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Abstract: The fidelity of the decadal experiment in Coupled Model Intercomparison Project Phase-5 (CMIP5)
has been examined, over different climate variables for different temporal and spatial scales, in many previous
studies. However, most of the studies were for the temperature and temperature-based climate indices. A
quite limited study was conducted on precipitation of decadal experiment and no attention was paid to a
catchment level. This study evaluates the performances of eight GCMs (MIROC4h, EC-EARTH, MRI-CGCM3,
MPI-ESM-MR, MPI-ESM-LR, MIROC5, CMCC-CM, and CanCM4) for the monthly hindcast precipitation of
decadal experiment over the Brisbane River catchment in Queensland, Australia. First, the GCMs datasets were
spatially interpolated onto a spatial resolution of 0.05°<0.05° (5 kmx 5 km) matching with the grids of observed
data and then were cut for the catchment. Next, model outputs are evaluated for temporal skills, dry and wet
periods, and total precipitation (over time and space) based on the observed values. Skill test results reveal that
model performances varied over the initialization years and showed comparatively higher scores from the
initialization year 1990 and onward. Models with finer spatial resolutions show comparatively better
performances as opposed to the models of coarse spatial resolutions where MIROC4h outperformed followed
by EC-EARTH and MRI-CGCM3. Comparing the skills, models are divided into three categories (Category-I:
MIROC4h, EC-EARTH, and MRI-CGCM3; Category-II: MPI-ESM-LR and MPI-ESM-MR; and Category-III:
MIROCS5, CanCM4, and CMCC-CM). Three multi-model ensembles’ mean (MMEMs) are formed using the
arithmetic mean of Category-I (MMEM1), Category-I and II (MMEM?2), and all eight models (MMEM3). The
performances of MMEMs are also assessed using the same skill tests and MMEM2 performed best which
suggests evaluating the models before the formation of MMEM.

Keywords: cmip5; decadal; precipitation; prediction; catchment; multi-model

1. Introduction

Evaluation of General Circulation Models (GCMs) has become a very important task to measure
the models’ credibility in future prediction of climate variables. Evaluation of models predicted
historical data based on their corresponding observed values determines how well the GCMs
represent historical climate and thus forms an integral part of the confidence-building exercise for
climate predictions. It is assumed that the better performance of models over the historical period
leads to developing more confidence in their future predictions. As the GCMs are used to explore the
future climate variabilities and potential impacts on the Earth, evaluation of GCMs has been a
growing need in the climate research community. However, depending on the requirements,
available resources, geographical locations, and variables considered to assess the model
performances, the evaluation strategies become different. Since the change of climate and its potential
impact on this planet varies from region to region, it is important to evaluate the models based on
different regions and spatial scales though the evaluation of climate models and their ensembles is
crucial in climate studies [1]. Research on regional or local climate variability and their potential
impacts are high in demand for transferring research-based scientific knowledge to increase the
resilience of society to climate change. This will help in planning the future development of the
infrastructures of a region [2].

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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Coupled Model Inter-comparison Project Phase-5 (CMIP5) provides an unprecedented
collection of global climate data of different time scales including decadal experiments that were
produced by a wide range of GCMs [3]. Evaluation of CMIP5 decadal prediction has been run so far
based on different evaluation aspects such as different regions, different climate variables, and their
different spatial and temporal resolutions. For instance, Choi et al. [4] investigated the prediction skill
of CMIP5 decadal hindcast near-surface air temperature for the global scale while other researchers
investigated other climate variables in continental or regional scales [5-7]. Lovino et al. [5] evaluated
decadal hindcast precipitation and temperature over northern Argentina and reported higher skills
of models to reproduce the temperature as opposed to precipitation where precipitation skills were
found remarkably lower. Mckeller et al. [6] investigated decadal hindcast maximum and minimum
temperature over the state of California and reported the best-performing model. Likewise, Gaetani
and Mohino [7] evaluated model performances to reproduce Sahelian precipitation and reported
better-performing models. However, these studies were for different geographical locations with
coarser spatial resolutions for considered variables. For instance, the spatial resolution of models
used by Kumar et al. [2] and Choi et al. [4] was 2.5°, Gaetani and Mohino [7] used models of more
than 1.19 and Lovino et al. [5] used precipitation data of 1.0° spatial resolution. At a regional level,
Mehrotra et al. [8] assessed the multi-model decadal hindcast of precipitation for different
hydrological regions over Australia using 0.5° spatial resolution and reported lower skills for
precipitation as opposed to temperature and geopotential height. Climate data of 0.5° spatial
resolution covers a ground area equivalent to a square of 50 km length over the Australian region.
Comparatively, a 50 km x 50 km area is very big where climate variabilities are also large and
frequency and magnitude of precipitation vary in a few kilometers (such as in Australia). As the
precipitation shows more spatial and temporal variability than temperature and the model
performances vary from region to region, therefore the model performances at the local level for finer
spatial resolution are essential for precipitation.

