
Article

Not peer-reviewed version

A Hybrid Method for Calculating the

Chemical Composition of Steel with the

Required Hardness After Cooling from

the Austenitizing Temperature

Jacek Trzaska 

*

 and Wojciech Sitek

Posted Date: 4 December 2023

doi: 10.20944/preprints202312.0109.v1

Keywords: steel; artificial neural networks; genetic algorithm; optimization; materials by design; heat

treatment; hardness

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/1059712
https://sciprofiles.com/profile/1059713


 

Article 

A Hybrid Method for Calculating the Chemical 
Composition of Steel with the Required Hardness 
after Cooling from the Austenitizing Temperature 

Jacek Trzaska 1,* and Wojciech Sitek 2 

1 Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian 

University of Technology, 44-100 Gliwice, Poland; jacek.trzaska@polsl.pl 
2 Scientific and Didactic Laboratory of Nanotechnology and Material Technologies, Faculty of Mechanical 

Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; wojciech.sitek@polsl.pl 

* Correspondence: jacek.trzaska@polsl.pl 

Abstract: The article presents a hybrid method for calculating the chemical composition of steel with the 

required hardness after cooling from the austenitizing temperature. Artificial neural networks and genetic 

algorithms were used to develop the model. Based on 550 diagrams of continuous cooling transformation 

(CCT) of structural steels available in the literature, a dataset of experimental data was created. Artificial neural 

networks were used to develop a hardness model describing the relationship between the chemical 

composition of the steel, the austenitizing temperature, and the hardness of the steel after cooling. A genetic 

algorithm was used to identify the chemical composition of the steel with the required hardness. The value of 

the objective function was calculated using the neural network model. The developed method for identifying 

the chemical composition was implemented in a computer application. Examples of calculations of mass 

concentrations of steel elements with the required hardness after cooling from the austenitizing temperature 

are presented. The model proposed in this study can be a valuable tool to support chemical composition design 

by reducing the number of experiments and minimizing research costs. 

Keywords: steel; artificial neural networks; genetic algorithm; optimization; materials by design; 

heat treatment; hardness  

 

1. Introduction 

Steel is one of the most important materials used in all sectors of the economy due to its good 

mechanical, physical and functional properties. The selection of steel for structural components and 

machinery requires an analysis of the working conditions to ensure the required properties of these 

elements. In the case of structural and engineering steels, the required properties are achieved 

through the proper selection of the chemical composition of the steel and the appropriate choice of 

heat treatment, thermo-mechanical, or thermochemical processing conditions. Properly selected 

chemical composition should ensure the required steel properties and production costs. Knowledge 

of the qualitative and quantitative influence of alloying elements on steel structure and properties is 

essential for rational selection of mass concentrations of these elements. The influence of an element 

should be considered in conjunction with other elements present in the steel, as they can significantly 

change the interaction with the structure and properties of the steel. The results of research on this 

subject have been published in numerous publications [1–6].  

Continuous cooling transformation (CCT) diagrams provide significant information on the 

possibility of obtaining the required microstructure and hardness of the steel as a function of the 

cooling process from the austenitizing temperature. Dilatometric and metallographic methods are 

mainly used to develop these diagrams. CCT diagrams are often presented in a temperature-cooling-

time format. They contain information on the start and end temperatures of the various phase 

transformations. Typically, the cooling rates of the samples and the hardness measured after cooling 

at these rates are plotted on the diagrams. The diagrams often also include the volume fractions of 
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ferrite, pearlite, bainite, and martensite, which are also associated with specific cooling rates. CCT 

diagrams are used to determine the conditions for quenching, normalizing and full annealing [7,8]. 

The parameters for phase transformation models are often calculated based on CCT diagrams. A CCT 

diagram is important for modeling and planning heat treatment and thermomechanical treatment of 

steel with known chemical composition and specific austenitizing conditions [9,10]. 

In recent years, the methods and tools for modeling and simulation of technological processes 

for manufacturing, processing and shaping steel structure and properties have developed 

dynamically. Computer-aided modeling is used in scientific research and industry. It is a relatively 

inexpensive and effective method to optimize, among others, the chemical composition and process 

conditions to achieve the required material properties [11–14]. The increasing availability of material 

databases and advances in machine learning methods are creating new opportunities for material 

design [15–18]. 

The growing interest in the application of artificial intelligence and computational intelligence 

in various fields of science and technology can also be observed in the field of materials engineering. 

Artificial neural networks are often used as a modelling method. Artificial neural networks are a 

useful tool for practical tasks. The use of artificial neural networks is especially justified when there 

are difficulties in creating mathematical models. Artificial neural networks make it possible to 

establish relationships between variables without defining a mathematical description of the 

analyzed problem. In the case of supervised learning, artificial neural networks learn to solve the 

problem based on examples [19]. The significant application potential of artificial neural networks in 

materials engineering has been presented by many authors [20–24]. 

