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Article 
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of Warsaw, Żwirki i Wigury 101, 02—089 Warsaw, Poland 

* Correspondence: bartlomiej.gostynski@cbmm.lodz.pl; Tel.: (optional; include country code; if there are 
multiple corresponding authors, add author initials) 

Abstract: The in silico studies were performed in order to assess the binding affinity of selected 
organophosphorus compounds towards the acetylcholinesterase enzyme (AChE). Quantum 
mechanical calculations, molecular docking and molecular dynamics (MD) with molecular 
mechanics Generalized-Born surface area (MM/GBSA) were applied to assess quantitatively 
differences between the binding energies of acetylcholine (ACh; the natural agonist of AChE) and 
neurotoxic, synthetic correlatives (so-called “Novichoks”, and selected compounds from the G- and 
V-series). Several additional quantitative descriptors like root mean square fluctuation (RMSF) and 
the solvent accessible surface area (SASA) were briefly discussed to give – to the best of our 
knowledge – the first quantitative in silico description of AChE – Novichok non-covalent binding 
process and thus facilitate the search for an efficient and effective treatment for Novichok 
intoxication and in a broader sense - intoxication with other warfare nerve agents as well. 

Keywords: Novichok; AChE; DFT; binding affinity 
 

1. Introduction 

Synthetic organophosphorus inhibitors of acetylcholinesterase (AChE) are ubiquitous in many 
areas of human activity – from agriculture: in the form of insecticides [1,2] through medicine: anti-
inflammatory drugs and potential treatments of neurological diseases [3,4] to modern warfare: nerve 
agents.[5] Despite their potential medical use however, the majority of such applications is related to 
termination rather than sustaining of life: the acute toxicity and lethality of these compounds is 
caused by their ability to irreversible impair the enzymatic ability to operate. 

Due to its high turnover number, AChE is known to quickly hydrolyze the cholinergic 
neurotransmitter, acetylcholine (ACh) to acetic acid and choline.[6] By doing so, it reduces ACh 
concentration in the synaptic clefs and therefore terminates the neural signaling. Any permanent 
inhibition of the enzyme would obviously induce an over-accumulation of ACh in cholinergic 
system, the cholinergic crisis [7], causing overstimulation, a subsequent irreparable detriment of nerve 
cells and a fatal muscular paralysis, leading in consequence to prompt death.[8] 

Organophosphorous compounds, especially the purpose-made, military-grade 
organophosphorus nerve agents (OPNAs) which structures were assigned to halogen-containing 
phosphonate derivatives with their fluorinated organophosphorus core open to several modifications 
(see Figure 1), are believed to be able to precisely inhibit AChE by binding with one of the aminoacids 
(serine) in the AChE catalytic triad (Ser-His-Glu) via a reactive hydroxyl group. A nucleophilic attack 
of Ser-OH towards the electrophilic phosphorus atom of a nerve agent in an AChE–OPNA non-
covalent complex (Scheme 1) typically leads to formation of a covalent bond between the serine and 
a given nerve agent (Ser-OPNA), therefore effectively impeding AChE functioning. 
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Figure 1. The overall structure of OPNAs’ (including Novichoks) organophosphorus core: the 
phosphoryl bond with X - halogen or other electron-withdrawing group (usually fluorine) and other 
organic or heteroorganic substituents (A, B). 

Numerous publications on various OPNAs’ working mechanism have been published, 
e.g.,[9,10] including ones that apply quantum mechanical (QM) methods;[8,11] on the other hand - 
an efficient reactivation mechanism that could lead to a broad spectrum of possible antidotes has 
been explored at some depth only recently3 and the topic remains yet to be expanded. 

The newest, A-generation of OPNAs, so-called “Novichoks”,[12,13] which were developed 
shortly before the implementation of the Chemical Weapons Convention (CWC) in 1993, became 
anew a scientific point of interest after the infamous attempt of political poisoning of Sergei and Yulia 
Skripal in 2018.[10] This renewal in scientific research on Novichoks comes arguably from both the 
fact that their structure and properties remain to a certain degree unknown and/or lacking particulars 
(as the Russian government never acknowledged developing them[11]) and the utmost threat to the 
public health and safety policies they should pose due to their alleged extreme toxicity (estimations 
of < 0.1 mg lethal dose [12]). 