Numerous studies evaluated CMIP5 models over Australia [5-7] but studies on evaluating
CMIP5 decadal precipitation at catchment scale can hardly be found. After Mehrotra et al. [8], who
assessed the CMIP5 decadal hindcast precipitation over different hydrological regions (0.5° x.0.5%) in
Australia, recently Hossain et al. [5-7] used the CMIP5 decadal precipitation at a further finer
resolution of 0.05° x0.05° (5kmx5km) for Brisbane River catchment Australia for the first time. Hossain
et al. [5-7] compared the model performances for investigating the model drift and their subsequent
correction using alternative drift correction methods for both the monthly and seasonal mean
precipitation. However, they compared the model performances at a single grid point within the
Brisbane River catchment. On the contrary, Mehrotra et al. [8] used only a multi-model approach but
did not consider individual models finer than 0.5° spatial resolution. Local climate variables of finer
temporal and spatial resolution, especially for precipitation, are very important for water managers
for planning and developing infrastructures as well as decision-making for local businesses and
agriculture. To maintain sustainable development with effective future planning based on the
models’ projected precipitation, it is important to evaluate the performance of the CMIP5 models’
hindcast precipitation.

Many researchers have suggested using MMEM [14-17] while using GCM data to reduce the
model biases. The use of MMEM may enhance the model performances [14-17] by reducing the biases
to some extent but there is no information available on the ranking of GCM models and based on
this, which and how many models should be considered to produce MMEM so that it could provide
better outcome. This is essential for CMIP5 decadal precipitation because of its wide range in spatial
and temporal variability in providing the model output ten years ahead. That is why the objective of
this paper is, first, to categorize the models based on their performances at the catchment level with
a spatial resolution of 0.05° and next, to identify the best combination of different models that would
provide better performance. This would help the water managers and policymakers to sort out
models depending on their specific needs while assessing the future water availability based on the
GCMs-derived precipitation on a decadal scale through CMIP5.

2. Data Collection and Processing
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2.1. Data Collection

CMIP5 decadal experiment provides 10 and 30-year-long ensemble predictions from multiple
modeling groups [henceforth mentioned as CMIP5 decadal hindcasts, [19]]. Monthly decadal
hindcasts precipitation from eight GCMs (out of ten); MIROC4h, EC-EARTH, MRI-CGCM3, MPI-
ESM-MR, MPI-ESM-LR, MIROC5, CMCC-CM, and CanCM4 for which decadal hindcast
precipitation are downloaded from CMIP5 data portal (https://esgf-node.llnl.gov/projects/cmip5/).
The other two models, HadCM3 (spatial resolution 3.75° x 2.5°) and IPSL-CM5A-LR (spatial
resolution 3.75° x 1.89°) were not considered in this study because of their relatively coarser spatial
resolution and different calendar system (HadCM3). For the initialized period 1960-2005, data
simulated over 10 years that are initialized every five years during this period are selected for this
study as they were found comparatively better than the 30-year simulation [20]. The details of the
selected models are given in Table 1.

Table 1. Selected models with the initialization year 1960-2005.

Model name Initialization Year (1960-2005)

(Modelling center or group) 60 65 70 75 80 85 90 95 00 05
Resolutions:°lon x °lat Number of ensembles

EC-EARTH
(EC-EARTH Consortium) 14 14 14 14 14 14 14 14 10 18
1.125 X 1.1215
MRI-CGCM3
(Meteorological Research Institute) 06 08 09 09 06 09 09 09 09 06
1.125 X 1.1215
MPI-ESM-LR
(Max Planck Institute for Meteorology) 10 10 10 10 10 10 10 10 10 10
1.875 X 1.865
MPI-ESM-MR
(Max Planck Institute for Meteorology) 03 03 03 03 03 03 03 03 03 03
1.875 X 1.865
MIROC4h
(AORI-Tokyo University, NIES and JAMEST)* 03 03 03 06 06 06 06 06 06 06
0.5625 X 0.5616
MIROC5
(AORI-Tokyo University, NIES and JAMEST)* 06 06 06 06 04 06 06 06 06 06
1.4062 X 1.4007
CanCM4
(Canadian Centre for Climate Modelling and Analysis) 20 20 20 20 20 20 20 20 20 20
2.8125 X 2.7905
CMCC-CM
(Centro Euro-Mediterraneo per I Cambiamenti Climatici) 03 03 03 03 03 03 03 03 03 03
0.75 X 0.748

The observed gridded monthly precipitation of 0.050 x.0.050 (= 5km x 5km) was collected from
the Australian Bureau of Meteorology (Observed/Bureau). This data was produced using the
Australian Water Resources Assessment Landscape model (AWRA-L V5) [21].

