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Flux Lattices
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Abstract: We investigate the influence of the Abrikosov vortex lattice on the Casimir force in a
setup constituted by high-temperature superconductors subject to an external magnetic field. The
Abrikosov lattice is a property of type II superconductors in which normal and superconducting
carriers coexist and these latter define a periodic pattern with squared symmetry. We find that
the optical properties determined by spatial redistribution of the superconducting order parameter
induce Casimir forces with a periodic structure whose minimal strengths coincide with the vortex
cores.
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1. Introduction

Seventy-five years have passed since, motivated by a suggestion by Bohr during a walk, HBG
Casimir proposed that vacuum fluctuations could induce an attractive force per unit area between two
perfectly conducting parallel plates, a distance d apart, given by F = h̄c/240d4 [1]. A more realistic
theory was proposed by Lifshitz in 1956 by considering fluctuating electrodynamics, subtended on
the fluctuation-dissipation mechanism. Lifshitz theory allows to determine the Casimir force in terms
of the dispersive and dissipative properties of the materials [2], as described by its optical properties.
Grounded on Lifshitz formulation, numerous experiments [3–13] have been performed on measuring
the Casimir forces involving a diversity of experimental arrangements and materials [14–17]. The
influence and taming of these forces in the design and construction of micro- and nanodevices is a
current field of research.

In spite of the fruitful advances in the investigations of the Casimir effect there exist yet pending
fundamental problems on the basic theory, concerning the role of dissipative mechanisms on the
strength of the force between metallic bodies. In principle, the inclusion of this kind of contributions in
the theoretical characterization of the optical response of materials involved in a given setup should be
necessary to achieve formal congruence with the fluctuation-dissipation theorem lying on the grounds
of Lifshitz theory. However, different measurements of Casimir forces in metals at room temperature at
body separations d ∼ 50 − 600 nm show consistence with theoretical predictions if dissipative effects
are neglected. On the contrary, experiments carried out at larger separations d ∼ 700 nm, such that
kBT ∼ h̄c/d, display a better agreement with predictions including electronic relaxation.

It has been proposed that the study of the Casimir effect in superconducting (SC) materials may
constitute an excellent scenario to asses the influence of relaxation phenomena on the strength of the
Casimir force between metallic bodies [18–22]. This is motivated by the fact that charge carriers in
these materials exhibit a transition from dissipative transport to a dissipationless coherent behavior
at a critical temperature T = Tc, However, measurements of the influence of the SC transition on the
Casimir force in setups involving conventional BCS superconductors turn out to be extremely difficult,
since for typical values Tc ∼ 1 K, and kBTc ≪ h̄c/d for sub-µm body separations. Therefore, indirect
approaches have been proposed based on observations of the Casimir-induced shift of the critical
magnetic field Hc of a thin superconducting film, or differential measurements of the Casimir force
[23,24].
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This suggests that the use of high-temperature superconductors (HTSCs), with Tc ≈ 100 K,
could constitute a suitable alternative to perform a direct analysis of the effect of the SC transition
on the Casimir effect. In previous works, we investigated the Casimir forces between objects made
of optimally doped YBa2Cu3O7−δ (YBCO), with Tc = 93 K , either in thermal [25], or out of thermal
equilibrium [26]. In the first case, we found that the Casimir force displays an abrupt increment as
the T → Tc, for temperatures T > Tc. On the other hand, for T < Tc, the force acquires an asymptotic
behavior ∼ 1/d in the limit T ≪ Tc. In the second case, each slab was in local equilibrium with a
thermal reservoir at respective temperatures, T1 = 300 K and T2, where 300 ≥ T2 ≥ 0 K. In contrast
with the thermal equilibrium situation, the Casimir force displays an abrupt decrement in the transit
from normal metal to the SC state as T2 → Tc. The low-temperature asymptotic behavior of the force is
similar to that displayed in the equilibrium situation.

