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Abstract：Wolfenden and his coworkers observed the astronomical numbers for the catalytic proficiency of some 
enzymes. We connected that pinnacle of biological evolution to the universal thermodynamic evolution. We 
added or multiplied a random noise with chosen rate constants to explore the correlation between dissipation and 
enzyme efficiency for ten enzymes: beta-galactosidase, glucose isomerase, β-lactamases from three bacterial 
strains, ketosteroid isomerase, triosephosphate isomerase, and carbonic anhydrase I, II, and T200H. The turnover 
number kcat and catalytic efficiency kcat/KM are proportional to the overall entropy production – the main 
parameter from irreversible thermodynamics. For most enzymes with the Michaelis-Menten type cycle kinetics, 
the best increase in the forward kcat/KM follows after increasing the equilibrium constant of substrate-enzyme 
association. The Discussion section emphasizes the role of biological evolution in harvesting order (high enzyme 
efficiency) from disorder (high noise and dissipation). It also connects the applications of the maximum partial 
entropy production theorem in optimizing enzyme kinetics (D. Juretić "Bioenergetics - A Bridge across Life and 
Universe") with the present total entropy production role analysis. De novo enzyme design and various attempts 
to speed up the rate-limiting catalytic steps may profit from our theoretical insights. 

Keywords: enzyme efficiency; entropy production; noise; evolution; catalytic cycle 
 

Introduction 

Why and how questions about biological evolution are often reduced to the how question, but the 
answer is still untrackable within realms of biology. We lack the knowledge about prebiotic chemistry 
and appropriate far-from-equilibrium kinetic and thermodynamic conditions to get better insights into 
life's origin [1,2,3]. There are more questions than quantitative answers to how biological 
macromolecules perform amazing catalytic feats [4,5], let alone how life emerged from inanimate matter 
[6,7]. This work proposes an intimate connection between why and how questions through joint 
thermodynamic and biological evolution. We shall show here that entropy production and kinetic 
parameters for enzyme performance are tightly coupled when discrete transitions are allowed between 
nonequilibrium quasi-steady states. Random mutations leading to amino acid substitutions are the 
biological mechanism for discrete changes, which can speed up evolution in combination with the 
selection of beneficial mutations. Does the selection process favor higher dissipation and better catalytic 
efficiency? The present-day enzymes are already highly evolved but may still possess hidden 
evolutionary potential. The simulation of noisy microscopic transitions through discrete time passage 
steps should help uncover it. 

The passage of time is an in-build sense we all possess. Billions of our cells can cooperate in 
distinguishing the past from the future and in predicting the future to some extent. Unlike other senses, 
the passage of time mechanism remains refractory to clear insights from physical and biological 
research. When focused on research about elementary particles, physicists use basic equations for 
Newtonian or quantum mechanics, which remain unchanged when the past and future are 
interchanged. Irreversible time passage looks to them like an illusion. At the same time, evolution with 
time is an essential insight from physics, just as it is the basic tenet in biology. Still, physicists tend to 
relegate it to statistical mechanics and thermodynamics, the branches of physics dealing with frequently 
misunderstood concepts of entropy and entropy production. These concepts emerge as a holistic aid for 
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understanding an average response when a large number of particles are exposed to internal and 
external perturbations. Weak or absent interactions among particles are usually assumed. 
Thermodynamic equilibrium or close-to-equilibrium situation is also often assumed in physics. 
However, nothing of interest in biology happens in the thermodynamic equilibrium when entropy 
production vanishes while evolution and time passage seemingly cease. Entropy production is tightly 
connected to the speed of evolution and irreversible time passage. There would be no evolution without 
dissipation. 

A constant driving force is the most frequent assumption for external perturbation because it 
ensures that a steady, nonequilibrium state will be spontaneously established for an open system. In 
almost all cases, the total entropy production of the system can be calculated as the sum of force-flux 
products after identifying all fluxes and corresponding forces. A reader can notice that such a definition 
for entropy production implies a system's ability to transform the free-energy-rich input power into 
irreversible internal processes and the free-energy-poor output with increased entropy. Temporary free-
energy storage is possible through some irreversible internal processes. Thus, we should consider 
entropy production as something other than a useless free-energy transformation that generates only 
slight heating of the system's environment. This work promotes the opposite viewpoint, namely, that 
high entropy production is an investment that acts as a catalyst for creating self-organized dissipative 
structures [8] and an enhanced turnover of organic molecules. 

In biological research, one can ask about the most basic level at which we can still see a considerable 
increase in entropy production as the surrogate for irreversible time passage. Enzymes are 
housekeeping cellular macromolecules performing all biosynthetic and moving functions. Free-energy 
collection and transformation into the ATP currency to satisfy the cell needs would be impossible 
without specialized enzymes. Even the simplest bacterial cells or organelles like mitochondria in our 
cells can efficiently connect harvesting of free-energy sources to electron current and proton ejection, 
creating a strong electric field. Proton passage through a topologically closed biological membrane is 
then coupled to the rotatory motion of the enzyme ATP-synthase and ATP synthesis. Ultimately, all of 
the mentioned fluxes also produce heat, which must be exported to the environment for the cell to 
survive in a quasi-steady state. Naturally, a small percentage of collected free energy is temporarily 
stored in the cell to prepare for hard times or replication and proliferation when free-energy sources are 
plentiful. A whole orchestra of enzymes, memory-storage molecules (DNA and RNA), and membrane-
forming molecules (lipids) must cooperate for cellular bioenergetics to continue its smooth operation 
[2].  

During biological evolution, enzymes achieved extraordinary catalytic efficiency. There are 
indications that the first several hundred million years of the Archaean age were enough to develop 
enzymes catalyzing the same reaction with many orders of magnitude higher activity than the best 
inorganic catalysts [9,10,11]. That is how life accelerated spontaneous inorganic evolution billion or even 
billion-billion times [10,12,13,14,15,16]. The catalytic mechanism includes a substantial entropy loss on 
binding substrate to an enzyme, which provides free energy for the reaction rate acceleration [17]. 
Therefore, internal and external entropy changes must be considered in addition to free energy changes 
to understand the life-driven evolution of complex macromolecular structures. This work will focus on 
how an irreversible entropy increase can contribute to higher catalytic efficiency.  

Surprisingly, inquiries about whether enzyme efficiency has anything to do with total entropy 
production attracted scant attention in the published literature. Offered answers are unconvincing and 
unclear, ranging from generalizations based on the study of two-three points and only one enzyme [18] 
to the lack of overall correlation between reaction thermodynamics and performance parameters for a 
large number of enzymes [19]. Biological and thermodynamic evolution have often been treated as 
separate and disconnected occurrences. To many biologists and some physicists, it looked evident that 
biological evolution led to a decrease in entropy, while thermodynamic evolution can lead only to an 
increase in entropy. Consequently, they could agree with the expectation that biological evolution 
should strive to produce a minimal amount of entropy. Published opposite conclusions about maximal 
entropy production during biological evolution [1,20] did not prevail. A reader can find rich literature 
sources for both viewpoints in the recent book [2]. 
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Our previous publications (collected in [2]) examined how to model enzyme efficiency increase 
when partial entropy production is maximized in rate-limiting catalytic steps. Enzymes with a uni-uni 
catalytic mechanism convert a single substrate into a single product (Michaelis-Menten kinetics [21,22]). 
Their enzyme efficiency is defined as the ratio kcat/KM, where kcat is the catalytic constant, and KM is the 
Michaelis-Menten constant. KM is interpreted as the affinity of the enzyme to the substrate. The other 
name for kcat is the turnover number or cycle completion time. The other name for kcat/KM is the 
specificity or catalytic constant. The kcat/KM value has units M-1s-1 and can be huge for the most efficient 
enzymes. Thus, it should not be confused with the dimensionless efficiency from physics that is 
restricted to 0-1 numbers (0 to 100%).  

Michaelis-Menten kinetics [21,22] survived more than 100 years of enzyme catalysis studies [23,24]. 
It is a good enough reason why a better connection with nonequilibrium thermodynamic parameters 
should be desirable. While efficiency decreases when entropy production is increased in physical 
systems, there is no reason to expect enzyme efficiency to decrease when catalytic activity is associated 
with increased partial or total dissipation. We shall explore in this paper the relationship between 
enzyme efficiency and its total entropy production after discrete jumps among quasi-steady states and 
in simulated dynamical changes in concentration of substrates, products, free enzymes, and enzyme 
complexes with ligands. Both quantities change after introducing variations in the microscopic rate 
constants. Variations we introduced are the stepway increase in chosen rate constants, uniform, or 
Gaussan noise. Remarkably, when equilibrium constants are not altered in catalytic steps, almost perfect 
proportionality is revealed between enzyme efficiency and total entropy production.  

To avoid generalities, we examined the well-defined short-term evolution of chosen enzymes, their 
substrates, and products in the system devoid of other biological molecules. The known mechanism of 
action and all microscopic rate constants calculated from the experimental data were our main criteria 
for selecting the enzymes. We set up the initial nonequilibrium state by choosing out-of-equilibrium 
substrate and product concentrations. Firstly, we reproduced measured kinetic and corresponding 
performance parameters using different software tools. The following step was to study possible 
improvements in the performance parameters in our simulations. Allowing for normal noise in 
microscopic rate constants has several advantages. Firstly, it is a more realistic description of in vivo 
biochemical kinetics in a highly noisy cellular microenvironment. Secondly, it considers that 
experimental data are signals extracted from noise. Thirdly, we generalized the Michaelis-Menten 
kinetics from biochemical textbooks so that all catalytic steps are reversible. The reversibility 
requirement is necessary for the thermodynamic treatment [25]. Still, it does not prevent the highly 
irreversible nature of some catalytic steps and does not mask the enzyme dynamics when the usual 
quasi-steady state approximation is employed. Fourthly, it allows faster exploration of rate constant 
combinations associated with higher enzyme efficiency. The last but not the least important advantages 
of taking noise into account are the implications of coupled increases for entropy production and 
enzyme efficiency during biological evolution.  

The proportionality between the biochemical and physical description of the enzyme's hallmarks 
(kcat/KM and entropy production) does not depend on noise distribution or the programming language 
used to incorporate noise. However, homeostatic conditions must be assumed to maintain the same 
proportionality line. These are physiological conditions for in vivo enzyme activity or quasi-steady state 
constraints for bach reactor experiments, achieved by continuously removing excess products and 
adding substrates (the chemiosmotic situation). In most of the presented illustrations, we regarded 
dissipation as the cause (x-axis values) and catalytic efficiency as the consequence (y-axis values). In the 
cases when some analytical function is a good fit for the efficiency-to-dissipation dependence, its shape 
is highly dependent on imposed constraints and on the manner of introducing noise in the system.  

Methods 

Selected Enzymes for the Computational Modeling 

We selected the following enzymes for the simulations of their kinetics: Escherichia coli β-
galactosidase (βG, 3.2.1.23) with rate constants published and estimated [26], Streptomyces murinus 
glucose isomerase (GI, EC 5.3.1.5) with rate constants published and calculated [27,28], β-lactamases 
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(EC 3.5.2.6) from three bacterial strains Staphylococcus aureus, Escherichia coli, and Bacillus cereus enzymes 
(respectively labeled as PC1, RTEM, and Lac-1) with rate constants published and calculated [29,30], 
Commamonas testosteroni ketosteroid isomerase (KSI, 5.3.3.1) with estimated rate constants [31], rabbit 
muscle triosephosphate isomerase (TPI, EC 5.3.1.1) with rate constants from experimental data [32], and 
human carbonic anhydrase I and II (CAI, and CAII, EC 4.2.1.1) ) with rate constants calculated from 
experimental data [33]. 

Description of Enzyme Kinetics in Terms of Nonequilibrium Thermodynamics 

To evaluate the enzyme efficiency and its total entropy production in a quasi-steady state and 
simulated dynamical changes in concentration of substrates, products, free enzyme, and enzyme 
complexes with ligands, we used the Hill’s diagram method [34,35]. Namely, each enzyme can be found 
in different states, either as free or in complexes, among which possible transitions are shown in Figure 

1. The first-order rate constants ki characterize transitions, where i is odd in the forward direction 
and even in the backward direction. For the binding transitions with the substrate or product, we use 
ki=ki*[S] and kj=kj*[P], where ki* and kj* are the second-rate constants and [S] and [P] are concentrations 
of the substrate and product. The equilibrium constant Ki in the ith catalytic step is defined as the 
forward-to-backward rate constant ratio Ki= k2i-1/ k2i. 

Entropy production for an enzyme reaction with a single cycle is given by 𝜎 = ௃௑்
 (1) 

where J is the steady-state overall reaction flux of a reaction, X is overall steady-state thermodynamic 
force, and T is the absolute temperature assumed to be constant. 

Reaction flux J is a function of the forward and backward reaction rate constants. For instance,  𝐽 = ௞భ௞యି௞మ௞ర௞భା௞మା௞యା௞ర (2) 

for the two-state model shown in Figure 1a), 𝐽 = ௞భ௞య௞ఱି௞మ௞ర௞ల௞భ(௞యା௞రା௞ఱ)ା௞మ௞రା௞మ௞ఱା௞య௞ఱା௞ల(௞మା௞యା௞ర) (3) 

for the three-state model shown in Figure 1b) and 𝐽 = ௞భ௞య௞ఱ௞ళି௞మ௞ర௞ల௞ఴఀభାఀమାఀయାఀర  (4) 𝛴ଵ = 𝑘ଶ𝑘ସ𝑘଺ + 𝑘ଶ𝑘ସ𝑘଻ + 𝑘ଶ𝑘ହ𝑘଻ + 𝑘ଷ𝑘ହ𝑘଻ 𝛴ଶ = 𝑘ଵ𝑘ହ𝑘଻ + 𝑘ସ𝑘଺𝑘଼ + 𝑘ଵ𝑘ସ𝑘଺ + 𝑘ଵ𝑘ସ𝑘଻ (5) 𝛴ଷ = 𝑘ଵ𝑘ଷ𝑘଻ + 𝑘ଶ𝑘଺𝑘଼ + 𝑘ଷ𝑘଺𝑘଼ + 𝑘ଵ𝑘ଷ𝑘଺ 𝛴ସ = 𝑘ଶ𝑘ସ𝑘଼ + 𝑘ଵ𝑘ଷ𝑘ହ + 𝑘ଷ𝑘ହ𝑘଻ + 𝑘ଶ𝑘ହ𝑘଻ 
for the four-state model shown in Figure 1c).  

The thermodynamic force equals the sum of forces in each transition 𝑋 = ∑ 𝑋௜௜  (6) 
where 𝑋௜ is the thermodynamic force of the transition i→i+1. For the two-state model 𝑋1 = 𝑅𝑇𝑙𝑛 ௞1(௞2ା௞3)௞2(௞1ା௞4) (7) 𝑋2 = 𝑅𝑇𝑙𝑛 ௞3(௞1ା௞4)௞4(௞2ା௞3). (8) 

Thus, 𝑋 = 𝑅𝑇𝑙𝑛 ௞1௞3௞2௞4
= 𝑅𝑇𝑙𝑛𝐾(9) 

where K= K1∙K2 is the equilibrium constant. Here R is the gas constant. For the three-state model 𝑋1 = 𝑅𝑇𝑙𝑛 ௞1(௞3௞5ା௞2௞4ା௞2௞5)௞2(௞1௞4ା௞1௞5ା௞4௞6) (10) 𝑋2 = 𝑅𝑇𝑙𝑛 ௞2(௞1௞4ା௞1௞5ା௞4௞6)௞3(௞1௞3ା௞2௞6ା௞3௞6) (11) 𝑋3 = 𝑅𝑇𝑙𝑛 ௞3(௞1௞3ା௞2௞6ା௞3௞6)௞1(௞3௞5ା௞2௞4ା௞2௞5)(12) 

Then the overall thermodynamic force is 𝑋 = 𝑅𝑇𝑙𝑛 ௞1௞3௞5௞2௞4௞6
= 𝑅𝑇𝑙𝑛𝐾 (13) 

where K= K1∙K2∙K3 . 
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In the case of four states, where  𝑋௜ = 𝑅𝑇𝑙𝑛 ௞2೔ష1ఀ೔௞2೔ఀ೔శ1
 (14) 

and 𝛴 = 𝛴ଵ + 𝛴ଶ + 𝛴ଷ + 𝛴ସ with 𝛴i given by (5),  
the overall thermodynamic force becomes 𝑋 = 𝑅𝑇𝑙𝑛 ௞1௞3௞5௞7௞2௞4௞6௞8

= 𝑅𝑇𝑙𝑛𝐾 (15) 

where K= K1∙K2∙K3∙K4.  

 

Figure 1. Schemes for the enzyme reactions of Michaelis-Menten type with a) two, b) three, and c) four 
states. 

Hill's equations above are valid only for the steady-state kinetics. However, these steady states can 
be very far from equilibrium, which is the primary advantage over applications of classical irreversible 
thermodynamics to linear departures from thermodynamic equilibrium. All enzymes examined in this 
paper exhibit a nonlinear relationship between fluxes and forces. That is one reason why catalytic 
efficiency for most of them is very high. We also assumed that all examined systems can jump among 
quasi-steady states in deterministic or stochastic ways. Random state changes are expected in noisy and 
crowded environments typical of any living cell. Agent-based modeling better accounts for the need to 
consider noisy dynamics while preserving mass conservation for all forms of ligands and different 
enzyme conformations. Thus, we performed our simulations using the NetLogo and FORTRAN 
computer languages and verified for each case and each enzyme that the results mostly agreed. 

Further, catalytic constants (kcat), Michaelis-Menten constants (KM), and specificity constant (kcat/KM) 
for all three schemes for the enzyme reactions shown in Figure 1 can be defined. Namely, for the two-
state model [36] 𝑘௖௔௧ =𝑘3 (16) 𝐾ெ =[𝑆] ௞2ା௞3௞1

 (17) ௞೎ೌ೟௄ಾ =  ௞1௞3[ௌ](௞2ା௞3) (18) 

for the three-state model [37,38] 𝑘௖௔௧ = ௞5

1ାೖ4ೖ3
ାೖ5ೖ3

 (19) 

𝐾ெ = [𝑆] ௄2
ೖ5ೖ1

ା 1಼1
൬ೖ5ೖ4

ା1൰
1ା௄2ାೖ5ೖ4

 (20) ௞೎ೌ೟௄ಾ =  ௞1௞3௞5[ௌ](௞2௞4ା௞2௞5ା௞3௞5) (21) 

and the four-state model [39,40] 𝑘௖௔௧ = ௞3

1ାೖ3ೖ7
ାೖ3ೖ5

൬1ା 1಼2
൰൬1ା 1಼3

ೖ5ೖ7
൰ (22) 

𝐾ெ = [ௌ]௄1

1ା௄1
ೖ3ೖ1

ା 1಼2

ೖ3ೖ5
൬1ା 1಼3

ೖ5ೖ7
൰

1ାೖ3ೖ7
ାೖ3ೖ5

൬1ା 1಼2
൰൬1ା 1಼3

ೖ5ೖ7
൰ (23) ௞೎ೌ೟௄ಾ = ௞1௞3௞5௞7[ௌ](௞2௞4௞6ା௞2௞4௞7ା௞2௞5௞7ା௞3௞5௞7) (24) 
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The dissipation is defined as the product of flux and force divided by RT and expressed in the units 
or inverse seconds (s-1). At the constant temperature, the absolute temperature T makes the only 
difference between the entropy production and the dissipation function.  