2.2. Data Processing

The GCMs’ resolutions (100-250 km) are found inadequate for regional studies due to lack of
information at catchment levels [22-24]. The regional climate model (RCM) is useful to transfer the
coarse spatial GCMs’ data to local scale but it needs a wide range of climate variables as well as
rigorous efforts to develop. For this reason, GCMs data are spatially interpolated onto 0.05°<0.05°
spatial resolution using the second-order conservative (SOC) method matching with the grids of
observed data. For the gridded precipitation data, the SOC method was found comparatively better
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than other commonly used spatial interpolation methods [25]. Skelly and Henderson-Sellers [26]
suggested GCM derive gridded precipitation to consider as areal quantities and spatial interpolation
will not create any new information except the spatial precision of the data. Skelly and Henderson-
Sellers [26] also suggested that researchers could subdivide the grid box in almost any manner until
the original volume remains the same. On the contrary, Jones [27] suggested that precipitation flux
must be remapped in a conservative manner to maintain the water budget of the coupled climate
system. While sub-gridding the GCM data using the SOC method, it conserves precipitation flux
from their native grids to subsequent grids [27]. For this reason, this study used the SOC method for
spatial interpolation as it was followed in other research [13]. Brisbane River catchment was selected
for this study because of its tropical climate that produces low to moderate variability of annual
precipitation values.

3. Methodology

A simple and direct approach for the model evaluation is to compare the model output with the
observations and analyze the differences. In this study, models are evaluated for temporal skills, dry
and wet periods, and total precipitation based on the observed values. Here, CC, ACC, and IA are
used to measure the temporal skills, FSS are used to measure the skills over dry and wet periods,
field-sum and total-sum are used to measure the skills for total precipitation. There are 496 grids in
the Brisbane River catchment with a spatial resolution of 5.0 km x 5.0 km. The descriptions of the
skills are given below.

3.1. Correlation Coefficient (CC)

CC measures the linear association and presents the scale of temporal agreement between
predicted and observed values. Statistically, it measures how much closer the scatter plot points to a
straight line. CC ranges from -1 to 1 for no to perfect correlation respectively.

cc = Y(Fi = F)(0; = 0)
[5G - F2 30, -0y

Here, F and F, represent models’ predicted and their mean whereas 0 and O represent
observed precipitation and their mean respectively. In the following skill tests, these notations will
remain the same. Note that the mean is calculated for every individual year.

@™

3.2. Anomaly Correlation Coefficient (ACC)

ACC was suggested by Wilks [28] to measure the temporal correlation between anomalies of the
observed and predicted values. For the verification of numerical weather models” prediction ACC is
frequently used. Its value ranges from -1 to 1 for no to perfect anomaly matching.

e = HE=0O = F=0)+((0,=0) - 0=0)) )
VE(F = )2 JX(0; - C)?

Here, C represents the mean of the entire time-span (ten years) of the observed (Bureau) data.

The higher value of ACC will indicate the higher performance in reproducing the monthly anomalies.

3.3. Index of agreement (I1A)

Wilmot [29] suggested IA to measure the accuracy of predictions. The index of agreement can
be calculated as follows.

S (Fi0)? ®)
Y (IFi=0|+|o;-0)%

IA=1-

The index is bounded between 0 and 1 (0<IA< 1). The value closer to 1 indicates the most efficient
predicting of the models.

doi:10.20944/preprints202312.0156.v1


https://doi.org/10.20944/preprints202312.0156.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2023 doi:10.20944/preprints202312.0156.v1

3.4. Fractional Skill Score (FSS)

ESS is a grid-box event that directly compares the fractional coverage of models’” predicted and
observed values for the entire catchment. It measures how the spatial variability of models” predicted
values corresponds to the spatial variability of the observed values. FSS can be obtained as:

s 1 1%2N(Pf,m—Pf,o)2 4)
NZN P+ Zn o]

Where Py and N refers to calculated fraction and number of years respectively. The subscript
m and o present modeled and observed respectively. In this study, fractions are calculated according
to Roberts and Lean [30] but considered entire catchment as a whole unit, and the temporal averages
(for considered months) are taken instead of the spatial averages. For doing this, threshold values;
>85 percentile for the months of wet seasons (December to February -DJF) and <15 percentile for the
months of the dry seasons (June to August - JJA) are considered. To get the fractions (say for January),
the number of grid points covered for a specified threshold value is counted and then divided by the
total number of grids within the catchment. The differences between predicted and observed
fractions (the numerators of equation 4) are calculated for individual months. The FSS is a temporal
average score for the catchment for each considered month. It ranges from 0 to 1 for no to perfect
match respectively.

3.5. Field-sum and total-sum

Models’ ability to reproduce the total precipitation over the entire catchment is considered as
the spatial skills of the models. Field-sum is the sum of precipitation over the entire catchment for
individual time steps and the total-sum is the field-sum over the total time span. Field-sum and total-
sum of the models’” precipitation are compared with the corresponding observed values.

