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Abstract: Satellite-derived soil moisture observations typically rely on bias-correction (BC) prior
to assimilation in land surface models. Current techniques include rescaling or machine learning
approaches to map the observations to the modelled soil moisture climatology. However, these
approaches do not allow for non-stationary biases and recalibrations require a long training period,
which is not always feasible. In this study we evaluate a two-stage filter to dynamically correct soil
moisture biases from satellite-derived active ASCAT C-band and passive L-band SMOS surface soil
moisture observations in the European Centre for Medium Range Weather Forecasts (ECMWF) land
data assimilation system. This adaptive soil moisture BC approach is designed to complement the
operational seasonal rescaling of the ASCAT observations and the SMOS neural network retrieval
used at ECMWE, while allowing the assimilation to correct sub-seasonal scale errors. Over a 3-year
test period, the adaptive BC reduces the seasonal-scale first guess-observation departures by 20-30%
for ASCAT and SMOS. The adaptive BC leads to (i) slight improvements in soil moisture performance
against in situ data; and (ii) moderate but statistically significant reductions in the 1-5 day relative
humidity forecast errors in the boundary layer of the northern hemisphere midlatitudes.

Keywords: soil moisture; data assimilation; bias-correction

1. Introduction

Inherent biases exist when assimilating satellite-derived soil moisture (SM) observations in land
surface models. Observation biases may result from instrument errors, vegetation effects and errors
of representativeness whilst model biases can originate from the model physics, parameterizations,
initial conditions and atmospheric forcing [1,2]. Biases can be addressed by data assimilation when it
is not possible to correct the source directly.

Commonly in atmospheric and ocean DA, a variational bias-correction (BC) approach is employed
for satellite radiances, whereby the corrections for the computed forward radiances are updated within
the cost function minimization [3,4]. Additionally, a network of anchor observations are employed as
a reference (e.g. radiosondes) to prevent the analysis from drifting to the model bias [5]. Land surface
models are much more heterogeneous than atmospheric or ocean models and pointwise reference
soil moisture measurements are not generally representative of the large-scale footprint associated
with model or satellite-derived products [6]. Without an accurate ground reference, Numerical
Weather Prediction (NWP) centres typically assume that the land surface model is perfect and all the
biases belong to the observations. Traditionally a cumulative distribution function (CDF) matching
approach has been used to rescale the mean and variance of the observations to match the model
climatology [7-10]. Machine learning methods have been advocated in recent years, including neural
networks that convert level 1 satellite data to level 2 soil moisture [11,12]. Whilst these methods
work well in many practical applications, large calibration/training datasets are required and the
assumption of stationary biases is often suboptimal. Biases in the observations can change over time
due to issues with the instruments and modifications in the retrieval algorithms, whilst land surface
models are also updated periodically. Both these factors change the observation-model climatology
and necessitate a recalibration of the climatological bias-correction.
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At the European Centre for Medium Range Weather Forecasts (ECMWEF), Advanced Scatterometer
(ASCAT) and Soil Moisture Ocean Salinity (SMOS) derived soil moisture observations are both
assimilated operationally in the SM analysis using a simplified extended Kalman filter (SEKF) [13,14].
The ASCAT SM observations are bias-corrected via the aforementioned rescaling approach. On the
other hand, SMOS SM is derived from the level 1 product using a neural network (NN) trained on the
ECMWEF operational analysis [11]. In this study an adaptive SM bias-correction is tested for ASCAT
and SMOS in order to capture non-stationary biases. The two-stage adaptive BC was introduced by
Dee and Silva [15], whereby the filter and the bias-correction updates are performed independently.
Applications can be found for the atmosphere [1], ocean [16,17] and land [18-21]. In Draper et al. [22]
the bias-correction is applied to skin-temperature assimilation in the catchment and surface modelling
component of the Goddard Earth Observing System. A similar approach is employed here, in the
context of satellite-derived SM assimilation in the ECMWF integrated forecasting system (IFS) for
NWP applications.

The manuscript is structured as follows. Firstly, the materials and methods are presented in
Section 2, including the current SEKF formulation and the two-stage bias filter. The results are given
in Section 3. Internal DA diagnostics are evaluated in terms of the first guess (observation-model)
departures and the SM increments. Then a validation of the SM and soil temperature (ST) analysis
performance is carried out using in situ data from the International Soil Moisture Network (ISMN). The
validation of the subsequent NWP forecasts is performed using the ECMWF high resolution analysis
as a reference. Finally, Section 4 discusses the key findings and recommends future work.