A clearly visible trend in modelling, also in materials engineering, is the use of hybrid methods. 

Combining different methods in one model makes it possible to consider a broader problem space 

and achieve a synergistic effect by utilizing the advantages of each method. Artificial neural networks 

are often combined with other modelling methods, including mathematical modelling, 

computational intelligence and artificial intelligence [25]. Combining artificial neural networks and 

genetic algorithms has become a favorable option to leverage the strengths of both methods. The 

combination of artificial neural networks and genetic algorithms enables the optimization of tasks. 

Artificial neural networks are used in this case to calculate the fitness values of individual 

chromosomes. The chromosomes represent the encoded values of the decision variables and form a 

set of possible solutions. Given the correct definition of the task conditions, the fitness value of the 

chromosomes corresponds to the value of the optimized objective function. This allows the 

identification of independent variables that meet the required criteria. 

Examples of such solutions can be found, among others, in the works [26–32]. Reddy et al. [26] 

applied artificial neural networks and a genetic algorithm to optimize the chemical composition and 

heat treatment conditions of medium carbon steels with respect to the required mechanical 

properties: yield strength, ultimate tensile strength, elongation, area reduction, and impact strength. 

Dutta et al. [27] proposed a similar methodology to design the chemical composition of dual phase 

steels. Pattanayak et al. [28] used artificial neural networks and a genetic algorithm to design the 

chemical composition and heat treatment conditions of microalloyed steels for pipe manufacturing. 

Sitek [29] presented a method to support the design of the chemical composition of high-speed steels 

with the required hardness and fracture toughness. Feng and Yang [30] proposed a method to 

optimize the thermomechanical processing conditions of austenitic stainless steel type 304 to increase 

resistance to intergranular corrosion. Razavi et al. [31] described a method for optimizing the heat 

treatment conditions of corrosion resistant steels with emphasis on maximizing hardness. Sinha et al. 

[32] focused their research on Ni-Ti shape memory alloys, with the aim of improving shape recovery 

behavior while maintaining high mechanical properties. The authors of these publications emphasize 

that their proposed method reduces the number of experiments required to design new steel grades 

with the required properties. 

The result of the initial work related to the modeling of the chemical composition of steel for the 

required hardness after cooling from the austenitizing temperature is presented in [33]. An artificial 

neural network was developed to calculate the hardness of steel based on its chemical composition 
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and austenitizing temperature. In the next step, 6500 randomly generated chemical compositions of 

steel were evaluated for hardness at ten average cooling rates. Subsequently, the steel composition 

that best met the required criterion was selected. 

The purpose of this article is to describe a method to calculate the chemical composition of steel 

with the required hardness after the product has been cooled from the austenitizing temperature. 

Artificial neural networks and a genetic algorithm were used in this method. The presented method 

consists of two stages. The first stage involves developing a hardness model. Artificial neural 

networks were used to develop the hardness model. Hardness is calculated based on the chemical 

composition of the steel and the austenitizing temperature. The hardness model developed using this 

method was presented in the work [34]. This article presents new modelling results. In the second 

stage, a genetic algorithm was used to identify the chemical composition of the steel with the required 

hardness. An application in which the model was implemented is described. Calculation examples 

are presented. 

2. Hardness Model 

The increasing popularity of machine learning is also reflected in numerous articles focusing on 

modelling the transformation of supercooled austenite [35–39]. The authors presented models for 

calculating phase-transformation temperatures, as shown on CCT diagrams. However, the hardness 

of the steel is usually not considered in these models. A simpler and less costly method of determining 

the hardness of continuously cooled steel from the austenitizing temperature is the Jominy End-

Quench test. Incorporating the results of the Jominy End-Quench test into models used for heat 

treatment simulations requires calculating the cooling rates at the analyzed points on the cooled 

object and assigning them corresponding distances from the quenched-end of the sample [40]. 

Methods for calculating Jominy hardenability curves are presented, among others, in works [41–46]. 

However, the Jominy test has certain limitations. For example, the critical cooling rate of high-

hardenability steel may be less than the minimal cooling rate of the Jominy specimen [47]. 

Modeling steel hardness using data from CCT diagrams allows us to link hardness to the cooling 

curve and phase transformations. On the other hand, the available data are limited, mostly in 

graphical form, and the values for time or cooling rate are challenging to digitize. 

