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Abstract: The fidelity of the decadal experiment in Coupled Model Intercomparison Project Phase-5 (CMIP5) 

has been examined, over different climate variables for different temporal and spatial scales, in many previous 

studies.  However, most of the studies were for the temperature and temperature-based climate indices. A 

quite limited study was conducted on precipitation of decadal experiment and no attention was paid to a 

catchment level. This study evaluates the performances of eight GCMs (MIROC4h, EC-EARTH, MRI-CGCM3, 

MPI-ESM-MR, MPI-ESM-LR, MIROC5, CMCC-CM, and CanCM4) for the monthly hindcast precipitation of 

decadal experiment over the Brisbane River catchment in Queensland, Australia. First, the GCMs datasets were 

spatially interpolated onto a spatial resolution of 0.050×0.050 (5 km× 5 km) matching with the grids of observed 

data and then were cut for the catchment. Next, model outputs are evaluated for temporal skills, dry and wet 

periods, and total precipitation (over time and space) based on the observed values. Skill test results reveal that 

model performances varied over the initialization years and showed comparatively higher scores from the 

initialization year 1990 and onward. Models with finer spatial resolutions show comparatively better 

performances as opposed to the models of coarse spatial resolutions where MIROC4h outperformed followed 

by EC-EARTH and MRI-CGCM3. Comparing the skills, models are divided into three categories (Category-I: 

MIROC4h, EC-EARTH, and MRI-CGCM3; Category-II: MPI-ESM-LR and MPI-ESM-MR; and Category-III: 

MIROC5, CanCM4, and CMCC-CM). Three multi-model ensembles’ mean (MMEMs) are formed using the 

arithmetic mean of Category-I (MMEM1), Category-I and II (MMEM2), and all eight models (MMEM3). The 

performances of MMEMs are also assessed using the same skill tests and MMEM2 performed best which 

suggests evaluating the models before the formation of MMEM. 

Keywords: cmip5; decadal; precipitation; prediction; catchment; multi-model 

 

1. Introduction 

Evaluation of General Circulation Models (GCMs) has become a very important task to measure 

the models’ credibility in future prediction of climate variables. Evaluation of models predicted 

historical data based on their corresponding observed values determines how well the GCMs 

represent historical climate and thus forms an integral part of the confidence-building exercise for 

climate predictions. It is assumed that the better performance of models over the historical period 

leads to developing more confidence in their future predictions. As the GCMs are used to explore the 

future climate variabilities and potential impacts on the Earth, evaluation of GCMs has been a 

growing need in the climate research community. However, depending on the requirements, 

available resources, geographical locations, and variables considered to assess the model 

performances, the evaluation strategies become different. Since the change of climate and its potential 

impact on this planet varies from region to region, it is important to evaluate the models based on 

different regions and spatial scales though the evaluation of climate models and their ensembles is 

crucial in climate studies [1]. Research on regional or local climate variability and their potential 

impacts are high in demand for transferring research-based scientific knowledge to increase the 

resilience of society to climate change. This will help in planning the future development of the 

infrastructures of a region [2]. 
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contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 December 2023                   doi:10.20944/preprints202312.0156.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202312.0156.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

Coupled Model Inter-comparison Project Phase-5 (CMIP5) provides an unprecedented 

collection of global climate data of different time scales including decadal experiments that were 

produced by a wide range of GCMs [3]. Evaluation of CMIP5 decadal prediction has been run so far 

based on different evaluation aspects such as different regions, different climate variables, and their 

different spatial and temporal resolutions. For instance, Choi et al. [4] investigated the prediction skill 

of CMIP5 decadal hindcast near-surface air temperature for the global scale while other researchers 

investigated other climate variables in continental or regional scales [5–7]. Lovino et al. [5] evaluated 

decadal hindcast precipitation and temperature over northern Argentina and reported higher skills 

of models to reproduce the temperature as opposed to precipitation where precipitation skills were 

found remarkably lower. Mckeller et al. [6] investigated decadal hindcast maximum and minimum 

temperature over the state of California and reported the best-performing model. Likewise, Gaetani 

and Mohino [7] evaluated model performances to reproduce Sahelian precipitation and reported 

better-performing models. However, these studies were for different geographical locations with 

coarser spatial resolutions for considered variables. For instance, the spatial resolution of models 

used by Kumar et al. [2] and Choi et al. [4] was 2.50, Gaetani and Mohino [7] used models of more 

than 1.10, and Lovino et al. [5] used precipitation data of 1.00 spatial resolution. At a regional level, 

Mehrotra et al. [8] assessed the multi-model decadal hindcast of precipitation for different 

hydrological regions over Australia using 0.50 spatial resolution and reported lower skills for 

precipitation as opposed to temperature and geopotential height. Climate data of 0.50 spatial 

resolution covers a ground area equivalent to a square of 50 km length over the Australian region. 

