings. Energy release during
biomass combustion correlates positively with carbon and hydrogen contents, as they are the primary
contributors to its energy value [7]. High carbon content is desirable for energy production [8], and
hydrogen's high energy content makes it valuable [9]. During combustion, oxygen reacts with carbon
and hydrogen, reducing the available energy in biomass. Elevated oxygen and nitrogen contents
decrease the calorific value, thereby reducing energy potential [10]. Nitrogen and sulfur are
undesirable elements in biomass due to their contribution to the formation of harmful NOx and sulfur
dioxide [11,12]. To minimize environmental impact and ensure sustainable operation and
maintenance of combustion systems, low sulfur content in biomass is preferred [12]. Hence, it is
crucial to rapidly, accurately, and non-invasively assess the elemental composition of biomass,
including C, N, O, H, and S. This assessment is essential for understanding biomass elemental
composition and the potential emissions risks during energy production.

In our previous research [13], an investigation was conducted into the application of NIR
spectroscopy (NIRS) for the comprehensive analysis of the ultimate analysis parameters of ground
biomass intended for energy utilization. The study concludes that NIRS offers a reliable and non-
destructive alternative method for rapidly assessing the elemental composition of ground biomass
for energy-related purposes. Despite the valuable findings from previous research, these finding
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primarily served academic and research institutions. However, biomass normally is made into pellet
form for export and to increase energy density where the grinding is necessary before making pellets
Woodchips are especially useful, as they are easy to use and some time, ground wood is not suitable
in power operations due to the high cost and length of time necessary for sample preparation,
therefore, it is a popular source of energy for power plants because of low preparation costs [14].
Meanwhile, woodchip quality could be more effectively examined to achieve higher levels of plant
efficiency [14]. Hence, this study aims at improving the applicability of NIR spectroscopy to assess
the ultimate analysis parameters of chipped biomass, i.e. biomass with particle sizes commonly found
in industrial applications. In consequence, this research outcome may directly benefit traders and
energy companies, facilitating the utilization of research outcomes without the need for extensive
biomass preparation such as grinding.

The data structure of samples used for model development in this present work were in two
forms i.e. non-wood and wood samples. As reported, the non-wood and wood species were different
in their lignocellulosic constituents. Non-wood material of agricultural waste compost of lignin,
holocellulose, a—cellulose, pentosan and ash [15]. For example, agricultural residues, such as hemp
and sugarcane bagasse, contained higher concentrations of cellulose and lower levels of recalcitrant
lignin when compared to the average woody biomass [16,17]. However, Hawanis et. al [18] reported
the non-wood contained lower cellulose and lignin while wood contained higher [19,20]. Therefore,
the wider range of energy parameters such as heating value and definitely the ultimate analysis
parameters, C, H, N, O and S. This may make the model more robust. Though, the effect of combined
non-wood and wood spectra of biomass chips on rapid prediction of ultimate analysis parameters
using NIR spectroscopy was investigated in this study.

Literatures which were explored in the Google Scholar data up to end 2023 base showed a few
research has combined the non-wood such as agricultural residue and agricultural industrial residue
and forest residue e.g., leaves, barks and so on and wood such as fast-growing tree and wood from
forest. Generally, only one specific species of biomass was used for prediction modeling and the
determination of ultimate analysis constituents by NIR spectroscopy was rarely reported. Only two
reports were found including Posom and Sirisomboon [22], who optimized the PLS models using
NIR spectra of 80 bamboo chip samples for evaluation of C, H, N, S and O content. The models
showed the coefficient of determination of prediction set (R%) and ratio of prediction to deviation
(RPD) of 0.803 and 2.31 for C; 0.856 and 2.65 for H; 0.973 and 6.6 for N; 0.785 and 2.19 for S and 0.522
and 1.46 for O, respectively. Similarly, the models developed by Zhang et al. (2017) [23] using 100
accessions of sorghum biomass with R? of 0.96 for wt.% of C, 0.87 for wt.% of H, 0.86 for wt.% of N,
and 0.83 for wt.% of O.

There were two reports found in the available data base that developed a model for two similar
species to evaluate ultimate analysis parameters, C, H, N, O and S. A total of 222 rice straw and wheat
straw, collected from 24 provinces of China, were used for NIRS calibration and validation in this
study where R? and standard error of predictions (SEP) of independent validation were, respectively,
0.97 and 0.37% for C, 0.77 and 0.17% for H, 0.87 and 0.10% for N [24]. Saha et al [25] developed models
by using 276 wood chip ground samples of pine tree of two species (Loblolly (Pinus taeda) and slash
(Pinus elliottii)) where the biomass spectra (400 to 2498 nm at 2-nm intervals). The samples were a
mix of bark, branch, needle, wood or whole tree biomass. The prediction results show for C (sample
number (n) =43; coefficient of R% = 0.90; RPD = 3.14; ratio of prediction to interquartile (RPIQ) = 3.23);
for N (n=44; R =0.95; RPD =4.33; RPIQ =5.96); and for S (n=42; R%»=0.93; RPD =3.67; RPIQ =3.24).

There were two reports of our group contributed the research results of NIR prediction models
for ultimate analysis parameters of the non-wood and wood samples including Pitak et al [26] who
developed the PLS regression using the spectra obtained by line-scan NIR hyperspectral imager in
which the most effective model for the prediction of C, H and N content of 160 non-wood and wood
biomass pellets including filter cake (15 pellets), Leucaena leucocepphala (10 pellets), bamboo (15
pellets), cassava rhizome (15 pellets), bagasse (15 pellets), sugarcane leaves (15 pellets), straw (15
pellets), rice husk (15 pellets), eucalyptus bark (15 pellets), napier grass (15 pellets) and corn cob (15
pellets) developed using iGA wavelength selection and standard normal variate (SNV) spectral
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pretreatment and provided the highest accuracy with R?p and SEP of 0.83 and 1.33% for C; 0.84 and

0.17% for H and 0.90 and 0.098% for N; respectively. The second report was contributed by Shrestha

et al [13] where the ground non-wood and wood samples spectra which were 110 samples of

agricultural residues and 90 samples of fast-growing trees were used to develop the PLSR models

combined with multi-preprocessing methods for ultimate analysis showed R? and RPD for C of

0.7217 and 1.9, for N of 0.8410 and 2.7, for H of 0.7678 and 2.1 and for O of 0.6289 and 1.7, respectively.
The main objectives of this research include:

(1) develop PLSR models using NIR raw spectra, traditional preprocessing, MP 5-range, MP
3-range, GA, and SPA for assessing chip biomass properties for energy usage by employing
NIRS while the spectra of the biomass were from non-wood (agricultural residue and bamboo)
and wood (fast growing trees) samples.