Equations developed through multiple regression analysis are also used to calculate steel 

hardness. A popular model used to calculate the hardness of continuously cooled steel from the 

austenitizing temperature is the Maynier model [48,49]. The model takes into account the influence 

of chemical composition, austenitizing temperature, and time. The Maynier equations can be used to 

calculate the characteristic cooling rates at 700°C at which the following microstructural constituents 

are formed in the steel: 100%, 90% and 50% martensite, 90% and 50% bainite, and 90% and 100% 

ferrite and pearlite. The Maynier model was developed using data obtained from about 300 CCT 

diagrams. Equations for calculating the hardness of continuously cooled steel from the austenitizing 

temperature can also be found in this work [50]. The formulas were developed using data collected 

from approximately 500 CCT diagrams, employing multiple regression analysis and logistic 

regression. Based on the same dataset, a hardness model was developed using artificial neural 

networks, and the results were presented in the paper [34]. The same methodology was used for 

modeling in this study. Information from 50 additional CCT diagrams was added to the data set, 

resulting in a new hardness model. In order to provide a comprehensive discussion of the 

methodology used to calculate the chemical composition of steel with the required hardness, some 

details of the hardness calculation method, as presented in [34], were reiterated. 

2.1. Dataset for the Model 

The development of a neural network model for steel hardness requires the preparation of a 

representative dataset of empirical data. The dataset was based on 550 CCT dia-grams published in 

the literature. The preparation of the dataset started with the determination of the variables 

representing the model. The selection of the independent variables should be supported by the 

knowledge of the modelled process. At the same time, the vectors containing examples of parameter 
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calculation and model testing must contain values for all variables. Therefore, it was necessary to 

make simplifications regarding the number of independent variables. Information on austenitizing 

time and austenite grain size is not included in many CCT diagrams and was therefore not included 

in the model. During the cooling of steel from the austenitizing temperature, phase transformations 

occur, that determine the microstructure and its hardness. The CCT diagrams contain information 

about the phase transformations that occur in the steel during cooling at a known rate. The 

information about the phase transformations was used in the hardness model. 

It was established that the independent variables of the hardness model would be the mass 

concentration of the elements: C, Mn, Si, Cr, Ni, Mo, V, Cu, austenitizing temperature (TA), and 

cooling rate (CR). Additionally, four categorical independent variables describing the presence of 

ferrite, pearlite, bainite and martensite in the steel structure were considered. The values of these 

variables were determined from the cooling curves presented in the CCT diagrams. The dependent 

variable of the model was the hardness of the steel obtained after cooling at a specified rate. 

The values of the categorical variables that describe the steel structure were read from the CCT 

diagrams. However, the use of the model requires knowledge of these variables. Therefore, four 

classifiers were developed. The task of the classifiers was to answer the question whether the steel 

with a certain chemical composition contains ferrite, pearlite, bainite or martensite after cooling at a 

certain rate. The vectors of variable values for training and testing the classification neural networks 

contained the mass concentrations of elements, austenitizing temperature, cooling rate, and a 

categorical variable describing the occurrence of a phase transformation such as ferritic (F), pearlitic 

(P), bainitic (B), and martensitic (M). The categorical variable could take one of two values: Yes or 

No. 

To determine the applicability of the developed hardness model, an analysis of the range of 

values of the independent variables was performed. The examples prepared for the development and 

testing of the model covered the entire domain of approximated functions. Additional conditions 

were established that limit the use of the model. 

The distributions of the values of the independent variables were assessed using descriptive 

statistics, scatter plots, and histograms for one and two variables. Descriptive statistics included 

minimum and maximum values, mean, standard deviation, median, skewness, and kurtosis. 

Attention was paid to outliers and colinearity of the independent variables. To test the correlation 

between variables, Pearson's correlation coefficient was calculated for each pair of quantitative 

variables. For categorical variables, Spearman rank correlation was used. The results are presented 

in Figure 1. 

 

Figure 1. Correlation plot of all variables in the dataset. 

Analyzing the data from Figure 1, a moderate positive correlation can be observed between the 

variable describing the occurrence of martensite in steel and the cooling rate. A similar relationship 

holds for ferrite and pearlite. There is a moderate negative correlation between the variables that 
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describe the proportion of ferrite and pearlite and the cooling rate. A similar relationship exists 

between the variables describing the occurrence of ferrite and pearlite in steel and the variable 

describing the occurrence of martensite. The negative value of the coefficient confirms that in most 

cases these components do not occur simultaneously in the steel. There is a small negative correlation 

between the concentration of chromium and manganese in steel. The highest value of the correlation 

coefficient for steel hardness is observed for the categorical variables (F, P, M), cooling rate, and 

carbon concentration. This confirms the knowledge about the influence of the model variables on the 

hardness of the steel cooled from the austenitizing temperature.  

For the cooling rate, a transformation was applied that involved the calculation of the fourth 

root. This provided a uniform distribution of variable values over the entire range. 

The values of the input variables and the output variables were scaled in the range of 0 to 1 using 

the min-max function. 

The hardness model can be applied within the range of mass concentrations of the elements 

listed in Table 1. Based on the statistical analysis of the data, additional conditions limiting the use of 

the model were defined. The additional constraints are presented in Table 2. 