4. Results and Analysis

4.1. Temporal skills

The temporal skills are computed at every individual grid (total 496 grids) of the catchment for
all initialization years of each model. Spatial variations of models’ temporal skills across the
catchment for the initialization year 1990 (1991-2000) are presented in Figure 1. The models are
evaluated from the spatial perspective by counting the number of grids covered by different models
for different threshold values of CC, ACC, and IA Figure 2. The higher number of grids represents
the higher spatial skill of models across the catchment. From the comparison of temporal skills, it is
evident that model performance varies over the initialization years and also across the catchment.
From the initialization year 1990 and onward, all models show a comparatively higher number of
grids for the same thresholds of CC, ACC, and IA and the lowest skill observed in 1980. With the
increase of threshold values, the number of grids declines for all models in all three temporal skills
except CMCC-CM and MIROC5 in ACC. Compared to other selected models, MIROC4h, EC-
EARTH, and MRI-CGCM3 show a higher number of grids for all thresholds in which MIROC4h is
much ahead of EC-EARTH and MRI-CGCMS3. It means temporal agreement, the resemblance of
anomalies, and the prediction accuracy of MIROC4h and EC-EARTH spatially higher than other
models. This study also checked the number of grids for the threshold >=0.6 for CC and ACC but no
model could reproduce CC and ACC >=0.6 at any grid. However, MIROC4h, EC-EARTH, and MRI-
CGCM3 show a significant number of grids for the IA threshold >=0.6 where MIROC4h outperformed
EC-EARTH and MRI-CGCM3 (Figure 2). Comparing the models, MIROC4h shows higher temporal
skills from the spatial perspective, followed by EC-EARTH and MRI-CGCM3 whilst MPI-ESM-MR,
MIROCS5, and CMCC-CM show low to lowest temporal skills. Over the catchment MIROC5, MPI-
ESM-MR, CanCM4 show little better scores than CMCC-CM.
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Figure 1. Spatial variations of temporal skills (CC, ACC, and IA) of the models initialized in 1990 (period; 1991-2000) over the Brisbane River catchment.
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4.2. Evaluation for dry and wet periods
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(25, 50, 75, and 90 percentiles correspond to 25, 60, 110, and 175 mm respectively) whereas for the
entire catchment, FSS are used for the months of dry (JJA) and wet (DJF) periods only.

4.2.1. At the selected grid

A comparison to reproduce the dry and wet events based on the selected precipitation
thresholds at the selected grid is presented in Figure 3. This comparison was based on the ratio of the
number of months of respective precipitation thresholds (mentioned on the top of the individual plot
in Figure 3.) in model data to observed data. It is observed that EC-EARTH and MIROC5 could
reproduce no dry events (Pr<=25 mm) whilst CMCC-CM overestimates the number of dry events
which is almost double the dry events in observed data. Meanwhile, MIROC4h performed better to
produce dry events as well as 50 and 75 percentile values as compared with the other models.
However, MIROC4h is a little behind the MPI-ESM-MR for the extreme wet events (Pr>=175 mm). It
means MPI-ESM-MR can reproduce extreme wet events better than the other models. EC-EARTH,
MPI-ESM-LR, and MPI-ESM-MR underestimated the events of threshold Pr<=60mm whereas
overestimated the wet events (Pr>=110 mm) which is an indication of models’ tendency to reproduce
a higher number of wet events than opposed to dry. However, MRI-CGCM3 performed similarly to
MIROC4h in reproducing the number of events for the threshold of <= 60mm but underestimated the
number of events thresholds of >= 110mm. To reproduce the extreme wet events (Pr>=175 mm), all
models show underestimation in which MPI-ESM-MR and MIROC4h showed considerably better
skills. The CMCC-CM and CanCM4 showed poorest, and no skill respectively for extreme wet events.


https://doi.org/10.20944/preprints202312.0156.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2023 doi:10.20944/preprints202312.0156.v1

9
(a) Pr<=25mm (b) Pr<=60mm
o 0.89 ﬁ 093 076 084 1.20
S
5 104 m 077 077 079 [
3
o o e oo o EED
o
10 0.85 m 085 074 060 ERENREER 123
2 -2.00
: o o = o ERE
&
W 084 [KEN 077 039 | 0.11 | 147 IEKH
@ -1.75
=24
& 001 KRN o072 ﬁm . 147
D
o
0 ogamgss 0.60 0 INEY 138 -1.50
S
ECERRRE - D EEE
=1 -1.25
8 .
 EEDRRRRE - D 0 -
&
-1.00
(c) Pr>=110 (d) Pr>=175
o 084 126 092 097 108 EFZEENE 057 064 086 EEHEY
3 -0.75
o (oo (I M o
S
o 1.090.63 113 116 1.38 003 YA 039 | 0.17 017 3 m -0.50
o
@ - DDEE - - DR s
N~
& -0.25
R - -
&
- DDDEE - - i - e -
&
= o o I -~ R
S
o 120 R4 oo 100 127 136 064 mm
3
- [ - oo I - -
&
: o -
&
— o« wn < - o« wn <
S £ 2 % £ 83 £ § E 2 3 &£ 8 3 =
8 x Q = T O T O  x® O < T O & O
=3 1) & - hd Q c o < O S = o Q c
x w O w = 2 8 x w O n = L2 8
v - w Y| = = 0 - w w = =
= Q —~ =t - = @) = s i
| 04 o & (&] ] o o a (@]
= = = = = =

Figure 3. Comparison of model skills to reproduce dry and wet events at a selected grid point. Values
1.0 present perfect matching whilst values below and above 1.0 present under and over prediction
respectively.