2. Materials and Methods

2.1. The bias-free SEKF soil moisture analysis

A detailed documentation of the ECMWF land (ECland) data assimilation for IFS cycle 47r3
can be found in ECMWEF [23]. The operational SM analysis is based on a point-wise SEKF with
12-hour assimilation windows, which was implemented in 2010 to assimilate proxy screen-level
observations of 2m temperature (T2m) and relative humidity (RH2m) [13]. These proxy observations
come from the analysed T2m and RH2m states at the synoptic times (every 6 hours), which are
derived by assimilating SYNOP screen-level observations with a 2D optimal interpolation scheme.
ASCAT-derived SM observations have been assimilated in operations since 2015 followed by SMOS
NN assimilation since 2019 [11]. Up to 8 observations can be assimilated for each grid point per
assimilation window, with a maximum of 2 each for ASCAT, SMOS, T2m and RH2m. The top 3 layers
(top metre) of the ECland model are analysed with depths of 0-7 cm, 7-28 cm and 28-100 cm from top
to bottom. Using the notation of Ide et al. [24], the pointwise SM analysis state update at time (¢;) is
expressed as:

X () =X (1) + Kily° (1) — Hi(X")], 1)

where the superscripts a, b, 0 and subscript i denote the analysis (of dimension 1), background (of
dimension 7), observations (of dimension p) and timestep respectively. The observation operator H
maps the model state to observation space. As the preprocessed ASCAT and SMOS NN observations
are already in the modelled volumetric SM units, H;(x") is simply the model value in the top layer at
the nearest gridpoint and timestep to the observation. The weights of the observations and background
state in the analysis update are determined by the Kalman gain matrix K (of dimension n X p):

K; =[B! +H/R'H;]"'H/R}, )

where R (of dimension p x p) and B (of dimension n x n) represent the observation and
background error-covariance matrices respectively, which are assumed to be static and diagonal
(uncorrelated). The SM background errors are prescribed with values 0, = 0.01 m®/m?. ASCAT and
SMOS observations are prescribed values of 0scat = 0.05 m3/m3 and ypes = 0.02 + €, where € is a
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situation dependent uncertainty output provided by the NN itself. The screen-level variable (SLV)
observations are assigned values of 12, = 1K and orp2, = 4% [23]. Flow-dependent uncertainty
information from an ensemble of data assimilations (EDA, Bonavita et al. [25]) is implicitly propagated
from the observations to the analysis state via the Jacobian matrix H (of dimension p x n). The Jacobian
linking the k' observation to modelled soil moisture layer j is given by:

cov(Hy (x¢%), x]‘?d”)

var(x;?d“)

kj —

.C]', (3)

where “cov" stands for “covariance”, “var" stands for "variance" and “eda" implies that the EDA
ensemble is used. Tapering coefficients ¢; = 1/(1 + (j — 1).af) were empirically derived to optimise
the impact for the different SM layers (j = 1,2,3), with ass = 0.6. In the following assimilation
window, the background (prior) state is a model simulation initialised by the current analysis state:

x(tii1) = MIX'(1)], @
where M is the nonlinear coupled forecast model.

2.2. The two-stage bias filter

In the bias-aware SM analysis, the biased observations (§°) are partitioned into the analysed bias
(z(t;)) and the non-biased term (y°(£;)):

¥ (t) = 2" () +y° (8:)- ®)
The state update then includes the bias-corrected observations:
X () = X (1) + K [§° () — 2 () = Hi(x")). Q)

In this study we only investigate biases in the ASCAT and SMOS NN observations and therefore we
assume that the proxy SLV observations are bias-free. For simplicity, the ASCAT and SMOS NN bias
updates are performed separately over each gridpoint i.e. they are assumed to be uncorrelated. The
bias update is calculated following the approach of Draper et al. [22], as:

2} (t;) = 2] (t;) + Ly [§7 () — 2] — H; (X)), 7)
L;; = [Bf][R, + Bf + H, ;BH[,] ', (8)

where the subscript [ indicates the observation type and Bf is the prior observation bias covariance
matrix. The matrix R; represents the random part of the observation-error covariance matrix using the
bias-free values of R defined for ASCAT and SMOS NN in equation (2). The Jacobian matrix H; is the
subset of the Jacobian matrix H;. Following [15,19], B} is a diagonal matrix, which is proportional to
the SM background-error covariance matrix:

14
where v is a scalar parameter. After putting (9) in (8) and re-arranging, the Kalman gain can be

expressed as:
L;; = vH;BH],[H; BH], + (1 - 7)R,] L. (10)

Increasing the value of ¢y between 0 and 1 effectively reduces the memory of the bias. In this study
the value of v = 0.25 was chosen empirically in order to have a long enough memory to capture
seasonal-scale changes in the bias. After concatenating the updated bias correction for each observation
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type from equation (7) into a single vector z*(t;) (of dimension p), the SM analysis is calculated with
equation (6). Recall that the screen-level observations are assumed to be bias-free and therefore the
elements of z°(t;) are set to zero for these observations. Over gridpoints where no observations are
available per type /, the bias state is not updated. If only one observation is available, equation (7) is a
scalar update. In cases where 2 observations of the same type are available for assimilation, z{(t;) is a
vector of size 2. In the SM analysis the observations are assumed to be representative of the model
gridpoint, hence a weighted average of the bias update is stored and used for the following cycle:

= 1 & a
z[(t) = X kZ Zix(t), (11)
-1

where k is the observation index and K is the total number of observations of type [ in the gridpoint
(maximum of 2 for ASCAT or SMOS NN). The persistence model is employed for the bias forecast,
which is a reasonable assumption if the bias evolves slowly between cycles [15,19]. Hence the
background bias state for the following cycle is defined as:

2 (ti1) = 2 (t). (12)

The background bias states for each gridpoint are then used for all the observations of type [ in the
gridpoint for the following cycle:

2 (ti1) = (1) T2 (t11), (13)

where (1x)” is a vector of ones of dimension K.