Table 1. Minimum, maximum, mean, and standard deviation values of the input variables. 

Variables Minimum Maximum Mean Std. dev 

C (wt%) 0.10 0.68 0.32 0.14 

Mn (wt%) 0.25 1.80 0.79 0.33 

Si (wt%) 0.13 1.60 0.33 0.28 

Cr (wt%) 0 2.30 0.72 0.56 

Ni (wt%) 0 3.60 0.74 1.00 

Mo (wt%) 0 1.00 0.16 0.20 

V (wt%) 0 0.38 0.02 0.06 

Cu (wt%) 0 0.30 0.04 0.08 

TA (°C) 770 1050 878 57 

Table 2. Additional conditions limiting the scope of the model application. 

 Mn+Cr Mn+Cr+Ni Cr+Ni Mn+Ni 

Maximum (wt%) 3.6 5.6 5.3 4.5 

A verification set consisting of 25 CCT diagrams was created. The data from this set were not 

used to calculate the model parameters. They were used only for numerical verification of the 

developed relationships. 

The dataset prepared for model development was divided into a training dataset, a validation 

dataset, and a test dataset. The training dataset was used to determine the weights of connections 

between neurons during training. The validation dataset was used to evaluate the neural network 

during training. The test dataset was used to evaluate the quality of the neural network after training. 

Several vectors of variables were obtained from one CCT diagram, ranging from a few to several. 

Random division into training, validation, and testing datasets resulted in examples derived from a 

CCT diagram being assigned to different sets. Using the data from the verification set, it was possible 

to compare the overall hardness change curve for steel with a given chemical composition. The 

training, validation, test and verification datasets contained 1763, 550, 550, and 300 patterns, 

respectively. 

2.2. Methods and Results 

According to the assumptions adopted, the hardness neural model consisted of five neural 

networks, including four classifiers. More information on neural classifiers is presented in [51,52]. 

Process flow of this method is shown in Figure 2. One of the independent variables of the model is 

the austenitizing temperature. It was assumed that the austenitizing temperature would take the 
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value of Ac3+50°C. The value of the end temperature of the Ac3 transformation during heating was 

calculated based on the chemical composition using a neural network. The neural network model for 

calculating the Ac3 temperature is presented in [51,52]. 

 

Figure 2. Flow chart of the methodology adopted for hardness calculation. 

Artificial neural networks were designed and tested using the STATISTICA Neural Networks 

software.  

To assess the quality of neural networks in regression tasks, the following statistics were used: 

mean absolute error, standard deviation of error, Pearson’s correlation coefficient, and standard 

deviation. The ratio of the standard deviation of the prediction error to the standard deviation of the 

dependent variable allows a comparison of the error values made by the neural network with the 

range of values of the dependent variable. A smaller prediction error and a larger range of the 

dependent variable result in smaller values of the standard deviation ratio, reaching zero for a perfect 

prediction. These statistics were calculated for the training, validation, test and verification datasets. 

In the case of classifiers, the two classes (presence or absence of a transformation) were 

represented in the dataset by a similar number of examples. Evaluation of the classifiers involved the 

use of the accuracy coefficient and Receiver Operating Characteristic (ROC) curve. The accuracy 

coefficient was calculated as the ratio of the number of correctly classified cases to the total number 

of cases in the dataset. The ROC curve allows one to evaluate the performance of a binary classifier 

for all possible thresholds that determine the class boundary. For random classification, the area 

under the ROC curve (AUC) is 0.5, while for a perfect classifier it reaches a value of 1. 

In the initial modelling phase, several types of feedforward neural networks were used: linear 

networks, multilayer perceptrons (MLP), radial basis functions (RBF), generalized regression neural 

network (GRNN) for regression tasks and probabilistic neural network (PNN) for classification tasks 

only. After preliminary calculations were performed and the results obtained were analyzed, it was 

decided that only MLP networks with a single hidden layer would be considered in the next stage of 

work. The focus was on determining the optimal number of neurons in the hidden layer combined 

with training the neural network. 

Artificial neural networks were trained using the following methods: backpropagation (BP), 

quick propagation (QP), conjugate gradients (CG), Levenberg-Marquardt (LM), quasi-Newton (QN), 

and delta-bar-delta (DD). During the neural networks training, the root mean square error (RMSE) 

value was analyzed. The change in RMSE value was observed in successive training epochs for the 

training and validation datasets. The training of the network was stopped in the epoch in which the 

error of the validation dataset started to increase. In a typical artificial neural network training 

process, after a certain number of training epochs, despite a decrease in the error value for the training 

set, the error for the validation set starts to increase. In such cases, continuing the training leads to 

overfitting the model to the training data. The detrimental effect of overfitting occurs relatively 

frequently in neural networks. Overfitting is favored by an increase in the number of hidden layers, 

an increase in the number of neurons in the hidden layer(s), and an excessive increase in the number 

of training epochs. 
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After completion of the neural network, the aforementioned statistics used for evaluating the 

neural network were calculated. These calculations were performed for the training, validation, test, 

and verification sets. A series of experiments were performed varying the number of neurons in the 

hidden layer as well as the method and/or training parameters. 