(2) compare the performance of the PLSR models based on R%c, RMSEP, R?», RMSEP, RPD, and bias.

(3) study the effect of combined non-wood and wood species in model development on model
performance by scatter plot analysis.

(4) select the better performing PLSR-based model for each ultimate analysis parameter, compared
with the performance of the ground biomass for rapidly assessing biomass properties for energy
usage.

(5) determine the limit of quantification (LOQ) value of the proposed model calibration set for each
ultimate analysis parameter in chip biomass.

2. Materials and Methods

Figure 1 shows the overall research methodology for rapid predication of ultimate analysis
parameters of chip biomass by NIRS using PLSR.
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Sample preparation for chip biomass analysis |

Near infrared spectroscopy scanning (12,489.48 to 3594.87 cm™)
Spectrum preprocessing Reference data measurement

(Raw Spectra, Constant offset, SNV, MSC
sd1 (5,5), sd2 (5,5)
Vector normalization, Mean centering
sd1 (5,5) + Vector normalization
sd1 (5,5) +MSC)

1 v

- Ultimate analysis: CHNS/O
elemental analyzer (wt.% of C, H,
N, S, 0)

Total data set (100%)
(Spectral + Reference)
I Calibration set (80%) I: ‘ =H Validation set (20%) I
| Y variable (Reference data) | | X variable (Spectral data) | | x variable (Spectral data) |

| Selection of optimum LVs using full cross validation |

'

Calibration model
- Full PLSR with no preprocessing and traditional
preprocessing
-Multi-preprocessing-PLSR 3 range
-Multi-preprocessing-PLSR 5 range
-GA-PLSR
-SPA-PLSR

| I
| LOQ calculation Prediction value '——' y variable (Reference data)

A

Model validation
R2, RMSEC, R%, RMSEP, RPD, Bias

|

Selection of the best model for each parameter and compared with performance of ground biomass to
establish an alternative method for rapid and reliable evaluation to characterize biomass for energy usage

Figure 1. Flowchart of the overall research methodology for the rapid prediction of the ultimate
analysis parameters of chip biomass for energy usage by NIRS using PLSR.

2.1. Sample preparation

A total of 120 samples were collected from ten different biomass varieties, which included wood
samples and non-wood samples from various geographical locations in Nepal. Wood samples
included four fast-growing species: (1) Alnus nepalensis, (2) Pinux roxiburghii, (3) Bombax ceiba, and (4)
Eucalyptus camaldulensis. Non-wood were five agricultural residues: (1) Zea mays (cob), (2) Zea mays
(shell), (3) Zea mays (stover), (4) Oryza sativa, and (5) Saccharum officinarun and one fast growing tree
(6) Bombusa vulagris. The biomass samples were manually chipped for NIR scanning and for the
reference measurement of ultimate analysis parameters [13].

2.2. Spectral data collection

All chip biomass samples were scanned using an FT-NIR spectrometer (MPA, Bruker, Ettlingen,
Germany) in diffuse reflectance with sphere macro sample rotating mode, covering the wavelength
range from 3594.87 to 12,489.48 cm™', with a resolution of 16 cm'. The scanning process consisted of
32 scans (on average) for both sample and background scans to collect the raw spectra. These raw
spectra were acquired in a controlled laboratory environment with air conditioning maintaining a
room temperature of 25+2 °C.
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To compensate for the ambient influence and instrument drift on the measurement setup,
background scanning was regularly done on a gold plate as a reference for every new sample. Each
biomass sample were scanned twice without changing its position, and the average of its absorbance
values was calculated. All the spectra were logged as log (1/R) versus wavenumber (cm™), where R
is the diffuse reflectance from the biomass sample.

Each sample was then subjected to a reference measurement of C, H, N, and S by a CHNS/O
analyzer.

2.3. Reference analysis

The wt.% of C, H, N, and S on a dry basis in the chip biomass were determined at the Scientific
and Technological Research Equipment Center (STREC) at Chulalongkorn University, Bangkok,
Thailand, using CHNS/O analyzer (Thermo Scientific TM FLASH 2000, Waltham, MA, USA). The
wt.% of O on a dry basis is calculated as:

wt.% O =100 -wt.% C-wt.% H-wt.% N - wt.% S — wt.% ash (1)
Here, wt.% ash is determined using a thermogravimetric analyzer (TG 209 F3 Tarsus, Netzsch,
Bavaria, Germany) by combusting biomass within the temperature range between 35 to 700 °C.
2.4. Outlier and standard error of laboratory
Outliers on the reference data were identified and removed using following equation:
X; — X
Xi—%) |
SD

where, Xi is the measured value of sample i, X is the average, and SD is the standard deviation
of the measured values of all samples [13,27].

+ 3| @)

2.5. Spectral preprocessing and model development

As shown in Figure 1, this study incorporates nine different types of spectral preprocessing
applied to the raw spectra. These methods include constant offset, SNV, MSC, sd1, sd2, vector
normalization, mean centering, sd1 + vector normalization, and sd1 + MSC.

Five different types of PLSR-based regression models, namely Full-PLSR, MP PLSR-5 range,
MP PLSR-3 range, GA-PLSR, and SPA-PLSR, were developed to compare and select the
best-performing model for each ultimate analysis parameter to establish a reliable and
non-destructive alternative method for rapidly assessing biomass properties for energy usage [13].

The primary objective of the MP method is to optimize model performance by applying various
preprocessing techniques to different divided sections within the entire wavenumber range. A
built-in code in MATLAB R2020b was utilized to obtain a combination set of different preprocessing
techniques based on the desired number of random pairs. The optimal combination set for each
selected number of random pairs is determined through a cross-validation procedure using PLSR on
reference and spectroscopic data. Using the selected combination set of preprocessing techniques,
PLSR model were developed. Here, we generate a combination set of preprocessing techniques using
seven different options: 0 = empty (all absorbance values = 0), 1 =raw spectra, 2=SNV, 3=MSC, 4 =
first derivative, 5 = second derivative, and 6 = constant offset. In the MP approach, two methods were
adopted: in the MP PLSR-5 range method, the spectral range is divided into five equal sections, while
in the MP PLSR-3 range method, it is divided into three sections. The best MP combination set for
model development is then determined [13].

Both GA and SPA were employed to select concise and influential wavenumbers, aiming to
prevent overfitting and result in an improved prediction model [28]. GA, inspired by Charles
Darwin's theory of natural selection, utilizes an optimization technique that generates a population
of potential solutions and evolves them over multiple generations through selection, crossover, and
mutation. Starting with one wavenumber, each iteration adds a new one to the selection, ultimately
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reducing redundant information in the chosen wavenumbers [29]. Similarly, SPA is a forward feature
selection method that begins with an empty set and iteratively adds one wavelength at a time to the
subset. In each iteration, the wavelength contributing the most to the model, based on correlation, is
selected and added to the subset. This process effectively reduces dimensionality by eliminating
multicollinear and redundant variables using SPA [30-32].