Software and Programs We Used in this Paper 

We introduced normal noise in Hill's diagram method for two, three and four states using Box-
Muller transform [41]. For FORTRAN programs, we verified that no matter how much noise was 
introduced, all results and all the data inserted in corresponding figures are exactly reproducible when 
the same program is repeatedly run for the same number of inter-state jumps. Box-Muller transform 
[41] 𝑔௜ = ඥ−2𝑙𝑛𝑠1 cos(2𝜋𝑠2) + 𝑠ℎ𝑖𝑓𝑡 (25) 

or  𝑔௜ = ඥ−2𝑙𝑛𝑠1 sin(2𝜋𝑠2) + 𝑠ℎ𝑖𝑓𝑡 (26) 
was used for generating normal noise in the rate constant ki= kiexpgi, where s1 and s2 are random 

numbers chosen from the unit interval (0,1) obtained by the standard FORTRAN generator 
random_number and kiexp is its experimental value. For some FORTRAN programs, shift = +1 or shift = +2 
is used instead of shift = 0 to avoid negative numbers for rate constants. When random numbers s1 and 
s2 were called only once the corresponding Box-Muller transform was identical for rate constants to 
which we applied it. Noise was then canceled in ratios of selected rate constants. For instance, the 
expressions (kcat/KM)/Dissipation (the slope of the kcat/KM dependence on dissipation) from the Appendix 
contain only the ratios of rate constants. Thus, the slope never changes if random numbers s1 and s2 are 
called once. It resulted in perfect proportionality between catalytic efficiency and entropy production 
when equilibrium constants for all catalytic steps are fixed. 

Noise survived only in expressions containing some of the selected constants that could not be 

rendered as belonging to such ratios. In other programs, random numbers s1 and s2 were called for each 
of the selected rate constants, and there was no noise cancelation in their ratios. In some cases, we used 
the Box-Muller transform to generate noise in selected equilibrium constants using the expression Ki= 

Kiexpgi. The legend of each figure specified how we used the Box-Muller transform to present the results. 
When the implicit assumption is that noise does not exist, we used the stepwise increase of the selected 
rate constant to cover the range, which included the observed ki value. 

While FORTRAN programs do not need an introduction, agent-based modeling does [42,43,44,45]. 
Modeling flexibility, inherent dynamics, the ability to model individual behavior, spatial consideration, 
and the logical entrance of the complexity and noise in the system are some advantages of mimicking 
biological processes with agent-based modeling. The NetLogo (http://ccl.northwestern.edu/netlogo/) is 
a multi-agent simulation environment simple to use and suitable for modeling stochastic dynamics of 
biological processes [46,47,48,49]. We used the same parent NetLogo source code as the inspiration for 
all our NetLogo programs. It is the „Enzyme Kinetics“ created by Stieff and Wilensky in 2001: 
https://ccl.northwestern.edu/netlogo/models/EnzymeKinetics. The software simulates the traditional 
Michaelis-Menten model for enzyme kinetics with reversible E+S↔ES transition and irreversible 
complex dissociation ES→E+P. We extended it to all reversible transitions, additional conformational 
states EZ, EP (see Figure 1), and noisy rate constants by using a broader usage of the NetLogo tools as 
described and regularly updated by Prof. Wilensky's group [50].  

Results 

Triosephosphate Isomerase (TPI): The Favorite Enzyme for Computational Optimization of Michaelis-Menten 

Type Kinetics 

Triosephosphate isomerase (TPI, EC 5.3.1.1) is an essential enzyme in glycolysis [51,52]. Its central 
housekeeping role is very fast catalytic interconversion of dihydroxyacetone phosphate (DHAP) and 
glyceraldehyde-3-phosphate (GAP). There would be no net yield of ATP from anaerobic glucose 
metabolism without the TPI forward activity (DHAP → GAP). Of all enzyme-catalyzed reactions, the 
free-energy profile was first determined for TPI [53]. The seminal works of Jeremy Knowles [32], John 
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Albery [54], and other authors described the TPI as a perfect enzyme in the sense that it is the perfectly 
evolved enzyme with catalytic efficiency close to the diffusion limit. In 1984, John Richard [55] estimated 
that kcat/KM for TPI increased 3∙1010 times compared to the inorganic DHAP to GAP conversion. Enzyme 
efficiency inside the diffusion limit was confirmed for the wild-type TPI enzymes isolated from many 
species [56].  

As a reversible enzyme working close to thermodynamic equilibrium, the TPI can be easily induced 
to work in the backward direction (GAP → DHAP). Its central physiological role is maintaining the 
delicate balance between glycolysis and gluconeogenesis. However, since TPI belongs to the most 
ancient enzymes [57], the biological evolution involved it in the pentose phosphate pathway, 
triacylglyceride accumulation, and many other moonlighting functions [58,59]. With such a broad 
spectrum of activities and functions, it is not surprising that the TPI enzyme has attracted the medical 
community's interest. TPI inhibitors are promising as antiprotozoal drugs for the treatment of diseases 
caused by Trypanosoma cruzi, Trypanosoma brucei, Plasmodium falciparum, Giardia lamblia, Leishmania 

mexicana, Trichomonas vaginalis, and Entamoeba histolytica [60]. The upregulation of the TPI gene is 
common in many cancers [61]. At the same time, TPI deficiency or reduced activity causes the 
accumulation of DHAP connected to severe diseases, such as hemolytic anemia, recurrent infections, 
cardiomyopathy, and fatal neuromuscular dysfunction [62]. 

Stephen Blacklow asserted [63] that TPI enzyme "can improve no further as a catalyst, " assuming 
constraints of free diffusion and in vivo levels of its substrates. In the meantime, researchers proposed 
electrostatic screening [64,65], TPI oligomerization [66], elevated temperature for the TPI from 
thermophilic cells [67], and other mechanisms [68] how TPI catalytic efficiency can be increased above 
observed values. Ideally, the mutations or modifications making TPI more resistant to oxidative damage 
and a more efficient catalyst can help prevent and treat Alzheimer's disease [68,69]. 

We stressed in our previous contributions [70,71] that increasing the TPI catalytic turnover and 
efficiency above observed "perfect "values is theoretically possible when enzyme kinetics is connected 
to the maximal partial entropy production principle from irreversible thermodynamics [2]. In this 
chapter, we shall attempt to answer the following questions: a) Does TPI performance change after noise 
is taken into account? b) If it does change, is it possible to find the combination of microscopic rate 
constants resulting in at least ten-fold increased performance regarding the kcat/KM value calculated 
from the experimental data? c) How is the entropy production by TPI related to corresponding enzyme 
efficiency values? d) Are any published optimization methods better at finding high forward kcat/KM 
values than different means of noise introduction? 

Let us first present observed values for TPI kinetic parameters [32,70] to easily compare all our 
simulations with the experimental values (Table 1). Triosephosphate isomerase can be found in four 
functional states [54]. According to Figure 1c) 1 is the free enzyme (E), 2 is the enzyme-substrate bound 
complex (ES), 3 is a transition state intermediate (EZ), and 4 is the enzyme-product bound complex (EP). 
The reference steady state [54] is such that the concentration of substrate is [S] = 40 μM and the 
concentration of product is [P] = 0.064 μM. The values of the kinetic constants k1 and k8 in Table 1 are 
obtained respectively from expressions k1= k1*∙[S] and k8 = k8*∙[P], where second-order rate constants k1* 
and k8* are measured in (Ms)-1.  

Table 1. Calculated microscopic rate constants and kinetic parameters from the experimental data [32] 

in the case of TPI isomerase catalyzed conversion of DHAP (substrate) to GAP (product) at 25 ◦C. The 

substrate and product concentration were respectively [S] = 40 μM and [P] = 0.064 μM. 

Rate  

constants 

Calculated 

Values [32,70] 

 

Kinetic 

parameters 

Calculated 

initial values [70] 

 

k1* 107 M-1s-1 k1 400 s-1 

k2 7000 s-1 k8 25.60 s-1 

k3 2000 s-1 [S] 4∙10-5 M 

k4 6000 s-1 [P] 6.4∙10-8 M 
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k5 60000 s-1 [E] 5∙10-8 M 

k6 90000 s-1 kcat 432 s-1 

k7 4000 s-1 KM 5.5∙10-4 M 

k8* 4∙108 M-1s-1 kcat/ KM 7.86∙105 M-1s-1 

  Keqtot 3.2∙10-3 

  Xtot/RT 0.685 

  
𝐷𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛𝑅𝑇   

  P 9.9 s-1 

The initial TPI concentration in our simulations ranged from 10 to 50 nM. Mass conservation for all 
enzyme conformations is always taken into account in all simulations. All NetLogo programs also 
required the mass conservation of ligands (substrates, products, and their intermediate TPI-bound 
forms). That requirement entered the FORTRAN programs as the [S]+[P] = constant condition when we 
allowed for changes in the concentrations of ligands. The concentration of bound ligands [ES]+[EZ]+[EP] 
is always much smaller than [S]initial + [P]initial concentration because bound ligands concentration cannot 
exceed the initial low concentration of free TPI enzymes. Thus, the mass conservation of ligands is 
considered a good approximation in those FORTRAN programs that examined how different 
parameters change after changes in the substrate and product concentrations. 

Stepwise increases of rate constants from the product-release transition  

Let us first consider how catalytic efficiency depends on overall entropy production in a 
deterministic manner when the implicit assumption is that noise does not exist. FORTRAN program is 
convenient to use for such a study. For constant temperature, the dissipation function φ and total 
entropy production P have the absolute temperature T as the proportionality factor: φ = T∙P. Assuming 
that P is not the conseqeunce but the cause for the catalytic efficiency (see Introduction), we use either 
entropy production or dissipation term to plot the functional relationship between kcat/KM values at the 
y-axis and the dissipation/RT values at the x-axis. The first such plot (Figure 2) illustrates how TPI 
efficiency changes after the stepwise increase in the microscopic rate constant k7. All other rate constants 
and equilibrium constants K1, K2, and K3 are kept at their observed values (see the calculated values of 
rate constants and the values for the initial concentrations of substrates and products from Table 1. Since 
the equilibrium constant K4 = k7/k8 also goes through the stepwise increase, the expected outcome of the 
first simulation scenario is a regular increase in the chemical affinity or force (expressed as Xtot/RT 
values) from negative to positive values. 

Negative force values correspond to negative backward flux (GAP → DHAP) and positive 
dissipation, while positive force values correspond to positive forward flux (DHAP → GAP) and 
positive dissipation. Both limits in the force range, negative and positive, are associated with the high 
dissipation. Still, only the positive limit corresponds to the maximal enzyme efficiency value of 1.25∙106 
M-1s-1 (Figure 2). That result is an encouraging 1.59-fold increase over the observed value of 7.9∙105 M-1s-

1 (corresponding to the Xtot/RT = 0.685), but not the significant improvement over the 1.13∙106 M-1s-1 value 
we obtained in the 2017 [70].  
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Figure 2. The catalytic efficiency dependence on dissipation after stepwise increase of the last forward 
rate constant k7. The k7 jumped for 10.0 units in each of the 1000 deterministic steps in the FORTRAN 
program, starting with the k7 = 10 s-1. The K4 = k7/k8 is then calculated from fixed k8 and variable k7. There 
are no changes in other equilibrium constants. Their values follow from Table 1 as K1 = k1/k2, K2 = k3/k4, 
and K3 = k5/k6. The X/RT values also go through the stepwise increase from negative -5.3 to positive 1.6, 
thus passing through the vanishing value at the thermodynamic equilibrium and near equilibrium value 
0.685, which we kept constant in our previous simulation of the TPI kinetics [70]. There was no change 
in initial concentrations of substrates (40 μM) and products (0.064 μM). 

From the output of the same FORTRAN program, it is easy to select only the positive Xtot/RT values. 
The resulting efficiency dependence on dissipation is then well correlated (R2 = 0.944) with the straight-
line proportionality (Figure 3) Thus, from zero forward catalytic efficiency and vanishing entropy 
production in the thermodynamic equilibrium, there must be an obligatory increase in the dissipation, 
which is tightly coupled to the catalytic efficiency increase. We did not ask how one can achieve the 
increase in only the chosen kinetic constant k7 in practice without any other change. It is unlikely that 
random or intentional mutations can ever do it. However, fine-tuning microwave irradiation may 
potentially produce the non-thermal effect of significantly accelerating the product release catalytic step. 
It is easier to answer why simulations presented in Figures 2 and 3 dealt with the k7 stepwise increase. 
We assumed, as in [70], that the product release rate limits the TPI catalytic power. In our notation for 
rate constants (see Figure 1c), the k7 is the first-order rate constant, determining the product release rate. 
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Figure 3. The catalytic efficiency dependence on dissipation after stepwise increase of the last forward 
rate constant k7, for positive force values. The same FORTRAN program and identical conditions 
conditions are used as described in the legend of Figure 2. We deleted all negative Xtot values and 
corresponding efficiency and dissipation values to get this figure. The figure illustrates the nonlinearity 
of the efficiency(dissipation) function despite a surprisingly good linear fit with R2 = 0.9442. 

We can also explore the stepwise increase of k7 and k8 when all equilibrium constants and all other 
rate constants maintain their observed values (see Table 1). Almost perfect proportionality is obtained 
between kcat/KM and corresponding entropy production values (Figure 4).  

The next task is to answer how thermodynamic and kinetic parameters change for the TPI catalytic 
cycle when we limit deterministic changes to decreasing substrate and increasing product 
concentrations. The answer is provided in Figure 5, which illustrates how net flux and overall 
dissipation vary with the force changes.  

 

Figure 4. The catalytic efficiency dependence on dissipation for deterministic jumps between steady 
states such that increases in the forward rate constant k7 (for whatever reason) are constrained by the 
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requirement that equilibrium constant K4 does not change from the observed value K4 = 156 [32]. Thus, 
the backward rate constant k8 in the last catalytic step must also go through stepwise increases calculated 
from the K4 = const requirement. Other rate and equilibrium constants remain equal to their initial values 
(see Table 1). The total force Xtot/RT remains equal to its initial value of 0.685 through all jumps between 
1000 steady states. The figure illustrates the perfect proportionality between enzyme efficiency and 
entropy production when change is not allowed in equilibrium constants for cyclic catalytic steps. 

 
Figure 5. Triosephosphate isomerase thermodynamics and kinetics. Stepwise changes in the substrate 
and product concentrations are the only cause for the change in the chemical affinity (force) at the x-axis 
and of entropy production and net flux (both in units of inverse seconds) at the y-axis. We assumed that 
the initial sum of substrate and product concentrations does not change. Therefore, the decrease in the 
substrate concentration from its initial concentration of 40 μM is always accompanied by the increase in 
the product concentration from its initial concentration of 0.064 μM. Other parameters in the FORTRAN 
program are the same as in our 2017 paper [70], and we used the symbols from that paper to facilitate 
the comparison with that and other older simulations. In the figure, we compared our results (the vertical 
line for the positive force with arrows in the insert) with the simulation results of Šterk et al. [72] (the 
vertical line for the negative force with arrows in the main figure). 

The catalytic activity optimizations in the forward direction, when the substrate is converted into 
the product, are better connected with the physiological role of the TPI enzyme in glycolysis. We 
published one example of such optimization in 2017 [70]. It was for the fixed positive force (chemical 
affinity) corresponding to Xtot/RT = 0.685 (the vertical line in the insert of Figure 5). The optimization 
example for the reverse process (product-to-substrate conversion) leads to decreased catalytic efficiency 
for the forward process. The dissipation and net flux for the reverse process increase by several orders 
of magnitude when the applied force has a high negative value (the vertical line in the main figure). It 
is a pathological situation with no connection to TPI's role in cellular metabolism. 

Šterk et al. result [72], after maximizing the total entropy production density, was J = - 1272 s-1 (blue 
point at the vertical line in the main figure). It is about 100 times higher net reaction flow in the reverse 
GAP→DHAP direction when compared to experimentally observed reaction rate J = 14 s-1 facilitating 
glycolysis [32,70]. The maximal entropy production of Šterk et al. [72] is σ/nR = 5685 s-1 (the red point at 
the vertical line in the main figure). Klipp and Heinrich [73] obtained even higher net reaction flow in 
the backward GAP→DHAP direction ranging from J = -1620 (for experimental rate constants values 
when [DHAP] = [GAP] = 40 μM) to J = - 4010 s-1 (for the separate limit optimization model), the result 
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that was verified and commented by Bish and Mavrovouniotis [74]. These optimizations for highly 
negative flux and negative force can only ensure the non-physiological operation of the TPI enzyme and 
the loss of its primary function of balancing glycolysis and gluconeogenesis. For instance, optimized kcat 
in the forward direction of Šterk et al. [72] is kcat = 222 s-1, which is worse then kcat = 432 s-1 (experimental 
data [32]), while our optimized kcat = 686 s-1 [70] is an improvement over the kcat value calculated from 
experimental data.  

It all depends on the choice of the optimization procedure. We chose to maximize the partial 
entropy production in the rate-limiting product-release step (the 4th catalytic step in the forward 
direction) [2]. We noticed in 2017 [70] how that choice led to the concomitant increase in the optimal net 
flux (from 14.4 to 20.77 s-1), optimal catalytic constant (from 432 to 686 s-1), optimal catalytic efficiency 
(from 7.86∙105 to 1.13∙106 M-1s-1), and optimal overall entropy production (from 9.9 to 14.2 s-1). Within the 
restriction we used (fixed equilibrium constants for each catalytic step at their values calculated from 
the experimental data), there was a common 30% increase in the flux, efficiency, and dissipation. Figure 
4 above illustrates how a regular 30% increase between two points follows from the constant slope and 
perfect proportionality between enzyme kinetic parameters and its overall entropy production. We did 
not show the J dependence on dissipation because the dissipation function φ = J∙X, and force X was 
constant in the calculations we performed to construct that figure. 

In the following subsection, we study the same efficiency-dissipation relationships when noise is 
introduced in the last catalytic step so that FORTRAN programs for calculating kinetic and 
thermodynamic parameters do not contain regular stepwise increases in catalytic constants k7 and k8.  