The selection of the neural network that best describes the relationship between independent 

variables and steel hardness was based on the values of the statistics mentioned above (regression 

tasks). Attention was paid to ensure that the values of the respective statistics for the four sets were 

similar. In the case of neural networks with similar statistical values, the network with fewer neurons 

in the hidden layer was chosen. The best fit was obtained for the MLP network with a structure of 

14-8-1. The neural network was trained using the Levenberg-Marquardt method for 172 training 

epochs. The sum of squares was used as the error function, and the activation functions in the input, 

hidden, and output layers were linear, logistic, and linear, respectively. The statistical values used to 

evaluate the neural network are summarized in Table 3. 

Table 3. The statistical values used to evaluate the hardness model. 

Dataset 
Mean absolute 

error, HV 

Standard  

deviation of the 

error, HV 

Ratio  

of standard  

deviations 

Pearson  

correlation  

coefficient 

Training 30.9 44.3 0.27 0.96 

Validating 33.6 46.4 0.28 0.96 

Testing 33.7 50.1 0.30 0.95 

Verifying 32.7 39.0 0.29 0.95 

The parameters characterizing the neural networks developed to identify the structural 

components present in steel after cooling are presented in Table 4. The metric values used to evaluate 

the classifiers were collected in Table 5. The input variables of all classifiers were mass concentrations 

of elements: C, Mn, Si, Cr, Ni, Mo, V, Cu, and TA and CR. 

Table 4. Structure and training parameters of neural classifiers. 

 
Transformation 

Ferritic  Pearlitic Bainitic Martensitic 

ANN structure MLP 10-8-1 MLP 10-8-1 MLP 10-10-1 MLP 10-6-1 

Training /No of epoch BP/50, CG/330 BP/50, CG/119 BP/50, CG/188 CG100 

Table 5. Accuracy and AUC values used to evaluate neural classifiers. 

Metric Dataset 
Transformation 

Ferritic  Pearlitic Bainitic Martensitic 

Accuracy 

Training 0.92 0.92 0.86 0.89 

Validating 0.91 0.92 0.86 0.86 

Testing 0.89 0.91 0.84 0.86 

AUC 

Training 0.97 0.97 0.93 0.95 

Validating 0.96 0.97 0.92 0.94 

Testing 0.96 0.97 0.91 0.93 

The significance of the independent variables was evaluated by the ratio between the estimated 

error of a neural network without the influence of the analyzed variable and the error of the neural 

network considering the influence of all input variables. When estimating the error of the neural 

network without the influence of the independent variable, the mean value of this variable is assumed 

for all patterns. An independent variable was considered significant if the calculated ratio for the 

training set and the validation set was greater than 1. The error ratio calculated for the training and 

validation sets is shown in Figure 3. 
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Figure 3. Impact of independent variables on steel hardness evaluated on the error ratio. 

The obtained results confirm that the categorical variable describing the martensite content in 

the steel structure, the mass concentration of carbon and the cooling rate has the greatest influence 

on the accuracy of the prediction. This supports the consideration of including categorical variables 

describing phase transformations during steel cooling in the hardness model. Categorical variables 

significantly reduce prediction error and compensate for the additional cost of introducing classifiers 

into the model. Note that the operation of classifiers is subject to error. However, their inclusion in 

the model has noticeably reduced the computational error. 

The results presented demonstrate that the hardness model can be applied to cal-culate the 

hardness of steel after the temperature is cooled from austenitizing. When using the model, it is 

important to keep in mind the potential error that can occur during the calculations. 

3. Calculating the chemical composition of steel 

3.1. ANN-GA hybrid model 

The calculation of the chemical composition of steel with the required properties can be 

considered as the search for values of independent variables for which the objective function 

approaches the expected value. The values of the independent variables must be in the set of allowed 

solutions. The value of the objective function is calculated using a neural network model. In such 

cases, the space of possible solutions must be limited by the range of mass concentrations of the 

elements for which the neural network model can be applied. The constraints on the solution space 

are presented in Tables 1 and 2. 

Steel with a known chemical composition, that is austenitized under the same conditions 

exhibits a unique hardness change curve as a function of the cooling rate. However, there are many 

steels for which the hardness curve takes on a similar shape. Therefore, there may be multiple 

solutions to calculate the chemical composition of steel with a required hardness change curve. The 

optimization method used to find a solution must be an efficient global method capable of obtaining 

multiple suboptimal solutions. Genetic algorithms are stochastic algorithms capable of solving the 

suboptimal solutions are selected to optimize the parameters. 