2.3. Satellite-derived soil moisture observations and pre-processing

An introduction to the ASCAT and SMOS derived SM data is given below along with the current
SM bias correction techniques.

Active C-band scatterometer data is provided by the ASCAT sensors on board the Metop satellites.
These observations are converted into a liquid soil wetness percentage using the change detection
approach [26,27] with an approximate spatial resolution of 25 km and a revisit time of about 1-3
days. During the study period (2019-2022), ASCAT from Metop-B was available throughout. ASCAT
Metop-C assimilation was introduced in October 2019 and Metop-A assimilation was retired in
November 2021. ASCAT SM is measured as a soil wetness percentage (between 0 and 100%) and
the modelled SM is expressed in volumetric soil water content. Cumulative Distribution Function
(CDF) matching bias correction rescales the ASCAT level 2 SM such that the observed CDF matches the
modelled SM CDEF. Systematic differences between the observations and the model are subsequently
removed and the observations are effectively converted into volumetric units. At ECMWF and various
other centres, only the first two moments of the observation CDEF, the mean and variance, are rescaled to
match the model mean and variance [9]. A CDF matching which accounts for seasonal variability was
implemented by [28,29] and has been adopted by ECMWEF in the Simplified Extended Kalman filter
(SEKF) SM analysis [13] as well as for SMOS brightness temperature bias correction [10]. Hereafter
this method will be called “seasonal rescaling". The seasonal rescaling parameters are derived for each
calendar month using a 3-month moving average. For example, for the month of May the parameters
are derived based on the data from April, May and June over a multi-year calibration period. The
operational seasonal rescaling parameters for IFS cycle 47r3 are based on rescaling ASCAT-A/B
derived SM to the ERAS5 surface soil moisture (SSM) over the period 2009-2018 [30]. The ASCAT
observations undergo a quality control check prior to assimilation, which screens observations during
frozen conditions, over mountainous regions and where the estimated noise exceeds 15%.

The SMOS SM observations are derived from L-band brightness temperature (Tb) using a neural
network approach, which is summarised below but full details can be found in Rodriguez-Fernadndez
etal. [11,31]. They are trained and validated using the high resolution ECMWF operational SM analysis
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over the period 2015-2020. Firstly the SMOS Tb observations are colocated with the model gridpoints
in space and time. In order to maximise the data availability, Tb observations are extracted from
incidence angles ranging from 30 to 45°. Twelve predictors are used, consisting of 6 Tb and 6 SSM
linear expectations and three angular bins. Furthermore, the ECMWF operational snow depth and
temperature analysis are used to filter out data during frozen conditions. After filtering, 60% of the
samples are used for training, 20% are used for an evaluation of the training dataset and a further 20%
for the validation of the SMOS NN derived SM. A gradient back-propagation approach is employed
for the training using the Levenberg-Marquardt algorithm [32]. The architecture consists of a 2 layer
NN with one hidden layer and 5 neurons. The NN is trained globally which means that the global
biases between the SMOS SM observations and the model SM are small but significant regional biases
remain.

2.4. ECland surface model

The ECLand surface model is used in the IFS [33]. It is inherited from the Hydrology Tiled
ECMWE Scheme for Surface Exchanges over Land (HTESSEL; [34]). ECland models land surface
processes including soil moisture, snow and vegetation. Each gridpoint is divided into 8 tiles which
represent the fraction of different land cover types (including vegetation types, soil and snow cover)
using data from the US Department of Agriculture Global Land Cover Climatology (GLCC) map [35].
The seasonal vegetation cycle is constructed from the monthly leaf area index climatology [36]. Soil
moisture is represented by 4 vertical layers with thicknesses of 7 cm, 21 cm, 72 cm and 189 cm from
top to bottom. The vertical SM exchanges are based on the equation of Richards [37] and a multi-layer
snow scheme controls the snowpack evolution [38].

2.5. The stand-alone surface analysis

This study makes use of the stand-alone surface analysis (SSA) of Fairbairn ef al. [30]. In each cycle,
the atmospheric initial conditions for the coupled model are forced by an external atmospheric analysis,
which avoids the computational burden of running the 4D-Var atmospheric analysis. Atmospheric
forcing consists of the the ERAS5 reanalysis fields [39]. However, land-atmosphere feedback is provided
by the coupled forecast model between cycles. Fairbairn et al. [30] demonstrated that SSA can
approximate the impact of changes to the soil moisture analysis on NWP forecasts in the IFS with a
small fraction (< 30%) of the computing time compared with the operational weakly coupled DA
approach. SSA is particularly useful for running multi-year experiments in a reasonable time frame,
which is necessary to monitor the long timescales associated with SM bias correction.