2.6. Limit of quantification (LOQ)

Based on the SD of the response to slope method from the calibration model, LOQ which
represent the lowest concentration of the analyte that can be detected and quantified with an
acceptable level of accuracy and precision [27,33] is calculated as follow:

¢
LOQ=10 5 (3)

where, oc is the residual standard deviation, i.e., the precision obtained from measured and
predicted values of the calibration set, and Sc is the slope of the model regression line.

3. Results and Discussion

Table 1 shows the number of non-wood samples and wood samples in calibration set and
validation set. The wood sample number is about 33-35% of total sample number, hence, non-wood
samples number is 65-67%. Out of 120 samples, the number of outlier samples can be evaluated by
the data in Table 1.

Table 2 presents statistical data for the ultimate analysis parameters of chip biomass obtained
using CHNS/O elemental analyzer (Thermo ScientificTM FLASH 2000). This data was used in both
the calibration and prediction sets for model development. S content in the chip biomass was not
detected, possibly due to its very low content falling below the detection threshold. Therefore, a
PLSR-based model for S content in the chip biomass was not developed in this study. The wt.% of O
is calculated using equation (1).

Table 1. The number of non-wood samples and wood samples in calibration set and validation set.

Calibration set Validation set
Parameter Total
Non- Non-
Sample Wood Total Wood Total

Wood Wood
wt.% C 111 31 58 89 8 14 22
wt.% H 119 32 63 95 8 16 24
wt.% N 116 31 62 93 9 14 23
wt.% O 102 28 54 82 8 12 20

Table 2. The statistical data of the ultimate analysis parameters of the chip biomass obtained using
CHNS/O elemental analyzer used in PLSR model development.

Calibration set Validation set
Paramete
Nr N N
r Max Min Mean SD Max Min Mean SD
C P
11 48.750 38930 44.633 2.138 47280 49.755  44.443  2.087
0,
C (wt.%) 1 89 0 0 0 0 22 0 0 9 8
H (wt.%) 191 95 6.6200 49100 5.7620 0'?;48 24  6.5700 49500 5.6490 0'3;41
10 51.120 37.360 44.632 2.852 48.800 38.850 45.115 2514
0,
O (wt.%) 5 82 0 0 N 1 20 0 0 9 9
11 225 164
N (wt.%) 93 09100 0.0000 0.2987 0 23 0.6200 0.0000 0.2714 0
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Table 3 shows results of the PLSR-based model for ultimate analysis (wt.%) of chip biomass,
where bolded model showing the best performance. However, it is essential to consider the
recommendation provided by Williams et al. [34], where with an R%» value between 0.66-0.81, the
model can be used for rough screening and other suitable calibration purposes. Therefore, C, O and
N model were. For H model, by Williams et al. guideline [34], a model with a R?» value between
0.50-0.64 is only suitable for very rough screening. Likewise, every model of biomass chips for
ultimate analysis parameters was in alignment with the recommendation from Zornoza et al. [35],
which any model with an RPD value below 2 was deemed insufficient for any application.

Table 3. Results of the PLSR-based model for ultimate analysis (wt.%) of chip biomass, bolded

model showing the best performance.

T :
Calibration Prediction Set
Parame Algorithm Preprocessin Lv Set
ter 8 P & S . RMS g EMS RP
¢ EC " EP D S
ivati .82 .64 .
wt% C  Full-PLSR Second derivative 10 82 oo 064 2081 17 008
(g=5,s=5) 15 89 4
Second derivative 0.80 0.69 0.005
A-PLSR .932 1.1252 1.
G S (SW:306) ? 78 0.9320 54 5 8 3
Second derivative 0.80 0.65 0.103
SPA-PLSR 1 9435 1.2028 1.7
(SW: 634) 0 30 0 20 0 6
MP-PLSR: 3 Combination set: 0.71 0.55 -0.14
range 424 9 0 1.1386 14 1.3655 1.5 33
MP-PLSR: 5 Combination set: 0.86 0.54 -0.12
1 787! 1.3727 1.
range 41,431 3 28 0.7875 67 372 > 26
First derivative 0.50 0.49 -0.06
t.% H  Full-PLSR 242 2361 1.
wt. % u S (g=5, 5=5) 6 86 0 9 9% 0.236 5 60
Vector
.54 .51 -0.07
GA-PLSR normalization (SW: 11 0.5 0.2336 0.5 0.2322 1.5 0.0
56 62 81
67)
Second derivative 0.51 0.44 -0.05
SPA-PLSR 15 2408 2481 14
(SW: 22) 72 0.240 78 0 86
MP-PLSR: 3 Combination set: 0.51 0.47 -0.06
range 55,0 7 79 0.2406 1 0.2428 1.4 44
MP-PLSR: 5 Combination set: 0.59 0.48 -0.06
2201 2 14
range 54,404 8 64 0.220 77 0.2389 25
Second derivative 0.62 0.63 0.081
t.9 Full-PLSR 1.737 1.47 1.7
wt.% O u S (g=5,5=5) 8 43 376 2 88 4
Mean Centering 0.63 0.60 0.241
A-PLSR 11 1.7134 1.5381 1.
G 5 (SW: 1025) 47 3 64 538 6 4
Min—-max
. . .34
SPA-PLSR normalization 11 00?)8 1.8370 01558 1.5860 1.6 0 :Z 6
(SW:354)
MP-PLSR: 3 Combination set: 0.65 0.61 0.106
11 1.6597 1.5207 1.
range 4,50 72 659 53 520 6 4
MP-PLSR: 5 Combination set: 0.80 0.71 0.073
1 1. 1. 1.
range 25,215 5 97 2366 50 3088 ? 3
0.72 0.58 -0.00
t.9 Full-PLSR M 1 1177 1 1.
wt.% N u S SC 0 0 0 65 0.1035 6 65
0.59 0.56 -0.01
A-PLSR V (SW: 1 142 1064 1.
G S SNV (SW: 39) 0 16 0 9 25 0.106 5 3
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Min—-max
SPA-PLSR normalization 7 0;; 0.1343 06598 0.1034 1.6 _gg 1
(SW:413)
MP-PLSR: 3 Combination set: 15 0.86 0.0820 0.60 01008 16 0.019
range 4,0,0 56 73 1
MP-PLSR: 5 Combination 0.64 0.57 0.014
7 1 1 1.
range set:1,4,4,1,0 36 0.1335 00 0.1055 > 3

3.1. wt.% of C

Table 3 presents the results of the PLSR-based model within the full wavenumber range of
3594.87-12,489.48 cm™! for the wt.% C of chip biomass, with the best-performing model highlighted
in bold.