The essence of genetic algorithms, similar to other evolutionary methods, lies in the search for a 

solution within a limited space. This search is inspired by the mechanisms of natural selection and 

evolution. In the space defined by the constraints of the optimization problem, there exists a 

population of individuals encoded as potential solutions. In a classical genetic algorithm, the 

individuals are represented by chromosomes encoded as binary strings. The quality of these solutions 

is evaluated on the basis of the fitness function. Individuals with higher fitness, which better meet 

the search criteria, have a greater chance of survival and produce a new generation. Individuals 

exchange information through crossover and mutation operators. Through operations inspired by 

natural evolution, they create progressively better solutions in each iteration. The space of potential 
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solutions is explored in parallel. The genetic algorithm follows an evolutionary rule in which the 

individuals with the highest fitness values have the highest probability of survival [53,54]. 

The objective of the optimization presented in this study was to identify the chemical 

composition of the steel with the required hardness after the steel is cooled from the austenitizing 

temperature. The objective function was defined as a measure of the fitting error to the required 

hardness of the steel. The objective function is described by Equation (1). The calculations sought to 

minimize the value of the objective function. The required hardness was assumed to be determined 

for a maximum of five cooling rates. Each required hardness was assigned a weighting coefficient, 

which describes the significance of the hardness obtained at a specific cooling rate and can take a 

value from 0 to 1. The fitting error was calculated as the absolute difference between the calculated 

and required values. The scaling was carried out using the Min-Max function in the range from 0 to 

1. The minimum and maximum hardness values were determined from the data used for the training 

of the neural networks. 

𝑓ு௏ሺ𝑥ሻ ൌ෍𝑤ு௏௜ ∙ ቤሺ𝐻𝑉𝑐௜ െ𝐻𝑉௠௜௡ሻ െ ሺ𝐻𝑉𝑟௜ െ𝐻𝑉௠௜௡ሻ𝐻𝑉௠௔௫ െ𝐻𝑉௠௜௡ ቤ௞
௜ୀଵ  (1)

where: 

i = 1, 2, ..., k, 

k = 1, 2, ..., 5, 

wHVi – weighting coefficient for the hardness at the i-th cooling rate, 

HVci, HVri – the calculated or required hardness for the i-th cooling rate, 

HVmin, HVmax, the minimum and maximum hardness determined based on empirical data 

analysis, 

x – vector of independent variables. 

The use of genetic algorithms for the identification of the chemical composition of steel and 

artificial neural networks to calculate the fitness function requires the development of a computer 

program. The program was written in the C++ language. The calculation algorithm performed by the 

computer program is presented in Figure 4. 

 

Figure 4. Flowchart of the optimization scheme based on the hybrid ANN–GA algorithm. 

The program implemented a classical genetic algorithm with binary chromosome encoding. It 

was assumed that the length of the binary string for each variable is 10 bits, so that the value range 

of the variables can be divided into 1024 intervals. This value can be reduced if necessary. The roulette 

wheel selection method, single-point crossover, and mutation operators were applied. The fitness 

function was defined according to Equation (1). Neural networks were used to calculate the value of 

the fitness function. Artificial neural networks trained to calculate the hardness of steel were defined 

as functions of the code. This approach allows easy modification of the program in case neural 

networks with lower computational errors are developed. In the calculation of genetic algorithms, 

premature convergence can be observed, which is caused by the dominance of the fittest individuals.. 

This phenomenon often occurs in proportional selection methods, such as roulette wheel selection. 
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After several generations, the population may consist only of copies of the best chromosome. In the 

final phase of the algorithm, there is often a small difference between the average fitness value of the 

population and the fitness value of the best individuals. This situation reduces the competition 

among individuals and can lead to a genetic drift effect. To avoid premature convergence of the 

algorithm, power-law scaling is utilized to scale the fitness value. 

After defining the required hardness as a function of the cooling rate, it is possible to calculate 

the mass concentration of all elements or only selected elements. Algorithm parameters that can be 

adjusted during the calculations include the number of generations, the size of the population, the 

probability of crossover, and the probability of mutation. An elitist strategy was applied in the 

reproduction procedure, which involves including the best individuals unchanged in the next 

generation. The aim of the elitist strategy is to preserve the best chromosomes in successive 

generations. The number of unchanged individuals is one of the program options and can be set to 

0. The program interface is shown in Figure 5. 

 

Figure 5. Computer app calculating the chemical composition of steel of assumed hardness. 

3.2. Examples of applications of the ANN-GA model 

This paper presents three examples of the application of the developed method for calculating 

the chemical composition of steel with the required hardness after cooling from the austenitizing 

temperature. 