 

Scheme 1. Bonding changes in the catalytic triad (GLU-HIS-SER, respectively) during formation of a 
covalent bond between serine and an OPNA (here – soman). Red arrow symbolizes the nucleophilic 
attack of Ser lone pair in the non-covalently bonded complex (up) leading to a pentacoordinate 
intermediate Ser-OPNA (low) and dashed lines symbolize hydrogen bonding. All redundant parts of 
the aminoacid scaffold were removed for clarity. 

The Novichoks’ most significant feature, distinguishing them from other, classical nerve agents, 
is the phosphonoamide bond, that replaced oxo- (sarin, soman, tabun) and tio- (VX) bonds between 
the phosphorus and heteroalkyl residues A or B (see Figures 1 and 2).[14] There are reports on the 
analysis of these compounds by means of theoretical and spectroscopic methods[9,10,13,15,16], and 
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scarce in vitro research [17], yet there is, to the best of our knowledge, no information about any 
extensive in silico examinations of Novichoks’ mechanism of action and their potential reactivators. 
In reactivating the enzyme from OPNAs, several oxime-based compounds[18–21] as well as several 
engineered OPNA-degrading enzymes[14] have been found to be effective and purely theoretical 
studies were conducted (e.g.[23,24]). Regarding Novichoks however, there is a lack of both QM and 
molecular mechanics (MM) investigations of Novichok–AChE interactions, including the 
noncovalent ones; yet, obviously, the noncovalent interplay between the ligand and the enzyme 
contributes to and facilitates the irreversible phosphonylation of the AChE catalytic-triad serine e.g. 
by adjusting the ligand electron density distribution therefore stabilizing the ligand in the enzyme 
active centre gorge and making it thus more susceptible to nucleophilic enzyme attack. 

This work aims at in-depth investigating the human AChE–OPNAs binding affinities in 
comparison with the natural agonist as a starting point for further in silico research. Qualitatively and 
quantitatively assessed were the binding strengths of various OPNAs: the presently known, yet 
relatively unexplored A-series (A-230, A-232, A-234; “Novichoks”) and several arbitrarily selected, 
arguably the most publicly known and recognizable, examples of older OPNAs from the G- (tabun, 
sarin, soman) or the V-series (VX) for further comparison. 

2. Results and discussion 

Structures of the ligands selected for the research are depicted on Figure 2. whereas their average 
docking (∆𝐺ௗ௢௖௞) and MM/GBSA binding energies (∆𝐺௕௜௡) are included in Table 1. Coordinates for all 
G16-optimized ligand’s structures are available in supplementary info. 

The molecular docking provides a score that mainly indicates the overall thermodynamic value ∆𝐺ௗ௢௖௞ for the docking (Table 1) and is regarded to be approximate[25] and always require an 
indispensable refinement by an alternative method, in our case, by MM/GBSA method. 

Presented data show that all of the ligands are thermodynamically favorable in binding to the 
AChE active side. Interestingly, ACh is thermodynamically the least potent AChE ligand - as 
expected from a natural agonist of a high turnover number enzyme - with considerable discrepancies 
between the modest ACh binding energy value and the values calculated for the OPNAs. Taking into 
consideration the fact that all the selected OPNAs are warfare agents, designed especially to be 
irreversible AChE inhibitors – such results were expected and well prove the confirmation of the 
Novichoks’ and other OPNAs’ binding efficacy as compared to the ACh, at the first stages of the 
inhibition process, regardless of its possible mechanism. 