The model, developed using GA-PLSR with spectrum preprocessing involving the sd2, a gap,
and segments of five each, along with nine LVs, provided better results. It achieved R%c, RMSEC, R?,
RMSEP, RPD, and bias values of 0.8078, 0.9320 wt.%, 0.6954, 1.1252 wt.%, 1.8, and 0.0053 wt.%,
respectively. By determining RMSEP, these results represent a 6.8566 % improvement in the model
performance compared to Full-PLSR. Utilizing equation (3), the LOQ value was calculated as 9.3724
wt.% for C. Notably, the LOQ value is lower than the minimum wt.% C value used during model
development, indicating that the model exhibits high sensitivity and can reliably detect and quantify
wt.% C starting from 9.3724 wt.%.

Figure 2a shows a scatter plot comparing the predicted and measured wt.% of C, which was
obtained using GA-PLSR. The trend line for the prediction set and calibration set is overlap
indicating same slope. The slope shows the rate of change of Y (measured value) as a function of the
rate of change of X (predicted values) [34] or vice versa, hence, indicating predicted values of both
sets of data have changed with the same rate and this characteristic is same for the models for O and
N shown in Figure 2c,d.

Figure 3 displays the average sd2 absorbance values obtained after preprocessing, highlighting
306 selected wavenumbers (marked in red) identified through GA. These wavenumbers fall within
the full spectral range of 3594.87-12,489.48 cm™'. Peaks were observed at 3722, 4091, 5181, and 5285
cm, all of which might have the potential to enhance the model's performance. The wavenumbers
3722 cm™ and 4091 cm are associated with the C-H aromatic functional group, specifically C-H aryl
material type. The peak at 5181 cm™ corresponds to a combination of O-H stretching and HOH
bending, indicative of polysaccharides. Similarly, the peak at 5285 cm is associated with the
functional group of O-H hydrogen bonding between water and exposed polyvinyl alcohol OH
groups [36].

Previous studies by Zhang et al. [37] and Posom and Sirisomboon [38] have demonstrated that
vibrational bands related to C-H aromatic, C-H stretching, N-H stretching, N-H deformation, O-H
stretching, HOH bending, O-H hydrogen bonding, and similar factors play a crucial role in
predicting the wt.% of C in various biomass varieties. These findings align with the vibration bands
observed in our study, providing support for our results and suggesting that these selected peaks
likely have a significant influence on the model performance.

doi:10.20944/preprints202312.0295.v1
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Figure 2. Measured versus predicted value in calibration and prediction sets for (a) wt.% of C, (b)wt.%
of H, (c) wt.% of O, and (d) wt.% of N.
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Figure 3. The second derivative absorbance value of studied biomass obtained using the sd2

preprocessing with a selection of important wavenumber obtained from GA for prediction of wt.% of
C, within the full wavenumber range of 3594.87 -12,489.48 cm™.
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3.2. wt.% of H

The model developed using GA-PLSR with vector normalization as preprocessing showed the
best performance with 11 LVs (Table 3). It selected 67 important wavenumbers using GA. The model's
performance, in terms of R2c, RMSEC, R?%, RMSEP, RPD, and bias values, was 0.5456, 0.02336 wt.%,
0.5162, 0.2322 wt.%, 1.5, and -0.0781 wt.%, respectively. Compared with Full-PLSR, the GA improved
the PLSR model accuracy by 1.6743 %. The LOQ value was calculated as 2.3484 wt.%, which is lower
than the minimum reference value used for the model development. This suggests that the selected
model is sensitive and can sensitively quantify H from 2.3484 wt.%.

Figure 2b displays a scatter plot comparing the predicted and measured wt.% of H, which was
obtained using GA-PLSR. It is clear that the trend line for the prediction set exhibits an offset in
relation to the trend line of the calibration set and the 45—-degree line. This offset raises concerns about
the model constant bias along the range of the data indicating the over-estimating model.

Figure 4 displays the average absorbance values within the range of 3594.87-12,489.48 cm™'.
These values were obtained after preprocessing using vector normalization and highlight 67 selected
wavenumbers, marked in red, which were identified using GA. Significant peaks were observed at
the wavenumbers 4019, 4850, 5155, and 9852 cm, respectively, and these may have an influence on
the model performance. The peak at 4019 cm™ is associated with the spectra—structure combination
of C-H stretching and C-C stretching, with the material type being cellulose. The peak at 4850 cm™!
corresponds to the functional group of N-H combination bands found in secondary amides within
proteins. The peak at 5155 cm™ is related to the combination of O-H stretching and HOH bending,
with the material type being water. Finally, the peak at 9852 cm is associated with the second
overtone of the fundamental stretching band of N-H asymmetric stretching, and the material type is
aromatic amine [36].

In comparison to previous studies conducted by Shrestha et al. [13], Zhang et al. [37], and Posom
and Sirisomboon [38] that focused on measuring the wt.% of H in biomass using NIRS, our study
discovered similar peaks within the range of 4000-9900 cm™ and vibration bands such as O-H
stretching, HOH bending, C-H stretching, and C—C stretching. Therefore, our study findings align
with these earlier studies on this specific aspect. However, when evaluating the overall performance
of various PLSR-based models, this study suggests that the wt.% of H was not sufficiently explained
by the vibration of those mentioned bonds.

0.25

0.2 -

0.15

0.1 -

4019
0.05 - 4850

Vector normalization Log (1/R)

9852
-0.05 -

3500 4500 5500 6500 7500 8500 9500 10,500 11,500 12,500
Wavenumber (cm™1)

——Vector normalization =~ =——GA selected wavenumbers
Figure 4. The vector normalization absorbance value of studied biomass obtained using the vector

normalization preprocessing with a selection of important wavenumber obtained from GA for
prediction of wt.% of H, within the full wavenumber range of 3594.87 -12,489.48 cm™.
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3.3. wt.% of O

Assuming that the S content in chip biomass is negligible, as its wt.% is too low to be detected
by the instrument, we calculated the wt.% of O in the chip biomass for 120 samples using equation
(1). The wt.% of ash content for each biomass was determined using a TGA. Table 3 presents the
optimal results from five different types of PLSR-based models. The most effective model was
developed using the MP PLSR 5-range method, incorporating a spectral preprocessing combination
set of 2, 5, 2, 1, and 5, which corresponded to the following ranges: 3625.72-5392.30 cm™" with SNV,
5400.02-7166.59 cm™ with the sd2, 7174.31-8940.89 cm™ with SNV, 8948.60-10,715 cm™ with raw
spectra, and 10,722.9-12,489.48 cm™! with the sd2. This model employed 15 LVs. Figure 2c illustrates
the scatter plot comparing measured versus predicted wt.% of O obtained from the MP PLSR 5-range
method. This method yielded R2c of 0.8097, RMSEC of 1.2366 wt.%, R? of 0.7150, RMSEP of 1.3088
wt.%, RPD of 1.9, and a bias of 0.0733 wt.%. Compared with Full-PLSR method performance, the MP
PLSR 5-range method significantly improved the model accuracy by 11.4913 %. The LOQ value for
wt.% of O was calculated as 12.4424 wt.%, which is lower than the minimum wt.% of O used during
model development. This indicates that the model is highly sensitive and can accurately quantify O
content in chip biomass from 12.4424 wt.%.