Noise introduction in kinetic constants with selected restrictions 

We asked what would happen after introducing random normal noise in forward (k7) and 
backward (k8) rate constants for the rate-limiting product-releasing step. Figure 6. illustrates the 
advantage of using noise when looking for the combination of rate constants corresponding to higher 
enzyme efficiency. The highest efficiency of 1.6∙106 M-1s-1 is associated with the highest total dissipation 
in the RT units (20.3 s-1) due to the perfect proportionality between the main enzyme performance 
parameter and the main physical parameter in irreversible thermodynamics. We used the same 
restrictions of constant overall force and constant equilibrium constants K1 to K4, which were required 
in deriving the partial entropy production theorem [2,30,70]. Random normal noise was called once in 
the FORTRAN program as the Box-Muller transform (see Methods, eq (25)) with the shift +2 to ensure 
that only positive rate constants k7 are the output. There was no need to call that function again for the 
multiplication with the observed k8 value because we kept the no-change requirement for all 
equilibrium constants Ki (i = 1, 2, 3, 4) from our 2017 paper [70]. 

 

Figure 6. The catalytic efficiency dependence on dissipation for nondeterministic jumps between steady 
states when forward rate constant k7 = 4000 s-1 is multiplied with the Box-Muller transform for the 
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random normal noise with the shift +2 (see Methods). The k8 variation follows from the requirement 
k8=k7/156.25 (K4=156.25), that is, from the no-change restriction for the calculated K4 value from the 
observed data [32]. The FORTRAN program used to prepare this figure also required fixed K1, K2, K3, 
and all other parameters at their initial values (see Table 1) for all of the 10000 computational steps. 

In the next computational experiment, we introduce normal noise in the kinetic constant k7 = 4000 
s-1 while taking representative initial values of rate constant k8 = 25 s−1, 32 s−1, 40 s−1, 100 s−1, and 160 s−1. 
Fixed equilibrium constants for each k7-k8 pair are then K4 = 160, 125, 100, 40, and 25, respectively, each 
calculated using experimental value k7 = 4000 s−1. Experimental data for kinetic constants of the enzyme 
triosephosphate isomerase shown in Table 1 are used for transitions other than transition 4. Enzyme 
efficiency kcat/KM as a function of dissipation/RT is shown in Figure 7 for the forces X/RT equal to 0.2389, 
0.4620, 0.6852, -0.6774, and -1.1474 corresponding to the equilibrium constants K4=100, 125, 160, 40 and 
25, respectively. 

There is one additional condition besides those we used to create Figure 6. We assumed a constant 
sum of free substrates and free products. It is a good approximation for the mass conservation of ligands 
only if the initial free enzyme concentration (50 nM) is much smaller than the concentrations of [S]+[P] 
for all points and all forces. Figure 7 joins the results of five FORTRAN programs that include noise in 
the last forward catalytic step. 

 
Figure 7. Enzyme efficiency kcat/KM as a function of dissipation/RT for the triosephosphate isomerase 
when kinetic constants k7 and k8 in the last transition vary due to the introduction of Gaussian noise. 
Representative initial values of rate constant k8 are 25 s−1, 32 s−1, 40 s−1, 100 s−1, and 160 s−1. As before, we 
used the K4 = const restriction and the experimental data for kinetic constants shown in Table 1 for 
transitions between other catalytic steps. Figure 7 differs from Figure 6 because we allowed five different 
equilibrium constants K4 = 160, 125, 100, 40, and 25 to span five force values Xtot/RT ≡ X/RT from negative 
to positive (see inserted X/RT values and corresponding symbols). 

Careful examination of the case Xtot/RT = -1.1474 reveals slight curvature in the efficiency as a 
function of dissipation (magenta symbols). The ratios of rate constants k3/k7 and k6/k7 (from the KM 
expression [38]) are not constants in the output file because k3 and k6 are constants but k7 changes in a 
random manner. The best linear fit slope increases when negative force values approach the 
thermodynamic equilibrium and then decreases when positive force is increased. Thus, we examined 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 December 2023                   doi:10.20944/preprints202312.0125.v1

https://doi.org/10.20944/preprints202312.0125.v1


slope changes and goodness of linear fit changes for a wider span of force values ranging from -3 to +4 
(Figure 8). For that task, we constructed ten FORTRAN programs. The ratios of rate constants k3/k7 and 
k6/k7 (from the eq. (23) KM expression) are not constants in the output files because k3 and k6 are 
constants, but k7 changes randomly. The KM exhibits small changes. 

Figure 8 shows the output of these programs. It illustrates how the slope and the perfection of the 
seemingly straight-line proportionality increase with the approach to the thermodynamic equilibrium 
when net force and entropy production vanish. 

 

Figure 8. The figure is constructed after calculating linear fit and efficiency to dissipation slope for 10 
different X/RT values from -2.980 to 3.928 (corresponding to the total Keq range from 4 to 4000). The 
physiological range for Xtot/RT values when TPI enzyme works in the cellular environment, is likely to 
be even more restricted to low and mainly positive X values. See legends of Figures 6 and 7 for details 
about the construction of 10 FORTRAN programs used to get Figure 8. 

Computational Optimizations of the TPI Catalytic Activity when noise is included 

The question we studied in this subsection is how noise introduction affects various computational 
optimizations for TPI catalysis. In Figure 9, variations of K1 and K4 were introduced by multiplication 
of K4 = k7/k8 (see Table 1) with the normal noise. The fixed force restriction X = Xtot/RT = 0.684 [70] ensured 
concomitant variations in K4 and K1. There was no explicit requirement for the maximal entropy 
production. Still, after going randomly through the 1000 quasi-steady states, our FORTRAN program 
finds that the maximal overall dissipation corresponds to optimal enzyme efficiency (Figure 9). The 7-
fold efficiency improvement from 7.86∙105 to 5.585∙106 M-1s-1 follows after a 4-fold dissipation increase 
(see Table 1).  
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Figure 9. Enzyme efficiency kcat/KM as a function of dissipation/RT for noisy TPI kinetics with variations 
in K1 and K4 equilibrium constants and fixed overall force Xtot/RT. Each of the 1000 points in this figure 
corresponds to a randomly established steady state when K4 is multiplied with the normal noise function 
with a +2 shift. The FORTRAN program found a unique steady state with optimal enzyme efficiency and 
maximal total entropy production, such that the optimal efficiency (higher arrow y coordinate) is 
considerably higher than calculated catalytic efficiency using experimental data (lower arrow y 
coordinate from this Figure and Figure 6). 

The best combination of the backward rate constants k2 and k8, which resulted in even higher 
kcat/KM of 8.903∙106 M-1s-1, is k2 = 74 s-1 and k8 = 2438 s-1. The enzyme working in that state has 11 times 
higher catalytic activity (the highest point in Figure 9) than the value of 7.86∙105 M-1s-1 calculated from 
the experimental data (Table 1). Required changes in rate constants are two orders of magnitude 
changes in k2 (decrease) and k8 (increase). These rate changes describe the inhibition of substrate release 
from the ES complex and stimulation of product association with the free enzyme. The corresponding 
overall dissipation per RT of 21.3 s-1 is approximately double the value calculated from the experimental 
data. Still, the dissipation needed to reach the maximal efficiency state is halved compared to maximal 
dissipation (Figure 9).  

Interestingly, the same dissipation value of 21 to 22 s-1 is connected with two very different catalytic 
efficiency values of 8.9∙106 and 1.94∙106 s-1, respectively. Thus, when specific restrictions are imposed, 
the nonlinear system may be able to jump between two quasi-steady states characterized by high and 
low efficiency and a minor change in dissipation. How to force the system to live in about a 10-fold 
higher efficiency state with only a two-fold higher price in terms of overall dissipation is outside the 
scope of this paper. 

Optimal efficiency can be obtained for fixed force when other pairs of equilibrium constants are 
varied by introducing noise. We did not show corresponding efficiency (dissipation) dependence 
because optimal kcat/KM values for the dissipation maximum were considerably lower from the 8.9∙106 
M-1s-1 value obtained after K1-K4 variations. A reader can verify that conclusion from the Figure 10 
coordinates (20.6, 1.95∙106) and (21.7, 1.9∙106) obtained after K2-K4 and K3-K4 variations. Still, the 
requirement that total entropy production is maximal and corresponding restrictions on equilibrium 
constants for chosen catalytic steps can produce higher catalytic efficiencies for fixed force than the 
maximal requirement for selected partial entropy productions (Figure 10). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 December 2023                   doi:10.20944/preprints202312.0125.v1

https://doi.org/10.20944/preprints202312.0125.v1


 

Figure 10. The map of dissipation-efficiency values for different constraints in the case of TPI kinetics. 
The straight-line efficiency dependence on dissipation follows after the same restrictions we described 
in the legend of Figure 6. Pairs of (x, y) values with higher (dissipation/RT, kcat/KM) values from those in 
Figure 6 resulted because we introduced the same normal noise in all kinetic constants, not just in the k7, 
k8 pair. Specifically, we multiplied each of the four forward kinetic constants with the same Box-Muller 
transform containing two random numbers and a positive shift of +2 (see Methods), which was called 
only once in the program. The +2 shift ensured the absence of negative values for some kinetic constants. 
The corresponding FORTRAN program calculated backward rate constants from the constant K1 to K4 
requirement (their referent values can be calculated from corresponding rate constant values in Table 1). 
That requirement ensured, combined with the normal noise introduction in each forward ki, that a) noise 
is canceled in the ratio of kinetic constants in each catalytic step and b) all catalytic constants are different 
in each of 1000 changes among steady states. See the main text for the meaning of points (highlighted 
circles) obtained using different restrictions or optimizations with or without introduced noise. 

The primary purpose of Figure 10 is to illustrate the relationships among different methods for 
obtaining higher than referent values for catalytic efficiency (Table 1). That task led to the map of 
dissipation-efficiency points when the x-axis is for dissipation and the y-axis is for enzyme efficiency. 
The perfect efficiency-dissipation proportionality is the straight line fit to 1000 points after each kinetic 
constant is multiplied with the normal noise invoked only once in the corresponding FORTRAN 
program. It is the consequence of assuming fixed values for all equilibrium constants Ki, meaning that 
the overall force is also identical for all data points (their referent values can be found in Table 1). We 
also used those assumptions in our previous publications [2,30,70]. We did not consider noise in these 
publications. The first two highlighted points (9.9, 0.79∙106) and (14.2, 1.13∙106) are centered at the linear 
fit. They are the dissipation and efficiency values calculated from the experimental data and the modest 
improvement achieved after the requirement that partial entropy production P4 in the rate-limiting 
product release step is maximal [2,70,71].  

We discussed above the results after introducing noise in the pairs of equilibrium constants K1-K4, 
K2-K4, and K3-K4. These are off-line points in Figure 10, respectively: (39.4, 5.585∙106), (20.6, 1.95∙106), and 
(21.7, 1.9∙106). Thus, Figure 10 clearly shows the advantage of noisy substrate and product association 
with free enzyme (the highest point). After considering many different optimization methods for 
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entropy production (either ours or by other authors), the K1-K4 variations with constant force restriction 
resulted in best theoretical increase of the TPI catalytic efficiency above its observed value [32]. 

Computational optimizations of TPI kinetics by some other authors [72,73] used the substrate and 
product concentrations similar to each other. It reversed the net flow in the direction of product → 
substrate due to negative flux and force and resulted in higher total entropy production values of 
several orders of magnitude. For instance, Šterk et al. [72] used the constraint k1*∙k3∙k5∙k7 = K+ = constant 
equal to the observed value. Such optimization required that the product of all kinetic constants in the 
forward direction and all kinetic constants in the backward direction k2∙k4∙k6∙k8* remain fixed when 
other parameters change. However, Šterk et al.[72] used the steady state concentrations [S] = 31.45 and 
[P] = 8.55 μM. The corresponding force is then highly negative Xtot/RT = - 4.47. When multiplied with 
the high negative flux, it produced such a high dissipation that the optimal values (5685, 1.8∙106) could 
not be illustrated as the (x, y) point within the confines of Figure 10. The authors found the maximum 
in overall entropy production, but it was about 570-fold higher than the calculated value from the 
experimental data. As expected, for the backward-directed enzyme turnover, the corresponding 
optimal efficiency for forward catalysis of 1.8∙106 M-1s-1 (the right-hand arrow pointing outside Figure 
10) is substantially smaller than our best results. 

Noise introduction without restrictions other than all ki>0  

When normal noise without shift is introduced in all rate constants ki, some can vanish or become 
negative. To avoid such cases, we replaced negative with observed ki values (see Table 1). Figure 11 
illustrates that reasonable proportionality exists between efficiency and entropy production when there 
are no other restrictions on kinetic constants and on equilibrium constants for the TPI enzyme. The 
advantage of calling random numbers eight times (once for each of eight kinetic constants) is an 
extended range of possible steady states and forces. The highest efficiency state has 30-fold better 
efficiency and 160-fold higher dissipation compared to values calculated from experiments. The 
corresponding force for that state is Xtot/RT = 6.335.  

The basic assumption we used in calculating entropy production values is that each of the 10000 
computational steps probes a new quasi-steady state in which all parameters of interest can be 
calculated by using the Terrel Hill method [34,35]. We found the maximal efficiency value in the 1078th 
step. It corresponds to an unusually high information entropy of 1.181 and a low Michelis-Menten 
constant KM = 0.000015. Interestingly, only the kinetic constants k2, k6 and k7 significantly differed from 
their experimental values, all being much smaller, 56, 15, and 4 times, respectively. An increase in the 
k1 value (from 400 to 1144 s-1) may have resulted from increased substrate concentration or increased 
second-order rate constant for the association between the substrate and enzyme to form the ES 
complex. There was no change from experimental values for the kinetic constants. k4, k5, and k8.  

Enzyme turnover became slightly slower (kcat decreased from 432 to 348 s-1), but the division with 
considerably smaller KM (from 5.5∙10-4 to 1.474∙10-5) ensured surprisingly high efficiency. As is usually 
the case, the most illustrative representation is the profile of changes in the equilibrium constants or free 
energy changes. The equilibrium constant K1 increased about 160 times (from 0.057 to 9.07), and the K3 
constant increased nearly 15 times (from 0.667 to 9.75). It led to a significant increase in the total 
equilibrium constant (from 1.98 to 564) despite a decrease in the K2 (from 0.333 to 0.174) and K4 (from 
156.25 to 36.59). 
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Figure 11. The dependence of catalytic efficiency on dissipation when all rate constants are noisy. Box-
Muller transforms gi without shift (see Methods) were called and multiplied with each of eight rate 
constants ki (i = 1,2,..8). The multiplication with gi > 0 introduced normal noise in these constants. For the 
gi values that did not satisfy the gi > 0 condition, we kept observed ki values (see Table 1). The main loop 
from the FORTRAN program contained 10000 steps. After all steps, we examined the kinetic and 
thermodynamic parameters for maximal values in catalytic efficiency, overall entropy production, and 
possible correlation between enzyme efficiency and total dissipation. 

There were 3580 points corresponding to the force X = Xtot/RT ≤ 0. Thus, for 35.8% of sets with 
random values for kinetic constants, the enzyme can still work in the reverse direction, converting 
products into substrates. Most ki octuplets simulated the major physiological role of the TPI enzyme in 
converting DHAP to GAP. The best case of kcat/KM = 2.36∙107 M-1s-1 is also for the forward-directed net 
flux. However, we used the same forward catalytic efficiency definition for X > 0 and X ≤ 0. All the 
experimental data in the literature were extracted for the force X > 0 and flux J > 0 under the conditions 
when substrate concentration greatly exceeded the product concentration. The initial concentrations 
were [S] = 40 μM and [P] = 0.064 μM. Variations in k1 and k8 allowed the changes either in the second-
order rate constants or in concentrations. The extreme case when X = -10.19 was obtained with k1 = 3.4 
s-1 and k8 = 27.0 s-1. If the change in k1 occurred only due to the change in [S], the substrate concentration 
would decrease almost 120 times. Therefore, although we included the points with negative force and 
flux in this figure and other simulations from the literature considered such cases [72,73], there is no 
experimental or physiological justification for retaining them. 

Simulating dynamics using an agent-based modeling approach 

Dynamics can be simulated using an agent-based modeling approach without solving differential 
equations. Agent-based model (ABM) is stochastic by nature. For instance, the stochastic noise inherent 
to the NetLogo computer language can be used to construct models for the stochastic interaction of an 
enzyme with its substrates, products, and inhibitors [75,76]. In the following example, noise is 
introduced in the TPI kinetics through random-float values (uniform noise) added to selected rate 
constants, not by Gaussian random number values (Figure 12). Additional noise in rate constants is due 
to random encounters among ligands and [E]free and among enzyme conformations [ES]↔[EZ] and 
[EZ]↔[EP], which is also specified with several different random-float values. Random changes occur 
in all computational steps (named „ticks“). Ticks can be in chosen time units. Agent-based 
programming requires dimensionless numbers as the input. However, when these numbers are 
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specified as 40000 for substrates, 64 for products, and 50 for enzymes (for the TPI kinetics), they 
correspond to [S]initial = 40 μM, [P]initial =0.064 μM, and [E]initial = 0.1 μM. The mass conservation of all 
ligand forms ([S], [P], [ES], [EZ], and [EP]) and all enzyme forms ([E]free, [ES], [EZ], and [EP]) is an explicit 
requirement for each tick in all our NetLogo programs. Thus, [S]initial + [P]initial = [S] + [P] + [ES] + [EZ] + 
[EP] and [E]initial = [E]total = [E]free + [ES] + [EZ] + [EP] because we left the system to itself and never added 
ligands or enzymes.  

 
Figure 12. NetLogo simulation of the catalytic efficiency dependence on dissipation for the TPI kinetics. 
The initial enzyme concentration was 100 nM. All other initial values and assumptions were identical to 
those we used previously [70]. Due to the dynamics inherent to the NetLogo agent-based language, the 
assumption about unchanged equilibrium constants from that paper could be only partially retained. 
Noise is introduced through different random-float values, not by Gaussian random number values. 
Additional noise is due to random encounters among ligands and [enzyme]free and among enzyme 
conformations [ES]-[EX] and [EX]-[EP] also specified with several different random-float values. 

The intermediate equilibrium constants K2 and K3 never changed from their experimental values. 
Due to slight changes in the substrate and product concentrations the equilibrium constants K1 and K4 
also underwent small changes. However, we kept the assumption that Kଵ∗ = ୩భ∗୩మ = const1 (27) 

where kଵ∗ = kଵ/[S] is the second-order rate constant for the enzyme and substrate association, while 
const1 is the ratio determined from the observed Kଵ∗  value, which does not change during the 
simulation. Similarly,  Kସ∗ = ୩ళ୩ఴ∗ = const2 (28) 

where k∗଼ =  k଼/[P] is the second-order rate constant for the enzyme and product association, while 
const2 is the ratio determined from experiments, which does not change during the simulation. 