Comparatively, a 50 km × 50 km area is very big where climate variabilities are also large and 

frequency and magnitude of precipitation vary in a few kilometers (such as in Australia). As the 

precipitation shows more spatial and temporal variability than temperature and the model 

performances vary from region to region, therefore the model performances at the local level for finer 

spatial resolution are essential for precipitation. 

Numerous studies evaluated CMIP5 models over Australia [5–7] but studies on evaluating 

CMIP5 decadal precipitation at catchment scale can hardly be found. After Mehrotra et al. [8], who 

assessed the CMIP5 decadal hindcast precipitation over different hydrological regions (0.50 ×.0.50) in 

Australia, recently Hossain et al. [5–7] used the CMIP5 decadal precipitation at a further finer 

resolution of 0.050 ×0.050 (5km×5km) for Brisbane River catchment Australia for the first time. Hossain 

et al. [5–7] compared the model performances for investigating the model drift and their subsequent 

correction using alternative drift correction methods for both the monthly and seasonal mean 

precipitation. However, they compared the model performances at a single grid point within the 

Brisbane River catchment. On the contrary, Mehrotra et al. [8] used only a multi-model approach but 

did not consider individual models finer than 0.50 spatial resolution. Local climate variables of finer 

temporal and spatial resolution, especially for precipitation, are very important for water managers 

for planning and developing infrastructures as well as decision-making for local businesses and 

agriculture. To maintain sustainable development with effective future planning based on the 

models’ projected precipitation, it is important to evaluate the performance of the CMIP5 models’ 

hindcast precipitation. 

Many researchers have suggested using MMEM [14–17] while using GCM data to reduce the 

model biases. The use of MMEM may enhance the model performances [14–17] by reducing the biases 

to some extent but there is no information available on the ranking of GCM models and based on 

this, which and how many models should be considered to produce MMEM so that it could provide 

better outcome. This is essential for CMIP5 decadal precipitation because of its wide range in spatial 

and temporal variability in providing the model output ten years ahead. That is why the objective of 

this paper is, first, to categorize the models based on their performances at the catchment level with 

a spatial resolution of 0.050 and next, to identify the best combination of different models that would 

provide better performance. This would help the water managers and policymakers to sort out 

models depending on their specific needs while assessing the future water availability based on the 

GCMs-derived precipitation on a decadal scale through CMIP5. 

2. Data Collection and Processing 
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2.1. Data Collection 

CMIP5 decadal experiment provides 10 and 30-year-long ensemble predictions from multiple 

modeling groups [henceforth mentioned as CMIP5 decadal hindcasts, [19]]. Monthly decadal 

hindcasts precipitation from eight GCMs (out of ten); MIROC4h, EC-EARTH, MRI-CGCM3, MPI-

ESM-MR, MPI-ESM-LR, MIROC5, CMCC-CM, and CanCM4 for which decadal hindcast 

precipitation are downloaded from CMIP5 data portal (https://esgf-node.llnl.gov/projects/cmip5/). 

The other two models, HadCM3 (spatial resolution 3.75° x 2.5°) and IPSL-CM5A-LR (spatial 

resolution 3.75° x 1.89°) were not considered in this study because of their relatively coarser spatial 

resolution and different calendar system (HadCM3). For the initialized period 1960-2005, data 

simulated over 10 years that are initialized every five years during this period are selected for this 

study as they were found comparatively better than the 30-year simulation [20]. The details of the 

selected models are given in Table 1. 

Table 1. Selected models with the initialization year 1960-2005. 

Model name  

(Modelling center or group) 

Resolutions:°lon × °lat 

Initialization Year (1960-2005)  

60 65 70 75 80 85 90 95 00 05 

Number of ensembles  

EC-EARTH 

(EC-EARTH Consortium) 

1.125 X 1.1215 

14 14 14 14 14 14 14 14 10 18 

MRI-CGCM3 

(Meteorological Research Institute) 

1.125 X 1.1215 

06 08 09 09 06 09 09 09 09 06 

MPI-ESM-LR 

(Max Planck Institute for Meteorology) 

1.875 X 1.865 

10 10 10 10 10 10 10 10 10 10 

MPI-ESM-MR 

(Max Planck Institute for Meteorology) 

1.875 X 1.865 

03 03 03 03 03 03 03 03 03 03 

MIROC4h 

(AORI-Tokyo University, NIES and JAMEST)* 

0.5625 X 0.5616 

03 03 03 06 06 06 06 06 06 06 

MIROC5 

(AORI-Tokyo University, NIES and JAMEST)* 

1.4062 X 1.4007 

06 06 06 06 04 06 06 06 06 06 

CanCM4 

(Canadian Centre for Climate Modelling and Analysis) 

2.8125 X 2.7905 

20  20 20 20 20 20 20 20 20 20 

CMCC-CM 

(Centro Euro-Mediterraneo per I Cambiamenti Climatici) 

0.75 X 0.748 

03 03 03 03 03 03 03 03 03 03 

The observed gridded monthly precipitation of 0.050 ×.0.050 (≈ 5km × 5km) was collected from 

the Australian Bureau of Meteorology (Observed/Bureau). This data was produced using the 

Australian Water Resources Assessment Landscape model (AWRA-L V5) [21]. 