Figure 5 displays the regression coefficient plot for wt.% of O content in chip biomass, obtained
from the MP PLSR 5-range method. Several notable peaks were observed at 3650, 4405, 8163, and
8621 cm, each potentially exert a significant influence on the model’s performance. Specifically, the
peak at 3650 cm™ corresponds to the O-H functional group found in the primary alcohols,
characterized by the fundamental stretching vibrational absorption band of O-H. The peak at 4405
cm™! represent the combination of O-H stretching and C-O stretching, with cellulose as the material
type. The peaks at 8163 cm™ and 8621 cm™ are associated with the second overtone of the
fundamental stretching band of C-H and the fourth overtone of the fundamental stretching band of
C=0, respectively, which are typically found in hydrocarbons and aliphatic compounds [36].

20

. 4405
15 8163

10 A

-10 1 3650

Regression coefficient (b)

—_
(9]
1

8621

=20 -
3500 4500 5500 6500 7500 8500 9500 10,500 11,500 12,500
Wavenumber (cm™!)

Figure 5. The regression coefficient for the wt.% O of chip biomass using the MP PLSR 5-range
method.

When compared with previous studies on wt.% of O in biomass, such as those by Shrestha et al.
[13], Zhang et al. [37], and Posom and Sirisomboon [38], this study reveals some contradictory peaks.
However, the vibrational bands, such as O-H from primary alcohol, C=O stretching, and C-H
stretching, among others, were similar. These finding supports the research result of this study,
suggesting that the significant peaks observed in this study have an impact on the development of
the model for assessing wt.% of O in chip biomass.
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3.4. wt.% of N

The best model for rapid prediction of wt.% of N was obtained using the MP PLSR 3-range
method with a spectral preprocessing combination set of 4, 0, and 0 (Table 3). This set corresponds to
the sd1 from 3594.87 to 5492.59 cm™, and zero absorbance from 7498.314 to 12,489.48 cm™. Figure 2d
illustrates the scatter plot of measured versus predicted wt.% of N content in the chip biomass,
obtained from the MP PLSR 3-range method with 15 LVs, the best-performing model achieved an
R2c of 0.8656, RMSEC of 0.0820 wt.%, R of 0.6073, RMSEP of 0.1008 wt.%, RPD of 1.6, and a bias of
0.0191 wt.%. These results indicate that within the range 3594.87-5492.59 cm™ (refer Figure 6), by
effectively correcting baseline shifts, and assigning zero absorbance value within the remaining
wavenumber range, the model performance is enhanced. Compared with full-PLSR using RMSEP
value, the MP PLSR 3-range method improved the model performance by 2.5473%. However, based
on R2c and R% values, the selected model indicates overfitting. This suggests that out model fits the
training data too closely, capturing noise and irrelevant patterns that do not hold true in the other
dataset. Therefore, we highly recommend research for the error occurred during scanning and
reference measurement.

Figure 6 illustrates the regression coefficient plot for the wt.% of N in chip biomass, obtained
using the multi-preprocessing PLSR 3-range method. Significant peaks that could potentially
influence the model performance were observed within the wavenumber range of 3594.87-5492.59
cm! only. These significant peaks were noticed at wavenumbers 3693, 4019, 4365, 4505, 4701, and
5285 cm™. Specifically, the peak at 3693 cm™ is associated with function group of C-H aromatic C-H
bands, characterized by the material type C-H aryl. At 4019 cm™!, the peak represents functional
groups with a combination of C-H stretching and C—C stretching from cellulose as the material type.
The peak at 4365 cm™ corresponds to CONHz, specifically due to C=O bonded to the N-H of the
peptide link termed the a-helix structure. The peak at 4505 cm™ is associated with the N-H
combination band. Similarly, the peak at 4701 cm™ corresponds to the function group of N-H/C=0
combination from polyamide II. Lastly, the peaks at 5285 cm™ are associated with O-H hydrogen
bonding between water and exposed polyvinyl alcohol OH. These peaks are crucial in understanding
the composition of the chip biomass and are important for model development and analysis.
Furthermore, in the range of 7498.314-12,489.48 cm™, the regression coefficient value equals zero.
This indicates an insufficient linear relationship between the dependent (spectral information) and
independent (reference value) variables in this range, and it does not significantly contribute to the
predictive model for prediction of wt.% of N.
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Figure 6. The regression coefficient for the wt.% N of chip biomass using the MP PLSR 3-range
method.
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The previous study conducted by Posom and Sirisomboon [38], which aimed to evaluate the
wt.% of N in bamboo, also revealed significant peaks within the range of 4424 to 6920 cm™. Similarly,
Shrestha et al. [13] conducted a study on wt.% of N in ground biomass from the same source and
exhibited important peaks within a similar range, specifically within 4019 to 6711 cm™. This finding
aligns with the results of our study, providing additional support for our research. It is noteworthy
that in both studies, common vibrational bands, such as N-H stretching, C=O stretching, C-H
stretching, C—C stretching, aromatic C-H, and O-H bonds between water and alcohol, among others,
were identified. This consistency in vibration bonds reinforces our study findings and suggests that
these specific peaks likely play a crucial role in influencing the model performance.

4. Effect of non-wood and wood samples on model performance

Table 4 shows the reference values of wt.% of C, H, N and O of non-wood and wood samples in
calibration and validation sets. From Figure 2 and Table 4, it is obvious that the range of every element
content is wider after the two sets were combined for modeling. Therefore, the models can now be
regarded as robust models. From Figure 2a,c the range of wt.% of C and O of wood samples was
narrower than those of the non-wood samples which were extended more to the lower wt%. Figure
2d illustrates in the opposite way where the value range of N of wood samples was lower and
narrower than those of the non-wood samples. Therefore, models for wt% of C, O and N were better
performance than that of H model. The wood sample reference values of H were group together and
more or less had the same range to the range of non-wood samples. (Figure 2b).

Table 4. The range of wt.% of C, H, N and O of non-wood and wood samples in calibration and
validation sets.