Since initial product concentration is small (64 nM), each stepwise increase in the product 
concentration is seen as a jump from one straight line fit to another in four steps „a“ to „d. “ It increased 
the product concentration to 67 nM. Thus, the proportionality between enzyme efficiency and entropy 
production (dissipation) remained almost perfect. Maximal efficiency values close to the 3∙106 M-1s-1 are 
about 4-fold higher compared to the value calculated from experiments. Similar 4-fold increase is for 
the corresponding dissipation. 

When simulation time was extended to 2137 ticks, product concentration increased from 64 to 74 
nM, while the driving force decreased from Xtot/RT = 0.68 to Xtot/RT = 0.54 with the same stepwise slope 
increase for the efficiency-dissipation dependence (Figure 13). The best efficiency value of 3.3∙106 M-1s-1 
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corresponded to the dissipation/RT = 27.2 s-1 . Free enzyme concentration dropped from 100 to 12 nM 
for this case of more extended simulation. 

 
Figure 13. The more extended simulation run using the same software and identical conditions we 
described in Figure 12. The program was stopped at 2137 ticks when initial concentrations [S]init = 40 μM, 
[P]init = 0.064 μM, and [enzyme]free-init = 100 nM changed to the [S]final = 39.902 μM, [P]final = 0.074 μM, 
[enzyme]free-final = 12 nM. Final concentrations of enzyme-ligand complexes were [ES] = 19 nM, [EZ] = 35 
nM, and [EP] = 34 nM. Overall force in the RT units (X/RT) dropped from the initial 0.685 to the final 
0.538. 

The insight from these figures would be that maximal catalytic efficiency remains approximately 
the same during the system relaxation toward the thermodynamic equilibrium (when chemical affinity, 
net flux, and total entropy production all reach their zero values). The slope of the efficiency-dissipation 
line keeps increasing toward an infinitely high value at the thermodynamic equilibrium when 
dissipation vanishes. Also, the perfection of the straight line approximation for the fit connecting all (x, 
y) values keeps increasing in discrete jumps (for each unit change in the product concentration) while 
chemical affinity decreases. The same time-development rule holds when equilibrium is spontaneously 
approached from the high positive or negative initial forces (see Figure 8). Better efficiency to dissipation 
proportionality for positive forces stems from the kୡୟ୲/K୑ definition of catalytic efficiency, where both 
the catalytic constant and the Michaelis-Menten constant are defined for the forward direction [𝑆] →[𝑃] . It is easy to see that nonlinear is considerably better than linear fit for efficiency-dissipation 
proportionality in the case of higher negative X (see Figure 8).  

For longer simulations, the concentrations of enzyme conformations ES, EZ, and EP after each step 
(tick) go through the typical Michaelis-Menten kinetics: slow initial increase, faster, nearly constant 
increase, a broad maximum with minor changes, and prolonged decrease. That pattern repeats itself 
with the ES complex, after some delay with the EZ complex, and finally with the EP complex. 

We next examined if a broader scope search for better enzyme performance is possible when 
Gaussian noise gi (see Methods) is multiplied with each microscopic rate constant ki (Figure 14). The 
best catalytic efficiency of kcat/KM = 2.22∙107 M-1s-1 is indeed better than previous NetLogo simulations 
and similar to the best result we obtained after FORTRAN simulation for the TPI kinetics (Figure 11).  
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Figure 14. The catalytic efficiency dependence on dissipation when each kinetic constant ki is 
independently multiplied with the Gaussian noise function gi (see Methods) for the reversible 4-state 
triosephosphate kinetic scheme. Initial conditions were the same as in Table 1 ([E]free = 50 nM). The 
program was stopped at the 1800th tick. The final concentrations of enzyme conformations were [Efree] = 
30 nM, [ES] = 6 nM, [EX] = 8 nM, and [EP] = 6 nM. 

Ketosteroid Isomerase (KSI) Case: What is Different when the Operating Range is Farther from Equilibrium? 

Paul Talalay discovered in 1951 [77] the Pseudomonas testosteroni bacterium (presently named 
Commamonas testosteroni [78]) from soil beneath a rosebush on the Berkeley campus. The bacterium 
could grow in a medium containing testosterone as its only carbon and energy source. That was a clever 
and brave approach because, at that time, many steroid metabolites were known, but enzymic 
transformations of steroid hormones and metabolites were yet undiscovered. Paul Talalay and his 
collaborators purified highly active small bacterial enzyme ketosteroid isomerase from that bacterium 
and reported their findings from 1955 onward [77]. The alternative name for the KSI enzyme is 3-oxo-
Δ5-steroid isomerase (EC:5.3.3.1). 

Anna Radzicka and Richard Wolfenden reported typical high values for the 
catalytic constant, catalytic efficiency, and catalytic proficiency of KSI as respectively 6.6∙104 s-1, 

3.0∙108 M-1s-1, and 1.8∙1015 M-1 [12]. The catalytic proficiency is the catalytic efficiency rate enhancement 
(kcat/KM)/kuncat when a nonenzymatic reaction rate constant kuncat can be found for a corresponding 
spontaneous chemical reaction without the enzyme (1.7∙10-7 s-1 in our case). Thus, KSI is one of the fastest 
enzymes with extraordinary catalytic power. The formation of essential steroid hormones would take 
months to millions of years without enzymes such as KSI [79]. The equilibrium constant Keq = 2400 [80] 
corresponds to the far from equilibrium conditions, high positive force, and the preference for the 
forward isomerization rate of 5-androstene-3,17-dione (a substrate for KSI) to its conjugate isomer 4-
androstene-3,17-dione. Elucidating how the KSI reaction mechanism is connected to structure, kinetics, 
electrostatics, and thermodynamics was a highly challenging but worthy task through the last 50 years 
[81,82,83,84]. Hopefully, the rational design of KSI enzymes with augmented catalytic efficiency would 
benefit green chemistry goals for the pharmaceutical industry in manufacturing specialized steroid 
chemicals [85]. 

Mammalian steroid isomerases have multifunctional activity and a more complex structure than 
bacterial KSI enzymes [86]. Although crucial in all mammals, their structure-function connection has 
not been as extensively examined as in the case of the model enzyme KSI from bacteria. Thus, we shall 
use the best predicted KSI rate constants for bacterial KSI [31] that agree well with those reported earlier 
by [80, 87]. 
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Our first task was a wide exploration of possible system states when noise is introduced into each 
of the eight rate constants for the 4-state kinetic scheme (Figure 15). Our FORTRAN simulation kept the 
concentrations of substrates and products fixed at their initial values (Table 2, second column: [S] = 10-4 
M, [P] = 5∙10-5 M). Nevertheless, due to random changes in all rate constants, the force changed in the 
range 0.72 < Xtot/RT < 17.17. Repeated runs produced an identical output. The third best efficiency value 
from the (1.71∙104, 1.66∙109) point reveals that 5-fold higher efficiency can be achieved when 
corresponding entropy production is 10-fold smaller than their experimental values. That is a rare case 
when the choice of rate constants results in high catalytic activity despite low dissipation for the KSI 
enzyme. 

Table 2. Calculated microscopic rate constants and kinetic parameters from experimental data [87] and 
global optimization of experimental data [31] in the case of 3-oxo-Δ5-steroid isomerase catalyzed 

conversion of 5-androstene-3,17-dione (substrate) to 4-androstene-3,17-dione (product) at 25 ◦C. 

Rate  

constants 

Calculated values 

[87]  

Calculated values 

[31]  

k1* 8.6∙108 M−1s−1 8.3∙108 M−1s−1 

k2 8.6∙104 s−1 8.6∙104 s−1 

k3 1.7∙105 s−1 1.8∙105 s−1 

k4 > 3∙105 s−1 1.7∙106 s−1 

k5 > 1∙105 s−1 6.4∙105 s−1 

k6 40 s−1 43 s−1 

k7 1.3∙105 s−1 1.5∙105 s−1 

k8* 8.6∙108 M−1s−1 1∙109 M−1s−1 

Kinetic 

parameters 
 

Initial values 

(this paper) 

[S] 10-4 M 10-4 M 

[P] 5∙10-5 M 5∙10-5 M 

[E] 5∙10-6 M 5∙10-6 M 

k1  8.3∙104 s−1 

k8  5∙104 s−1 

kcat  3.5∙104 s-1 

KM  1.16∙10-4 M 

kcat/KM  3∙108 M−1s−1 

Keqtot  2281 

Xtot/RT  8.426 𝐷𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛𝑅𝑇   
Initial value 

(this paper) 

P  1.16∙105 s−1 
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Figure 15. The catalytic efficiency dependence on dissipation when all rate constants are noisy for the 
ketosteroid isomerase kinetics. A spectrum of quasi-steady states with different ki octuplets resulted after 
the multiplication of each observed ki (see Table 2) with a separately called normal noise gi. There was 
no shift in eight Box-Muller transforms with the cosine function (see Methods q. 25). The if-else condition 
in the FORTRAN simulation ensured that negative or zero ki values were replaced with their 
experimental values. The program went through the 1000 steps, requiring overall force X to be positive 
in each step. 

As for the case of triosephosphate isomerase, the perfect efficiency-dissipation proportionality 
followed after the no-change requirement in the equilibrium constants for all catalytic steps (not shown). 
When noise is called only once, a nearly perfect linear fit survives for the efficiency-dissipation 
dependence, no matter how many rate constants ki are multiplied with the normal noise function (not 
shown). The consequence of fixed equilibrium constants Ki is constant overall force, too. 

Regular dependence of enzyme efficiency on overall dissipation follows when noise is introduced 
only into one or two kinetic constants without fixed Ki requirements (Figures 16 and 17). However, that 
dependence is very different if the overall force Xtot/RT is allowed to vary too (Figure 16) and when 
overall force is kept at the constant initial value Xtot/RT = 8.426 (Figure 17, see Table 2). Figure 17 confirms 
the observation from Figure 9 that the maximum in overall entropy production exists when variations 
in K1 and K4 equilibrium constants are introduced and fixed overall force is maintained in all steps of 
FORTRAN simulation. Total entropy production is maximal in the point (1.3∙105, 4.7∙108)(Figure 17). The 
corresponding optimal efficiency is about 50% higher than the observed value of. 3.02∙108 M-1s-1. Still, 
the point with the highest efficiency (1.96∙104, 8.15∙108) corresponds to 5.9 times smaller dissipation than 
the value 1.16∙105 s-1 calculated from the experimental data. That is another rare case when randomly 
chosen equilibrium constants within imposed restriction (constant overall force) resulted in a high 
catalytic efficiency despite low dissipation for the KSI enzyme. 
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Figure 16. When dissipation increases, the enzyme efficiency increases even faster in the presence of 
noisy associations between substrates and enzymes. We multiplied ki with the normal noise function, 
which included the shift = +2 (see Methods). The FORTRAN simulation runs through a thousand steps 
without any other changes from the initial calculated values (Table, second column). Thus, noisy Xtot/RT 
values in the range from 3.87 to 10.06 resulted from noisy K1 values in the range from 0.01 to 4.93. 

 
Figure 17. Maximal overall entropy production and associated optimal enzyme efficiency follow from 
the Xtot/RT = 8.426 requirement (see Table 2) in the presence of noisy association-dissociation of the 
enzyme with the substrate or product. FORTRAN simulation went through 1000 steps. 
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Agent-based modeling extended and confirmed the simulation results for the KSI kinetics using 
the FORTRAN software. The advantage of NetLogo simulation (Figure 18) is that random changes in 
the concentrations of substrates, products, free enzymes, and enzyme complexes are allowed. Typical 
Michaelis-Menten kinetics for concentration changes, which we described for the NetLogo simulation 
of the TPI kinetics, is also seen for the KSI kinetics (not shown). Initial concentrations were [E]free = 5 μM, 
[S]free = 100 μM, [P]free = 50 μM. Final foncentrations at the 6977th tick were [E]free = 4 μM, [S]free = 95 μM, 
[P]free = 54 μM, [ES] = 0.3 μM, [EX] = 0.4 μM, [EP] = 0.3 μM. The mass conservation conditions [Etot] = 
[Efree] + [ES] + [EX] + [EP] and [ligands] = [S]free + [P]free + [ES] + [EX] + [EP] were satisfied through all time 
jumps (ticks). Freedom to change equilibrium constants in each tick enabled the exploration of a wide 
range for overall force (1.1 < Xtot/RT <16.8), catalytic efficiency, and overall dissipation. The best pair of 
dissipation-efficiency values (4.6∙105, 2.6∙109) corresponded to approximately 4-fold higher dissipation 
and almost 10-fold higher efficiency in the comparison with values calculated from observed data 
(1.2∙105, 3.0∙108). 

 
Figure 18. NetLogo simulation of KSI kinetics, when the Box-Muller transform without shift is invoked 
eight times to multiply each of eight rate constants ki. Initial concentrations were [S]init = 10-4 M, [P]init = 
5∙10-5 M, and [E]free = 5∙10-6 M. Final concentrations at the 6977th tick were [S]init = 9.5∙10-5 M, [P]init = 5.4∙10-

5 M, [E]free = 4∙10-6 M, [ES] = 3∙10-7 M, [EZ] = 4∙10-7 M, and [EP] = 3∙10-7 M. We found the highest catalytic 
efficiency value from this extensive search at the 3911th tick. It was kcat/KM = 2.59∙109 M-1s-1; thus, it was 
well inside the diffusion limit range from 108 to 1010 M-1s-1. The corresponding overall force was Xtot/RT 
= 12.6. 

CA I, CAII, CAII-T200H chapter (also 4-state enzymes) 

Carbon dioxide conversion into biomass is essential for the survival and spreading of life in all 
terrestrial environments. Carbon sequestration is also crucial for the survival of our carbon dioxide-
producing civilization, which is unfortunately addicted to fossil fuels burning and breaking all life-
supporting balances the biosphere has developed through eons. Nature developed multiple means and 
different organic structures for the fast conversion of carbon dioxide to bicarbonate – the first step 
toward carbon fixation. Carbonic anhydrases (CAs) are universal enzymes responsible for that process 
in all three life domains: Bacteria, Archaea, and Eukarya [88]. With rare exceptions [89], CAs are 
metalloenzymes containing the metal ion (most often zinc) in their central active-site cavity. From their 
discovery in red blood cells in 1932, the scientific interest in CAs continued to grow, as seen from the 
abundance of more than 900 solved CA structures deposited in the Protein Data Bank [90].  

The spontaneous reaction of CO2 with water can produce bicarbonate  HCOଷି + Hା , but that 
reaction is too slow to support respiration [91,92] and other biological processes catalyzed by different 
CAs. Eight unrelated families of carbonic anhydrase (CA) enzymes represent different ways nature 
performed the feat of fast catalytic inter-conversion between carbon dioxide and carbonic oxide [93], 
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reaching the catalytic turnover of 1 μs-1 or even higher [94]. There is little or no sequence homology 
among CA families α, β, γ, δ, ζ, η, θ, and ι [89,95]. Molecular biologists concluded that convergent 
biological evolution performed the spectacular function-enhancing feat at least seven times because 
different CAs evolved to perform an identical function [93,96,97].  

Mammals possess 16 different CA isoenzymes from the alpha class family [98]. All are 
metalloenzymes, with the Zn II hydride located at the enzyme center anchored by three histidines. CA 
isoforms are involved in a variety of physiological functions. Human CA isoforms are well-recognized 
drug targets for designing isoenzyme-specific inhibitors [99,100] to help fight glaucoma, epilepsy, 
obesity, cancer, and other diseases. Also, human CA II is one of the most efficient known enzymes. Its 
calculated catalytic efficiency from experimental data is 1.5∙108 M-1s-1 [100]. Earlier efficiency calculations 
also positioned CA among “perfect” enzymes working close to the diffusion limit [14,56]. 

Genetic defects of specific CA isoforms can cause osteopetrosis, cerebral calcifications, retinal 
problems, hyperammonemia, hyperchlorhidrosis, neurodegenerative and other metabolic diseases 
[101], which is a good enough reason to look for CA activators [98] or other means for increasing the 
activity of these isoforms. Memory enhancement can be achieved through CA activation [102]. It opens 
the possibility for targeted improvement of brain CA performance to enhance cognition and slow the 
aging process [98,103]. Some CA mutants can accelerate the proton transfer, the rate-limiting step for 
CA turnover [94]. Another reason for increasing CA activity is the urgent need for green ways of 
industrial CO2 sequestration [104] we mentioned above. 

This subsection deals with the theoretical possibilities for catalytic efficiency improvements of 
human CAs I, II, and the T200H variant of CAII with His200 replacing Thr200 [105]. There may be better 
models than the four-state kinetic model for reversible Michaelis-Menten-type kinetics (Figure 19). Still, 
it is based on the publication [105] that contains all microscopic rate constants needed to calculate and 
compare the enzyme’s performance with associated dissipation. Referent (initial) state values can be 
found in Table 3. 

 
Figure 19. The four-state reversible kinetic scheme for three CAs isoenzymes. The inclusion of buffer B 
in both transitions of the last forward step reflects the substantial difference in the performance of all 
CAs for different buffers [105]. 

The FORTRAN simulation of noisy CA I kinetics did not change any of the initial concentrations 
(Table 3), and it still found in the 246th step the dissipation-efficiency point (5.14∙105, 1.12∙108) with the 
4.5-times higher catalytic efficiency from the calculated value based on the observed kinetic data. The 
corresponding overall force was positive (Xtot/RT = 5.0) and closer to the upper end of the force range 
(Xtot/RT = 8.3). However, the substantial efficiency increase (4.5-fold) was „paid for “ with the 18 times 
higher overall dissipation. Closer inspection of the performance parameters from the 246th 
computational step (concerning observed initial values) revealed the 6.3-fold increase in the turnover 
number and 2.8-fold increase in the overall force as the main reason for the improved efficiency. 
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Table 3. Calculated microscopic rate constants and kinetic parameters from experimental data [105] 
(Behravan-1990) in the case of substrate (CO2) to product ( HCOଷି  ) interconversion and proton-transfer 

buffer (B)-dependent step catalyzed by carbonic anhydrase isoenzymes at 25 ◦C. 