To get further insight on the influence of superconductivity-related effects on the Casimir effect,
in this work we study the effect of the Abrikosov lattice (AL) [27] on the local properties of Casimir
forces associated to HTSCs. The AL is a manifestation of the Meissner effect, in which the presence of
an external magnetic field induces surface screening supercurrents, which expel out the magnetic field
lines from the material’s interior within a London penetration length λL(T) ∼ ns(T)−1/2. Here, ns(T)

is the number density of Cooper pairs (CPs) at a temperature T. In the case of type-II superconductors,
like YBCO, the Meissner effect involves the existence of a mixed phase of coexistence of normal
and SC charge carriers determined by two critical fields, Hc1 < Hc2. For values of the applied field
higher than Hc1, magnetic flux lines penetrate the sample in the form of quantum vortexes, with
an intensity Φ0 = h/2e, thus inducing local screening currents to overcome the applied field [28].
Upon increasing magnitude of the field, the vortex density increases and saturates at the upper
critical field Hc2, where superconductivity disappears. Remarkably, as shown by Abrikosov [27], for
intensities of the applied field just below Hc2 the vortexes align in a compact square lattice with period
Lx = Ly =

√
2πξ(T), where ξ(T) is the CP coherence length. In the case of YBCO, ξ(0) ≡ ξ0 ≈ 1.65

nm, while λL(0) ≡ λ0 ≈ 156 nm, while the temperature-independent ratio κ = λL(T)/ξ(T) ≈ 95 [28].
It can be shown that the AL vortexes strongly repel each other, giving rise to highly correlated

configurations which are stable when thermal fluctuations and disorder are both negligible. A measure
of the magnitude of the energy associated to thermal fluctuations with respect to the magnetic
condensation energy is provided by the Ginzburg number, Gi, given by

Gi = 4π2γ

(
λ2

0

ξ2
0

)
kBTc

Φ2
0

, (1)

where γ is a measure of the conducting anisotropy. In the case of conventional BCS superconductors
Gi = 10−7. In comparison, in the case of HTSCs, Tc ∼ 102 K and κ ∼ 102, implying that
Gi ∼ 10−2. This relatively large value of Gi joined with the fact that these materials display a
layered anisotropic structure at the atomic level, conduces to the manifestation of a manifold of
phenomena generally termed as vortex matter, encompassing a complex phase diagram under
different environmental conditions and material compositions [29]. Thus, thermal fluctuations may
significantly alter the properties of the AL, generally leading to melting towards a liquid phase
displaying vortex deformation, entanglement or migration. Superposed with repulsive interactions
and thermal fluctuations, disorder due to material imperfections induce vortex pinning, which may
conduce to the formation of glassy configurations [29–31]. Vortex matter has been investigated by
recurring to techniques such as scanning tunneling microscopy [32] or muon spin rotation [33], among
others.

In order to examine the influence of the AL on the Casimir force, in this work we consider a setup,
depicted in Figure 1, constituted by a spherical Au nanoparticle located at a minimum distance d from
a planar YBCO substrate, in presence of an applied magnetic field directed along the z axis. We show
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that the force acquires a spatial structure congruent with the AL due to the modulation imprinted by
the vortexes on the dielectric permittivity.

Figure 1. Setup consisting of a spherical Au nanoparticle of radius R located at a minimum distance
d from a planar substrate made of optimally-doped YBCO, in presence of an applied magnetic field
directed along the z axis. We show the resulting lattice structure with elementary cells of spatial periods
a = Lx = Ly =

√
2π/κ. Induced supercurrents coincide with equiprobability contours defined by

ns = |Ψ(r̃)|2. The vortex cores of radius ξ correspond to the darkest inner zones.

In the following, we present the formalism aimed to evaluate the Casimir force between a
planar substrate and a nanosphere, which relies upon the frequency-dependent optical properties
of the involved materials. To investigate the optical response of YBCO under the action of an
external magnetic field, we then discuss a generalization of the Ginzburg-Landau (GL) theory of
superconductivity, which allows the consideration of the anisotropic properties HTSCs, allowing
the characterization of the spatial-dependent density of SC pairs, ns(r), in presence of an external
magnetic field, as provided by the Abrikosov solution of the GL equation. We then discuss the thermal
behavior of ns(r) by taking into account that SC charge carriers in HTSCs may be described as a
2D gas of weakly-interacting CPs able to form a Bose-Einstein condensate (BEC). In the following
section, we model the optical response of YBCO by combining the derived expression for ns(r, T) with
experimental data for the YBCO dielectric function obtained in the normal (T = 100 K) and SC regime
(T = 2 K). We then integrate the former antecedents to evaluate the Casimir force associated to the AL,
and discuss the derived results.
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2. Materials and Methods