2.2. Data Processing 

The GCMs’ resolutions (100-250 km) are found inadequate for regional studies due to lack of 

information at catchment levels [22–24]. The regional climate model (RCM) is useful to transfer the 

coarse spatial GCMs’ data to local scale but it needs a wide range of climate variables as well as 

rigorous efforts to develop. For this reason, GCMs data are spatially interpolated onto 0.050×0.050 

spatial resolution using the second-order conservative (SOC) method matching with the grids of 

observed data. For the gridded precipitation data, the SOC method was found comparatively better 
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than other commonly used spatial interpolation methods [25]. Skelly and Henderson-Sellers [26] 

suggested GCM derive gridded precipitation to consider as areal quantities and spatial interpolation 

will not create any new information except the spatial precision of the data. Skelly and Henderson-

Sellers [26] also suggested that researchers could subdivide the grid box in almost any manner until 

the original volume remains the same. On the contrary, Jones [27] suggested that precipitation flux 

must be remapped in a conservative manner to maintain the water budget of the coupled climate 

system. While sub-gridding the GCM data using the SOC method, it conserves precipitation flux 

from their native grids to subsequent grids [27]. For this reason, this study used the SOC method for 

spatial interpolation as it was followed in other research [13]. Brisbane River catchment was selected 

for this study because of its tropical climate that produces low to moderate variability of annual 

precipitation values. 

3. Methodology 

A simple and direct approach for the model evaluation is to compare the model output with the 

observations and analyze the differences. In this study, models are evaluated for temporal skills, dry 

and wet periods, and total precipitation based on the observed values. Here, CC, ACC, and IA are 

used to measure the temporal skills, FSS are used to measure the skills over dry and wet periods, 

field-sum and total-sum are used to measure the skills for total precipitation. There are 496 grids in 

the Brisbane River catchment with a spatial resolution of 5.0 km × 5.0 km. The descriptions of the 

skills are given below. 

3.1. Correlation Coefficient (CC)  

CC measures the linear association and presents the scale of temporal agreement between 

predicted and observed values. Statistically, it measures how much closer the scatter plot points to a 

straight line. CC ranges from -1 to 1 for no to perfect correlation respectively.  𝐶𝐶 =  
∑(𝐹௜ − 𝐹)(𝑂௜ − 𝑂)ට∑(𝐹௜ − 𝐹)ଶට∑(𝑂௜ − 𝑂)ଶ 

(1) 

Here, 𝐹  and 𝐹ത,  represent models’ predicted and their mean whereas 𝑂  and 𝑂ത  represent 

observed precipitation and their mean respectively.  In the following skill tests, these notations will 

remain the same. Note that the mean is calculated for every individual year.  

3.2. Anomaly Correlation Coefficient (ACC)  

ACC was suggested by Wilks [28] to measure the temporal correlation between anomalies of the 

observed and predicted values. For the verification of numerical weather models’ prediction ACC is 

frequently used. Its value ranges from -1 to 1 for no to perfect anomaly matching. 

𝐴𝐶𝐶 =  
∑ሼ(𝐹௜ − 𝐶) − (𝐹 − 𝐶തതതതതതതത)ሽ ∗ {(𝑂௜ − 𝐶) − (𝑂 − 𝐶തതതതതതതത)}ඥ∑(𝐹௜ − 𝐶)ଶඥ∑(𝑂௜ − 𝐶)ଶ  

(2) 

Here, C represents the mean of the entire time-span (ten years) of the observed (Bureau) data. 

The higher value of ACC will indicate the higher performance in reproducing the monthly anomalies. 

3.3. Index of agreement (IA) 

Wilmot [29] suggested IA to measure the accuracy of predictions. The index of agreement can 

be calculated as follows. 