Rate  

constants [105] 

Calculated  

values CA I  

Calculated  

values CA II  

Calculated  

values CA II T200H 

k1* 3.4∙107 M−1s−1 1.3∙108 M−1s−1 8.2∙107 M−1s−1 

k2 3.8∙104 s−1 1.8∙106 s−1 5.4∙104 s−1 

k3 2.9∙105 s−1 1.7∙107 s−1 3.0∙105 s−1 

k4* 2.6∙107 M−1s−1 2.0∙108 M−1s−1 9.0∙106 M−1s−1 

k5 9.0∙105 s−1 1.2∙106 s−1 2.7∙106 s−1 

k6 9.0∙106 s−1 1.2∙106 s−1 2.1∙107 s−1 

k7 1.1∙108 M−1s−1 4.0∙108 M−1s−1 3.6∙108 M−1s−1 

k8* 9.0∙105 M−1s−1 2.0∙107 M−1s−1 1.8∙107 M−1s−1 

Kinetic 

parameters 

Initial values 

CA I  

(this paper) 

Initial values 

CA II  

(this paper) 

Initial values 

CA II T200H  

(this paper) 

[S] 1.2∙10-3 M 1.2∙10-3 M 1.2∙10-3 M 

[P] 2.4∙10-2 M 2.4∙10-2 M 2.4∙10-2 M 

[B] 5.0∙10-2 M 5.0∙10-2 M 5.0∙10-2 M 

[E] 1.0∙10-4 M 1.0∙10-4 M 1.0∙10-4 M 

k1 4.08∙104 s-1 1.56∙105 s−1 9.84∙104 s−1 

k4 6.24∙105 s-1 4.80∙106 s−1 2.16∙105 s−1 

k7 5.50∙106 s-1 2.00∙107 s−1 1.80∙107 s−1 

k8 4.50∙104 s-1 1.00∙106 s−1 9.00∙105 s−1 

kcat 7.77∙104 s-1 8.05∙105 s−1 2.10∙105 s-1 

KM 3.13∙10-3 M 9.63∙10-3 M 3.10∙10-3 M 

kcat/KM 2.48∙107 M−1s−1 8.36∙107 M−1s−1 6.77∙107 M−1s−1 

Keqtot 6.10 6.14 6.51 

Xtot/RT 1.81 1.81 1.87 𝐷𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛𝑅𝑇  
CAI 

(this paper) 

CAII 

(this paper) 

CA T200H  

(this paper) 

Pinitial 2.84∙104 s−1 1.25∙105 s−1 6.29∙104 s−1 
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Figure 20. The FORTRAN simulation of the relationship between catalytic efficiency and overall 
dissipation for the carbonic anhydrase I, when each of eight rate constants ki is multiplied with 
independently called normal noise function gi without shift (see Methods, eq (25)). Only positive gi 
values were allowed while the program ran through two thousand steps. There was no change in the 
substrate, product, and buffer concentration from their initial values (Table 3). 

The NetLogo simulation of noisy CA I kinetics (Figure 21) slightly changed initial substrate and 
product concentrations (Table 3). The 6-fold efficiency increase point, which we found halfway through 
the simulation, was „paid-for“ with the 22-fold dissipation increase. That quasi-steady state 
corresponded to about a 3-fold increase in the kcat and overall force. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 December 2023                   doi:10.20944/preprints202312.0125.v1

https://doi.org/10.20944/preprints202312.0125.v1


Figure 21. The NetLogo simulation of the relationship between catalytic efficiency and overall 
dissipation for the carbonic anhydrase I, when each of eight rate constants ki is multiplied with 
independently introduced normal noise function gi without shift (see Methods, eq (25)). The best 
efficiency value of 1.47∙108 M-1s-1 resulted in the 2774th tick for Xtot/RT = 6.5. The overall force in the RT 
units ranged from -5.0 to 8.5, but there was no significant force decrease with the time passage (ticks). 
From the initial 100 μM free enzyme concentration, the conversion during 5521 ticks ended up with less 
than 1 μM free enzyme concentration, [ES] = 1 μM, [EX] = 45 μM, and [EZ] = 54 μM. The Michaelis-
Menten time dependence pattern is seen for the ES complex concentration (fast rise followed by 
plateauing and slow decrease). During the simulation, there was little change in the substrate (CO2) and 
product (HCO3-) concentration. 

Human red cell isoenzyme CAII is superior to CAI when their catalytic efficiencies are compared 
[105] (see Table 3). Thus, simulations for the CAII will have the advantage of starting from a better initial 
state. Here, we show only the NetLogo simulation (Figure 22). The CAII mutant T200H, constructed by 
Behravan et al. [105], was an attempt to find the single amino acid substitution that would lead toward 
catalytic parameters of CAI. The NetLogo simulation (Figure 23) indicates the evolutionary potential 
for improving the performance of CA-T200H as being indeed between CAI and CAII but closer to CAII 
(Figure 24). 

 
Figure 22. The NetLogo simulation of the relationship between catalytic efficiency and overall 
dissipation for the carbonic anhydrase II, when each of eight rate constants ki is multiplied with 
independently introduced normal noise function gi without shift (see Methods, eq (25)). The best 
efficiency value of 4.25∙108 M-1s-1 from the 288th tick is for Xtot/RT = 4.76. There was no clear force decrease 
with the time passage (ticks). From the initial 100 μM free enzyme concentration, the conversion during 
8007 ticks ended up with less than 1 μM free enzyme concentration, [ES] = 1 μM, [EX] = 50 μM, and [EZ] 
= 49 μM. The Michaels-Menten time dependence pattern was the same as seen for CAI. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 December 2023                   doi:10.20944/preprints202312.0125.v1

https://doi.org/10.20944/preprints202312.0125.v1


 
Figure 23. The catalytic efficiency dependence on dissipation for the T200H mutant of carbonic 
anhydrase II. 

We compared enzyme performance and associated dissipation for three CAs isoenzymes: CAI, 
CAII, and the T200H mutant of CAII (Figure 24). Values calculated from observed rate constants [105] 
are confined near the origin of that figure, while the best-simulated values are expanded in the order 
CAII > CAII T200H > CAI. Improved catalytic efficiency is associated with increased dissipation in the 
same order. 

 
Figure 24. The observed [105] and the best-predicted values for the performance of carbonic anhydrases 
CAI, CAII, and the T200H mutant of CAII. We collected the NetLogo simulation results from Figures 21, 
22, and 23 to easily compare enzyme efficiency and overall dissipation calculated from observed rate 
constants (dashed circle) and the best-simulated values when noise was introduced in all ki (rounded 
rectangle). The arrows connect such points for different isoenzymes (blue for CAI, orange for CAII, and 
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green for the T200H mutant). The small red arrow shows the performance and dissipation decrease for 
the Thr200 → His substitution mutant of carbonic anhydrase II. In contrast, the green arrow indicates 
the possibility of improving its performance above the observed value for CAII. By the way, the potential 
to enhance the CAII performance (yellow arrow) appears much higher than for CAI (blue arrow). 

Evolutionary Related β-Lactamases 

This subsection is the extension of our earlier studies [30,106] when we examined the evolutionary 
relationship among bacterial β-lactamases, their kinetic performance parameters, and entropy 
production. The evolution of β-lactamases, as an example of adaptation in bacteria, is not just of 
academic interest. Diverse classes of β-lactamases inactivate the antibiotics (for instance, ampicillins and 
cephalosporins) by performing the hydrolysis of their beta-lactam bridge [107]. The rapid global spread 
of beta-lactamase-mediated bacterial resistance in hospitals has become a severe challenge in treating 
bacterial infections [108].  

We used here the same set of microscopic rate constants for S. aureus, E-coli, and B. cereus enzymes 
(respectively labeled as PC1, RTEM, and Lac-1) determined during 1980s [29] together with our estimate 
for missing backward rate constants [30] that were needed for the calculation of nonequilibrium steady 
state quantities in the reversible three-state Michaelis-Menten kinetic scheme (Figure 1b). The natural 
evolution of β-lactamases took place millions of years before the widespread use of penicillin-based 
antibiotics (β-lactam antibiotics) had a chance to accelerate it in the wild-type bacterial species studied 
during the 1980s [109]. It probably developed as a defense from naturally occurring beta-lactam 
antibiotics produced by some fungi and bacteria [110]. Thus, evolutionary distances based on β-
lactamases sequences determined in the 1970s [2,106,111] should be suitable to study possible 
connection to the total entropy production as the most important quantity in the nonequilibrium 
thermodynamics. 

How appropriate is the „perfect“ enzyme name for the 3-state scheme with some rate constants 
observed or calculated as representing fast transitions in the case of β-lactamases [29,112]? That general 
claim about β-lactamases as almost perfect enzymes has been supported for Lac-1 but not for the RTEM 
and PC1 enzymes [113]. Perfect enzymes supplied with their best substrate should be able to operate 
close to or inside the range 108 – 1010 M-1s-1 predicted for diffusion-limited enzyme reactions [63]. 
Collected kcat/KM values for the hydrolysis of some characteristic β-lactams by various class A β-
lactamases [114] are considerably smaller from the lower end of the diffusion limit despite „close to the 
diffusion-limit, i.e. 108 M-1s-1“ assertion by these authors. However, the latent potential for these 
lactamases to evolve further toward higher turnover number and catalytic efficiency exists when 
thermodynamic principles are considered together with kinetic restrictions [30,106].  

We used the Gaussian noise to explore the combinations of microscopic rate constants and 
associated dissipation, leading to substantially improved catalytic activity for the PC1, RTEM, and Lac-
1 β-lactamases. We also wanted to answer the question of whether efficiency-dissipation proportionality 
exists for the three-state kinetic scheme named the Haldane reversible three-step model (Figure 1b) 
[115,116]. The serendipitous discovery from this subsection is that a linear-like relationship survives 
between total entropy production increase and evolutionary distance increase (from a putative common 
ancestor) even after dissipation is calculated for the maximal catalytic efficiency points reached after 
noise introduction. 

PC1-β-Lactamase 

When we maintain the same restrictions of unchanged initial values for the equilibrium constants 
(except for the changes in the substrate and product concentrations), identical normal noise introduction 
in all forward kinetic constants leads to only slight changes in the nearly perfect proportionality between 
catalytic efficiency and dissipation (Figure 25). Besides noise, an additional reason for changes in k1 and 
k6 is the decrease in the free substrate concentration and an increase in the free product concentration 
during enzyme cycling scheme E+S ↔ ES ↔ EP ↔ E+P. It produces a slight decrease in the first 
equilibrium constant K1 = k1*∙[S]/k2 and an increase in the third equilibrium constant K3 = k5/(k6*∙[P]. 
Increased product concentration is the main reason for the gradual force decrease, from initial Xtot/RT = 
11.4 to final Xtot/RT = 10.8 after 5168 ticks of the NetLogo simulation. At the 381st NetLogo simulation 
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tick, we found the best efficiency value of kcat/KM = 4.18∙107 M−1s−1, which corresponds to forward rate 
constants k1 = 1.35∙105 s-1, k3 = 717 s-1, k5 = 398 s-1, catalytic constant kcat = 252 s-1, and dissipation/RT = 
2823.6 s-1. That is the same 4.1-fold increase for all of these parameters with respect to their observed 
values (see Table 4).  

Table 4. Calculated microscopic rate constants, performance parameters, and dissipation from 

experimental data [2,29,30] in the case of benzylpenicillin substrate hydrolysis catalyzed at 20 ◦C by the 

A class β-lactamases. 

Rate  

constants [106] 

Calculated  

values PC1  

Calculated  

values RTEM 

Calculated  

values Lac-1 

k1* 2.2∙107 M−1s−1 1.23∙108 M−1s−1 4.1∙107 M−1s−1 

k2 196 s−1 1.18∙104 s−1 2.32∙103 s−1 

k3 173 s−1 2.8∙103 s−1 4.09∙103 s−1 

k4 4.0 s−1 6.0 s−1 50 s−1 

k5 96 s−1 1.5∙103 s−1 3.61∙103 s−1 

k6* 1.0∙106 M−1s−1 4.0∙107 M−1s−1 8.0∙106 M−1s−1 

Kinetic 

parameters 

Initial values 

PC1  

(this paper) 

Initial values 

RTEM  

(this paper) 

Initial values 

Lac-1 

(this paper) 

[S] 1.492∙10-3 M 1.390∙10-3 M 1.285∙10-3 M 

[P] 8.0∙10-6 M 1.1∙10-4 M 2.15∙10-4 M 

[E] 10-5 M 10-5 M 10-5 M 

k1 3.28∙104 s-1 1.71∙105 s-1 5.27∙104 s-1 

k6 8.0 s-1 4.4∙103 s−1 1.72∙103 s−1 

kcat 61 s-1 9.75∙102 s-1 1.91∙103 s-1 

KM 6.0∙10-6 M 4.15∙10-5 M 7.32∙10-5 M 

kcat/KM 1.01∙107 M−1s−1 2.35∙107 M−1s−1 2.60∙107 M−1s−1 

Keqtot 8.69∙104 2.3∙103 3.9∙103 

Xtot/RT 11.4 7.74 8.3 𝐷𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛𝑅𝑇  
Initial value 

PC1 [106] 

Initial value 

RTEM [106] 

Initial value 

Lac-1 [106] 

P 689 s-1 6757 s-1 14526 s-1 
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Figure 25. The catalytic efficiency dependence on dissipation when all forward rate constants are noisy 
but all equilibrium constants K1* = k1*/k2, K2 = k3/k4, and K3* = k5/k6* maintain their observed values [30] 
for the PC1 β-lactamase. As expected for strong and constant positive force, there is close to perfect 
efficiency-dissipation proportionality despite introduced and inherent noise in encounters among the 
enzyme and ligand conformers in the NetLogo simulation when identical normal noise is introduced in 
k1, k2, and k3. The force decreased from 11.4 to 10.8, as the NetLogo simulation proceeded through 5168 
ticks. The best point with the highest dissipation (2.82∙103 s-1) and the highest enzyme efficiency (4.18∙107 
M−1s−1) occurred when an overall force of 11.3 was very similar to the initial force (11.4). 

The next goal is to look for limits to the evolvability of PC1 β-lactamase subject to variable rate 
constants k1 and k2 in the first catalytic step (association-dissociation between the free substrate and free 
enzyme: E+S ↔ ES). Figure 26 illustrates how the multiplication of k1 and k2 with the, respectively, Box-
Muller normal noise functions named g1 and g2 can find a quasi-steady state with 6.5 times higher 
catalytic efficiency and merely 1.2 times higher dissipation in comparison with those values calculated 
from experiments (Table 4). That is a significantly better result than all previous optimizations [30] 
based on the requirement of maximal partial entropy production in the proton transfer catalytic steps 2 
(ES ↔ EP) and 3 (EP ↔ E+P). For instance, joint optimizations of both catalytic steps for maximal 
transitional entropy production in these steps find about 2-fold higher efficiency, which is "paid for" by 
the 183 times higher dissipation. The maximum total entropy production requirement combined with 
the obligatory K+ = k1∙k3∙k5 = const constraint leads to 333 times lower catalytic efficiency (Figure 26, and 
[30]).  
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Figure 26. The catalytic efficiency dependence on dissipation when noise is introduced twice in the 
NetLogo simulation - in the forward rate constant k1 and the backward rate constant k2. Variations only 
in the substrate-enzyme association-dissociation produced close to an exponential increase in the 
enzyme efficiency after dissipation increased. The best efficiency value of 6.5∙107 M-1s-1 is now close to 
the lower-end diffusion-limit range (108 M-1s-1). There was no change in the catalytic constant from 
observed kcat = 60.8 1s-1 during the 3016 simulation ticks because forward kcat (S→P) = k3∙k5/(k3+k4+k5) does 
not depend on the rate constants k1 and k2 for the first catalytic step. Descriptions and arrows in red color 
depict the optimization results from Juretić et al. [106]. The best efficiency value of 6.5∙107 M-1s-1 
corresponds to 6.1-fold higher k1 and 3.5-fold smaller k2, which increased 21-fold the first equilibrium 
constant K1 = k1/k2 from observed 167.5 to the optimal value of 3582.3, with the concomitant increase in 
the overall force Xtot/RT from the referent value of 11.4 to the optimal value of 14.1. 

No further gain in enzyme efficiency follows after normal noise is independently introduced in 
four or all six rate constants. The maximal kcat/KM was in a narrow range from 5.9∙107 to 6.2∙107 M-1s-1. 
Thus, we shall keep the best result from Figure 26 (6.5∙107 M-1s-1) to compare evolutionary potential with 
other enzymes. 

RTEM-β-Lactamase 

Figures 27 and 28 for the NetLogo simulations of the RTEM β-lactamase kinetics are analogues to 
figures 25 and 26 for the PC1 β-lactamase kinetics. Since RTEM β-lactamase is evolutionary more 
advanced enzyme [30,106], the simulations had a head start and ended with higher values for the best 
catalytic efficiency. The kcat/KM = 9.02∙107 M-1s-1 point from Figure 27 also corresponds to the highest 
dissipation, to the highest values for forward rate constants, and to only slightly lower Xtot/RT = 7.71 
compared to the initial value Xtot/RT = 7.74. That followed from an early 572nd tick when all performance 
parameters increased about 3.8 times from their initial values (see Table 4). 
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Figure 27. The catalytic efficiency dependence on dissipation when all forward rate constants are noisy 
but all equilibrium constants K1* = k1*/k2, K2 = k3/k4, and K3* = k5/k6* maintain their observed values [30] 
for the RTEM β-lactamase (see Table 4). At the 572nd tick, the NetLogo simulation found the quasi-
steady state with the highest catalytic efficiency and dissipation. Due to an excellent joint linear increase 
in the catalytic efficiency and dissipation, all other kinetic parameters also increased for the similar 3.8-
fold factor from their initial Table 4 values. 

As for the NetLogo simulation of the PC1 β-lactamase kinetics, variations in the kinetic constants 
k1 and k2 resulted in the exponential dependence of the catalytic efficiency on overall dissipation (Figure 
28). It is essential to introduce twice the normal noise, once in the forward direction and once in the 
backward direction (see Methods). The beneficial consequence is the possibility of separating the 
enzyme efficiency increase from the dissipation increase in favor of a former quantity. The best catalytic 
efficiency is already well inside the diffusion-limited range. 
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Figure 28. The catalytic efficiency dependence on dissipation when noise is introduced twice in the 
NetLogo simulation for the RTEM β-lactamase kinetics - in the forward rate constant k1 and in the 
backward rate constant k2. The best catalytic efficiency from this NetLogo simulation (2.26∙108 M-1s-1) 
corresponds to the highest dissipation/RT: 1.08∙104 s-1. Notice that the highest dissipation is not so high 
as for the best quasi-steady state from the previous simulation (Figure 27). Optimal k1 increased 2.4-fold, 
while optimal k2 decreased 14-fold, producing a significant increase in the irreversibility of the substrate 
interaction with the enzyme. The best-case efficiency is also associated with the highest Xtot/RT = 11.18, 
found only for the 3163rd tick. . 

Lac1-β-Lactamase 

For the case of the Lac1-β-lactamase kinetics, we explored several options for the independent noise 
introduction in each kinetic constant from chosen pairs (Figures 29–31). It turned out that the k1, k2 pair 
is the best choice because it led to the catalytic efficiency value of 1.25∙108 M-1s-1, which is also inside the 
range 108–1010 M-1s-1 for diffusion-limited enzyme reactions [63].  