Other than the atmospheric analysis, SSA benefits from most of the functionalities in the IFS. The
land surface analysis, as described by ECMWF [23], includes a 2D OI for 2 metre temperature and
relative humidity and the snow depth analysis. Additionally, soil temperature is analysed with a 1D
optimal interpolation (OI). As explained by Haseler [40], two 12-h assimilation windows run from
2100 to 0900 and 0900 to 2100 UTC, which provide the initial conditions for the 10-day coupled NWP
forecasts at 00 UTC and 12 UTC respectively.

2.6. Experiments

Five SSA experiments were validated globally over a 3-yr period (1 January 2020-31 December
2022) after 1-yr spinup (1 January 2019-31 December 2019). All the experiments assimilate both ASCAT
and SMOS derived SM observations. Table 1 summarises the differences between the experiments: (i)
C is the control with the operational configuration of ASCAT and SMOS assimilation with no adaptive
BC, (ii) Ex includes ASCAT adaptive BC, (iii) Eg includes SMOS adaptive BC and (iv) E4 g includes
both ASCAT and SMOS adaptive BC. In experiments (i) to (iv) ASCAT seasonal rescaling is applied
before the adaptive bias-correction. Experiment (v) (Ex s*) is designed to test whether the adaptive
BC alone can improve on the seasonal rescaling for ASCAT. In experiment (v) the level 2 ASCAT SM
for each grid point was converted to volumetric units by rescaling the percentage to SWI (between 0
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and 1) and multiplying the SWI by the modelled saturation value. Each experiment was initialized by
the ERADS reanalysis at 00 UTC on 1 January 2019. In subsequent cycles, the atmospheric analysis was
initialized by ERA5 (as described in Section 2.5). The land surface analysis and the coupled model
were performed with cycle 4713 of the ECMWFE IFS. The experiments were run on a cubic octahedral
reduced Gaussian grid at Tco319 (approximately 31 km ). This resolution is very close to the ERA5
native resolution, avoiding issues with spatial interpolation of the atmospheric fields.

Table 1. List of experiments used to test the adaptive SSM bias-correction.

Experiment C Ea Es Eas Eag”
ASCAT adaptive BC False True False True True
SMOS adaptive BC False False True True  True

ASCAT seasonal rescaling ~ True  True  True True False

2.7. SM and ST wvalidation approach

The surface (0-7 cm) and root-zone (0-100 cm) layers of SM and ST were validated using sparse in
situ data from the international soil moisture network [41]. Observations were extracted at the nearest
hour to the analysis times (00/12 UTC £30 min) from 7 networks over the United States, Europe and
Australia. The North American networks consist of the U.S. Climate Reference Network (USCRN,
[42]) and the U.S. Department of Agriculture’s Soil Climate Analysis Network (SCAN)/Snowpack
Telemetry (SNOTEL) networks (Schaefer et al. 2007). In Europe, they consist of the Soil Moisture
Observing System-Meteorological Automatic Network Integrated Application (SMOSMANIA, [43] in
southwestern France, the Soil Moisture Measurement Stations Network of the University of Salamanca
(REMEDHUS) in the central sector of the River Duero basin in Spain [44], and the Network of
Terrestrial Environmental Observatories in Germany (TERENO, [45]). In Australia, the Murrumbidgee
soil moisture monitoring network data set was used (OZNET, [46]). The depths, locations and number
of stations in each network are listed in Table 2. Although the validation of model grid point data
using in situ observations is affected by representativeness and instrument errors, the locations of
these networks represent a wide range of vegetation and soil types. Similar validations have been
performed at ECMWE [30,47] and elsewhere [48,49] for validating global SM analyses and satellite
products. The in situ SM observations are compared with the root-zone soil moisture (RZSM) over
the top metre of soil by taking a vertical average, with weights that are proportional to the spacings
between the sensor depths (as in [49]). For SNOTEL, SMOSMANIA, OZNET and TERENO, the deepest
measurement is assumed to represent the depth of the observation down to 1 m. In each network the
top measurement at 5 cm depth is compared to the surface layer of the soil moisture analysis (0-7 cm
depth). The observations undergo a rigorous quality control check by the ISMN facility [50] with flags
during frozen conditions and implausible SM values (e.g. spikes). Additional quality control screening
is implemented in this study where the analysed soil temperature is below 4°C, which reduces the risk
of frozen conditions. Further, a minimum of 50 observations is required for each station during the
validation period to reduce sampling errors.

Table 2. Reference data sets used for the validation in this study. ECMWEF* refers to the ECMWEF
operational deterministic analysis interpolated from 9 km to 31 km resolution.