𝐼𝐴 = 1− ∑ (ி೔ିை೔)మ೙೔సభ∑ (|ி೔ିைത|ା|ை೔ିைത|)మ೙೔సభ . 
(3) 

The index is bounded between 0 and 1 (0≤IA≤ 1). The value closer to 1 indicates the most efficient 

predicting of the models. 
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3.4. Fractional Skill Score (FSS)   

FSS is a grid-box event that directly compares the fractional coverage of models’ predicted and 

observed values for the entire catchment. It measures how the spatial variability of models’ predicted 

values corresponds to the spatial variability of the observed values. FSS can be obtained as: 

𝐹𝑆𝑆 = 1− భಿ ∑ ൫௉೑,೘ି௉೑,೚൯మಿభಿቂ∑ ௉೑,೘మ ା ∑ ௉೑,೚మಿಿ ቃ  
(4) 

Where 𝑃௙ and N refers to calculated fraction and number of years respectively. The subscript 

m and o present modeled and observed respectively. In this study, fractions are calculated according 

to Roberts and Lean [30] but considered entire catchment as a whole unit, and the temporal averages 

(for considered months) are taken instead of the spatial averages. For doing this, threshold values; 

≥85 percentile for the months of wet seasons (December to February -DJF) and <15 percentile for the 

months of the dry seasons (June to August - JJA) are considered. To get the fractions (say for January), 

the number of grid points covered for a specified threshold value is counted and then divided by the 

total number of grids within the catchment. The differences between predicted and observed 

fractions (the numerators of equation 4) are calculated for individual months. The FSS is a temporal 

average score for the catchment for each considered month. It ranges from 0 to 1 for no to perfect 

match respectively. 

3.5. Field-sum and total-sum 

Models’ ability to reproduce the total precipitation over the entire catchment is considered as 

the spatial skills of the models. Field-sum is the sum of precipitation over the entire catchment for 

individual time steps and the total-sum is the field-sum over the total time span. Field-sum and total-

sum of the models’ precipitation are compared with the corresponding observed values. 

4. Results and Analysis 

4.1. Temporal skills 

The temporal skills are computed at every individual grid (total 496 grids) of the catchment for 

all initialization years of each model. Spatial variations of models’ temporal skills across the 

catchment for the initialization year 1990 (1991-2000) are presented in Figure 1. The models are 

evaluated from the spatial perspective by counting the number of grids covered by different models 

for different threshold values of CC, ACC, and IA Figure 2. The higher number of grids represents 

the higher spatial skill of models across the catchment. From the comparison of temporal skills, it is 

evident that model performance varies over the initialization years and also across the catchment. 

From the initialization year 1990 and onward, all models show a comparatively higher number of 

grids for the same thresholds of CC, ACC, and IA and the lowest skill observed in 1980. With the 

increase of threshold values, the number of grids declines for all models in all three temporal skills 

except CMCC-CM and MIROC5 in ACC. Compared to other selected models, MIROC4h, EC-

EARTH, and MRI-CGCM3 show a higher number of grids for all thresholds in which MIROC4h is 

much ahead of EC-EARTH and MRI-CGCM3. It means temporal agreement, the resemblance of 

anomalies, and the prediction accuracy of MIROC4h and EC-EARTH spatially higher than other 

models. This study also checked the number of grids for the threshold >=0.6 for CC and ACC but no 

model could reproduce CC and ACC >=0.6 at any grid. However, MIROC4h, EC-EARTH, and MRI-

CGCM3 show a significant number of grids for the IA threshold >=0.6 where MIROC4h outperformed 

EC-EARTH and MRI-CGCM3 (Figure 2). Comparing the models, MIROC4h shows higher temporal 

skills from the spatial perspective, followed by EC-EARTH and MRI-CGCM3 whilst MPI-ESM-MR, 

MIROC5, and CMCC-CM show low to lowest temporal skills. Over the catchment MIROC5, MPI-

ESM-MR, CanCM4 show little better scores than CMCC-CM. 
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Figure 1. Spatial variations of temporal skills (CC, ACC, and IA) of the models initialized in 1990 (period; 1991-2000) over the Brisbane River catchment. 
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Figure 2. Number of grids covered by different models for different thresholds of CC, ACC, and IA. 

The vertical axis presents the initialization years and the horizontal axis presents the model’s name. 

Threshold values are provided on the top of each subplot. 

4.2. Evaluation for dry and wet periods 

Skills to reproduce the dry and wet events are assessed at the selected grid and also over the 

entire catchment. For the selected grid all months are considered against four different thresholds 
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(25, 50, 75, and 90 percentiles correspond to 25, 60, 110, and 175 mm respectively) whereas for the 

entire catchment, FSS are used for the months of dry (JJA) and wet (DJF) periods only. 

4.2.1. At the selected grid 

A comparison to reproduce the dry and wet events based on the selected precipitation 

thresholds at the selected grid is presented in Figure 3. This comparison was based on the ratio of the 

number of months of respective precipitation thresholds (mentioned on the top of the individual plot 

in Figure 3.) in model data to observed data. It is observed that EC-EARTH and MIROC5 could 

reproduce no dry events (Pr<=25 mm) whilst CMCC-CM overestimates the number of dry events 

which is almost double the dry events in observed data. Meanwhile, MIROC4h performed better to 

produce dry events as well as 50 and 75 percentile values as compared with the other models. 