 
Figure 29. The catalytic efficiency dependence on dissipation when noise is introduced twice in the 
NetLogo simulation for the Lac-1 β-lactamase kinetics - in the forward rate constant k3 and in the 
backward rate constant k4. 
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Figure 30. The catalytic efficiency dependence on dissipation when noise is introduced twice in the 
NetLogo simulation for the Lac-1 β-lactamase kinetics - in the forward rate constant k1 and in the 
backward rate constant k6. 

 
Figure 31. The catalytic efficiency dependence on dissipation when noise is introduced twice in the 
NetLogo simulation for the Lac-1 β-lactamase kinetics - in the forward rate constant k1 and in the 
backward rate constant k2. 

When normal noise is introduced only once in the forward rate constants k1, k3, and k5 with the 
proviso that the equilibrium constants K1* = k1*/k2, K2 = k3/k4, and K3* = k5/k6* do not change from their 
observed values, the perfect proportionality follows for all efficiency-dissipation pairs (Figure 32). Due 
to higher initial product concentration (see Table 4), the constraints K1* = const1, K2 = const2, K3* = const3 
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are almost equivalent to the requirement that initial equilibrium constants K1, K2, K3 never change 
during the NetLogo simulation for the Lac-1 β-lactamase kinetics. Since (kcat/KM)/dissipation expression 
depends only on equilibrium constants and the ratios of rate constants (see Appendix), there is no 
reason for the slope change in the efficiency-dissipation dependence (Figure 32). The best efficiency 
value of 9.68∙107 M-1s-1 is close to the diffusion-limit range's lower end (108 M-1s-1). It was reached at the 
2182nd tick for the Xtot/RT = 8.23 and 3.7-fold higher turnover kcat = 7086 s-1. 

 
Figure 32. The catalytic efficiency dependence on dissipation when all forward rate constants are noisy 
but all equilibrium constants K1* = k1*/k2, K2 = k3/k4, and K3* = k5/k6* maintain their observed values [30] 
for the Lac-1 β-lactamase. The best coordinates were found at the 2182nd tick. The corresponding 
optimal values for the rate constants were 3.7 times higher than the initial values (Table 4). 

To summarize, we have seen nearly perfect kinetic-thermodynamic proportionality for the PC1 
(Figure 25), RTEM (Figure 27), and Lac-1 (Figure 32). Corresponding FORTRAN programs confirmed it 
for all three β-lactamases (Figure 42). We also confirmed the efficiency-dissipation proportionality for 
the triosephosphate isomerase kinetics (Figures 4, 6, 7, 10, 12, and 13). It will likely hold whenever the 
no-change condition is imposed for the equilibrium constants in all catalytic steps (see Appendix for 
more details). The capture-release initial step leads to different relationships when the no-change 
condition is imposed on all first and second-order rate constants except k1 and k2 (Figures 26, 28, and 31 
for β-lactamases). A fast enzyme efficiency increase can then occur for limited dissipation. The potential 
for the exponential-like efficiency increase is likely to be a general phenomenon for all Michaelis-Menten 
enzymes after lowering the activation barrier for the E+S→ES transition and increasing the activation 
barrier for the reverse ES→E+S transition. 

Figure 33 illustrates the relationship between evolutionary distance and overall entropy 
production for PC1, RTEM, and Lac-1 lactamase. We found blue points and corresponding fit lines 
(black) from the simulation of experimental data [30,106]. The dissipations associated with the red 
points (and red fit line) are from the best catalytic efficiency points in Figures 26, 28, and 31. The 
dissipation increased in an almost linear manner for more evolved β-lactamases. Noise introduction 
and searching for the highest enzyme efficiency confirmed the proportionality between the time passage 
(evolutionary distance) and overall entropy production. It is to be expected if we can consider the 
cumulative entropy production as a surrogate for time passage.  
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Figure 33. We compared evolutionary distances 1.19, 1.44, and 1.60 for, respectively, β-lactamases PC1, 
RTEM, and Lac-1 [2,30,106] with numerical values for the total entropy production either calculated from 
experimental data (blue points) ([30] and Table 4) or for cases of maximal catalytic efficiency when 
normal noise is present in the E+S ↔ ES step (red points) (see Figures 26, 28, and 31). The figure illustrates 
the proportionality between overall entropy production and evolutionary distance when natural or 
artificial evolution produces the maximal possible catalytic efficiency. 

Dissipation from observed data and from simulated maximal catalytic efficiency are both proportional to the 

evolutionary distance of β-lactamases 

β-galactosidase 

β-galactosidase (βG, 3.2.1.23) also belongs to universal enzymes used by microbes and mammals. 
Microbial βG has a unique role in molecular biology, firstly due to Jacob and Monod's model for the 
regulation of gene expression [117], secondly because of numerous molecular biology procedures using 
its bright blue reaction product, and thirdly for the confirmation of Michaelis-Menten mechanism at the 
single molecule level [118,119,120]. No less important is the βG role in the food industry [121]. The 
conventional βG use for the preparation of dairy products with reduced lactose content has been 
recently extended as a catalyst for lactose upgrading into valuable sweet glycosides, which support the 
growth of beneficial gut microbes [121,122]. In this subsection, we used published microscopic rate 
constants [26,119,123] to study how βG catalytic efficiency depends on its entropy production (Table 5). 
Our contribution to Table 5 was calculating all relevant kinetic and thermodynamic parameters using 
initial published values. For kcat/KM and P, we verified that other authors obtained identical results using 
different methods (Case A from [18]).  

In the following NetLogo simulation (Figure 34), noise is introduced only in the encounters among 
substrates and enzymes to form or dissociate the ES complex. It amounts to independent variations in 
k1 and k2. As expected, there was a steep increase in catalytic efficiency for moderate dissipation 
increase, as we already observed for substrate capture-release in the case of β-lactamases. The maximal 
efficiency point has the coordinates 104 s-1 and 5.2∙107 M-1s-1 in the efficiency-dissipation plot (Figure 34). 
It is close to the point associated with the highest dissipation. 

The next task was to examine a vast efficiency-dissipation space by introducing changes in all four 
rate constants ki (Figure 35). The best value we found of kcat/KM = 8.59∙107 M-1s-1 is close to the diffusion 
limit. The NetLogo runs are not completely reproducible. For instance, the second run with the identical 
agent-based software finds better enzyme efficiency of 1.09∙108 M-1s-1 during a smaller number of re-
setting steps (Table 6). 
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Table 5. Initial values of microscopic rate constants from experimental data [26] and our calculations of 
other initial kinetic and thermodynamic parameters in the case of E. coli β-galactosidase catalyzed 

conversion of resorufin-b-D-galactopyranoside (substrate) to a fluorescent resorufin (product) at 25 ◦C. 

Rate  

constants 

Calculated values 

[26]  

Calculated values 

(this work and 

[26]) 

k1* 5.0∙107 M−1s−1 5.0∙107 M−1s−1 

k2 1.83∙104 s−1 1.83∙104 s−1 

k3 7.3∙102 s−1 7.3∙102 s−1 

k4* 10 M−1s−1 10 M−1s−1 

Other 

relevant  

parameters 

 
Initial values 

(this paper) 

[S] 10-4 M 10-4 M 

[P]  10-7 M 

[E]  10-6 M 

k1  5.0∙103 s−1 

k4  10-5 s−1 

kcat  730 s−1 

KM  3.81∙10-4 M 

kcat/KM  1.92∙106 M−1s−1 

Keqtot  2.0∙107 

Xtot/RT  16.81 𝐷𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛𝑅𝑇   
Initial value  

(this paper) 

P  2.55∙103 s−1 
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Figure 34. The catalytic efficiency dependence on dissipation when normal noise is introduced twice, in 
the forward rate constant k1 as k1∙g1, and, independently in the corresponding backward rate constant k2 
as k2∙g2 for the first catalytic step (E+S↔ES) in the case of β-galactosidase kinetics (see Methods). The 
initial concentration of enzymes was higher than the initial concentration of products, but that quickly 
changed after less than 100 ticks when product concentration increased about 24 times. The subscript 
„free“ means the enzyme is free from substrate or product. 

 
Figure 35. The catalytic efficiency dependence on dissipation when normal noise is introduced 
independently in all kinetic constants ki for the β-galactosidase kinetics (see Methods and Table 5). We 
decreased the probability of stochastic jumps between enzyme conformational states and enzyme to 
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ligand association-dissociation to examine the initial system states with small changes in the substrate 
concentration. The highest catalytic efficiency was found at the 390th tick when the overall force was at 
the upper end of its range Xtot/RT = 25.3. 
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Table 6. Kinetic and thermodynamic parameters for the NetLogo runs for noisy k1, k2, k3, and k4. The first run corresponds to Figure 35. The second run corresponds to Figure 
36. The „Best B“ notation is for the parameters in the quasi-steady state with the highest catalytic efficiency. The „Last L“ notation is for the steady state when we stopped the 
program after concentrations did not change for many ticks. 

Run # 

Best 

Total 

ticks 

B or 

L 

tick 

[S]free (M) [P]free (M) 
k1 

(s-1) 

k2 

(s-1) 

k3 

(s-1) 

k4 

(s-1) 
Xtot/RT KM (M) 

Dissip/RT 

(s-1)* 

kcat/KM 

(M-1s-1) 

1 12049 390 9.996∙10-5 1.3∙10-7 14109 467 726 2.25∙10-7 25.3 8.45∙10-6 16948 8.59∙107 

2 8021 373 9.996 ∙10-5 1.3∙10-7 14325 251 784 1.26 ∙10-6 24.3 7.22∙10-6 17759 1.09∙108 

Run # 

Last 
            

1 12049 12049 9.530∙10-5 3.80∙10-6 2843 3.428∙104 224 1.04∙10-4 12.1 1.16∙10-3 
207  

Av: 1310 
1.94 ∙105 

2 8021 8021 9.564∙10-5 3.46∙10-6 5084 4390 780 8.32∙10-5 16.2 9.73∙10-5 
6268  

Av: 2852 
8.02∙106 

* An average (Av) dissipation/RT value is calculated only for the last 10 ticks.
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We can notice from Table 6 first-run ki quadruplets and Table 5 initial values that the 40-fold 
decrease in the rate constant k2 for the ES complex dissociation back to the free enzyme and free 
substrate is the best strategy for getting about 40-times efficiency increase. Similarly, from Table 6 
second-run ki quadruplets, the 70-times k2 decrease brings about a 60-times efficiency increase. The k1 
increase up to three times also contributes to stronger substrate-enzyme binding and the simulation 
result of higher catalytic activity. The second conclusion from these NetLogo simulations is that 
significantly increased catalytic efficiency does not need maximal nor close to maximal dissipation. The 
third conclusion is that any means for increasing the irreversibility of the first catalytic step in the 
forward direction would increase enzyme efficiency since the enzyme already acts according to the 
standard Michaelis-Menten kinetics by having the highly irreversible product release step. We also 
presented the turnover numbers (kcat) in Table 6. In the two-state model for generalized (reversible) 
Michaelis-Menten kinetics, the turnover number kcat equals the forward rate constant k3 for dissociating 
the ES complex into enzyme E and product P. Our NetLogo simulation did not change much the initial 
(observed) k3 = 730 s-1. Thus, the best enzyme efficiency increase in both Table 6 runs is mainly due to 
considerably smaller Michaelis-Menten constant KM than observed KM (see Tables 5 and 6).  

The following Figure 36 illustrates how the concentrations of [S], [E], [ES], and [P] change in the 
second NetLogo simulation (Table 6), together with noisy changes in the overall affinity (force) during 
8021 ticks. The last state, „L, “ is our subjective choice for ending the program run. It does not have any 
special meaning. Still, there is a slow relaxation of overall force and dissipation during the program run 
(only the force relaxation is shown in Figure 36). Initially, faster and clearly nonlinear relaxation occurs 
when transformations among different conformations are speeded up (not shown). 

 
Figure 36. Force and concentration dependence on time steps (ticks) through 8021 ticks from the second 
Netlogo simulation (Table 6) as the system relaxes from the initial state values. From the 6323rd tick 
onward, all free enzymes have been converted into the ES complex. Still, the substrate-to-product 
conversion reached a stable state with the 28-times substrate excess because we intentionally slowed 
down the conversion to increase the chance of finding the catalytic efficiency value inside the diffusion 
limit. 

We also performed FORTRAN simulation in the presence of noise with the same initial values 
(Figure 37). We called random numbers s1 and s2 only once (see Methods). We multiplied identical Box-
Muller transform gi containing shift +1 with each of four kinetic constants ki to eliminate the cases of 
negative ki. Mass conservation for ligands was approximately satisfied with the condition [S]+[P]=const 
for all ten thousand computational steps. We obtained the best result for the highest efficiency at the 
9532nd step. It was less impressive (9.48∙106 M-1s-1) when compared to the best result from the NetLogo 
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simulation. The force decrease during 10000 steps exhibited a similar gradual decrease from higher 
initial values as in Figure 36 (not shown). 

 

 
Figure 37. FORTRAN simulation of enzyme efficiency dependence on dissipation in the presence of 
noisy rate constants and small changes in the substrate and product concentrations. 

A considerably more comprehensive search for the best dissipation-efficiency coordinate pairs 
occurred when we called the Box-Muller transform separately four times, once for each of the four rate 
constants ki. The kigi products gained the freedom to vary independently of each other. The output of 
such a FORTRAN program (Figure 38) contains two catalytic efficiency values close to the lower range 
of the diffusion limit (108 M-1s-1). 
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Figure 38. The catalytic efficiency dependence on dissipation when normal noise function gi with shift 
+1 is called separately four times to multiply each rate constant ki (i = 1, 2, 3, 4) in the FORTRAN 
simulation for the β-galactosidase kinetics. The highest catalytic efficiency was found at the 6540th 
computational step when the total force was Xtot/RT = 20.8. 

Glucose isomerase 

Glucose isomerase (GI abbreviation) fulfills nutritional requirements mainly in bacteria [124]. It is 
also known as xylose isomerase because GI reversibly isomerizes D-glucose and D-xylose to D-fructose 
and D-xylulose, respectively. Glucose to-fructose conversion is rather inefficient but critical for the 
commercial production of high-fructose corn syrup (HFCS) due to the specificity (the absence of non-
metabolizable or toxic side products) and mild ambient conditions [125]. Together with other industrial 
applications through decades, such as bioethanol production [126], the GI maintained a high market 
share of the food industry among other industrial enzymes despite its inherently low activity [124,127]. 
That is why there are so many research attempts to use molecular engineering to improve GI 
performance for different applications [125,126,128,129,130]. Besides academic interest, that is also the 
reason for theoretical research devoted to improving GI performance when kinetic and thermodynamic 
limits are taken into account.  

Considering previous examples for other enzymes, the best option is to initiate the research with 
all the microscopic rate constants inferred from the observed data. Unfortunately, the best such example 
[27] is for the GI preparation from Streptomyces murinus with very low measured activity. Nevertheless, 
the principles we employed in this section to significantly improve the GI performance may be 
applicable for predicting activity gains of the most promising GI variants for green industry 
applications. We also wanted to test our hypothesis about catalytic efficiency proportionality to 
dissipation by using the example of an inefficient enzyme working close to the thermodynamic 
equilibrium. The drawback is the restriction to the two-state model (Figure 1a), that is, the reversible 
Briggs-Haldane mechanism used in early and recent proposals for the kinetic mechanism of 
immobilized GI [27,131,132,133,134]. In the pseudo-steady state, the solution is the Michaelis-Menten 
equation and corresponding performance parameters kcat, KM, and kcat/KM. In our notation (Figure 1a) k3 
= kcat and KM = (k2 + k3)/k1s , where k1s is the second order rate constant. Unusual experimental conditions 
used to determine these kinetic parameters include an elevated temperature (65 ◦C) besides the 
immobilization of enzymes. These conditions are not responsible for observed low kcat and kcat/KM 
values. If anything, they slightly increase the performance parameters. 

Table 7. Initial values of microscopic rate constants from experimental and estimated data [27,28] for GI 
to which we added our calculations of other initial kinetic and thermodynamic parameters in the case of 

Streptomyces murinus catalyzed conversion of glucose (substrate) to fructose (product) at 65 ◦C. 

Rate  

constants 

Observed values 

[27]  

Calculated values 

[28]  

k1* 3.8 M−1min−1 0.063 M−1s−1 

k2 1.23 min−1 0.021 s−1 

k3 1.75 min−1 0.029 s−1 

k4* 4.9 M−1min−1 0.082 M−1s−1 

Other relevant  

parameters 
 

Initial values 

(this paper) 

[S]  2.0 M 

[P]  0.2 M 

[E]  0.01 M 

k1  0.126 s−1 

k4  0.0164 s−1 
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kcat  0.029 s-1 

KM  0.794 M 

kcat/KM  0.0365 M−1s−1 

Keqtot  10.61 

Xtot/RT  2.31 𝐷𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛𝑅𝑇   
Initial value  

(this paper) 

P  0.0392 s-1 

Figure 39 NetLogo simulation with noise independently introduced in all rate constants illustrates 
the absence of a strong proportionality relationship between catalytic efficiency and entropy production 
for an inefficient enzyme, such as glucose isomerase. The best point with the coordinates (0.21, 0.21) was 
found at the 1715th tick. It is associated with the Xtot/RT = 4.7, about 2.5-fold higher k1, 9-fold smaller k2, 
24-fold higher equilibrium constant K1, and approximately 11-fold higher partial entropy production 
P1. Thus, the association and dissociation of substrate with enzyme should be shifted toward complex 
ES formation for the significant 5.8-fold increase in enzyme efficiency and 2.3-fold increase in the 
turnover number. 

Imposing some constraints on the system can recover the efficiency-dissipation relationship. For 
instance, rate constants k1 and k2 can be independently multiplied with the normal noise without 
changes in the rate constants k3 and k4 other than those caused by increased product concentration. The 
correlation R2 then jumps to 0.881 for kcat/KM dependence on dissipation. However, NetLogo simulation 
goes through restricted search space and finds somewhat lower values for the best efficiency (not 
shown). 

We also performed the FORTRAN simulations to verify that different software and ways for noise 
introduction can still produce an approximately linear response in the catalytic efficiency to the 
dissipation expressed as forcing XJ combination of external force and internal current (Figure 40). 
Normal noise was called only once and used to multiply all four rate constants. The best catalytic 
efficiency of 0.18 M-1s-1 was comparable to the best result for the NetLogo simulations with noise. It was 
also considerably better than the 0.0215 M-1s-1 catalytic efficiency, easily calculated from the Dobovišek 
et al. optimization [28]. Incidentally, Dobovišek's result was obtained for the positive force Xtot/RT = 0.51 
when the net flow is in the forward direction, and our two-state expressions for kcat and KM (see 
Methods) are appropriate to use for the calculation of kcat/KM. It emerged due to the special nature of 
the quasi-steady state these authors obtained after imposing the no-change constraint for the product 
of forward rate constants: 𝐾ା = 𝑘ଵ∗𝑘ଷ = const. 