Name Reference type Vertical depths/levels Spatial res. Num. of stations
SMOSMANTIA In situ SM/ST 5,10, 20, 30 cm depth Point-wise 20 stations /France
SCAN In situ SM/ST 5,10, 20,50, 100 cm depth ~ Point-wise 133 stations/US
USCRN In situ SM/ST 5,10, 20,50, 100 cm depth ~ Point-wise 106 stations/US
SNOTEL In situ SM/ST 5,10, 20, 50 cm depth Point-wise 292 stations/US
REMEDHUS In situ SM/ST 5 cm depth Point-wise 15 stations/Spain
OZNET In situ SM/ST 4,15, 45 and 75 cm depth Point-wise 13 stations/Australia
TERENO In situ SM/ST 5,20 and 50 cm depth Point-wise 1 station/Germany
ECMWEF* Air temp analysis 137 levels (1-1000 hPa) 31 km Global analysis

ECMWEF* Air RH analysis 137 levels (1-1000 hPa) 31 km Global analysis
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The validation metrics consist of the Pearson R anomaly correlation coefficient (Rano), unbiased
RMSE (UbRMSE) and the bias, as described by Fairbairn et al. [30]. These metrics offer a complementary
validation of the SM performance [51]. The correlation coefficient R is affected by the seasonal SM
cycle. For Rano, these seasonal-scale correlations are removed by subtracting the centred 35-day
moving average from the time series. As in Albergel et al. [47], the p-value provides a measure of the
significance of the correlations and the scores for each station are only retained where the p-value if
less than 0.05. Further, a Fisher-z transform with a lag-1 auto-correlation was implemented to find
the 95% confidence interval (CI) while mitigating the autocorrelations associated with the seasonal
cycle [48].

2.8. Atmospheric validation approach

In line with the ECMWF NWP setup, 10-day coupled forecasts are initialized at 0000 and 1200
UTC for all the experiments. The upper air verification is performed by comparing the forecasts against
the ECMWEF operational analysis. Following Geer [52], the normalized RMSE differences ({ARMSE) are
used to validate the relative performance of the experiment forecasts compared to the control forecasts:

dRMSE — |28 — 2hirll — ZEesr — 207 (14)
127 — 217 ,

where z, 1 (z{,, 1) are the control (experiment) forecasts of length T from analysis time ¢ and
zj 7 is the reference at time f + T. The |[|.|| in this case is the RMSE of the time series, which is
calculated independently for each grid point. The reference is provided by the ECMWEF high resolution
deterministic analysis. Further, the difference in mean error between the experiments and the control
is computed:

— € __ 5l __5C ol
dME =z}, =2z} ¢ — 24y 1 — Zi, 1. (15)

3. Results

3.1. Internal DA diagnostics

Firstly the impact of the adaptive BC on the ASCAT SM first guess departures is evaluated. Recall
that the departures are calculated as (y° — H(x?)) in the control and (§° — z? — H(x?)) in the adaptive
BC experiments. Figure 1 (a) shows the global mean monthly ASCAT SM departures over 2019-2021
for the control (C) and experiment (E4 s). Whilst the mean departure oscillates close to zero in the
first few months, it then trends upwards in C. At the same time the BC (—z”) applied to E g trends
downwards, which results in less biased departures. The spin-up for the bias-correction takes about a
year, after which the absolute departures (Figure 1 (b)) are about 10 — 20% larger in C compared to E4 g,
thus confirming that the bias is a substantial part of the departure magnitude. Figure 1 (c) displays the
used ASCAT SM observation count. Up to 6% more observations are assimilated in E5 g compared
to C, with the biggest gap seen during the northern hemisphere summer/autumn, when ASCAT
assimilation is most active in the northern hemisphere. Further investigation revealed that the quality
control was rejecting a greater number of observations in C compared to Ea g when the departure size
exceeded the maximum threshold of 0.1m3/m?3 (not shown). Note that the bias-correction update is
still applied when the departure size exceeds this threshold, which enables systematic large departures
to be corrected. Figure 1(c) also demonstrates a substantial increase in the peak observation count
after the introduction of ASCAT-C and a similarly large reduction in the peak count following the
retirement of ASCAT-A, which highlights the non-stationary nature of satellite observations.
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Figure 1. (a) Monthly and globally averaged ASCAT SM departures (m?/m?) for the control (C) and
experiment (E, g), 2019-2022. The start date of ASCAT-C assimilation is indicated by the first vertical
line, and the retirement date of ASCAT-A assimilation is given by the second vertical line. Also shown
is the BC term (—z") estimated by Eps. (b) Monthly and globally averaged absolute ASCAT SM
departures (m3/m?). (c) Monthly and globally averaged count of the ASCAT observations assimilated
in the control and the experiment. Plots (d), (e) and (f) are SMOS SM equivalents to (a), (b) and (c).