However, MIROC4h is a little behind the MPI-ESM-MR for the extreme wet events (Pr>=175 mm). It 

means MPI-ESM-MR can reproduce extreme wet events better than the other models. EC-EARTH, 

MPI-ESM-LR, and MPI-ESM-MR underestimated the events of threshold Pr<=60mm whereas 

overestimated the wet events (Pr>=110 mm) which is an indication of models’ tendency to reproduce 

a higher number of wet events than opposed to dry. However, MRI-CGCM3 performed similarly to 

MIROC4h in reproducing the number of events for the threshold of <= 60mm but underestimated the 

number of events thresholds of >= 110mm. To reproduce the extreme wet events (Pr>=175 mm), all 

models show underestimation in which MPI-ESM-MR and MIROC4h showed considerably better 

skills. The CMCC-CM and CanCM4 showed poorest, and no skill respectively for extreme wet events. 
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Figure 3. Comparison of model skills to reproduce dry and wet events at a selected grid point. Values 

1.0 present perfect matching whilst values below and above 1.0 present under and over prediction 

respectively. 

4.2.2. Over the entire catchment 

FSSs are calculated for the months of winter (dry) and summer (wet) seasons only. FSS of all the 

initialization year of all models are shown in Figure 4. Results show that for the months of summer 

seasons (DJF), MRI-CGCM3 shows higher skills in December and January but little behind than EC-

EARTH in February. On the contrary, CMCC-CM shows the lowest skill in December but shows 

similar skill with other models in January and February.  
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Figure 4. Fractional skill score for the months of winter and summer seasons. 
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However, except higher skill of MRI-CGCM3 and the lowest skill of CMCC-CM in December, 

all other models show similar skill scores with few variations in winter seasons. This indicates 

different models’ skills are almost similar to reproducing wet events. In the dry season, MIROC5 

shows the lowest skill while EC-EARTH shows the higher skills, which is even higher than MIROC4h 

and MRI-CGCM3. The FSSb15 scores of EC-EARTH, MIROC4h, and MRI-CGCM3 are much better 

than the score obtained for FSSa85. This reveals that these models are better to reproduce dry events 

as opposed to wet events and the reverse is true for MIROC5, MPI-ESM-MR, and CanCM4 

respectively. 

4.3. Evaluation for total precipitation 

4.3.1. At the selected grid 

To evaluate the model performances in reproducing the total precipitation, models’ cumulative 

(over time) precipitation at several randomly selected grids (evenly distributed across the catchment) 

within the catchments and total precipitation over the entire catchment are compared. The 

cumulative sum of monthly precipitation of different models at the selected grid for different 

initialization years is presented in Figure 5. The model skills show both temporal and spatial 

variations in predicting accumulated precipitation but no model could reproduce the accumulated 

precipitation as observed. However, only a few models (MIROC4h, MPI-ESM-LR, and MPI-ESM-

MR) could reproduce the accumulated precipitation close to the observed accumulation. 

Nevertheless, CMCC-CM, CanCM4, and MRI-CGCM3 underestimated the accumulated 

precipitation whilst EC-EARTH and MIROC5 overestimated the accumulated values. With the 

change of grid locations, model performances may change but the relative performances among the 

models will remain the same. 
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Figure 5. Cumulative sum of monthly precipitation of different models at the selected grid point in 

different initialization years. The vertical axis presents accumulated precipitation and the horizontal 

axis presents the number of months over the decade. 

4.3.2. Over the entire catchment 

For comparing the model performances on total precipitation over the entire catchment, this 

study calculated the field-sum of the models and observed values then assessed through the temporal 

skills as shown in Figure 6. The total sum of the models and observed values are also calculated and 

assessed through the ratio between model and observed values (Figure 6). From the comparison, it is 

observed that the field sum of MIROC4h, EC-EARTH, and MRI-CGCM3 show comparatively higher 

accuracy (IA), temporal agreement (CC), and the resemblance of anomalies (ACC) with the field-sum 

of the observed precipitation. The model performances on reproducing the total precipitation vary 

over the initialization years (Figure 6d). 
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Figure 6. Performance indicators of the models to reproduce the total precipitation of the entire 

catchment. 

Before and after 1985, MRI-CGCM3 and MPI-ESM-MR showed comparatively better 

resemblance with the observed total precipitation followed by MIROC4h and EC-EARTH. On the 

contrary, CMCC-CM showed the lowest performance to reproduce total-sum precipitation 

throughout all initialization years. From the skill assessments, it is revealed that the MIROC4h 

surpasses other models in almost all performance indicators followed by EC-EARTH and MRI-

CGCM3 whilst MPI-ESM-LR and MPI-ESM-MR show medium skill scores. Lower skill scores were 

observed for MIROC5, CanCM4, and CMCC-CM respectively. MIROC4h was also marked as the best 

model to reproduce precipitation in other studies [22–24] though they did not use the decadal 

experiments data. It may be due to the finer resolution of the atmospheric component of MIROC4h 

that enhanced its ability to capture the more realistic climate features [22–24] at the local level. 