In the first example, the calculations were limited to the carbon concentration. In order to verify 

the calculation results, the required hardness values were determined using the CCT diagram of the 

41Cr4 steel [55]. The range of concentrations for other elements was limited to the chemical 

composition of the 41Cr4 steel and did not exceed 0.05%. Table 7 shows the hardness of 41Cr4 steel 

obtained from the CCT diagram, the required hardness, the calculated hardness and the hardness 

error. The error for each of the five cooling rates was calculated as the absolute difference between 

the required hardness value and the calculated hardness value. The table shows the sum of the errors 

for the five cooling rates. Table 6 presents the chemical composition of the 41Cr4 steel, the calculated 

chemical composition and the austenitizing temperature. Figure 6 shows the hardness curves as a 

function of cooling time based on the values in Table 7. The calculations were performed multiple 

times by changing the parameters of the genetic algorithm. The results presented were obtained with 

the following parameters: 1000 generations, population size of 200, crossover probability of 0.8 and 

mutation probability of 0.1. 
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Table 6. The required and calculated hardness of the steel after cooling at selected rates (Example 1). 

 
Cooling rate, °/s 

Error, HV 
30 23 13 3 1 

41Cr4 563 534 412 310 233 - 

Target 560 530 415 30 230 - 

Solution 550 530 451 291 232 57 

Table 7. Chemical composition of steel calculated for the required hardness (Example 1). 

Variables 41Cr4 Solution  

C (wt%) 0.40 0.42 

Mn (wt%) 0.60 0.58 

Si (wt%) 0.33 0.33 

Cr (wt%) 0.93 0.94 

Ni (wt%) 0.05 0.01 

Mo (wt%) 0.00 0.04 

V (wt%) 0.00 0.04 

Cu (wt%) 0.09 0.04 

TA (°C) 850 841 

 

Figure 6. Comparison of hardness curves: experimental, required, and calculated (solution from 

Tables 6 and 7). 

The calculated carbon mass concentration in this example is 0.42. This concentration is 0.02% 

higher than the carbon concentration in the reference steel 41Cr4. There are also slight differences in 

the concentrations of other elements, such as manganese (0.02% difference). The hardness error 

obtained is 57 HV. The largest difference occurs at the highest cooling rate, with a difference of 10 

HV. Similar calculations were performed for other steels from the validation set, calculating the 

concentrations of various elements. The results confirm a high level of agreement with the 

experimentally obtained results. 

In the second example, the concentrations of two elements, Cr and Mn, were calculated. In this 

case, a comparison with the experimental results is only possible after melting and testing. The 

reference steel chosen in this example is 37Cr4 [56]. The range of concentrations for other elements 

was limited to the chemical composition of the 37Cr4 steel and did not exceed 0.05%. Table 7 shows 

the hardness of 37Cr4 steel obtained from the CCT diagram, the required hardness, the calculated 

hardness (various solutions) and the hardness error. Different solutions were obtained after each 

successive run of the program parameters, with optional changes to the genetic algorithm. Five 

solutions are presented. Figure 7 shows the hardness curves as a function of cooling time based on 

the values in Table 8. Table 9 presents the chemical composition of the 37Cr4 steel, the calculated 

chemical compositions and the austenitizing temperature. 
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Table 8. The required and calculated hardness of the steel after cooling at selected rates (Example 2). 

 
Cooling rate, °/s 

Error, HV 
50 40 13 7 1 

37Cr4 558 550 408 335 216 - 

Target 560 550 410 330 220 - 

Solution 1 556 542 429 331 222 34 

Solution 2 557 543 428 332 226 36 

Solution 3 560 546 431 335 230 40 

Solution 4 554 540 426 333 232 47 

Solution 5 560 546 436 341 243 64 

Table 9. Chemical compositions of steel calculated for the required hardness (Example 2). 

Variables 37Cr4 Solution 1 Solution 2 Solution 3 Solution 4 Solution 5 

C (wt%) 0.38 0.40 0.04 0.40 0.40 0.40 

Mn (wt%) 0.74 0.50 0.69 0.87 0.93 1.30 

Si (wt%) 0.26 0.29 0.25 0.25 0.25 0.25 

Cr (wt%) 0.90 0.94 0.87 0.72 0.61 0.39 

Ni (wt%) 0.26 0.26 0.29 0.28 0.29 0.26 

Mo (wt%) 0.04 0.03 0.01 0.00 0.01 0.03 

V (wt%) 0.00 0.05 0.03 0.05 0.04 0.05 

Cu (wt%) 0.07 0.04 0.05 0.05 0.05 0.04 

TA (°C) 880 843 835 832 831 832 

 

Figure 7. Comparison of hardness curves: experimental, required, and calculated (solutions 1-5, 

Tables 8 and 9). 

The calculated results are close to the expected values. There is a relationship between the mass 

concentrations of Mn and Cr. An increase in the concentration of one element leads to a decrease in 

the concentration of the other. The sum of the element concentrations varies between 1.44 and 1.69. 

The hardness error ranges from 30 to 62 HV. 