Figures 1 (d), (e) and (f) demonstrate the impact of the adaptive BC on the SMOS SM departures. In
Figure 1(d) the mean global bias in C is highly variable, ranging from slightly negative to highly positive.
The experiment E5 g responds with a negative bias-correction, although it sometimes over-corrects in
the negative direction. Nevertheless, the absolute departures are about 20 — 30% smaller in E4 g than C
(1(e)), which indicates that the BC is mainly effective. Overall, up to 12% more SMOS SM observations
are assimilated when adaptive BC is turned on (Figure 1(e)), with the biggest gap again seen in the
northern hemisphere summer.

Next the average ASCAT and SMOS SM departures are evaluated over August 2022 in Figure 2.
In the control, ASCAT has mainly positive departures over eastern Europe. On the other hand, SMOS
SM departures are generally positive over South America and South Africa. Large departures are seen
over some areas that are known to have quality control issues, such as the Andes mountain range in
South America for SMOS SM and across the high latitudes for both SMOS and ASCAT. Evidently the
bias-correction reduces the departure magnitudes in these areas. Under closer inspection it is evident
that the bias-correction is more active over some regions than others. For example, the strong negative
SMOS SM departures over India and the Sahel region of Africa are barely corrected by the adaptive
BC. Further analysis has shown that the negative departure patterns in these regions were not lasting
sufficiently long (a few months, not shown) for the adaptive BC to spin-up.

In Figure 3 the mean soil moisture increments are shown for the surface layer (0-7 cm depth) for
August 2022. The patterns are generally similar for C and Ep 5. However, in a latitude band from
about 55° to 80° North there are smaller magnitude increments in E g compared to C. In particular,
northeast Asia shows a reduced positive signal when the adaptive BC is active. However, the impact
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of the adaptive BC on the increments in the lower latitudes (< 55° North) is generally small, even in
regions where the BC is large e.g. South America. In some cases for SMOS SM this is related to larger
observation errors being prescribed in regions known to have quality control issues, such as the Andes
mountain range. For the RZSM (top metre of soil) the depth-integrated increments are also impacted
in the higher latitudes by the BC, but to a lesser extent than the surface layer (not shown).

-0.08 ~0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08

Figure 2. (a) Mean ASCAT SM departures for C and (b) experiment E5 g. (c) ASCAT SM bias predicted
by Eas. Plots (d), (e) and (f) are SMOS SM equivalents to plots (a), (b) and (c). All plots are averaged
over August 2022 and units are in (m3/m?3).
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Figure 3. Mean SSM increments (m3/m3) over August 2022 for (a) C and (b) E s.

Focusing on a point in central-eastern Australia with latitude 25°S and longitude 140°E, Figure 4
shows the time series of the SMOS SM departures for (a) C and (c) E 5. Over the 4-year period the
departures are almost entirely positive for C, which demonstrates a local positive bias in the SMOS NN
observations with respect to the model. The time series is effectively shifted in the negative direction
by the BC, while preserving the temporal variability in the departures. Figures 4 (b) and (d) present
the distribution of the innovations normalized by (HBH + R) according to equation (1) of Desroziers
et al. [53]. The positive bias in C and the negative shift in the distribution for E g are clearly evident.
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Neither distribution follows a Gaussian curve, which might be related to the nonlinear nature of the
land surface model and the associated background and observation uncertainties.
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Figure 4. (a) Monthly mean SMOS SM departures (m3/m3) for C for a point in Australia with latitude
25°S and longitude 140°E, 2019-2022. (b) Normalised innovations for C. The mean of the normalised
departures is given by the vertical red dashed line. Plots (c) and (d) are equivalent to plots (a) and (b)
but for experiment E4 s.

Table 3 summarises the global average internal diagnostics for the five experiments. The results
suggest that the ASCAT and SMOS biases are mainly independent of each other as the BC of SMOS
alone (Eg) does little to reduce the ASCAT SM departures and vice-versa when assimilating ASCAT
alone (Ep). Experiment E4 g™ has larger absolute ASCAT SM departures than C, which suggests that the
ASCAT adaptive BC and ASCAT seasonal rescaling complement each other. The mean SSM increments
are reduced by the combination of adaptive BC and ASCAT seasonal rescaling. Furthermore, the
absolute values are slightly reduced. However, the impact of the adaptive BC on the RZSM increments
is relatively small compared to the SSM increments.

Table 3. Global mean first guess SM departures (depar.) and SM increments (inc.) for the
experiments (m3/m3).