4.2.2. Over the entire catchment

ESSs are calculated for the months of winter (dry) and summer (wet) seasons only. FSS of all the
initialization year of all models are shown in Figure 4. Results show that for the months of summer
seasons (DJF), MRI-CGCM3 shows higher skills in December and January but little behind than EC-
EARTH in February. On the contrary, CMCC-CM shows the lowest skill in December but shows
similar skill with other models in January and February.


https://doi.org/10.20944/preprints202312.0156.v1

Preprints (www.preprints.org)

1970 1965 1960

2005 2000 1995 1990 1985 1980 1975

2005 2000 1995 1990 1985 1980 1975 1970 1965 1960

2005 2000 1995 1990 1985 1980 1975 1970 1965 1960

FSSa85_DEC
o o o 8 B B
033 03 0
"

032 033

03 032 0.31

o 8] o B0 o oo i ©

034 03 043 032 032 031

033 031 044 03 (UkYA 0.095 | 0.2

os s [0 8] o [ o o [0 o [ o e e

FSSa85_FEB

03 03 031 -- 032 031 -

o 8 - B - [ B o o

o B -- &= -----

;1 o o loosloon

FSSa85_JAN
032 03 034 03 -- 0.38 -
033 032 034 035
031 031

03 032

0.32 - 034 0.33 -

s oo oo 8 oo 58
0.33 0.34
0.36

03 03

FSSb15_JUN

033 033 - 03 - 03 033 032 041 n--

036 03

-032 031 03 -

- 034 03 - 032 031 -- 055 041 [N 031 - 033 -

032 031 031

031 0 035 031 03 032

o o o 6 o

FSSb15_JUL
032 038 041 03 048

o o oo o | o o

037 048 03 03 0.47

036 0.52

056 045 046 032 0.31

046 049 049 031

- I -

032 031

037 0.56

103 | 047

039 033

oo ] ] s o [N
o o s [Qf o o

0.31

o
'S
©

MIROC4h
EC-EARTH
MRI-CGCM3
MIROC5
CMCC-CM
CanCM4

-.‘
=
]
w
o
=

MPI-ESM-MR

o S I -~ 0 -+ ==

R B -~ - -

045 031 031 g

036 048 032 | 03 n 0.36 -

051 1033 032 031 0.36
o o I R

o o2 (IR0
035 056 046 0.34

031 031

] os i

0.35 039 031 033 039 04

FSSb15_AUG

035 038 031 031 - 031 -

034 047 04 034 033 035

o ov [68 o R

0.47

031 04 036 03 n 035

0.33 (O3

-ﬂ-

0.35 | 0.33 035 0.

032| 034 041 -n 048 [
036 043 033 03 .n 0.39.

MIROC4h
EC-EARTH
MRI-CGCM3
MPI-ESM-LR
MIROC5
CMCC-CM

o
=
=
D
w
o
-

Figure 4. Fractional skill score for the months of winter and summer seasons.

-05

-04

| NOT PEER-REVIEWED | Posted: 4 December 2023 doi:10.20944/preprints202312.0156.v1

10


https://doi.org/10.20944/preprints202312.0156.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2023

11

However, except higher skill of MRI-CGCM3 and the lowest skill of CMCC-CM in December,
all other models show similar skill scores with few variations in winter seasons. This indicates
different models’ skills are almost similar to reproducing wet events. In the dry season, MIROC5
shows the lowest skill while EC-EARTH shows the higher skills, which is even higher than MIROC4h
and MRI-CGCMS3. The FSSb15 scores of EC-EARTH, MIROC4h, and MRI-CGCM3 are much better
than the score obtained for FSSa85. This reveals that these models are better to reproduce dry events
as opposed to wet events and the reverse is true for MIROC5, MPI-ESM-MR, and CanCM4
respectively.

4.3. Evaluation for total precipitation

4.3.1. At the selected grid

To evaluate the model performances in reproducing the total precipitation, models” cumulative
(over time) precipitation at several randomly selected grids (evenly distributed across the catchment)
within the catchments and total precipitation over the entire catchment are compared. The
cumulative sum of monthly precipitation of different models at the selected grid for different
initialization years is presented in Figure 5. The model skills show both temporal and spatial
variations in predicting accumulated precipitation but no model could reproduce the accumulated
precipitation as observed. However, only a few models (MIROC4h, MPI-ESM-LR, and MPI-ESM-
MR) could reproduce the accumulated precipitation close to the observed accumulation.
Nevertheless, CMCC-CM, CanCM4, and MRI-CGCM3 underestimated the accumulated
precipitation whilst EC-EARTH and MIROC5 overestimated the accumulated values. With the
change of grid locations, model performances may change but the relative performances among the
models will remain the same.

doi:10.20944/preprints202312.0156.v1
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Figure 5. Cumulative sum of monthly precipitation of different models at the selected grid point in

different initialization years. The vertical axis presents accumulated precipitation and the horizontal
axis presents the number of months over the decade.