In the third example, the concentrations of all elements were calculated. The required hardness 

was defined using the CCT diagram of 25CrMo4 steel [56]. Table 10 shows the hardness of 25CrMo4 

steel obtained from the CCT diagram, the required hardness, the calculated hardness (various 

solutions) and the hardness error. Similar to the second example, the program was run multiple times 

with optional changes to the parameters of the genetic algorithm. Five solutions are presented. Figure 

8 shows the hardness curves as a function of the cooling time based on the values in Table 10. Table 

10 presents the chemical composition of the 25CrMo4 steel, the calculated chemical compositions and 

the austenitizing temperature.  
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Table 10. The required and calculated hardness of the steel after cooling at selected rates 

(Example 3). 

 
Cooling rate, °/s 

Error, HV 
50 12 4 1.3 0.5 

25CrMo4 498 392 294 266 200 - 

Target 500 390 290 260 200 - 

Solution 1 500 391 290 266 198 9 

Solution 2 496 399 289 269 194 29 

Solution 3 499 390 292 248 209 24 

Solution 4 495 395 293 248 206 31 

Solution 5 490 390 291 273 192 32 

 

Figure 8. Comparison of hardness curves: experimental, required, and calculated (solutions 1-5, 

Tables 10 and 11). 

Table 11. Chemical compositions of steel calculated for the required hardness (Example 3). 

Variables 25CrMo4 Solution 1 Solution 2 Solution 3 Solution 4 Solution 5 

C (wt%) 0.22 0.25 0.25 0.32 0.30 0.21 

Mn (wt%) 0.64 1.20 1.00 0.59 0.50 1.41 

Si (wt%) 0.25 0.35 0.45 0.31 0.37 0.31 

Cr (wt%) 0.97 0.32 0.63 0.74 0.87 0.65 

Ni (wt%) 0.33 0.03 0.48 0.78 1.01 0.20 

Mo (wt%) 0.23 0.11 0.02 0.10 0.05 0.00 

V (wt%) 0.01 0.35 0.28 0.02 0.00 0.35 

Cu (wt%) 0.16 0.16 0.07 0.05 0.04 0.15 

TA (°C) 875 910 900 846 849 903 

The chemical compositions of the steel represent only a subset of the possible solutions. The 

mass concentrations of carbon, chromium, nickel, and manganese undergo changes primarily. This 

is due to the influence of these elements on the hardenability and the distribution of values in the 

dataset. In each case, the calculated hardness is close to the required hardness. In this case, the 

hardness error ranges from 9 to 32 HV. Numerical verification is not possible. Steels with similar 

chemical compositions are not present in the data set used to train and test the artificial neural 

networks. The results obtained can only be verified by experiments.  

5. Conclusions and future work 

This paper presents a method for calculating the chemical composition of steel with the required 

hardness values after continuous cooling from the austenitizing temperature. A hybrid system 

consisting of artificial neural networks and genetic algorithms was used to identify the mass 

concentrations of elements. To perform the calculations, a computer program was developed that 
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includes a classical genetic algorithm to optimize the chemical composition of steel and a neural 

network model to calculate the values of the fitness function. The program has a graphical user 

interface that allows the user to define criteria for the solution search, constrain variable ranges, 

change parameters of the genetic algorithm and save the results obtained. The compatibility of the 

calculations with the experimental results was demonstrated in an example in which the mass 

concentration of a selected element was calculated. 

In this version of the program, the user defines the hardness as a single value for each cooling 

rate. The fitting error is calculated as the absolute difference between the expected hardness and the 

calculated hardness. Consequently, the calculated hardness can be greater or less than the expected 

value. A planned extension of the program is to allow the user to define a hardness range by 

specifying minimum and maximum values. In such cases, the calculated chemical composition of the 

steel should ensure that the hardness falls within that range. 

The final stage of modelling should include the experimental verification of the developed 

models. For the presented method it is necessary to perform steel melts with the calculated chemical 

composition. In order to obtain reliable results, the sample should be sufficiently large. At this point, 

it should be noted that the article is a report on the completed phase of the planned work. 

Work is currently underway on a multi-criteria optimization of the chemical composition, taking 

into account the phase transformation temperatures. The results obtained, which are limited to two 

cooling rates and the initial phase transformation temperature, are currently satisfactory [18]. In 

future work, the number of cooling rates will be increased and the end temperatures of phase 

transformation will be introduced. The expected result will be a method capable of calculating the 

chemical composition of the steel to match the required CCT diagram. Following this phase, an 

experimental verification will be carried out, including steel melting and dilatometric tests. 

Designing the chemical composition of low-alloy steels with the desired properties is a complex 

process. The hardness of the steel after cooling from the austenitizing temperature is one of several 

essential criteria. The application of the proposed model can reduce the costs and the number of 

required experiments. The results obtained can be used for further analyses. 
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