The noteworthy fact is that the theoretical binding affinity for the newest (and implicitly: the 
most dangerous) Novichok tier is somewhat similar to the previous generation of warfare agents - at 
least for the first stage of the inhibition. Thus, considering ∆𝐺௕௜௡ as a one of the first components 
making up the ligand potency and toxicity, this is in agreement with the reports of Carlsen[16] whose 
QSAR model-based study disproves the existing claims as if the Novichoks were allegedly several 
times more potent than the hitherto known OPNAs. 
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Figure 2. Structures of the AChE natural agonist (the upper-most row, green) and various synthetic 
OPNAs (middle and bottom rows, red) chosen as ligands for our research. 

The relatively high values of MM/GBSA standard deviations may be seen as a potential source 
of uncertainty regarding the correctness of the simulation results or protocols but this issue arises 
rather due to the method itself. MM/GBSA, although overall reliable and popular due to its moderate 
computational cost, is known to have incorporated several approximations with the method[26] that 
arguably are responsible for the somewhat diminished precision of outcomes. 

Table 1. An average docking score and MM/GBSA-binding energies [both in kcal/mol] for the selected 
ligands. An average radius of gyration (Rg) [in Å] for the selected ligands. 

Compound 
∆𝑮𝒅𝒐𝒄𝒌 

(average) 

∆𝑮𝒃𝒊𝒏 

(average) 
Rg 

(average) 

A-230 (R) -5.8 ± 0.2 -27.7 ± 8.2 23.17 ± 0.07 
A-230 (S) -5.8 ± 0.2 -27.5 ± 7.5 23.18 ± 0.07 
A-232 (R) -6.0 ± 0.2 -35.3 ± 13.0 23.15 ± 0.07 
A-232 (S) -6.0 ± 0.2 -35.3 ± 8.4 23.14 ± 0.06 
A-234 (R) -6.4 ± 0.1 -24.8 ± 6.4 23.21 ± 0.07 
A-234 (S) -6.4 ± 0.1 -25.5 ± 8.1 23.19 ± 0.08 

acetylcholine -5.4 ± 0.4 -6.6 ± 5.1 23.24 ± 0.08 
sarin (R) -5.1 ± 0.3 -28.6 ± 6.4 23.20 ± 0.07 
sarin (S) -4.6 ± 0.2 -31.9 ± 9.0 23.23 ± 0.06 

soman (RR) -5.8 ± 0.2 -25.5 ± 6.4 23.23 ± 0.06 
soman (RS) -5.9 ± 0.2 -25.8 ± 8.0 23.25 ± 0.08 
soman (SR) -5.9 ± 0.2 -27.9 ± 6.9 23.20 ± 0.08 
soman (SS) -5.9 ± 0.2 -27.3 ± 6.0 23.23 ± 0.07 
tabun (R) -5.5 ± 0.3 -30.0 ± 7.1 23.21 ± 0.08 
tabun (S) -4.9 ± 0.2 -28.0 ± 8.3 23.23 ± 0.08 

VX (R) -5.9 ± 0.2 -36.9 ± 6.5 23.25 ± 0.09 
VX (S) -6.4 ± 0.2 -32.3 ± 7.6 23.17 ± 0.07 

Additionally, the spatial conformation and stability of the simulated AChE–ligand system is 
supported by stable values of the radius of gyration (Rg) in Table 1 and Rg = Rg(t) mapping trajectory 
plot in Figure 3. Rg that is practically constant over the entire molecular simulation process proves 
that no significant conformational change is initially induced in the AChE structure by the presence 
of the ligands. 

Similar ligands’ and complex stabilities are supported by the root mean square deviation per 
residue (RMSD) and the one of the AChE Cα atoms (Figures S9-S16 and S17-C24 respectively). The 
Cα RMSD is in relative low range of values. Such results are not supportive for the induced-fit binding 
and support the hypothesis that Novichoks’ (and other examined OPNAs’) binding mode engages 
conformations resulting from preexisting conformational dynamics; the secondary mode for the 
AChE enzyme was advocated e.g. by Xu et al.[27] 
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Figure 3. An exemplary plot presenting Rg = Rg(t) depend-ence for a selected Novichok. Plots for all 
simulated systems are available free of charge as supplementary info (Figures S1–S8). 