4.3.2. Over the entire catchment

For comparing the model performances on total precipitation over the entire catchment, this
study calculated the field-sum of the models and observed values then assessed through the temporal
skills as shown in Figure 6. The total sum of the models and observed values are also calculated and
assessed through the ratio between model and observed values (Figure 6). From the comparison, it is
observed that the field sum of MIROC4h, EC-EARTH, and MRI-CGCM3 show comparatively higher
accuracy (IA), temporal agreement (CC), and the resemblance of anomalies (ACC) with the field-sum
of the observed precipitation. The model performances on reproducing the total precipitation vary
over the initialization years (Figure 6d).
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Figure 6. Performance indicators of the models to reproduce the total precipitation of the entire
catchment.

Before and after 1985, MRI-CGCM3 and MPI-ESM-MR showed comparatively better
resemblance with the observed total precipitation followed by MIROC4h and EC-EARTH. On the
contrary, CMCC-CM showed the lowest performance to reproduce total-sum precipitation
throughout all initialization years. From the skill assessments, it is revealed that the MIROC4h
surpasses other models in almost all performance indicators followed by EC-EARTH and MRI-
CGCM3 whilst MPI-ESM-LR and MPI-ESM-MR show medium skill scores. Lower skill scores were
observed for MIROC5, CanCM4, and CMCC-CM respectively. MIROC4h was also marked as the best
model to reproduce precipitation in other studies [22-24] though they did not use the decadal
experiments data. It may be due to the finer resolution of the atmospheric component of MIROC4h
that enhanced its ability to capture the more realistic climate features [22-24] at the local level.

The overall skill assessment results revealed that all models show comparatively lower skills in
the initialization years 1960 to 1985 and better skills observed from the initialization year 1990 and
onward.
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4.4. Model categorisation and formulation of MMEM

Based on the skill comparisons, this study divided the models into three different categories;
Category-1, Category-II, and Category-IIl. While categorizing the models based on their skills at the
selected grid and over the catchment, MIROC4h, EC-EARTH, and MRI-CGCMS3 fall in the first
category (Category-I) as they consistently performed in the top three and their performance metrics
were found very close to each other. Similarly, MPI-ESM-LR and MPI-ESM-MR are in the second
(Category-II) category as they have shown medium skill scores in all skill tests over the initialization
years. Lastly, MIROC5, CanCM4, and CMCC-CM fall in Category-III.

GCMs’ outputs indeed contain uncertainties and biases which will cause the lower skill score
but multi-model ensembles mean (MMEM) may enhance the models’ skills [22-24] by reducing
uncertainties [22-24]. In this study, the skill tests are employed on the ensembles’ mean of individual
models’ raw values (interpolated) only. Here the arithmetic mean of multiple models has referred to
as MMEM. The performances of MMEMs were also assessed based on the similar skill tests that are
employed on individual models and the results are summarized below. To form the MMEMs, three
different combinations are considered. The arithmetic mean of Category-I models is referred to as
first MMEM (MMEM1), the arithmetic mean of the Category-I and Category-1I models is referred to
as the second MMEM (MMEM?2) and finally arithmetic mean of all models is referred to as the third
MMEM (MMEM3).

4.5. Performance of MMEMs

The temporal skills at individual grids of the different thresholds, temporal skills along with the
ratios of the field-sum, and skill on reproducing dry and wet events of different thresholds for
MMEMs are presented in Figure 7, 8 and 9 respectively. In general, MMEMSs show better performance
than the individual models for comparatively lower thresholds of the performance metrics. For
instance, the MIROC4h model showed the highest number of grids for CC and ACC at the threshold
0.5 (Figure 2) but no MMEMs could reproduce this number of grids at the same threshold (Figure 7).
The same results were also observed for IA at the threshold 0.6 (see Figure 7i) but for the lower
thresholds, MMEM?2 shows better skill than MIROC4h in CC and ACC but not in IA. Among the
three combinations, MMEM2 surpasses the other two combinations in reproducing CC and ACC.
Nevertheless, in the case of IA, MMEM2 is little behind than MMEM1. Similar results are evident for
performance indicators obtained from the field-sum of MMEM and the observed values (Figure 8),
where MMEM2 shows best for the CC and ACC but both MMEM?2 and MMEM1 show similar skills
for IA. However, to produce the dry and wet events, MMEMSs show lower performance as compared
to individual models. For instance, MIROC4h, MRI-CGCM3, and MPI-ESM-MR captured some dry
events (Pr<=25mm) at the selected grid point (Figure 3) but no combination could capture it (Figure
9) whilst for the wet events, MMEM shows very poor skills.
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Figure 9. Skill comparison of three MMEMs to reproduce dry and wet events at the selected grid
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precipitation thresholds (mentioned on the top of the individual plot) in model data to the number of
months of observed values for different initialization years (Y-axis).

Meanwhile, MMEMs show better performance indicators (CC, ACC, and IA) for the total
precipitation of the entire catchment (field-sum) which is even better than the individual models.
Nevertheless, MMEM is a little behind the MIROC4h and MRI-CGCMS3 for the ratio of total-sum
(sum over total time span and catchment) model combinations over the corresponding observed
values (see Figure 5d).