2.1. Casimir force between a nanosphere and a planar substrate.

The theory of the Casimir effect between a sphere and a planar surface beyond the Proximity
Force Approximation has been investigated within alternative perspectives, including some developed
by authors of the present work [34–40]. In this section we extend the formalism previously presented
in Refs.[34,35] to calculate the finite-temperature Casimir force for the nanosphere-substrate setup
displayed in Fig.(1), with respective dielectric functions, εns(ω), and ǫsub(r, ω). We evaluate, at first,
the zero-temperature interaction energy as a sum over proper frequencies ωk(r⊥; d) of the considered
configuration:

E(r⊥; d) =
1
2 ∑

r

h̄ωr(r⊥; d)− 1
2 ∑

r

h̄ωr(r⊥; d → ∞). (2)

Straightforward use of the Argument Principle method let us express the sum over proper mode
frequencies as a sum over the zeros of a spectral function G(ω; r⊥; d) (discussed below). This
is determined by the solutions of Maxwell equations with boundary conditions satisfied by the
plate-sphere setup:

E(r⊥; d) =
1

2πi

∮

C
h̄ω

2
∂

∂ω
[log G(ω; r⊥, d)− log G(ω; r⊥, d → ∞)] dω. (3)

Here, the contour C is defined along the imaginary axis of the complex ω plane and a semicircle in the
right hand of this plane with its radius tending to infinity. The integral along the semicircle yields a
null contribution, and the integral in (3) may be evaluated by considering a contour between −i∞ to
i∞. By introducing the variable ω = iξ, an integration by parts leads to

E(r⊥; d) = − h̄

4π

∫ ∞

−∞
[log G(iξ; r⊥, d)− log G(iξ; r⊥, ∞)] dξ. (4)

The Casimir force is then obtained by calculating the derivative F(r⊥; d) = −∂E(r⊥; d)/∂d. The
eigenfrequency set of the sphere-substrate setup {ωr(r⊥; d)}, is obtained by assuming that the vacuum
fluctuations induce a charge distribution on the sphere, described at lowest level, as a dipole located at
its center:

p0
ns = α(ω)Evac(ω), (5)

where α(ω) = R3(ǫns − 1)/(ǫns + 2) denotes the nanosphere polarizability. This dipole moment will
induce in turn a charge distribution in the YBCO half-space. By using the images method it follows
that the total induced dipole moment on the sphere is

pns(r⊥) = α(ω) [Evac(ω) +T · psub(r⊥)] . (6)

Here, T is the dipole-dipole interaction tensor T = (3rr − r2I)/r5, and r = (0, 0, 2(d + R)) is a vector
joining the centers of the sphere and the dipole charge distribution at a position r⊥ = (x, y) over the
substrate surface. In turn, the relation between the dipole moment on the sphere and the dipole moment
induced on the YBCO substrate is psub(ω) = fc(ω; r⊥) M · pns(r⊥), where M = diag(−1,−1, 1) is a
diagonal matrix, and the contrast factor fc(ω) ≡ (1 − ǫsub(ω))/(1 + ǫsub(ω)). By substituting psub(ω)

into Eq.(6), we obtain a secular equation

[
α−1(ω)I+ fc(ω)M ·T

]
· pns(ω) = Evac(ω), (7)
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which, by introducing the function u(ω) = [1 − ǫns(ω)]−1 and explicitly substituting α(ω), may be
re-expressed as the secular equation:

[−u(ω)I+H] · pns(ω) = Ẽvac(ω), (8)

where H = (1/3)[I+ R3 fc(ω)M ·T], and Ẽvac = (1/3)R3Evac. By performing the change of variable
ω → iξ it follows that the matrix H in (8) is real; therefore, we may find a unitary transformation
U such that U−1HU = λr, where λr are the eigenvalues of H. This allows to introduce the spectral
function

G(iξ, d) ≡ ∏
r

[−u(iξ) + λr(iξ, d)] = 0, (9)

which in the present case implies three eigenvalues,

λ1,2(iξ, d) =
1
3

[
1 +

fc(iξ)