Variable C Ea Es  Eas Eas’
ASCAT SM depar. (x 107%) 5 1 5 1 -1
Absolute ASCAT SM depar. (x10~%) 26 23 26 23 29
SMOS SM depar. (x103) 2 2 3 3 -3
Absolute SMOS SM depar. (x1073) 37 37 32 32 32
SSM inc. (x107°) 16 13 14 10 12
Absolute SSM inc. (x 10’5) 204 202 201 200 202
RZSM inc. (x10-5) 4 4 3 3 3

Absolute RZSM inc. (x1075) 98 98 97 97 97
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3.2. SM and ST validation

The analysed SM and ST are validated using observations from the ISMN over 2020-2022. Figure 5
shows the locations of the stations for each network over the US, Australia, France, Spain and Germany.
Also shown is the relative performance of the Pearson R anomaly for Ex g compared to C for the SSM.
Overall, 1.7% of all the stations in E, g significantly improved (at the 95% confidence level) on C and
0.5% of stations were significantly degraded relative to C, with all these sites located in the US (see
Figure 5(a)). Table 4 gives the global average SSM and RZSM scores for the different experiments. There
is a slight improvement in the SSM and RZSM anomaly correlations for the adaptive BC experiments
compared to the control. The other scores are largely equivalent when averaged over all the networks.
Whilst the impact of the BC is relatively small for most stations, there are some strong local impacts.
For example, Figure 6 shows the time series of the SSM analysis for the different experiments at a point
located in the USCRN network in the US, which corresponds to the station circled in Figure 5. In this
case the adaptive BC reduces the positive bias in the experiments and subsequently improves the fit to
the observations, especially when both ASCAT and SMOS are bias-corrected (Ex g).

SMOSMANIA

{}

REMEDHUS

TEREND

Sigdeg  Non-sig deg Non-sigimp  Sig imp

Figure 5. Locations of the ISMN networks used in the validation for (a) the US, (b) Australia, (c)
France, (d) Spain and (e) Germany. Also shown is the relative Pearson R anomaly performance of Ex g
compared to C for each station over 2020-2022, which correspond to significant (Sig) or non-significant
(Non-sig) improvements (imp) or degradations (deg). The circled station in the US is used for the time
series in Figure 6.
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Figure 6. Time series of the SSM analysis (0-7 cm depth) for all the experiments over a point in the
USCRN network of the US with latitude=37.2° and longitude=-120.9°. Also shown are the in situ soil
moisture observations.

Table 4. Mean scores for surface soil moisture (SSM), root-zone soil moisture (RZSM), surface soil
temperature (SST) and root-zone soil temperature (RZST) for the different experiments. The best scores
are shown in bold font.

Global mean Score C Ea Es Eas Eas”
SSM R anomaly (-) 0439 0439 0441 0441 0441
SSM UbRMSE (m?®/m?) 0.063 0.063 0063 0063 0.063
SSM bias (m3/m?) 0.065 0.065 0.065 0.065 0.065
RZSM R anomaly (-) 0.440 0441 0442 0.444 0438
RZSM UbRMSE (m®/m?®)  0.045 0.045 0.045 0.045 0.045
RZSM bias (m®/m?) 0.06 0.06 0.06 0.06 0.06
SST R anomaly (-) 0.675 0.675 0.675 0.675 0.675
SST UbRMSE (°K) 413 4.12 413 4.12 4.13
SST bias (°K) 0.64 0.64 0.64 0.64 0.64
RZST R anomaly (-) 0.630 0630 0.630 0.630 0.630
RZST UbRMSE (°K) 2.25 2.26 2.26 2.26 2.25
RZST bias (°K) 0.74 0.74 0.74 0.74 0.74

3.3. Atmospheric validation

Figure 7 presents the global difference in normalized relative humidity RMSE (ARMSE) for Eg
and E5 with respect to C, at 1000 hPa and for forecast lead times of 1-10 days. Evidently the impact
of the adaptive BC is small in both cases and over the different regions, with the SMOS adaptive
BC giving a slightly positive impact over the southern extratropics and the tropics and the ASCAT
adaptive BC giving a slightly negative impact over the northern hemisphere extratropics. Figure 8
shows a latitude-pressure plot of the difference in mean errors (AME) for Eg (top), Ea s (middle) and
Eas” (bottom) for a lead times of 72 hours. The mean errors for Eg are significantly improved in
the lower troposphere (above 850 hPa) between 60 and 70 degrees North. The pattern is similar for
Ea g but the signal is spread over a larger latitude band between 30 and 70 degrees north. On the
other hand, the signal is reduced going from E g to Ex g*. Together these results demonstrate the
complementary impacts of the adaptive BC and the ASCAT seasonal rescaling on the mean relative
humidity in the boundary layer for the northern hemisphere midlatitudes. The dME improvements
persisted to about day 5 (not shown). Figure 9 shows the mean differences in RH between E4 g and
C. There are reductions in relative humidity over eastern China and South America, which roughly
correspond with the BC seen in Figures 2 (c) and (f) respectively. Likewise, the positive difference over
the southeastern US agrees with the positive BC in Figure 2 (f). In the case of atmospheric temperature,
neither the dME nor the dRMSE were significantly impacted by the adaptive BC (not shown).
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Figure 7. Normalized RMSE differences (ARMSE) for relative humidity at 1000 hPa over forecast days

1-10 for the experiments E (black line) and Eg (red line) compared to C, computed over 2020-2022.