5. Discussion

This study evaluated the performance of eight selected GCMs simulation of CMIP5 decadal
precipitation at a catchment level of 0.05-degree spatial resolution. Different skill metrics were


https://doi.org/10.20944/preprints202312.0156.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2023 doi:10.20944/preprints202312.0156.v1

17

employed from both temporal and spatial perspectives in this evaluation assessment. The
performance metrics; CC, ACC, and IA measured the temporal skills of the models. The number of
grids corresponding to individual metrics’ thresholds represents the spatial skills of the models.
These metrics are also calculated for the spatial sum (sum over the entire catchment) of the
precipitation for all models. In addition to these, FSSa85 and FSSb15 presented the spatial skill of the
models for wet and dry seasons respectively. The CC and ACC measured the phase and
correspondence (or anomalies) of the model time series concerning the observed values. The models
showed a wide range of performance scores over the initialization years as well as across the
catchments. It may be due to the difference in understanding of models on local climate features or
the precipitation data of finer temporal and spatial resolutions or the combination of both.

Indeed, the model performances are dependent on the model assumptions or basic principle on
understanding the earth climate system, its processes, and interactions among atmosphere, oceans,
land, and ice-covered regions of the planet. Besides them, decadal prediction skill also depends on
the method of model initialization, and quality and coverage of the ocean observations [3]. Different
initializations also may cause models” internal variability that is still open for further discussion. For
the decadal prediction, one of the most important aspects is the model drift and its correction [8].
However, to evaluate the performance of models’ derived raw data, neither the drifts were
investigated nor any drift correction methods are employed. The reason is, the drift correction
method itself may introduce additional errors that may not reflect the real performance of the models
[22-24]. Based on the understanding of physical, chemical, and biological mechanisms of earth
systems, different modeling groups have come up with different models with reproducing
capabilities of climate variables that may vary over different regions [22-24] and climate variables
[22-24]. For instance, Kumar et al. [2] analyzed the precipitation and temperature trends of the
twentieth century from nineteen CMIP5 models and reported that the models’ relative performances
are better for temperature as opposed to precipitation trends. Generally, models show lower skill to
simulate precipitation than they do for temperature. This is because that the temperature is obtained
from a thermodynamic balance, while precipitation results are from simplified parameterizations
approximating actual processes (Flato et al. [1] and also references therein). In addition, temporal and
spatial scale (considered area) of the considered variables including seasons of the year [22-24] may
also be the reason to vary the model performances. For instance, few models can reproduce winter
precipitation very well but the other may not and vice versa. Likewise, Lovino et al. [5] evaluated
CMIP5 model performances for decadal simulation and concluded that both the best model. They
also suggested that the MMEM could reproduce large-scale features very well but fail to replicate the
smaller scale spatial variability of the observed annual precipitation pattern. These show clear
evidence that there is a spatial variation in the climate model performances across the globe as they
are developed by different organizations [38]. This study noticed the higher skills in the initialization
year of 1990 and onward whereas lower skills in the initialization year 1960 to 1985, but the reason
behind the higher and lower skills remain unknown. However, Meehl et al. [39] reported that the
consequences of Fuego (in 1974) and Pinatubo (1991) eruption degraded the decadal hindcasts skill
of Pacific sea surface temperature in the mid-1970s in mid-1990s respectively. As Fuego was smaller
than Moun t Pinatubo and a lower degrade of skill in the mid-1970s and higher degrade of skill in
the mid-1990s were evident but no degrade on the hindcast skill was evident due to Agung (erupted
in 1963) and El Chichén (1982) [39]. In this study, models’ higher and lower skills of initialization
1990s and 1980s, seem neither relevant to volcanic eruption nor the post-eruption sequences.
Nevertheless, the observed precipitation or coverage of the ocean observed state to initialize the
models have been affected.

The CC and ACC values of all the selected models in all initialization years remained under the
threshold>= 0.6, which was marked as the threshold of significant level in previous studies [22-24]
though those studies were for coarser spatial resolutions and one of them for different climate
variables. Lovino et al. [5] compared CMIP5 model performances over two variables at the local level
and reported higher skill scores for the temperature than precipitation of the same models where the
skill scores for precipitation were remarkably lower than the scores for temperature. Similar results
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were also reported by Jain et al. [31]. In this sense, it seems precipitation data with higher spatial
resolution may be the reason for not capturing the significant level of skills on linear association (CC)
and phase differences or anomalies (ACC). However, few models show that the level of significance
(threshold>=0.6 if we say) for the performance metric IA, which is a measure of the predicting
accuracy that seems promising predictive skill of the models. But the studies that mentioned 0.6 as
the level of significance for CC and ACC, used either coarser resolution data [5] or different climate
variables [4]. For the local or regional level as well as models’ raw precipitation data of higher spatial
and temporal resolution, 0.50 seems a significant score, which is also the same for the similar
performance metrics for the case of total precipitation.