The overall skill assessment results revealed that all models show comparatively lower skills in 

the initialization years 1960 to 1985 and better skills observed from the initialization year 1990 and 

onward. 
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4.4. Model categorisation and formulation of MMEM 

Based on the skill comparisons, this study divided the models into three different categories; 

Category-I, Category-II, and Category-III. While categorizing the models based on their skills at the 

selected grid and over the catchment, MIROC4h, EC-EARTH, and MRI-CGCM3 fall in the first 

category (Category-I) as they consistently performed in the top three and their performance metrics 

were found very close to each other. Similarly, MPI-ESM-LR and MPI-ESM-MR are in the second 

(Category-II) category as they have shown medium skill scores in all skill tests over the initialization 

years. Lastly, MIROC5, CanCM4, and CMCC-CM fall in Category-III. 

GCMs’ outputs indeed contain uncertainties and biases which will cause the lower skill score 

but multi-model ensembles mean (MMEM) may enhance the models’ skills [22–24] by reducing 

uncertainties [22–24]. In this study, the skill tests are employed on the ensembles’ mean of individual 

models’ raw values (interpolated) only. Here the arithmetic mean of multiple models has referred to 

as MMEM. The performances of MMEMs were also assessed based on the similar skill tests that are 

employed on individual models and the results are summarized below. To form the MMEMs, three 

different combinations are considered. The arithmetic mean of Category-I models is referred to as 

first MMEM (MMEM1), the arithmetic mean of the Category-I and Category-II models is referred to 

as the second MMEM (MMEM2) and finally arithmetic mean of all models is referred to as the third 

MMEM (MMEM3). 

4.5. Performance of MMEMs 

The temporal skills at individual grids of the different thresholds, temporal skills along with the 

ratios of the field-sum, and skill on reproducing dry and wet events of different thresholds for 

MMEMs are presented in Figure 7, 8 and 9 respectively. In general, MMEMs show better performance 

than the individual models for comparatively lower thresholds of the performance metrics.  For 

instance, the MIROC4h model showed the highest number of grids for CC and ACC at the threshold 

0.5 (Figure 2) but no MMEMs could reproduce this number of grids at the same threshold (Figure 7). 

The same results were also observed for IA at the threshold 0.6 (see Figure 7i) but for the lower 

thresholds, MMEM2 shows better skill than MIROC4h in CC and ACC but not in IA. Among the 

three combinations, MMEM2 surpasses the other two combinations in reproducing CC and ACC. 

Nevertheless, in the case of IA, MMEM2 is little behind than MMEM1. Similar results are evident for 

performance indicators obtained from the field-sum of MMEM and the observed values (Figure 8), 

where MMEM2 shows best for the CC and ACC but both MMEM2 and MMEM1 show similar skills 

for IA. However, to produce the dry and wet events, MMEMs show lower performance as compared 

to individual models. For instance, MIROC4h, MRI-CGCM3, and MPI-ESM-MR captured some dry 

events (Pr<=25mm) at the selected grid point (Figure 3) but no combination could capture it (Figure 

9) whilst for the wet events, MMEM shows very poor skills. 
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Figure 7. Number of grids covered by different combinations of models for different threshold values 

of performance metrics. Thresholds and the performance indicators are mentioned on the top of the 

individual blocks. 
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Figure 8. Performance indicators obtained from the field-sum of different MMEMs and corresponding 

observed values. 

 

Figure 9. Skill comparison of three MMEMs to reproduce dry and wet events at the selected grid 

point. This comparison was based on the ratio, obtained from the number of months of respective 

precipitation thresholds (mentioned on the top of the individual plot) in model data to the number of 

months of observed values for different initialization years (Y-axis). 

Meanwhile, MMEMs show better performance indicators (CC, ACC, and IA) for the total 

precipitation of the entire catchment (field-sum) which is even better than the individual models. 

Nevertheless, MMEM is a little behind the MIROC4h and MRI-CGCM3 for the ratio of total-sum 

(sum over total time span and catchment) model combinations over the corresponding observed 

values (see Figure 5d). 

5. Discussion 

This study evaluated the performance of eight selected GCMs simulation of CMIP5 decadal 

precipitation at a catchment level of 0.05-degree spatial resolution. Different skill metrics were 
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employed from both temporal and spatial perspectives in this evaluation assessment. The 

performance metrics; CC, ACC, and IA measured the temporal skills of the models. The number of 

grids corresponding to individual metrics’ thresholds represents the spatial skills of the models. 

These metrics are also calculated for the spatial sum (sum over the entire catchment) of the 

precipitation for all models. In addition to these, FSSa85 and FSSb15 presented the spatial skill of the 

models for wet and dry seasons respectively. The CC and ACC measured the phase and 

correspondence (or anomalies) of the model time series concerning the observed values. The models 

showed a wide range of performance scores over the initialization years as well as across the 

catchments. It may be due to the difference in understanding of models on local climate features or 

the precipitation data of finer temporal and spatial resolutions or the combination of both.  