Normal noise with shift +1 (see Methods) was called four times in the next FORTRAN simulation 
so that each rate constant was multiplied with its own Box-Muller transform (Figure 41). The best 
catalytic efficiency of 0.226 M-1s-1 result was found for lower overall dissipation in the RT units (0.12 s-1) 
compared to the previous NetLogo simulation (Figure 39).  
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Figure 39. The catalytic efficiency dependence on dissipation in the case of glucose isomerase kinetics 
when normal noise is introduced independently in all rate constants ki. The assumed temperature was 

65 ◦C. Data for kinetic constants (in moles) are from Converti and Del Borghi [27] and Dobovišek et al. 

[28], while initial substrate [S]initial and product [P]initial concentrations of, respectively, 2 molar and 0.2 
molar, are chosen so that the enzyme works mainly in the forward direction. The simulation with 100 
enzymes corresponds to a 100 mM initial concentration of free enzymes. That number quickly drops to 
zero [E]free concentration because all free enzymes are converted into the 100 mM [ES] complex 
concentration after only 29 ticks. Due to discrete NetLogo simulation steps, [E]free = 0 can be any 
concentration smaller than 0.5 mM. The maximal value of catalytic efficiency of 0.213 M-1s-1 is reached in 
the 1715th step (tick). That efficiency is 5.8 times higher than the value calculated from initial parameters 
in the absence of noise. 
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Figure 40. The catalytic efficiency dependence on dissipation when rate constants ki (i = 1, 2, 3, 4) are 
noisy in the FORTRAN simulation. Box-Muller transform g1 with shift +1 (see Methods) was called only 
once and multiplied with each ki. The main loop from the FORTRAN program contained the 10000 steps. 

 
Figure 41. The catalytic efficiency dependence on dissipation when normal noise function gi with shift 
+1 is called separately four times to multiply each rate constant ki (i = 1, 2, 3, 4) in the FORTRAN 
simulation for the glucose isomerase kinetics. 
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The best fold improvements for the catalytic efficiency after noise introduction and the analysis of corresponding 

changes in rate constants 

When variations are allowed in concentrations and microscopic rate constants, an artificial 
evolution of enzymes is, in theory, possible. We can then visually pick up the conditions with high 
catalytic efficiency or high turnover numbers. That can be automated in the future using an iterative 
procedure in which the best performance parameters are chosen as initial until no further improvements 
occur. Starting from experimentally observed parameters, Table 8 illustrates that enzymes differ in their 
evolutionary potential but have similar associations among their kinetic and thermodynamic 
parameters. Namely, a joint increase of kcat/KM and total entropy production argues for the fundamental 
connection between more efficient free energy transduction into essential biochemical reactions and the 
level of thermodynamic irreversibility. 

Table 8. Fold-improvement for enzyme efficiency and corresponding fold-increase of overall dissipation 
in the best cases concerning values found from experiments. 

Enzyme (functional 

states, Fig. #) 

Simulation software 

abbreviation (noisy ki) 

Efficiency 

fold- 

improvement 

Dissipation 

fold increase 

Eff/Disssip. 

(fold factor)* 

Best eff.  

(M-1s-1) 

Glucose isomerase (2, 39) 
GI-NetLogo-kin-simul  

(all ki noisy) 
5.8 5.2 1.0 (1.1) 0.213 

Glucose isomerase (2, 41) 
GI-FORTRAN-kin-

simul (all ki noisy) 
6.1 2.9 1.9 (2.1) 0.226 

β-galactosidase (2, 35) 
GAL-NetLogo-kin-

simul (all ki noisy) 
44.8 6.7 5.1∙103 (6.7) 8.59∙107 

β-galactosidase (2, 38) 
GAL-FORTRAN-kin-

simul (all ki noisy) 
67.2 4.1 1.2∙104 (16.4) 1.29∙108 

Lac1-β-lactamase (3, 31) 
Lac-1-NetLogo-kin-

simul (noisy k1,k2) 
4.8 1.3 6.4∙103 (3.6) 1.3∙108 

RTEM-β-lactamase (3, 28) 
RTEM-lac-NetLogo-

simul (noisy k1,k2) 
9.6 1.6 2.1∙104 (6.0) 2.3∙108 

PC1-β-lactamase (3, 26) 
PC1-lac-NetLogo-

simul (noisy k1,k2) 
6.5 1.2 7.6∙104 (5.2) 6.5∙107 

Carbonic anhydrase I (4, 

20) 

CA-I-FORTRAN-kin-

simul (all ki noisy) 
4.5 18.1 218 (0.25) 1.1∙108 

Carbonic anhydrase I (4, 

21) 

CA-I-NetLogo-kin-

simul (all ki noisy) 
5.9 22.4 231 (0.26) 1.47∙108 

Carbonic anhydrase II (4, 

22) 

CA-II-NetLogo-kin-

simul (all ki noisy) 
5.1 13.4 254 (0.38) 4.25∙108 

Carbonic anhydrase 

T200H (4, 23) 

CA-T200H-NetLogo-

kin-simul (all ki noisy) 
5.5 14.0 421 (0.39) 3.71∙108 

Ketosteroid isomerase  

(4, 15) 

KSI-FORTRAN-kin-

simul (all ki noisy) 
6.2 4.6 3.5∙103 (1.34) 1.88∙109 

Ketosteroid isomerase  

(4, 18) 

KSI-NetLogo-kin-

simul  

(all ki noisy) 

8.6 3.8 5.7∙103 (2.26) 2.59∙109 
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Triophosphate isomerase  

(4, 11) 

TPI-FORTRAN-kin-

simul (all ki noisy) 
29.9 160.6 1.5∙104 (0.19) 2.4∙107 

Triophosphate isomerase  

(4, 14)  

TPI-NetLogo-kin-

simul  

(all ki noisy) 

28.1 198.4 1.1∙104 (0.14) 2.2∙107 

* The fold factor is the ratio of the best efficiency/dissipation and observed efficiency/dissipation.Discussion. 

Dissipation, Evolution, and Catalytic Power of Enzymes 

The evolution of the Universe can be described as the universal evolution. It created time, space, 
and myriad beautiful objects such as galaxies, stars, planets, and living beings [135]. The invisible but 
not less important product of universal evolution is increased entropy and entropy production. 
Through time passage, the product of absolute temperature and entropy production (the dissipation) 
kept rising from the mysterious initial singularity, which must have had very low entropy, extremely 
high temperature, and zero entropy production. A new phase of universal evolution started with the 
appearance of objects that can be associated with the huge jump in entropy production. The first class 
of such objects are black holes, astronomical objects originating after the explosive death of some 
massive stars. The second class of objects originated in an aqueous environment endowed with rich 
chemistry as the first living cells. The same volume of some bacterial cells, mitochondria, or chloroplast 
produces many orders of magnitude higher dissipation than an equivalent average volume of a sun-
like star despite the star's much higher temperature [136,137]. The specific variety of complex life and 
mineralogy we enjoy here on Earth is not likely to exist anywhere else in the Universe [138]. Thus, we 
should protect it, study it, and, if possible, understand it as a natural consequence of universal evolution. 

It is hard to imagine life without housekeeping enzymes. The simplest and the most successful 
description of how many such enzymes work is generalized Michaelis-Menten kinetics [36,139,140,141]. 
The increased complexity of life through eons required means for increasing the catalytic efficiency of 
such enzymes. According to our knowledge, the scientific literature has never seriously considered how 
catalytic efficiency is related to an enzyme's entropy production. Banerjee and Bhattacharyya's finding 
[18] that the more efficient enzyme involves higher total dissipation is in accord with the results 
presented in this paper. The finding is based only on three pairs of dissipation-efficiency values for a 
single enzyme (β-galactosidase). Still, it is gratifying that their different method for calculating overall 
entropy production produced the same result (2553 s-1) as Terrel Hill's approach [34] we used 
throughout this paper (see the last row from Table 5). How changes in dissipation can lead to an 
increased catalytic efficiency was not the main interest of these authors.  

Martyushev and Seleznev [142] anticipated a fruitful connection between optimal kinetics 
parameters and entropy production for strongly nonequilibrium processes. However, it is surprising 
that the relationship between overall dissipation and frequently measured specificity constant kcat/KM 
was never thoroughly examined. These two parameters connect laboratory biochemistry with the 
fundamental thermodynamics of nonequilibrium processes. Wofenden and coworkers found with other 
authors that nothing makes a sharper distinction between life and non-life from the massive jump in 
the catalytic power, which enzymes show when the speed and specificity of the reaction they catalyze 
is compared to an equivalent reaction in the presence of inorganic catalysts 
[10,12,13,14,15,16,143,144,145].  

Great strides have been made in uncovering the 3D structure of proteins with enzymatic activity 
[146]. Still, dynamic changes essential for understanding their catalytic activity are difficult to trace 
structurally [147]. Structural studies did not help as much as we hoped in answering how enzymes 
work [4,148]. Initial expectations that entropy changes are the most important contribution to the 
stabilization of the transition state [149,150] were not confirmed [151], nor the expectations that 
determining an enzyme's mechanism of action is enough to understand its catalytic power [152].  

Despite all the complexity of the enzymes we mentioned here, they are simpler than organisms for 
investigating evolution [153]. That "cleaner" opportunity brings us back to our approach to the mystery 
of how enzymes work. Evolution in physics is firmly connected to entropy production. At the same 
time, the marvelous biochemistry of enzymes is tied to the evolutionary enhancements of enzymes' 
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catalytic rate (up to 1026-fold, according to Edwards et al. [16]). Corresponding catalytic proficiency for 
alkylsulfatase is an astronomical number: (kcat/KM)/kuncat = 1029 M-1. The mystery lies in the vast increase 
of enzyme efficiency kcat/KM during pre-biological and biological evolution. Since an increase in entropy 
production speeds up the physical evolution of any nonequilibrium system (it undergoes faster 
relaxation from the initial far-from-equilibrium state), we can assume the connection with the evolution 
of catalytic efficiency.  

The initial impetus for the evolution must be the relaxation tendency, that is, the appearance of 
fluxes in the system, which spontaneously dissipate external force gradients. All products of forces and 
corresponding fluxes together are nothing else but overall dissipation. Thus, the dissipation is a 
dynamic phenomenon including external driving forces, fluxes through the system, and output fluxes 
toward the system's exterior. A system in a quasi-steady nonequilibrium state is an almost perfect 
converter. It converts free energy influx into internal dissipative fluxes, and external entropy increase, 
which is usually detected as the heat flux. A small percentage of free energy influx can be converted 
into transient free energy storage within the system. For biological systems in nearly stationary, far-
from-equilibrium states, a hierarchy of internal free-energy conversions can lead to dissipative 
adaptation [154]. A slight change in the system's properties increases its ability to absorb free energy 
from the environment. At the same time, the system must produce a slight increase in its dissipative 
output to remain in a stable quasi-steady state. After long enough free-energy accumulation, some 
systems acquire the essential biological property of self-replication.  

A large outflow of entropy from the growing cells is the major thermodynamic process [155]. Only 
a small portion of available free energy is used by cells for synthetic and mechanistic goals. For instance, 
the free energy converted into chemical bonds is a minor contribution compared to the free energy 
change from catabolism. Still, an almost perfect correlation exists between the total heat released and 
the amount of dry mass grown or the total amount of oxygen consumed during the aerobic growth of a 
yeast culture [156]. Theoretical studies also concluded that a higher maximal growth rate would be 
achieved by replicating a system capable of producing more heat [154,157]. Thus, higher entropy 
production can be an advantage during the evolution of organisms. As a rule, total entropy production 
reaches its maximum value before a slow decrease when microorganisms are fully supplied with free-
energy sources and engaged in vigorous growth during their short-term evolution in batch experiments. 
This pattern is recapitulated in the life of every individual organism. Metabolic heat production per 
surface area reaches the maximal value early, with a subsequent decline over the lifetime [158]. 

The metabolic heat production is due to enzymes. Using the microcalorimetry method, Sica et al. 
found in 1987 [159] the proportionality between enzyme activity kcat and observed heat flow. Thermal 
power was directly proportional to the reaction rate for dihydrofolate reductase (EC 1.5.1.3). Todd and 
Gomez [160] extended that observation to representative enzymes from each EC classification (a total 
of 11 different enzymes), assuming the validity of the Michaelis-Menten equation [21]. Isothermal 
titration microcalorimetry can be used for direct, nondestructive, and precise reaction rate 
measurement. Todd and Gomez [160] found a reasonably good agreement between kinetic parameters 
kcat, KM, and kcat/KM assayed colorimetrically and with other methods. Riedel et al. [161] confirmed the 
agreement of calorimetric and kinetic parameters kcat and KM for catalase, urease, alkaline phosphatase, 
and triosephosphate isomerase. These authors also studied the feedback effect of released heat in 
enzyme-catalyzed reactions. Surprisingly, some enzymes asymmetrically release enough heat to 
increase their diffusion in the presence of substrates.  

It is the chemotactic behavior. The enzyme preferentially diffuses towards higher substrate 
gradients, thus increasing its activity due to increased dissipation. Therefore, nature found a way to 
channel dissipated and "useless "energy released by enzyme catalysis towards helpful purposes, such 
as directed motion. For instance, directional water ejection of hexokinase classifies it as a biological 
pump despite being a cytoplasmic enzyme [162,163]. Hexokinase-2 (HK-II) in humans has been 
described as a gatekeeper between life and death [2] because it integrates glycolysis with oxidative 
phosphorylation in healthy cells, contributing to stronger respiratory control. HK-II chemotaxis, due to 
the entropically favored expulsion of water outside the enzyme pocket, is probably instrumental in its 
preferential access to ATP generated by mitochondrion. 
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Assuming that KM does not change for a chosen enzyme, the observed proportionality between the 
enzyme's entropy production and the turnover number kcat implies a linear increase in catalytic 
efficiency kcat/KM with dissipation. When noise is present in rate constants, approximate KM constancy 
will still hold for no changes in k3/k1 ratio (2-state equation (17)), or k5/k1 and k5/k4 ratio (3-state equation 
(20)), or k3/k1, k3/k5, and k5/k7 ratio (4-state equation (23)) when equilibrium constants do not change.  

Through this paper, we could have presented both kcat and kcat/KM proportionality with overall 
entropy production for each enzyme. One example of the proportionality between kcat and dissipation 
is for three β-lactamases (Figure 42). Besides kcat to dissipation/RT proportionality (in the units of inverse 
seconds), that figure also illustrates nearly linear connection between the evolutionary distances of PC1 
(1.19), RTEM (1.44), and Lac1 (1.60) lactamase and either kcat or overall dissipation (see Figure 33, [30], 
and [106] for the evolutionary distances we put in parenthesis). We obtained the same result after 
comparing experimental results for kinetic and thermodynamic parameters of the A-class β-lactamases 
and after looking for the maximal partial dissipation in the rate-limiting steps [2,106] In these and other 
publications [30], we stressed that the optimization for the turnover numbers should be based on the 
physical principle of maximum transitional entropy production, not on the uncritical acceptance of the 
maximal catalytic efficiency or maximal catalytic constant as the selection or optimization criterion.  

There was no need in the present study to make a priory assumption of either physical or biological 
principle reigning supreme. We only required some mechanism for reasonable variations in the 
microscopic rate constants. A crowded cellular milieu and unavoidable errors in translation and 
transcription offer several such means for noise introduction in kinetic parameters. Stochastic 
fluctuations are always present and are relevant for applying the Michaelis-Menten type kinetics inside 
cells [164]. Our simulations are, admittedly, a crude and artificial way of considering the noise. Better 
methods for dealing with physical and biological noise sources are undoubtedly possible. However, we 
were primarily interested in whether different means of noise introduction can uncover regular 
relationships between the most important thermodynamic and kinetic parameters for highly active 
enzymes that work arbitrarily far from equilibrium. Making use of thermal and non-thermal noise 
through stochastic fluctuations and dynamic disorder [165,166] may well have been beneficial during 
biological evolution [167,168,169,170].  

Standard evolutionary theory [171] has a simple answer to the question of how new variations can 
arise: random mutations and natural selection, ensuring the adaptation of the organisms to their 
environment. Thus, a particular noise class (chance genetic changes) is adapted to provide a better fit 
among organisms and environments. That view has been extended recently by taking into account the 
physicochemical evolutionary driving forces [172], including the maximization of dissipation [1].  
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Figure 42. FORTRAN simulations for the kcat dependence on overall dissipation in the case of three β-
lactamases (PC1, RTEM, and Lac1). Each forward rate constant was multiplied with the identical normal 
noise function while corresponding backward rate constants were determined from the no-change 
requirement to equilibrium constants. Table 4 parameters were used for each enzyme. Concentrations 
were not allowed to change from their initial (observed) values. As for other figures, the Ptot label at the 
x-axis is the dissipation/RT in inverse seconds. The figure illustrates the proportional increase or 
decrease of the turnover number with dissipation from observed (calculated) points for PC1 (689, 61), 
RTEM (6757, 975) and Lac-1 (14526, 1905) (see Table 4 and Juretić et al., 2019 [106]). The highest points 
have coordinates (3035, 268) for PC1, (3∙104, 4303) for RTEM, and (6.4∙104, 8394) for Lac-1. As for catalytic 
efficiencies (Figure 33), both observed, and the highest points (dissipation, kcat) are nearly proportional 
to the evolutionary distance from the putative common ancestor in the order PC1 (1.19) < RTEM (1.44) < 
Lac1 (1.60). 

Computational Improvements of the Catalytic Power for Specific Enzymes 

The catalytic power of enzymes is measured as kcat or kcat/KM. Some authors did not recommend 
using kcat/KM as an index for comparing the catalytic effectiveness of enzymes [173]. The majority 
consensus is that kcat/KM is the appropriate measure for the specificity of noncooperative Michaelis-
Menten enzymes [24,174]. In rare cases when all microscopic rate constants have been determined [175], 
kcat and kcat/KM can be connected to partial and total entropy production when an enzyme reversibly 
cycles through all of its functionally important conformations (this work and [2]). Moreover, after 
variations of rate constants around their observed values, we can analyze optimal rate constants ki and 
dissipations associated with the highest performance parameters kcat and kcat/KM. What are, if any, 
common features of the states with the highest enzyme efficiency, and how do the thermodynamic and 
kinetic parameters of these states differ from the same values calculated or inferred from the 
experimental data? Table 9 helps deal with that question. Our choice in this paper was to examine the 
best kcat/KM values for corresponding ki, partial, and total dissipation. Table 9 gives the partial entropy 
production in the first forward catalytic step because it exhibited the highest increase regarding the 
observed value. That is the consequence of increased forward rate constant k1 and decreased backward 
constant k2 for the substrate-to-enzyme association and dissociation. 