[2(1 + d/R)]3

]
; λ3(iξ, d) =

1
3

[
1 +

2 fc(iξ)

[2(1 + d/R)]3

]
,

whose structure reflects the dipole-dipole interaction described by the tensor T. Substitution of G(iξ, d)

into Eq. (3) conduces to a final expression for Casimir force at null temperature:

F(d) =
h̄

4π

∂

∂d ∑
r

∫ ∞

−∞
log[−u(iξ) + λr(iξ, d)] dξ (10)

=
h̄

16πR

1
(1 + d/R)4

∫ ∞

−∞

[
fc(iξ)

−u(iξ) + λ1(iξ, d)
+

fc(iξ)

−u(iξ) + λ3(iξ, d)

]
dξ,

where the fact that λ1(iξ, d) = λ2(iξ, d) has been considered. This result may be generalized to
the finite-temperature regime by use of the Matsubara formalism. In this approach, the frequency
integration is replaced by a summation over discrete frequencies ξn = 2πkBTn/h̄, with n an integer
number. In that case, the final expression for temperature-dependent Casimir force is:

F(d/R, T) =
kBT

4R

1
(1 + d/R)4

∞ ′
∑
n=0

[
fc(iξn)

−u(iξn) + λ1(iξn)
+

fc(iξn)

−u(iξn) + λ3(iξn)

]
, (11)

where the prime implies that the n = 0 term should be multiplied by a factor 1/2. We observe that the
force scales as F ∼ 1/R, so that this is maximized by the use of smaller nanospheres.

In the former expressions the functions u(ω) and fc(ω) are respectively determined by the
dielectric response of the nanosphere, εns, and the planar substrate, εsub. The dielectric properties of the
gold nanosphere may be simply represented by a Drude function εns(ω) = 1 − ω2

Au/(ω2 + iγAuω),
where the gold plasma frequency, ωAu = 9.1 eV, and the inverse scattering rate, γAu = 0.02 eV.
Therefore, u(iξ) = −(ξ2 + γAuξ)/ω2

Au. On the other hand, the dielectric response of the YBCO
substrate requires a more elaborated discussion, which we present in the following section.

2.2. Ginzburg-Landau theory and the optical response of the YBCO substrate.

To characterize the dielectric response of the YBCO substrate we must determine the way in
which the CP number density, ns(r), is spatially distributed under the action of the external magnetic
field. With that purpose, we put forth a straightforward reformulation of the GL theory that explicitly
incorporates two particular features of cuprates, like YBCO: i) a layered crystallographic structure
in which superfluid transport of Cooper-like pairs (CPs) occurs along CuO2 planes; ii) an extremely
short CP coherence length, such that the GL parameter κ ≫ 1. This latter property implies that charge
carriers in these materials define constitute a weakly-interacting gas of strongly-bound pairs satisfying
a Bose-Einstein statistics. These facts allow the description of SC charge transport in HTSCs as a 2D
superfluid of Cooper-like pairs.
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In the GL theory, the transit to the SC state is described as a second-order phase transition
determined by a complex order parameter, Ψ = |Ψ|eiθ , null in the normal phase, but finite in the SC
phase, characterizing a long-range order specified by the number density of SC pairs. In this theory
the SC free energy per unit volume in presence of an external magnetic field is given by

fs(T) = fn(T) + aT |Ψ|2 + b

2
|Ψ|4 + 1

2m∗ (−ih̄∇− e∗A)2
Ψ +

1
2µ0

B2(r), (12)

where fn(T) is the normal state contribution, e∗ = 2m and m∗ = 2m are the charge and mass of CPs,
while the parameters, aT = a0(T − Tc) and b > 0, in the standard GL approach. The last term in (12)
accounts for the electromagnetic energy of the field B(r) = ∇× A(r). After the original GL proposal,
Gorkov was able to derive the GL theory from the microscopic BCS theory for temperatures nearby
Tc and, furthermore, made the identification |Ψ|2 = ns. A fundamental assumption in Gorkov’s
derivation is that the London condition κ ≫ 1 holds; this is satisfied by type-I SCs only in the
immediate neighborhood of Tc, whereas in the case of type-II SCs it has a wider region of applicability.