Indeed, the model performances are dependent on the model assumptions or basic principle on 

understanding the earth climate system, its processes, and interactions among atmosphere, oceans, 

land, and ice-covered regions of the planet. Besides them, decadal prediction skill also depends on 

the method of model initialization, and quality and coverage of the ocean observations [3]. Different 

initializations also may cause models’ internal variability that is still open for further discussion. For 

the decadal prediction, one of the most important aspects is the model drift and its correction [8]. 

However, to evaluate the performance of models’ derived raw data, neither the drifts were 

investigated nor any drift correction methods are employed. The reason is, the drift correction 

method itself may introduce additional errors that may not reflect the real performance of the models 

[22–24]. Based on the understanding of physical, chemical, and biological mechanisms of earth 

systems, different modeling groups have come up with different models with reproducing 

capabilities of climate variables that may vary over different regions [22–24] and climate variables 

[22–24]. For instance, Kumar et al. [2] analyzed the precipitation and temperature trends of the 

twentieth century from nineteen CMIP5 models and reported that the models’ relative performances 

are better for temperature as opposed to precipitation trends. Generally, models show lower skill to 

simulate precipitation than they do for temperature. This is because that the temperature is obtained 

from a thermodynamic balance, while precipitation results are from simplified parameterizations 

approximating actual processes (Flato et al. [1] and also references therein). In addition, temporal and 

spatial scale (considered area) of the considered variables including seasons of the year [22–24] may 

also be the reason to vary the model performances. For instance, few models can reproduce winter 

precipitation very well but the other may not and vice versa. Likewise, Lovino et al. [5] evaluated 

CMIP5 model performances for decadal simulation and concluded that both the best model. They 

also suggested that the MMEM could reproduce large-scale features very well but fail to replicate the 

smaller scale spatial variability of the observed annual precipitation pattern. These show clear 

evidence that there is a spatial variation in the climate model performances across the globe as they 

are developed by different organizations [38]. This study noticed the higher skills in the initialization 

year of 1990 and onward whereas lower skills in the initialization year 1960 to 1985, but the reason 

behind the higher and lower skills remain unknown. However, Meehl et al. [39] reported that the 

consequences of Fuego (in 1974) and Pinatubo (1991) eruption degraded the decadal hindcasts skill 

of Pacific sea surface temperature in the mid-1970s in mid-1990s respectively. As Fuego was smaller 

than Moun t Pinatubo and a lower degrade of skill in the mid-1970s and higher degrade of skill in 

the mid-1990s were evident but no degrade on the hindcast skill was evident due to Agung (erupted 

in 1963) and El Chichón (1982) [39]. In this study, models’ higher and lower skills of initialization 

1990s and 1980s, seem neither relevant to volcanic eruption nor the post-eruption sequences. 

Nevertheless, the observed precipitation or coverage of the ocean observed state to initialize the 

models have been affected.  

The CC and ACC values of all the selected models in all initialization years remained under the 

threshold>= 0.6, which was marked as the threshold of significant level in previous studies [22–24] 

though those studies were for coarser spatial resolutions and one of them for different climate 

variables. Lovino et al. [5] compared CMIP5 model performances over two variables at the local level 

and reported higher skill scores for the temperature than precipitation of the same models where the 

skill scores for precipitation were remarkably lower than the scores for temperature. Similar results 
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were also reported by Jain et al. [31]. In this sense, it seems precipitation data with higher spatial 

resolution may be the reason for not capturing the significant level of skills on linear association (CC) 

and phase differences or anomalies (ACC). However, few models show that the level of significance 

(threshold>=0.6 if we say) for the performance metric IA, which is a measure of the predicting 

accuracy that seems promising predictive skill of the models. But the studies that mentioned 0.6 as 

the level of significance for CC and ACC, used either coarser resolution data [5] or different climate 

variables [4]. For the local or regional level as well as models’ raw precipitation data of higher spatial 

and temporal resolution, 0.50 seems a significant score, which is also the same for the similar 

performance metrics for the case of total precipitation. 

This study also investigated the model performances to reproduce the summer and winter 

precipitation. Upon comparing the model skills to reproduce the extreme wet (>=85 percentile of the 

observed values) and dry events (<15 percentile of the observed values) across the catchment and 

also at the selected grid, this study reveals that except CMCC-CM, all models show almost similar 

skills to reproduce the summer precipitation but exhibits some variations to produce the winter 

precipitation. Similar skills are also noted for other intermediate thresholds. It is due to the maximum 

and minimum precipitation occurring in Brisbane River catchment during summer and winter 

respectively. This means that models’ responses to reproduce summer precipitation are better than 

the winter with the tendency to overestimate higher precipitation events. However, the Category-I 

model comparatively performed better to capture the dry events (Figure 4) than the wet events, but 

this may vary for different regions around the globe. For instance, MRI-CGCM3 showed very good 

skills and has been marked as the first category model in this study but to reproduce the Sahelian 

precipitation, MRI-CGCM3 showed insignificant or no skills whilst MPI-ESM-LR and MIROC5 are 

categorized as the second and third category model but were marked as improved skilled models for 

Sahelian precipitation [7].  