Results are shown for (a) southern hemisphere extra-tropics, (b) the tropics and (c) northern hemisphere

extra-tropics.
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Figure 8. Latitude—pressure diagram of the Mean forecast error differences (AME) in relative humidity
(%) between the experiment and the control, averaged over 2020-2022: (a) experiment Eg, (b) Ep g and
(c) Eps*. The forecast lead time is t+72 hours. Cross-hatching indicates statistical significance at the
95% confidence level.
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Figure 9. Difference in mean relative humidity (%) between E5 g and C at 1000 hPa for a forecast lead
time of t+48 hours, averaged over 2020-2022.

4. Summary and discussion

In this study, a two-stage observation bias-correction and state update filter was introduced in
the ECMWEF soil moisture analysis and evaluated over the period 2020-2022. Compared with the
existing soil moisture analysis, the two-stage filter is computationally efficient and only requires the
additional storage of the ASCAT and SMOS biases for each gridpoint. As in Draper et al. [22], the
observation-model bias is effectively treated as the observation bias.

The impact of the two-stage bias filter on the internal DA diagnostics was assessed for ASCAT
and SMOS SM by evaluating the first guess (observation-model) departures and the SM increments. It
should be recognised that the current seasonal rescaling for ASCAT SM accounts for stationary biases
in the mean and variance. On the other hand, the adaptive BC accounts for non-stationary biases but it
only corrects the mean soil moisture state. Therefore the adaptive BC alone could not outperform the
seasonal rescaling approach. However, when the adaptive BC was employed on top of the seasonal
rescaling the magnitude of the first guess departures was reduced by up to 20% for ASCAT SM, with
the greatest impact when the assimilation was most active during the northern hemisphere summer.
Furthermore, up to 6% more ASCAT observations were assimilated as excessive first guess departures
were removed less often by the quality control.

Over the four-year experiment period, a slight positive global trend was found for the ASCAT
SM departures. Further analysis has demonstrated that the positive trend can be largely attributed
to moistening ASCAT observations (not shown). Whilst 4 years is a relatively short timescale, these
results appear to be consistent with Hahn et al. [54], who demonstrated that the backscatter signal
from ASCAT SM observations has been increasing in some regions over the last 15 years. This is partly
related to land-use change, including urbanisation and deforestation. They found that a periodic
recalibration of the dry and wet backscatter reference can help to mitigate the spurious trend, and
future ASCAT soil moisture products will be recalibrated accordingly. In this study the adaptive SM
BC effectively removed a global positive trend in ASCAT SM.

In the case of SMOS, large local soil moisture biases in the first guess departures were found over
several regions, including a strong positive bias over the Andes in South America and over parts of
Australia, and a negative bias over the eastern US and high latitude regions in Asia. The SMOS neural
network is trained globally, which may partly explain these results. The biases could be alleviated
by introducing local predictors in the training dataset, such as latitude and longitude, which will
be investigated in future versions of the neural network. Nevertheless, the adaptive BC corrected
many of these local biases, which was illustrated for a persistent positive bias over a point in eastern
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Australia. Globally the adaptive BC reduced the magnitude of the first guess departures by up to 30%
with typically 10% more observations assimilated in the northern hemisphere summer months.

The impact of the adaptive BC on soil moisture and soil temperature performance was evaluated
using observations from the international soil moisture network. On average, the adaptive BC slightly
improved the anomaly correlation of the surface and root-zone SM with the observations. There were
also some locally significant impacts for individual stations. However, many regions could not be
validated due to the lack of in situ data, including northeast Asia, where some of the largest biases
were corrected. Nevertheless, the adaptive BC experiments demonstrated statistically significant
improvements over the control in the 1- to 5-day forecasts of mean relative humidity in the lower
boundary layer, mainly over mid to high latitudes in the northern hemisphere.

Whilst it is acknowledged that the perfect model assumption in this study is likely to be incorrect,
the heterogeneity of soil moisture together with the lack of an accurate ground reference makes it very
challenging to differentiate between model and observation errors in global land data assimilation (DA)
systems. Furthermore, land surface models rely on calibrated parameterisations to relate soil moisture
prognostic variables to model fluxes, such as hydraulic conductivity and latent/sensible heat exchanges
with the boundary layer. Arguably, accounting for modelled soil moisture biases can only be achieved
by correcting the model parameters in conjunction with the state estimates [55,56]. Joint initiatives
between ECMWEF and other organisations are working to improve land surface benchmarking datasets,
such as the PLUMBER?2 model inter-comparison project [57].

Finally, it is planned that the adaptive BC will be implemented operationally at ECMWE. A
simplified version of the IFS was employed for the experiments in this study in order to minimise the
computational cost, which is called the “stand-alone surface analysis" (SSA). Although Fairbairn et al.
[30] demonstrated that SSA is a useful research tool, a further evaluation of the adaptive SM BC will
be carried out using the full weakly coupled land-atmosphere DA system.
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