The total energy in the SC state, is obtained by spatial integration of Eq.(12),
∫

fs(T)d3r. It follows
that the functional differentiation δFs(T)/δΨ∗(r) leads to the non-linear GL differential equation:

1
2m∗

(
−ih̄∇− e∗

c
A

)2

Ψ +
(

aT + b|Ψ|2
)

Ψ, (13)

while the differentiation δFs(T)/δA(r) yields the current density

Js = − ih̄(2e)

2m∗ (Ψ∗∇Ψ − Ψ∇Ψ∗)− (2e)2

m∗ A. (14)

In absence of external fields or material boundaries, Eq.(13) predicts a homogeneous bulk ordering
characterized by ns = |Ψ∞|2 = −aT/b, for aT < 0, whereas |Ψ∞|2 = 0, for aT > 0. On the other hand,
for the case of a planar interface separating a normal metal (x < 0) and the superconductor (x > 0),
with no magnetic field, the order parameter Ψ(x) = Ψ∞ tanh[x/

√
2ξ(T)], where the GL correlation

length ξ(T) ≡
(

h̄2/2m∗|aT |
)1/2

, connecting aT with the measured value of the CP coherence length.

On these terms, the optical response of HTSCs is characterized by considering a variant of
the Ginzburg-Landau (GL) theory of superconductivity that takes into account the aforementioned
properties of these materials. This is attained by the Lawrence-Doniach (LD) model, in which layered
SC materials are described as a stacked array of 2D superconductors, coupled together by Josephson
tunneling between adjacent layers [? ]. Then, the order parameter in layer n, subject to the action of a
vector potential (A, Az), satisfies the equation:

− h̄2

2mab

[
∇⊥ − 2ie

h̄c
A

]2

− h̄2

2mcs2 ∇
2
nψn + aTψn + b|ψn|2ψn, (15)

where ∇2
nψn = ψn+1e−2ieAzs/h̄c − 2ψn − ψn−1e2ieAzs/h̄c, and s is the interlayer distance. In the

long-wavelength limit λ ≫ s, so that the ratio (Ψn − Ψn+1)/s → ∂Ψ/∂z. in that case, Eq.(15) reduces
to an anisotropic GL equation

− h̄2

2

(
∇− 2ie

h̄c
A

)
·
(

1
m

)
·
(
∇− 2ie

h̄c
A

)
Ψ +

(
αT + b|Ψ|2

)
Ψ = 0, (16)

where the reciprocal mass tensor (1/m) = diag(1/mab, 1/mab, 1/mc). The mass anisotropy induces
in turn an anisotropic CP coherence length, which can be shown to satisfy the relation, ξ2

i (T) =

h̄2/2mi|αT |, where i identifies a particular axis of the crystallographic cell [? ].
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The explicit expression of Ψ(r) is now obtained by assuming that the magnetic field is directed
along the z direction, coincident with the crystallographic c-axis, B = Bez. Then, the vector potential
in the Landau gauge, A = Bx ey, and the GL equation becomes:

−h̄2

2m∗

(
∇⊥ − ie∗

h̄
Bxey

)2

Ψ −
(

aT + b|Ψ|2
)

Ψ = 0, (17)

where m∗ = 2mab. It was shown by Abrikosov [27] that Eq.(17) admits an analytic solution given by a
Jacobi theta function:

Ψ(x̃, ỹ) = C exp[−1
2

κ2 x̃2]θ3

[
1;
√

2π κi(x̃ + iỹ)
]

, (18)

where x̃ = x/λab, ỹ = y/λab, and the ab-penetration length, λab(T) ∼ (n2D
s (0, T)/mab)

−1/2. Fig. (1)
depicts the resulting contours of constant probability defined by |Ψ(r̃)|2. We observe a lattice structure
with square elementary cells with periods Lx = Ly =

√
2π/κ. By writing Ψ(r̃) = |Ψ(r̃)|eiχ(r̃) it

follows that the GL current density is given by Js = (h̄e/mab)|Ψ|2(∇χ − (2e/h̄c)A). In that case, the
super-current lines coincide with the equi-probability contours, and the vortex cores are located at the
darkest zones of the figure. Notice that the vortex size can be tuned by the substrate temperature Tsub

which modulates the lattice parameter. In normal units, it follows that Lx(T) =
√

2πξab(T), so that
Lx(2 K) ≈ 6 nm, whereas Lx(90 K) ≈ 100 nm [28].