In the case of triosephosphate isomerase (TPI), there was a 1454-fold increase of the partial entropy 
production P1 for the E+S↔ES transition, which became the 42% instead of 6% contribution to the total 
dissipation (NetLogo result from Figure 14). For other enzymes and software simulations in the 
presence of noise, P1 increased one to two orders of magnitude, and its percentage also increased for the 
best enzyme efficiency results.  

The single exception is the carbonic anhydrase. For CAI, CAII, and the T200H CAII mutant, an 
absolute increase in P1 was not accompanied by an increase in its percentage. A possible reason is a 
different kinetic scheme for the CA enzyme (Figure 19) and an inadequacy of the standard kcat and 
kcat/KM expression (equations (22)-(24) ) for that scheme. Krishnamurthy et al. [92] (Table 1 from [92]) 
compared all known CA enzymes for their 𝑘௖௔௧஼ைమ and 𝑘௖௔௧/𝐾ெ஼ைమ values for the catalytic hydration of 
CO2 and the dehydration of bicarbonate: 𝐶𝑂ଶ + 𝐻ଶ𝑂 ↔ 𝐻𝐶𝑂ଷି + 𝐻ା 

That is the first half-reaction. The buffer is considered the second substrate in the overall two-
substrate ping-pong reaction, which recovers free enzymes. 

The best efficiency-fold improvement is seen for β-galactosidase, which also reaches the highest 
efficiency-to-dissipation fold ratio (Table 8). However, ketosteroid isomerase has the best evolutionary 
potential in our simulations. That can be connected to the two proton transfer reactions catalyzed by 
KSI [176,177,178] and a powerful electric field [152]. Electric field catalysis needs a strong and correctly 
oriented field. The measured field of 1.44∙1010 V/m is enough to account for 72% of the total acceleration 
rate [152]. The transient appearance of billion volts per meter electric field strength in the interior of 
active proton-shuffling enzymes frequently speeds up catalysis [2]. The isomerization of 5-androstene-
3,17-dione in solution through the same mechanism utilized by KSI is slow. That is why KSI catalytic 
proficiency is so high. As mentioned in the main text, Radzicka and Wolfenden [12] estimated it as 
1.8∙1015 M-1 based on kuncat = 6∙10-7 s-1.  
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Interestingly, the efficiency-fold improvement (Table 8) is similar for the best (KSI) and worst 
enzyme (glucose isomerase). The kcat = 0.029 s-1 (experimental) and kcat = 0.031 s-1 or 0.068 s-1 (optimal) 
values for the k3 in Table 9 GI results are two orders of magnitude smaller than the turnover numbers 2 
s-1 and 11 s-1 reported in the literature [128,179]. The Converti et al. [27] data we used to initiate 
simulations pertain to weakly active GI working close to thermodynamic equilibrium. Nevertheless, 
our method for the theoretical increase in the catalytic activity is robust enough to ensure its close to 10-
fold increase (from 0.0365 to 0.2262 M-1s-1, Figure 41). 

Possible Benefits of Considering Unanswered Questions 

Most enzymes did not use their potential to evolve higher catalytic efficiencies due to the absence 
of selection pressure to maximize it for individual enzymes [19]. When metabolic demand existed, the 
superstars of enzyme evolution developed, often named perfect enzymes [175]. Our simulations 
suggested the theoretical possibility of increasing the kcat/KM of either moderately efficient or perfect 
enzymes. In practice, more than one amino acid substitution is needed to improve the performance 
parameters. Several orders of magnitude improvement typically requires at least 5 to 10 beneficial 
mutations [180]. 

Living far from equilibrium is an essential asymmetry of present-day life [181,182]. Total entropy 
production is a convenient measure of how far the system is removed from thermodynamic 
equilibrium. A certain distance from equilibrium must be maintained to increase the beneficial catalytic 
efficiency after increased dissipation by whatever means for enzymes we studied in this paper. The 
plausible inference is that some abiotic driving forces, such as proton gradients in alkaline hydrothermal 
vents, must have operated to maintain far-from-equilibrium situations and high entropy production 
during life emergence on Earth. According to that assumption, bioenergetics and vectorial biochemistry 
are older than the genetic code and the first universal common ancestor [2]. It enabled enzyme-less and 
cell-less synthesis of amino acids, sugars, nucleotides, and lipids. Nonlinearity and far-from-
equilibrium conditions are two requirements for driving proto-metabolism toward autocatalysis and 
self-organization. Accelerated accumulation of organic molecules followed in the presence of long-lived 
abiotic protonmotive force to jump-start the development of life [183]. The efficiency of organic 
synthesis with proto-enzymes was surely low compared to present-day enzymatic catalysis. However, 
such self-reinforcing reactions increased the efficiency of dissipating available free-energy gradients. 
The present-day connection between dissipation and catalytic efficiency we studied in this paper is thus 
likely to reflect the linkage between the higher dissipation potential and accelerated synthesis of ever 
more complex organic compounds, which was already present at the origin of life. Entropy production 
increases faster due to the enzyme's activity, albeit in the microscopic world. 

Within biology, we cannot find the answer to why dissipation was crucial for the emergence of life, 
as it is essential for the present-day catalytic efficiency of uni-uni enzymes. Can entropy production 
have an autocatalytic role too? Namely, did increased entropy production promote the selection of the 
organic structures capable of increasing entropy production? That question has yet to be answered in 
biology or physics of nonequilibrium processes. The evolution of all systems in the universe may be 
coupled to decreasing their free energy in the least possible time [184]. Thus, the living systems and 
biological macromolecules can be regarded as manifestations of physical principles about dissipation 
intensity rather than ends in themselves [185]. 

We mainly dealt with the academic interest in answering the why and how of life emergence 
during universal thermodynamic evolution. However, there is also a practical goal of enhancing the 
desired activity of natural enzymes or competing with nature in a rational design of artificial enzymes 
with better catalytic performance. These research fields are still in their infancy. Microwave irradiation 
can enhance enzyme activity and entropy production under chemiosmotic conditions [186]. Also, the 
enhancement in these biochemical and physical parameters can result from distal mutations that do not 
change individual equilibrium constants for each catalytic step or the overall equilibrium constant of 
the reaction [187]. De novo enzyme design for green chemistry and medical goals has a huge potential 
[188,189,190,191,192,193]. It has been recently explored by combining computational methods and 
directed evolution experiments [194]. Still, something needs to be added to our insights about enzymatic 
catalysis. Artificial enzymes are generally inferior in catalytic efficiency compared to their natural 
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counterparts [190]. While role or reorganization energy is recognized in rational protein design [190], 
that is not the case with the catalytic efficiency to dissipation proportionality for uni-uni enzymes we 
described in this paper. After all other means are employed to identify possible beneficial mutations for 
increasing the catalytic efficiency with a given substrate, the computer-aided enzyme design can be 
extended with an additional selection for higher overall entropy production. In principle, mutations can 
be predicted based on their contribution to total entropy production, not only their contribution to the 
transition state stabilization and reorganization energy.  
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Table 9. Kinetic and thermodynamic parameters for the best NetLogo and FORTRAN results concerning values found from experiments. The green highlight denotes 
increased, yellow decreased, and orange equals the value of the experimental one. 

Figure Enzyme Software k1 (s-1) k2 (s-1) P1 (s-1) (%P) P (s-1) k3 (s-1) k4 (s-1) k5 (s-1) k6 (s-1) k7 (s-1) k8 (s-1) 

 

TPI 

Exper&cal
c. 

400 7.0∙103 0.573 (6) 9.883 2.0∙103 6.0∙103 6.0∙104 9.0∙104 4∙103 25.60 

14 NetLogo 1.05∙103 303 
833 (42) 

 
1.96∙103 5.4∙103 12.6∙103 9.4∙104 9.97∙104 6.5∙103 128 

11 
FORTRA

N 
1.14∙103 126 

435 (27) 
 

1.59∙103 1.05∙103 6.0∙103 6.0∙104 6.15∙103 937 25.60 

 

KSI 

Exper&cal
c. 

8.3·104 8.6·104 
6.22∙103 (5) 

(5) 
1.16∙105 1.8·105 1.7·106 6.4·105 43 1.5∙105 5.0·104 

18 NetLogo 2.77∙105 3.7∙104 
7.9·104 (18) 

 
4.50∙105 4.95∙105 7.1∙105 1.02∙106 16 6.9∙104 7.7∙104 

15 
FORTRA

N 
2.30∙105 2.5∙104 7.17·104 (13) 5.39∙105 1.8∙105 3.97∙105 6.4∙105 43 1.5∙105 2.9∙104 

 

CA I 

Exper&cal
c. 

4.08·104 3.8·104 1.48·104 (52) 2.84·104 2.9·105 6.24·105 9.0·105 9.0·106 5.5·106 4.5·104 

21 NetLogo 2.0∙105 2.3∙104 
2.51∙105(40) 

 
6.36∙105 4.7∙105 6.55∙105 2.0∙106 9.3∙106 8.8∙106 1.8∙104 

20 
FORTRA

N 
1.53∙105 1.5∙104 

2.13∙105 (41) 
 

5.14∙105 1.95∙106 7.71∙105 2.3∙106 8.5∙106 6.6∙106 3.1∙104 

 
CA II 

Exper&cal
c. 

1.56·105 1.8·106 5.33·104 (43) 1.25∙105 1.7∙107 4.80∙106 1.2∙106 1.2∙106 2.0∙107 1.0∙106 

22 NetLogo 6.38∙105 2.5∙106 
5.61∙105 (34) 

 
1.67∙106 3.7∙107 3.93∙106 1.5∙106 1.5∙106 3.0∙107 6.6∙105 

 
CA T200H 

 

Exper&cal
c. 

9.84·104 5.4∙104 4.03·104 (64) 6.3·104 3.0∙105 2.16∙105 2.7∙106 2.1∙107 1.8·107 9.0·105 

23 NetLogo 6.49∙105 6.7∙104 
4.05∙105(46) 

 
8.82∙105 7.98∙105 7.4∙104 3.2∙106 2.9∙107 7.4∙106 4.6∙105 

 
PC1 

Exper&cal
c. 

3.28·104 196 37 (5) 689 173 4.0 96 8.0   

26 NetLogo 1.15∙105 32 111 (13) 858 173 4 96 11   
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RTEM 

Exper&cal
c. 

1.71·105 1.18∙104 185 (3) 6.76∙103 2.8∙103 6.0 1.5∙103 4.4∙103   

28 NetLogo 4.07∙105 851 
1.4∙103 (13) 

 
1.08·104 2.8∙103 6 1.5∙103 4.7∙103   

 
Lac-1 

Exper&cal
c. 

5.27·104 2.32·103 1.8∙103 (12) 1.45·104 4.09·103 50 3.61∙103 1.72∙103   

31 NetLogo 1.98∙105 976 
3.1∙103 (16) 

 
1.95·104 4.09∙103 50 3.61∙103 1.76∙103   

 
β-galacto- 

sidase 

 

Exper&cal
c. 

5.0∙103 1.83∙104 5.84 (0.2) 2.55∙103 730 1.0∙10-5     

35 NetLogo 1.4∙104 467 
628 (4) 

 
1.70∙104 726 

2.25∙10-7 
E07 

    

38 
FORTRA

N 
1.3∙104 61 1.12∙103 (11) 1.04∙104 520 0.0001     

 

Glucose 
isomerase 

Exper&cal
c. 

0.126 0.021 0.0126 (31) 0.0392 0.029 0.016     

39 NetLogo 0.320 0.002 0.143 (68) 
0.21174

9 
 

0.068 0.088     

41 
FORTRA

N 
0.499 0.004 0.057 (48) 0.119 0.031 0.045     

 

P
re

p
rin

ts
 (w

w
w

.p
re

p
rin

ts
.o

rg
)  |  N

O
T

 P
E

E
R

-R
E

V
IE

W
E

D
  |  P

o
s
te

d
: 4

 D
e
c
e
m

b
e
r 2

0
2

3
                   d

o
i:1

0
.2

0
9
4
4
/p

re
p

rin
ts

2
0
2

3
1
2
.0

1
2

5
.v

1

https://doi.org/10.20944/preprints202312.0125.v1


 

Conclusions 

Our results stress the hallmark of uni-cycle enzymes as the dissipation gates. Enzymes are not 
Maxwell's demons that fight the mechanical tendency toward disorder, as Jacob argued in his book 
"Logic of Life " [195]. Just the opposite, the enzymes open gates for the incomparably faster 
equilibration of concentrations than in their absence. When such gates opened during biological 
evolution, they sped up the spontaneous free-energy transduction into dissipative catalytic cycling 
for many orders of magnitude. 

Selecting enzyme structures exhibiting high catalytic efficiency kcat/KM is the hallmark of 
biological evolution through natural selection. Together with the production of small molecules 
essential for life, it is indeed an order-creating function of enzymes. Still, it arises through opening 
the dissipation gates for a vast increase in disorder. A search to open dissipation avalanches implies 
random structural changes (mutations) and a way to simultaneously fix the advantageous changes 
causing higher enzyme efficiency and dissipation. Thus, random noise and the increase in overall 
entropy production are prerequisites rather than hindrances to the evolution of complex life. 

There are no known rules for repeating the miracle of biological evolution in increasing or 
improving enzyme efficiency [180,196]. However, a better connection of observed performance 
parameters with overall or partial dissipation and introducing dynamic disorder can help find such 
rules. We performed simulations with five well-known "perfect "enzymes cycling through 
generalized Michaelis-Menten-type kinetics near the diffusion limit. The take-home message is that 
increased catalytic efficiency results from higher entropy production. 

The changes in enzyme activity and specificity depend on noise channeling constraints. Enzyme 
efficiency is more or less proportional to overall entropy production when we allow less or more 
freedom in the choice of restrictions. The efficiency-dissipation proportionality is perfect when we do 
not permit the change in the driving force and equilibrium constants in each catalytic step. When 
translated into biological terms, it is the requirement that identical enzymes work in steady or quasi-
steady state homeostatic conditions.  

Dissecting entropy production contributions suggested the formation of the Michaelian complex 
ES as the critical catalytic step. Increased equilibrium constant for the substrate-enzyme association 
can increase the catalytic efficiency in the forward direction (S→P), partial entropy production of that 
step, and overall dissipation better than other means for increasing activity for most enzymes. 

Thus, within physics, we can find the answer to why dissipation was crucial for the emergence 
of life, as it is essential for the present-day catalytic efficiency of uni-uni enzymes. An increased 
catalytic efficiency is the outcome of higher entropy production. It is impossible to separate enzyme 
catalytic rate, efficiency, or power from its overall dissipation. Biological evolution is not different 
from thermodynamic evolution despite its ability to accelerate the latter. The origin of enzymes' 
prodigious catalytic power is the synergy between thermodynamic and biological evolution. If 
increasing enzyme efficiency is the natural evolutionary target for some enzymes and the target for 
the directed evolution of designed enzymes, researchers can explore beneficial mutations based on 
their contribution to partial and total entropy production.  
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Appendix 

We examined the conditions for nearly perfect efficiency to dissipation proportionality. 
Examples are kinetics simulations for some enzymes, which illustrate the remarkably linear 
dependency of catalytic efficiency on overall entropy production (Figures 
4,6,7,10,12,13,25,27,32,37,40). For other enzymes we studied in this paper, such linear dependence 
was not explicitly shown, although we obtained it when identical assumptions were used. Since such 
proportionality can be the previously unmentioned hallmark of all enzymes exhibiting generalized 
Michaelis-Menten kinetics, it is worthwhile to analyze the assumptions and their mathematical 
consequences. 

In this appendix, we first give the expressions for the dependence of efficiency on dissipation 
for two states ௞೎ೌ೟/௄ಾ஽௜௦௦௜௣௔௧௜௢௡ = 1௄ି1

௄2ା௄ା(௄1ା௄)ೖ3ೖ1[ௌ]൤ 1಼1
 ା ೖ3ೖ1

൨ோ்௟௡௄ (A1) 

three states ௞೎ೌ೟/௄ಾ஽௜௦௦௜௣௔௧௜௢௡ = 1௄ି1

(௄3ା௄1௄3ା௄)ା(௄1ା௄1௄2ା௄)ೖ5ೖ1
ା(௄2ା௄1௄2ା௄)ೖ5ೖ3[ௌ]൤ೖ5ೖ1

ା 1಼1
൬ೖ5ೖ3

ା 1಼2
൰൨ோ்௟௡௄  (A2) 

and four states 

௞೎ೌ೟/௄ಾ஽௜௦௦௜௣௔௧௜௢௡ = ௄1௄ି1

(௄2ା௄2௄3ା௄2௄3௄4ା௄)ା(௄1ା௄1௄2ା௄1௄2௄3ା௄)ೖ3ೖ1[ௌ]൤1ା௄1
ೖ3ೖ1

ା 1಼2

ೖ3ೖ5
൬1ା 1಼3

ೖ5ೖ7
൰൨ோ்௟௡௄ +  ௄1௄ି1

(௄3ା௄3௄4ା௄1௄3௄4ା௄)ೖ3ೖ5
ା(௄4ା௄1௄4ା௄1௄2௄4ା௄)ೖ3ೖ7[ௌ]൤1ା௄1

ೖ3ೖ1
ା 1಼2

ೖ3ೖ5
൬1ା 1಼3

ೖ5ೖ7
൰൨ோ்௟௡௄  (A3)  

The next task is to examine the conditions when these expressions for the efficiency to 
dissipation slope are less likely to change due to variations in the microscopic rate constants. When 
equilibrium constants for each catalytic step are kept fixed to their observed values, the change in 
slope can happen only in the case of variable temperature, variable concentrations, or variable ratios 
of rate constants belonging to different catalytic steps. For selected quasi-steady states, there should 
be no change in temperature, but the substrate and product concentration do change for an active 
enzyme if not fixed to their initial values. It all depends on how jumps between steady states are 
defined. When random numbers s1 and s2 are called only once in the Box-Muller transform (see 
Methods), the slope never changes for the constant concentration of ligands because the noise cancells 
in all ratios of rate constants ki/kj, where i and j do not have to be from the same catalytic step. There 
are slight changes in the slope after allowing for minor changes in the concentration of substrates, 
products, and enzyme-ligand complexes within the same assumption that identical noise is 
introduced into one or more catalytic steps. Still, the slope only undergoes a limited increase due to 
the increase in product concentration and slight force decrease. An entirely different situation occurs 
when noise is introduced independently two or more times in one or more pairs of rate constants. 
The constraint of fixed or slightly variable equilibrium constants in catalytic steps is then abandoned, 
and the goodness of the straight line fit for the proportional dependence of enzyme efficiency on 
dissipation varies among enzymes but is still strongly affected if any other constraint is imposed. 
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