The dynamic adjustment similarity between the AChE – ACh and the AChE – OPNA systems 
are confirmed by RMSF calculations (Figures 4–6). As it can be seen, the root mean square fluctuations 
for examined systems calculated for each residue separately (Figures 4–6). Residues 1 and 261, 
yielding one of the highest spikes in RMSF, are one of the outermost residues and the last residue (i.e. 
543) being the given ligand itself. High values of RMSF in case of the ACh natural ligand (the far right 
spike on the Figure 6) suggest that its average movement of atomic positions with respect to time is 
much higher than the rest of Novichoks and other OPNAs. This provides another confirmation that 
ACh is positioned very loosely compared to the artificial agonists and its flexibility is relatively high. 
Moreover, structural adjustments in the protein (residues 1-542) form practically the same pattern of 
spikes in each case and are furthermore of very similar magnitude. This allows to presume that the 
protein structural folding adjust to interact with Novichoks in the same way as with ACh and other 
OPNAs. This indicates that the putative Novichok working mechanism could be at least similar (if 
not identical in nature) to the actual AChE – ACh mechanism. 

The discrepancy between low RMSD values and higher RMSF most probably are due to the fact 
that RMSD values represent a quantitative measure of a structure divergence over time from the 
reference point, in this case structures resulted from the energy minimization, and the RSMF ones 
reveal which residues are the most mobile (fluctuate the most; i.e. diverge from the time-averaged 
structure). 

 

Figure 4. Plots of RMSF per residue [in Å] for the AChE –Novichok systems. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 December 2023                   doi:10.20944/preprints202312.0256.v1

https://doi.org/10.20944/preprints202312.0256.v1


 6 

 

 

Figure 5. Plots of RMSF per residue [in Å] for the AChE – exemplary OPNAs systems. 

 

Figure 6. Plots of RMSF per residue [in Å] for the AChE – ACh system. 

The same pattern of flexibility and rigidity emerges when considering SASA surface for different 
ligands (Figures S25–S32) – molecular volume enclosed by SASA remains relatively stable and of low 
values for each sys-tem, except for acetylcholine. The highest SASA average value and the highest 
SASA standard deviation values for ACh support the view of OPNAs buried deeper into the active 
site and being less flexible than ACh. This native ligand may in turn operate more freely and recruit 
for the active site solvent molecules. Such dynamics corresponds well with the AChE high turnover 
number with respect to its natural agonist. The most frequent struc-tures form MD simulations (see 
Figures 7 and 8), shown together with their corresponding interacting aminoacids, support the image 
in which Novichoks and other OPNAs are placed much more closely to Ser202 than ACh. 
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Figure 7. Exemplary snapshot of the most frequent structure for AChE complexes with ACh. Ser202 
shown for pure illustrative purposes. 

Additionally, the interaction partition analysis was performed in order to gain quantitative 
knowledge about how the interactions are divided between individual residues, i.e. with which 
aminoacids the ligands interact the most. Exemplary partitioning for Novichoks is depicted in Figure 
9 while Figures S33–S38 depict the aminoacids and the interaction energy for the acethylcholine, 
Novichoks and the remaining G- and V-series agents respectively as well as exemplary snapshots 
with all interacting residues common in the tier made visible. 

   

Figure 8. Exemplary snapshots of the most frequent structures for AChE complexes with A-232 [S] 
(left) and sarin [S] (right). The dashed line symbolizes hydrogen bonding. 

 
Figure 9. Exemplary snapshots of the most frequent structures for AChE complexes with A-232 [S] 
(left) and sarin [S] (right). The dashed line symbolizes hydrogen bonding. 

As to be expected, our results show that the interac-tions within the active gorge of AChE are 
taking place between the ligands and aminoacids that are placed in the nearest proximity of all the 
docked ligands. The main differences are the number of interacting residues (3 in the case of ACh, 
from 3 to 5 in the case of OPNAs) and their maximal strength in the tiers (about -4 kcal/mol for ACh, 
about -7 for A-234, slightly less than -7 for VX) and the particular residua themselves. Although there 
are aminoacids that interact with most members of all the tiers (e.g. TRP 85), there are also ones that 
seem to be specific exclusively to OPNAs (TYR 336 or HID 446). This may be explained by the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 December 2023                   doi:10.20944/preprints202312.0256.v1

https://doi.org/10.20944/preprints202312.0256.v1


 8 

 

different size of the ligands and their different overall chemical construction. The results support all 
the previous considerations regarding the strength of ligands interactions and their flexibility. 