2.3. Thermal properties of the order parameter.

The thermal properties of the order parameter can be determined by considering that cuprate
superconductors exhibit a layered structure in which transport of strongly-bound CPs occurs mainly
along double CuO2 planes -the ab-planes- perpendicular to the c-axis. CPs displace along the ab and c

directions with effective masses mab ≪ mc [41]. Together with the condition κ ≫ 1, this is indicative of
a strongly binding pair interaction, leading the formation of a 2D weakly-interacting Bose gas, able to
form a BEC [42]. In the low-momentum limit, the energy spectrum of the system can be expressed as
a phonon dispersion relation, Ek ≈ h̄csk, with cs the sound’s speed. This linear relation is consistent
with Landau’s criterion for superfluid transport [43]. In that case, the pair occupancy number can be
expressed, for T < Tc, in the form

n2D(r, T) = n2D
0 (r, T) + ∑

k>0

1
exp (h̄csk/kBT)− 1

. (19)

By evaluating this latter expression and taking into account that in the dilute regime the density of
superfluid charge carriers coincides with the condensate: n2D

s (r, T) ≈ n2D
0 (r, T), it then follows that

[44,45]
n2D

s (r, T) =
(

1 − T2/T2
c

)
N|Ψ(r)|2. (20)

Here, Tc =
(

2πh̄2c2
s n2D/k2

Bζ(2)
)1/2

[44], where ζ(2) is a Riemann’s zeta function ,
∫

d2r|Ψ(r)|2 = 1,

and N is the total number of charge carriers

2.4. YBCO dielectric response

The optical properties of HTSCs have been experimentally investigated for different compounds
at several temperatures and frequencies using reflectivity and impedance-type measurements [47–49].
In particular, the dielectric function of YBCO samples has been measured, in the absence of an applied
magnetic field, in the normal and SC states at T = 100 K and T = 2 K, respectively. For T > Tc, an
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accurate representation of the dielectric response includes Drude, mid-infrared (MIR) intra-band, and
phonon contributions:

εn(ω) = ε∞ −
ω2

p

ω2 + iγ(T)ω
− Ω2

mir

ω2 − ω2
mir + iΓmirω

−
Nph

∑
r=1

ω2
pr

ω2 − ω2
r + iγrω

. (21)

Here, ε∞ = 3.8, the plasma frequency, ωp(100K) = 0.75 eV, and the inverse scattering rate γ(T) =

0.037+ γ1T eV, with γ1 = 8× 10−15 eV/K. For the higher frequency contributions, the MIR parameters
Ωmir = 2.6 eV, ωmir = 0.26 eV, Γmir = 1 eV, whereas the phonon parameters are given in SI. In
the SC state, dissipative scattering does not occur, so that γ → 0. In that limit, (ω ± iγ0)

−1 →
P (1/ω)∓ iπδ(ω), and the dielectric function becomes:

εs(ω; r⊥) = ε∞ −
[

iπω2
p

2ω
δ(ω) +

ω2
p

ω2

](
1 − T2

T2
c

)
|Ψ(r⊥)|2 −

ω2
p

ω2 + iγ(T)ω

(
T2

T2
c

)
(22)

− Ω2
mir

ω2 − ω2
mir + iΓmirω

−
Nph

∑
r=1

Ω2
ir

ω2 − ω2
r + iγrω

.

In this case is also given by ωp(2K) = 0.75 eV, while the parameters ε∞, Ωmir, ωmir, Γmir and
the phonon parameters are very similar to those obtained in the normal situation. The fact
that ωps(2K) = ωn(100K) indicates that the dielectric response of this system is consistent with
London’s two-fluid model of superconductivity . In this scheme, the nanosphere and substrate

permittivities are respectively given by εns(ω) = εAu(ω), εsub(ω, r, T) = ε
(n)
ab (ω, r, T > Tc) and

εsub(ω, r, T) = ε
(s)
ab (ω, r, T < Tc).