Calibration set Validation set
Parameter
Wood Non-Wood Wood Non-Wood
wt.% C 47.77-42.33 48.75-39.93 47.28-41.02 47.24-39.76
wt.% H 6.36-4.91 6.62-4.97 6.57-4.95 5.87-5.36
wt.% N 0.60-0.00 0.91-0.00 0.40-0.00 0.62-0.12
wt.% O 47.40-41.68 51.12-37.36 47.43-45.14 48.80-38.85

Literatures show that the one specie model of non-wood which were bamboo wood chips [22]
and sorghum [23] for evaluation of ultimate analysis parameters, C, H, N, O and S had better
performance than our combined non-wood and wood model as the results described in Introduction
of this manuscript. Similarly, the two similar species of rice straw and wheat straw model [24] and
pine tree of two species (Loblolly (Pinus taeda) and slash (Pinus elliottii)) model [25] indicated the
better prediction performance, though they were homogeneous ground samples which might make
their model performance better than the chip ones due to less scattering problem. Shrestha et al [13]
worked with ground samples of the same batch of non-wood and wood samples. Spectra from this
experiment showed better R? and RPD for C, N, H and O which is clamied to be due to the same
merit of homogeneous samples.

Using larger biomass particles sizes, Pitak et al [26] combined the non-wood and wood biomass
pellet NIR spectra obtained by averaging every pixel spectrum of the pellets from hyperspectral
image (HSI). This approach provided better performance in predicting elements from the ultimate
analysis than our model, i.e. in detail data collection by the HSI leads to significant improvements.

Figure 7 shows the scatter plots of the highest performance models in this study in predicting
the C, H, O and N content of the wood and non-wood samples which is same as Figure 2 but the
different is Figure 7 shows the simple regression lines of each group of non-wood and wood samples
both for calibration set and prediction set. For better vision, Table 5 shows the numeric data of R?,
slope, intercept calculated from the scatter plots of wood and non-wood calibration and prediction
sets. Williams et al explained that the slope of the trend line plotted between Y (measured value) and
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X (NIR predicted value) indicated the rate of change of Y as a function of the rate of change of X [34].
The intercept of different species illustrated the same trend as slope interpretation especially when
the slope is more than 1 the intercept was with minus sign and if less than 1 the intercept was with
plus sign. While the slope was 1 the intercept was low closed to zero and when the slope was more
or less than 1 the intercept was high far from zero.

The perfect relationship of the reference values and the predicted values is when the correlation
coefficient (R) and slope equal to 1 and the intercept equal to zero [34].

From Table 5, for C model, the non-wood samples contributed slightly more merit on calibration
model performance than wood samples for more R and slope was more closed to 1 and intercept was
more closed to zero. But the prediction set of non-wood provided steeper slope and intercept far more
from zero.

By the same way of interpretation, the model for H got more merit from non-wood samples,
while the wood samples, the R of the trend line was very low and the slope was far from 1 and the
intercept was slightly far from zero. The incongruous of the trend lines of both sets make overall
performance of the model worst as shown in Table 3.

For N model, the wood and non-wood calibration set samples more or less had the same trend
line characteristics which supplement the good calibration model performance, though the prediction
sample set of both biomass species trend line characteristics shows less R and slope far from 1 led to
overfit calibration models of both biomass groups (Table 5).

For O model, the non-wood group had better trend line characteristics contributed good merit
to model while the poorer trend line characteristics of the wood group made the overall model
inferior but by small portion due to the number of samples in non-wood group was much more (Table
5). By the strong merit of non-wood group the overall model performance for O prediction was fairly
acceptable (Table 3).

Table 5. The trend line characteristics of the wood and non-wood species in scatter plots of the best

models for C, H, N, and O.
Wood Non-wood
Element
R®»  Slopec Sloper Interceptc Interceptr R R%»  Slopec Sloper Interceptc Interceptr
C 07243 06456 08353 10139  7.5532 -0.8994 07962 07681 10243 12109  -1.0960 9.1465
H 02683 05028 07876 07066 12085 1.7444 06111 07185 10342 11318  -0.1925 09224
N 08335 05486 08915 07670  0.0197 0.0502 08454 06289 10368 08541  -0.0139 0.0708
(@) 06187 00992 08272 01840 78316 37.2740 08311 08063 1.0209 09519  -0.9462 2.3866

R’c: Coefficient of determination in the calibration set, R’p: Coefficient of determination in the validation set,

Slopec: Slope of trendline in the calibration set, Sloper: Slope of trendline in the validation set, Interceptc:
Intercept in the calibration set, Interceptr: Intercept in the validation set
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Figure 7. The scatter plots of optimized model for wt% of C, H, O and N where the simple regression
lines of non-wood group and wood group illustrated both in calibration set and validation set.

Tables 6-9 show the trend line characteristics including R?, slope and intercept of each specific
plant of wood and non-wood samples used in the optimized models for evaluation of C, N, H and O,
respectively. It was observed that most of the R? of every plant was equaled to 1 for the samples of
those plants in the optimized model was only 2 samples connected to straight line. Therefore, we
ignored to interpret the trend line characteristics of prediction set and only R%c, slope and intercept of
calibration set will be interpreted. As indicating by Williams et al [34] when the R approached to 1
and slope approached to 1 and intercept approached to zero, the model was approached excellent.
Therefore, to include different species in a model the species have to be not only in the different
values of the constituents to make a wider range for robust model but also they must provide the
characteristic of the same rate of change of NIR predicted values with the measured values (same
slope and slope should approached to 1 and intercept is same (no gap) and approached zero). As
expected, the trend of R? of slope and of intercept of different species were not the same for their
different characteristics. However, some species which their characteristics were similar, the trends
were in common but depend on the element the model was used for prediction.

From Tables 6-9, as expected the intercept of different species illustrated the same trend as slope
interpretation especially when by the fact, the slope is more than 1 the intercept was with minus sign
and if less than 1 the intercept was with plus sign. While the slope was 1 the intercept was low closed
to zero and when the slope was more or less than 1 the intercept was high far from zero.
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Therefore, the following were the effects of specific species on performance of the optimized
models interpreted by scatter plot analysis using the R? and slope of the trend line of the specific plant
in the model developed.

For C (Table 6), by Ric interpretation, most of non-wood species (agricultural waste) except
bagasse and bamboo show un-acceptable trend lines compared to wood species samples except pines.
Therefore, to include the mentioned non-wood species caused the poor effect on C model. By
interpretation of slope, there were 3 groups of slope (by value round up) i.e. 1 including Eucalyptus,
Alnus and Bombax in wood species and corn cob, corn shell, rice husk and bamboo in non-wood
species, less than 1 including pine in wood specie and more than 1 including corn stover and bagasse
indicating unequal slope different species in the same optimized model show the effect of specific
species on model performance. These can be summarized that for model to be better, pine and corn
stover should not be included in modeling for C prediction.