3. Materials and Methods 

3.1. Methodology 

The workflow for this research consisted of following steps: 
1. preparation and optimization of the protein and all ligands, including their stereoisomers; 
2. docking of each ligand to AChE binding cavity, yielding preliminary quantitative forecasts as to 

whether the binding is thermodynamically favorable; 
3. molecular dynamics and MM/GBSA simulations of any thermodynamically favourable 

dockings, giving insights how ligands may stabilize in the active site and yielding the binding 
affinity of their non-covalent complexes. 

3.1.1. Preparation of the protein and ligands 

The protein structure, downloaded from the RCSB PDB database[28] (PDB ID: 4m0e[29]), was 
reconstructed using Modeller software in order to fill missing residues, then after removing ligands, 
it was subjected to structure validation using SAVES 6.0 server[30], passing vast majority of tests, 
with high overall quality factor. The protein was protonated accordingly to its optimum pH using 
Poisson-Boltzmann method[31] and prepared for molecular docking with AMBER force field by 
merging non-polar hydrogens and calculation of partial charges on residues. 

Ligand structures (see Figure 2) were created using GaussView 6.0[32], based on structures 
deposited in the PubChem database (https://pubchem.ncbi.nlm.nih.gov/), and subsequently 
optimized using one of the DFT method (B3LYP-GD3/cc-pvtz level of theory) as implemented in 
Gaussian16 software.[33] Optimization and vibrational analysis for each ligand were performed for 
the gas phase. Additionally, Merz-Kolmann population analysis and RESP partial charge[34] 
derivation were performed with HF/6-31G* level of theory. The latter resulted in series of .gesp files 
that were subsequently used for generation of .mol2 molecular dynamics input and library files by 
Antechamber software[35] from AmberTools20.[36] 

3.1.2. Preparation of the protein and ligands 

The protein was protonated, non-polar hydrogens were merged and calculation of partial 
charges on its residues was performed as mentioned above. The charges as well as the number of 
torsion angles were calculated using AutoDockTools 1.5.6[37]. The flexible residues were selected 
based on a centroid of the active site and extracted to separate output file, also by means of 
AutoDockTools 1.5.6. The molecular docking of all selected ligands was performed using 
AutoDockVina 1.1.2[38]. The docking grid was set on a centroid of the active site with the flexible 
residues and total volume of maximum 27000 Å3.  

Every docking yielded up to 20 ligand’s conformations and was repeated 4 times for each ligand. 
Then the ligands in the vicinity of Ser202 with the lowest energy, and optimized spatial structure of 
flexible residues were merged with input protein structure using an in-house python script. This 
procedure yielded initial energies of binding and spatial orientation of ligands inside the protein’s 
active center and subsequently served as starting points for molecular dynamics simulations. 

3.1.3. Molecular dynamics 

The Antechamber software was applied for conversion of the ligand .gesp files to the input .mol2 
ones with RESP partial charges assigned. Topology and input coordinate files were generated using 
tLeap, module of the Amber20 package, using ff14SB force field[39] for protein, GAFF[40] for ligand 
and TIP3P water model[41] for the solvent. The system was placed in a truncated octahedral box, 
solvated and neutralized with sodium or chloride ions, depending on its total charge. MD simulation 
was performed with Amber20 pmemd module, with minimizations and heating performed using 
multiple CPU threads, and productions using GPU. First 10 ns of each production simulation were 
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treated as an equilibration phase and omitted in the further analysis. The trajectory was saved every 
1000 MD step. Validation of the simulation was accomplished using cpptraj software[42], through 
calculation of radius of gyration (Rg) of the complex, root mean square deviation (RMSD) of the ligand 
atoms related to the structure after optimization, the Cα atoms of the protein, root mean square 
fluctuations (RMSF) of system residues, solvent accessible surface area (SASA) of the ligand. 
Additionally, an interaction energy partitioning (i.e. contributions from aminoacids that interact with 
the given ligand the most) was calculated for every 10th trajectory frame and averaged. In order to 
obtain the most frequent orientation of ligand within the binding cavity, the trajectories were 
clustered using a hierarchical agglomeration algorithm. The relative binding energies of ligand to the 
enzyme: ∆𝐺௕௜௡ were calculated basing on the MM/GBSA algorithm.[26] This yields relative binding 
energies which much higher accuracy that the one obtained through molecular docking and also 
indicates the most optimal conformation of the ligand within the binding cavity prior to covalent 
binding to the enzyme 