3. Results

We show in Figure 2 the structure of Casimir force at T = 2 K, as function of the position of the
Au nanosphere over the AL. Here, the nanosphere radius R = Lx(2K) ≈ 4 nm, and d = 2R. This
figure reveals that the Casimir force displays a periodic structure congruent with the spatial charge
distribution induced by the AL. I can be observed that the modulation amplitude ∆F = |Fmax − Fmin|
is maximized at regions corresponding to the vortex cores, consistently with the fact that the material
reflectivity is strongly reduced at these zones. In order to compare how these results are altered
with increasing temperature, we present in Figure 3 a cross-section of the Casimir force surface at
a fixed value of Lx = 0.5, for three different temperatures: T = 2 K, T = 40 K, and T = 90 K, with
corresponding lattice size: Lx(2K) = 4.1 nm, Lx(40K) = 4.6 nm, and Lx(90K) = 16.4 nm. We observe
that in the low-temperature regime, 2 ≤ T ≤ 40 K, very similar periodic patterns arise, essentially
independent of the temperature, with a relatively small modulation amplitude ∆F ∼ 0.04 pN. On the
other hand, for T ≈ Tc the vortex cell size increases, but the force modulation is drastically reduced.
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Figure 2. Periodic structure of the Casimir force as a function of the location of the Au nanosphere
over the Abrikosov lattice at T = 2 K, for a fixed distance d = 2R. Here, R = Lx(2 K) ≈ 4 nm. It can be
observed that the minimal strength of the Casimir force corresponds to the vortex cores.

T=2 K

T=40 K

T=90 K

0 1 2 3 4

-2.69

-2.68

-2.67

-2.66

Ly

F
(y
)
[p
N
]

Figure 3. Comparison of the Casimir force profiles as a function of Ly, for a fixed value of Lx = .5n

(with n integer), and d = 2R, at three different temperatures: i) T = 2 K, ii) T = 40 K, iii) T = 90 K. We
observe that in the low-temperature regime the force magnitude shows almost coincident values up to
T = 40 K, consistent with expectations that vacuum fluctuations overwhelm thermal fluctuations at
nanometer separations.
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4. Discussion

The former results have been derived within a mean-field approach that neglects thermal
fluctuations of the order parameter and pinning disorder. However, in the weak-interacting limit of
Cooper pairs the effect of thermal fluctuations can be addressed through a perturbation expansion
resulting from the evaluation of the functional integral Z =

∫
D[Ψ]DΨ∗e−βF[Ψ] [29], with Fs[Ψ] given

by the spatial integration of Eq.(12). The effect of disorder can be introduced by adding a white noise
to the coefficients of the GL free energy and performing the Z functional integration, or by performing
vortex matter simulations based on the numerical analysis of the time-dependent GL formulation
[29,30].

Although the present work was focused on the action of strong magnetic fields H ≤ Hc2, the
effect of weak magnetic fields H ≥ Hc1 can be straightforwardly discussed within the clean-limit of the
London theory [28]. In that case, the order parameter is given by |Φ(r)|2 ≈ (1 + 2ξ2

ab/r2)−1, while the

local magnetic induction B(r) =
[
Φ0/2πλ2

ab

]
K0(
√

r2 + 2ξ2
ab/λab), where K0(x) is a modified Bessel

function. Then the total order parameter can be built as product φ(r) = ∏i φi(|r− ri|), where ri denotes
the localization of the different vortexes, whereas the total magnetic induction B(r) = ∑i Bi(|r − ri|)
[50].

In conclusion, we presented a general methodology aimed to evaluate the Casimir force in setups
constituted by SC materials under the action of an external magnetic field. We have shown that the
Abrikosov vortex lattice displayed by a type II superconductor induces Casimir forces with a periodic
structure that mirrors the local charge redistribution due to superconducting currents conducing to
magnetic fluxon confinement within the vortex cores. This approach may be applied to SC systems
under different conditions of temperature, oxygen doping, and magnetic field configurations, allowing
the analysis of alternative orderings competing with vortex matter, such as charge density waves [51],
or the investigation of normal matter inside the vortexes subject to multiple Andreev reflections [52].
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