This study also investigated the model performances to reproduce the summer and winter
precipitation. Upon comparing the model skills to reproduce the extreme wet (>=85 percentile of the
observed values) and dry events (<15 percentile of the observed values) across the catchment and
also at the selected grid, this study reveals that except CMCC-CM, all models show almost similar
skills to reproduce the summer precipitation but exhibits some variations to produce the winter
precipitation. Similar skills are also noted for other intermediate thresholds. It is due to the maximum
and minimum precipitation occurring in Brisbane River catchment during summer and winter
respectively. This means that models” responses to reproduce summer precipitation are better than
the winter with the tendency to overestimate higher precipitation events. However, the Category-I
model comparatively performed better to capture the dry events (Figure 4) than the wet events, but
this may vary for different regions around the globe. For instance, MRI-CGCM3 showed very good
skills and has been marked as the first category model in this study but to reproduce the Sahelian
precipitation, MRI-CGCM3 showed insignificant or no skills whilst MPI-ESM-LR and MIROCS5 are
categorized as the second and third category model but were marked as improved skilled models for
Sahelian precipitation [7].

Previous studies [22-24] reported that MMEM improves the models’ skills to reproduce climate
variables but the selection of models to form MMEM is very challenging as the arithmetic means of
the models’ output may further lead to loss of individual ensembles’ signal [15]. This study also
examined the performance of MMEM and revealed that MMEM improves the performance metrics
to some extent but not always and the performances are highly dependent on models” combination
to form MMEM. For instance, MMEM2 shows better performance metrics than the other two
combinations in reproducing the extremely dry and wet events where MMEM3 showed worse
performance (Figure 9). On contrary for the highest thresholds of individual metrics where few
individual models were found better than MMEMS3. Similar results were also reported in some other
studies [22-24] where individual models were found better to some extent than the MMEM.
However, lower skills of CMIP5 models for decadal precipitation as compared to temperature is also
true for the MMEM which was also reported by Mehrotra et al. [8].

In addition to understanding the climate system, models’ configuration, structuring spatial and
temporal resolutions of the simulating variables also play a vital role in determining the model
performance [32]. In this study except for CMCC-CM, models with finer atmospheric resolutions
performed better than the coarser resolutions’ models (see Table 1 Category-I model). It means,
models of finer atmospheric resolutions can reproduce local climate features better than the models
of coarser spatial resolutions and similar results were also reported in previous studies [22-24].
However, the lower skill of CMCC-CM may be due to the difference in understanding or
geographical locations. However, for different climate variables like temperature, the performance
of CMCC-CM may be different [5]. This study will help the water manager, infrastructure developers,
agricultural stakeholders to sort out the models before taking any decision in planning and
developing infrastructures based on the models’ predicted future precipitation. Findings of this study
will also help the researchers for hydrological modelling, and other relevant stakeholders to increase
the resilience of the society to climate change in relation to future water availability and uncertainty.

6. Conclusion
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Evaluation of models’ performance is important to check the credibility of their future
projections. This study assessed the performance of eight models (GCMs), contributed to CMIP5
decadal prediction, for monthly hindcast precipitation over the Brisbane River catchment, Australia.
This is the first attempt that assessed the model performances at a catchment level with finer spatial
resolution where performance of individual models are reported based on a wide range of skill tests.
Models are categorized based on the performance of individual models for temporal skills, dry and
wet periods, and total precipitation (over time and space) at a selected grid and also over the entire
Brisbane River catchment. In addition, this study assessed the performance of different MMEMs
formed from the combinations of different model categories. Considering a wide range of skill tests
from both the temporal and spatial perspectives, the following conclusions are drawn.

e Models with higher atmospheric resolutions show comparatively better performances as
opposed to the models of coarse spatial resolutions.

e  Model performances vary over the initialization years and across the catchment. From 1990
onward, the skills of all models improved across the catchment where MIROC4h shows the
highest skills followed by EC-EARTH and MRI-CGCM3 respectively. The internal structure of
high atmospheric resolutions may be the main reason for MIROC4h reproducing the local
climate variables comparatively better than the other.

e  To reproduce the dry events and total precipitation over the entire catchment, EC-EARTH and
MRI-CGCMS respectively outperformed all models whilst CMCC-CM shows the lowest scores
in all forms of skills. For capturing the wet periods, all models showed almost similar skills with
little exceptions for CMCC-CM and CanCM4 but for the dry periods, models show a range of
skill scores.

e  Based on the performance skills, the GCM models were ranked into three categories in ascending
order: Category-I (MIROC4h, EC-EARTH, and MRI-CGCM3), Category-II (MPI-ESM-LR and
MPI-ESM-MR), and category-Ill (MIROC5, CanCM4, and CMCC-CM). MMEMs were
formulated as MMEMI1 of Category-I models, MMEM2 combining Category-I and Category-II
models, and MMEM3 as the combination of all three categories. Out of these three different
MMEMs, MMEM2 was found performing better than other MMEMSs based on the overall skills
but MMEMI1 performed relatively better for the case of extreme wet events. This shows the
necessity of forming suitable MMEM for practical purposes of GCM data use especially for the
decadal precipitation.

The outcomes presented in this study are based on one catchment (Brisbane River) in Australia
only but the process could be carried out in any catchment which has the availability of observed
gridded data.
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