5. Conclusions 

This paper aims to slowly begin filling the yawning chasm between what is already known and 
what should be known regarding the Novichoks–acetylcholinesterase enzyme (AChE) interactions 
because, due to their putatively higher affinity to AChE, combined with recalcitrance to degradation 
and potential resistance to oxime’s reactivation mechanism, Novichoks are significant threat that 
requires investigation. Data obtained by our research allow to draw several conclusions about the 
Novichok-AChE binding affinity and provide certain clues regarding their possible working 
mechanism. 

The selected organophosphorus nerve agents (OPNAs) bind to AChE in a thermodynamically 
favorable way and the natural agonist, acetylcholine (ACh), turns out to be the least potent binder 
with huge discrepancy between itself and the OPNAs, confirmed additionally by high ACh root-
mean-square fluctuation (RMSF) values, what is expected from a high turnover-number enzyme. The 
comparable binding affinities of all the nerve agents support rather the scarce literature reports, 
according to which Novichoks are similar in potency than the older OPNAs instead of being much 
superior in toxicity. 

The AChE-Novichok complexes are temporarily and spatially stable entities as indicated by 
radius of gyration, root-mean-square deviation (RMSD) and Cα (alpha carbon) RMSD values. The 
results do not support the induced-fit binding mode; exploiting conformations from preexisting 
conformational dynamics offers a better explanation of the observed features. 

ACh is the most flexible as indicated by the RMSF and solvent-accessible surface area values as 
well as the interaction partition analysis. Almost identical patterns of the OPNAs RMSF spikes and 
their magnitude, as compared to the ACh ones, prove the dynamic adjustment similarity what in turn 
indicates that the working mechanism may resemble the actual AChE – ACh mechanism or be 
identical. Although, while focusing in this work solely on the non-covalent binding as the very first 
step of the Novichok inhibition process, we intentionally refrain from unambiguously choosing any 
specific putative mechanism, we are of the opinion that the results presented above allow us to 
surmise that the process in question should be the nucleophilic substitution at the phosphorus centre, 
proceeding either via pure SN2 mechanism or via the substitution-elimination (S–E) scheme, exactly 
as in the case of the rest of examined OPNAs. 

This hypothesis however is outside the scope of the present paper and could be answered with 
more degree of certainty by more elaborate studies, engaging more sophisticated levels of theory 
applied (preferably, pure quantum mechanical (QM) or hybrid QM/MM methods with one of the ab 

initio approaches) allowing to follow and probe the reaction coordinate and obtain activation energy 
barriers. At present, we are in the process of verifying it. 

Supplementary Materials: The following supporting information can be downloaded at the website of this 
paper posted on Preprints.org, 1. Cartesian coordinates for all DFT-optimized ligands; 2. Figures S1–S8: Radius 
of gyration of protein-ligand complex as a function of simulation steps; 3. Figures S9–S16: RMSD of protein-
ligand complex as a function of simulation steps; 4. Figures S17–S24: Cα RMSD of protein-ligand complex as a 
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function of simulation steps; 5. Figures S25–S32: SASA of protein-ligand complex as a function of simulation 
steps; 6. Figures S33–S38: Interaction partitioning for the given ligands with exemplary snapshots. 
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