By the same way of interpretation, from Table 7, the optimized model for N, pine and bagasse
should be not included, from Table 8, for H, pine, Alnus, corn shell and bagasse should not be
included and from Table 9, for O, pine should not be included for better performance of the models.
These were due to the poor both R and slope of the eliminated species which were not in accordance
with the other species.

These results show that the different species affected the model performance of each parameter
prediction in a different manner and by scatter plot analysis which of these species were affecting the
model negatively and how to improve the model performance were indicated.

Table 6. The trend line characteristics of specific biomass species for Carbon evaluation optimized
model.

Carbon (wt.%)

Particular Biomass Species ch RZP Slopec Slopepr Interceptc Interceptp
Euca 0.6779 1.0000 0.9808 5.4617  0.8006 -202.6600

Wood Pine 0.2502 1.0000 0.2264 1.0848 36.2520  -3.7219
Alnu 0.7491 1.0000 0.7254 -16.8990 12.7000 819.4200

Bombax 0.8110 1.0000 1.1270 0.9097 -5.3606 4.1430

Zea May-Cob 0.2480 09542 0.6228 1.8112 16.7390 -35.8510
Zea May-Stover  0.6332 1.0000 1.7168 0.2151 -32.1370 33.6140
Zea May- Shell ~ 0.3300 0.4618 0.8945 0.2524  5.0232 34.2500
Ricehusk 0.3770 1.0000 0.9257 2.5087  2.9918  -62.7580
Bagass 1.0000 1.0000 2.6090 -0.1076 -70.2900 48.2050
Bamboo 0.9313 1.0000 1.3789 7.6002 -17.0530 -297.8600

Non-Wood
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Table 7. The trend line characteristics of specific biomass species for Nitrogen evaluation optimized

model.

Nitrogen (wt.%)

Particular Biomass Species ch RZP Slopec Slopep Interceptc Interceptp
Euca 0.5701 1.0000 0.7531 0.4663  0.0233 -0.0135
Wood Pine 0.2317 1.0000 0.2828 0.8790  0.0283 0.0543
Alnu 0.5878 0.9633 0.5742 1.2687  0.1426 -0.1337
Bombax 0.9410 1.0000 1.1614 -2.0520 -0.0748 0.6245
Zea May-Cob 0.6807 0.5554 0.8615 1.1809  0.0443 -0.0372
Zea May-Stover  0.6200  1.0000 0.9025 0.2654  0.0472 0.4721
Non-Wood Zea May- Shell  0.8641 0.6536 1.1203 1.0135 -0.0629 0.0569
Ricehusk 0.8848 1.0000 1.1485 0.2615 -0.0518 0.2394
Bagass 0.4801 1.0000 0.2992 -1.7907  0.0333 0.5128
Bamboo 0.8200 1.0000 1.4186 1.6937 -0.1260  -0.0966

Table 8. The trend line characteristics of specific biomass species for Hydrogen evaluation

optimized model.

Hydrogen (wt.%)

Particular Biomass Species ch R’ Slopec  Slopep Interceptc Interceptp
Euca 0.7289 1.0000 1.5193 0.8197  2.9877 0.9851
Wood Pine 0.0462 N/A  0.4235 - 3.3450 5.7900
Alnu 0.0701 1.0000 -0.9476 -0.0456 11.1870  6.0566
Bombax 0.1629 1.0000 0.5887 0.2547  2.5182 4.4059
Zea May-Cob 0.2752  1.0000 1.4447 -0.7296 -2.6372 9.7617
Zea May-Stover  0.1173  0.7335 1.2590 1.2413 -1.5538  -1.7143
Non-Wood Zea May- Shell  0.0404 0.6033 0.3791 6.5956  3.8515  -34.5000
Ricehusk 0.7273 09896 1.5136 -1.5656 -2.7759  13.3580
Bagass 0.0067 1.0000 -0.1394 -4.9031 6.4990  34.7330
Bamboo 0.4456  0.7685 0.9438 1.0741  0.4841 -0.4794

Table 9. The trend line characteristics of specific biomass species for Oxygen evaluation optimized

model.
Oxygen (wt.%)
Particular Biomass Species ch RZP Slopec  Slopep Interceptc Interceptp
Euca 0.3842 1.0000 0.5993 0.3416 18.5080  29.7010
Wood Pine 0.2854 1.0000 0.3913 -0.0362 27.5290 47.1430
Alnu 0.4993 1.0000 0.5014 0.9362 23.0630  4.5052
Bombax 0.7459 1.0000 1.3490 -1.1972 -15.4990 100.4800
Zea May-Cob 0.6501 1.0000 1.3700 89169 -17.1250 -368.0300
Zea May-Stover  0.8611 1.0000 1.5098 -0.3972 -22.8340 64.3960
Non-Wood Zea May- Shell ~ 0.3063 0.7989 0.8399 2.0886  6.9934  -48.2230
Ricehusk 0.9499 1.0000 1.0623 0.3529 -2.3570  25.9720
Bagass 1.0000 NA 0.0784 NA 42.8950 NA
Bamboo 0.9301 1.0000 1.1793 3.0761 -8.5173 -95.5720
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5. Comparison of model performance between using chipped and ground biomass spectra

In this section, the model performance of chipped biomass for ultimate analysis parameters to
the model of ground biomass [13] derived from the same sample varieties is compared. The
comparison is based on the metrics R*c, RMSEC, R?», RMSEP, and RPD. The results demonstrate that
chipped biomass generally performs less effectively in these models compared to ground biomass,
except for wt.% of O.

For wt.% of C and wt.% of H, both chipped and ground biomass models demonstrated better
performance when employing the GA-PLSR model. This outcome aligns with expectations, as GA
optimizes feature selection to maximize fitness, while PLSR maximizes covariance between
absorbance values and areas of interest [39].

For wt.% of C, the GA-PLSR model applied to ground biomass yield an R of 0.7851, RMSEC
of 0.9753 wt.%, R?r of 0.7217, RMSEP of 0.9740 wt.%, and RPD of 1.93 [13]. In contrast, the model
applied to chipped biomass performed less effectively (refer Table 2). Therefore, it is recommended
to adopt the GA-PLSR model with sd2 preprocessing on ground biomass when evaluating wt.% of
C.

Similarly, the GA-PLSR model applied to ground biomass outperforms that of chipped biomass
for wt.% of H. Ground biomass yielded an R2c of 0.8814, RMSEC of 0.1041 wt.%, R2?r of 0.7678, RMSEP
of 0.1434 wt.%, and RPD of 2.14 [13], whereas chipped biomass lagged behind (refer Table 2). Hence,
for wt.% of H, the GA-PLSR model with spectral preprocessing from SNV on ground biomass is
recommended.