Previous studies [22–24] reported that MMEM improves the models’ skills to reproduce climate 

variables but the selection of models to form MMEM is very challenging as the arithmetic means of 

the models’ output may further lead to loss of individual ensembles’ signal [15]. This study also 

examined the performance of MMEM and revealed that MMEM improves the performance metrics 

to some extent but not always and the performances are highly dependent on models’ combination 

to form MMEM. For instance, MMEM2 shows better performance metrics than the other two 

combinations in reproducing the extremely dry and wet events where MMEM3 showed worse 

performance (Figure 9). On contrary for the highest thresholds of individual metrics where few 

individual models were found better than MMEM3. Similar results were also reported in some other 

studies [22–24] where individual models were found better to some extent than the MMEM. 

However, lower skills of CMIP5 models for decadal precipitation as compared to temperature is also 

true for the MMEM which was also reported by Mehrotra et al. [8].  

In addition to understanding the climate system, models’ configuration, structuring spatial and 

temporal resolutions of the simulating variables also play a vital role in determining the model 

performance [32]. In this study except for CMCC-CM, models with finer atmospheric resolutions 

performed better than the coarser resolutions’ models (see Table 1 Category-I model). It means, 

models of finer atmospheric resolutions can reproduce local climate features better than the models 

of coarser spatial resolutions and similar results were also reported in previous studies [22–24]. 

However, the lower skill of CMCC-CM may be due to the difference in understanding or 

geographical locations. However, for different climate variables like temperature, the performance 

of CMCC-CM may be different [5]. This study will help the water manager, infrastructure developers, 

agricultural stakeholders to sort out the models before taking any decision in planning and 

developing infrastructures based on the models’ predicted future precipitation. Findings of this study 

will also help the researchers for hydrological modelling, and other relevant stakeholders to increase 

the resilience of the society to climate change in relation to future water availability and uncertainty. 

6. Conclusion 
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Evaluation of models’ performance is important to check the credibility of their future 

projections. This study assessed the performance of eight models (GCMs), contributed to CMIP5 

decadal prediction, for monthly hindcast precipitation over the Brisbane River catchment, Australia. 

This is the first attempt that assessed the model performances at a catchment level with finer spatial 

resolution where performance of individual models are reported based on a wide range of skill tests. 

Models are categorized based on the performance of individual models for temporal skills, dry and 

wet periods, and total precipitation (over time and space) at a selected grid and also over the entire 

Brisbane River catchment. In addition, this study assessed the performance of different MMEMs 

formed from the combinations of different model categories. Considering a wide range of skill tests 

from both the temporal and spatial perspectives, the following conclusions are drawn. 

• Models with higher atmospheric resolutions show comparatively better performances as 

opposed to the models of coarse spatial resolutions. 

• Model performances vary over the initialization years and across the catchment. From 1990 

onward, the skills of all models improved across the catchment where MIROC4h shows the 

highest skills followed by EC-EARTH and MRI-CGCM3 respectively. The internal structure of 

high atmospheric resolutions may be the main reason for MIROC4h reproducing the local 

climate variables comparatively better than the other. 

• To reproduce the dry events and total precipitation over the entire catchment, EC-EARTH and 

MRI-CGCM3 respectively outperformed all models whilst CMCC-CM shows the lowest scores 

in all forms of skills. For capturing the wet periods, all models showed almost similar skills with 

little exceptions for CMCC-CM and CanCM4 but for the dry periods, models show a range of 

skill scores. 

• Based on the performance skills, the GCM models were ranked into three categories in ascending 

order: Category-I (MIROC4h, EC-EARTH, and MRI-CGCM3), Category-II (MPI-ESM-LR and 

MPI-ESM-MR), and category-III (MIROC5, CanCM4, and CMCC-CM). MMEMs were 

formulated as MMEM1 of Category-I models, MMEM2 combining Category-I and Category-II 

models, and MMEM3 as the combination of all three categories. Out of these three different 

MMEMs, MMEM2 was found performing better than other MMEMs based on the overall skills 

but MMEM1 performed relatively better for the case of extreme wet events. This shows the 

necessity of forming suitable MMEM for practical purposes of GCM data use especially for the 

decadal precipitation. 

The outcomes presented in this study are based on one catchment (Brisbane River) in Australia 

only but the process could be carried out in any catchment which has the availability of observed 

gridded data. 
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