Regarding wt.% of N, the MP PLSR 5-range method exhibited superior model performance on
ground biomass, as evidenced by R?%, RMSEC, R?%, RMSEP, and RPD values of 0.8682, 0.0675 wt.%,
0.8410, 0.0973 wt.%, and 2.65, respectively [13], when compared to chipped biomass performance
obtained from the MP PLSR 3-range method (refer Table 2). This underscores the suitability of
ground biomass for evaluating wt.% of N.

Surpricingly, in contrast, for wt.% of O, the model derived from chipped biomass excelled,
despite both models utilizing the MP PLSR 5-range method. In ground biomass, R?c, RMSEC, R?,
RMSEP, and RPD values were 0.6674, 1.4461wt.%, 0.6289, 1.5275 wt.%, and 1.71 respectively [13],
which fell short of chipped biomass results. Hence, it is recommended to adopt the MP PLSR-5 range
method with the preprocessing combination set of 2, 5, 2, 1, and 5 for assessing wt.% of O in chipped
biomass. This could be due to ash determination where ash directly influences %O determination
based on Eq 1. Also, ash is typically accumulating in small particles, i.e. time of grinding in
conjunction with subsampling can have an influence on ash determination.

All the above comparison and findings underscore the importance of selecting the appropriate
PLSR-based model for precise analysis of ultimate analysis parameters, depending on the specific
parameter of interest. There could be several factors that contribute to the lower performance of the
chipped biomass model, which can be addressed to improve the model performance. The key
contributing factor to this performance difference is obviously the particle size of the biomass
samples. Chipped biomass typically consists of larger and different sizes of particles, leading to
increased scattering of NIR light during sample scanning [40]. Consequently, the spectra generated
from chipped biomass can be of lower quality, resulting in weaker correlations between spectral data
and reference data [41]. Additionally, ground biomass exhibits a more compact and uniform sample
structure, reducing the likelihood of NIR light leakage during scanning. Another significant factor
affecting the lower model performance is the moisture content in biomass samples. Chipped biomass
often contains higher moisture levels, and water has the property of absorbing NIR light in the
near-infrared region [42]. This NIR absorption interferes with the measurements and can introduce
inaccuracies, particularly for elements like C, H, O and N.

In the chipped biomass models, it is evident that the performance of the prediction set
consistently lags behind that of the calibration set. This suggests that the model closely overfits the
calibration data, capturing both valuable information and noise or random variations [43]. In the
machine learning context, Cawley and Talbot [44] emphasized that overfitting in model selection is
likely to be most severe when the sample size is small and the number of hyperparameters to be
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tuned is relatively large [45]. Like in our case, the number of latent variables of the best models were
high.

Consequently, when new samples are introduced into the prediction set, the model may struggle
to generalize and provide accurate predictions. Furthermore, the presence of outliers in the prediction
set, which were not accounted for in the calibration set, can further negatively impact the model
performance [46].

The performance of ground biomass is better compared to chipped biomass due to several
factors. Ground biomass allows for better sample homogenization, ensuring uniformity and
consistent composition. Additionally, it offers more control over sample thickness, as chips may vary
in thickness, affecting accuracy. Moreover, ground samples reduce light scattering effects and enables
improved penetration of the NIRS signal, allowing for precise and accurate logging of spectral
information.

6. Conclusion

In this study, PLSR-based models were developed and compared using FT-NIRS to analyze the
ultimate analysis parameters of combined non-wood and wood chip biomass, specifically focusing
on wt% of C, H, O, and N content. All chipped biomass samples were scanned within
3594.87-12,489.48 cm™ on the diffuse reflectance with sphere macro sample rotating mode, with a
particular emphasis on their suitability for energy application. The model with the optimum
performance was selected based on trade off parameters of R%c, RMSEC, R?», RMSEP, RPD and bias.

The optimum model performance analysis reveals that the model selected for predicting the
wt.% of C, H, N, and O in chipped biomass are suitable primarily for initial rough screening. It is
recommended to adopt the multi-preprocessing PLSR 5-range method chipped biomass model for
wt.% of O content analysis as an alternative method for rapid assessment. However, for evaluation
of wt.% of C, H, and N content, the chipped biomass model performance falls short of the model
developed for ground biomass by Shrestha et al. [13]. Thus, it is advisable to use the chipped biomass
model solely for initial screening before biomass trading. For a more comprehensive and accurate
analysis, it is recommend grinding the chip biomass samples and employing the GA-PLSR model
with sd1 for wt.% of C, GA-PLSR with SNV for wt.% of H and the multi-preprocessing PLSR 5-range
method with combination set of 4, 4, 5, 3, and 4 for wt.% of N, as developed by Shrestha et al. [13].
The LOQ values for C, H, and O were below the model minimum reference value, demonstrating
high model sensitivity. However, the LOQ value for N exceeds the minimum reference value,
indicating the model detection limit to the minimum value in the calibration sample set range.

By analysis of scatter plot of measured constituent and NIR predicted constituent, the effect of
including different biomass species (non-wood and wood species) in the modeling samples was
studied. It was concluded that to include different species in a model, the species had to be not only
in the different values of the constituents to be predicted to make a wider range for robust model but
also the different sample species must provide the same rate of change of NIR predicted values with
the measured values in the scatter plot (same slope and slope approached to 1 and intercept is same
(no gap) and approached zero) for the high performance model if R is approached to one. The results
show that the different species affected on model performance of each parameter prediction in a
different manner and by scatter plot analysis, which of the species affecting the model negatively
were identified and dictated how to improve the model performance.
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Abbreviations

% percentage R Correlation coefficient

C carbon R? coefficient of determination
coefficient of determination of calibration

CHNS CHNS Elemental analyzer R ot e fnatt toratl
coefficient of determination of validation

GA genetic algorithm R2p " 1 matt vahdati
se

H hydrogen RMSEC root mean square error of calibration set

LVs  latent variable number RMSEP  root mean square error of prediction set

LOQ Limit of quantification RPD ratio of prediction to deviation

Max  maximum S sulfur

Min minimum SD standard deviation

MP multi-preprocessing sd1 first derivative

MSC  multiplicative scatter correction sd2 second derivative

N nitrogen SEC standard error of calibration set

NT total number of samples SEP standard error of validation set

Nc number of samples in calibration set SNV standard normal variate

NIRS near infrared spectroscopy SPA successive projection algorithm

Np number of samples in validation set SW selected wavenumber

(@) oxygen TGA thermogravimetric analysis

PLSR  partial least squares regression wt.% weight percentage
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