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Abstract: In Southeast Asia, the incidence of Leukemia, a malignant blood cancer originating from

hema-topoietic progenitor cells, is on the rise, marked by a concerning 54% mortality rate. This

study focuses on enhancing early-stage prediction to improve patient recovery prospects significantly.

Leveraging Machine Learning and Data Science, we employ protein sequential data from frequently

mutated genes such as BCL2, HSP90, PARP, and RB to predict Chronic Myeloid Leukemia (CML).

Our approach relies on robust feature extraction techniques, namely Di-peptide Composition (DPC),

Amino Acid Composition (AAC), and Pseudo amino acid composition (Pse-AAC), with prior

attention to addressing outliers and validating feature selection through the Pearson Corre-lation

Coefficient. Data augmentation ensures a well-rounded dataset for analysis. Employing a range

of Machine Learning models, including Support Vector Machine (SVM), XGBoost, Random Forest

(RF), K Nearest Neighbor (KNN), Decision Tree (DT), and Logistic Regression (LR), we achieve

accuracy rates spanning from 66% to 94%. These classifiers undergo comprehensive as-sessment

using performance metrics such as accuracy, sensitivity, specificity, F1-score, and the confusion

matrix. Our proposed solution, encompassing a user-friendly web application dashboard, presents

an invaluable tool for early CML diagnosis with profound implications for practitioners, offering a

deploy-able asset within healthcare institutions and hospitals.

Keywords: protein sequences; Pseudo-AAC; AAC; Dipeptide-C; machine learning classifiers; chronic

myeloid leukemia; blood cancer

1. Introduction

The Leukemia is a complex medical condition influenced by genetic regulation in the production

of blood cells. When hematopoietic precursor cells turn malignant [1], it gives rise to abnormal cell

growth due to alterations in DNA and RNA sequences. This transformation results in the infiltration of

healthy cells by malignant ones, thus causing Leukemia. The illness primarily entails the uncontrolled

proliferation of spe-cific types of White Blood Cells (WBC) i.e., neutrophils, basophils, and eosinophils,

while lymphocytes remain unaffected. Acute myeloid Leukemia (AML), chronic mye-loid Leukemia

(CML), acute lymphoblastic Leukemia (ALL), and chronic lymphocytic Leukemia (CLL) are some of

the several kinds of Leukemia [2] (for Reference Figure 1). The only subject of our research is Chronic

Myeloid Leukemia (CML).
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Figure 1. Various stages of chronic Myeloid leukemia classification.

Leukemia cancer presents a substantial health challenge due to the abnormal proliferation of

White Blood Cells (WBC) [1]. While research has concentrated on detecting cancer through blood

cell images, exploration of Protein Sequential data is limited. Leukemia diagnosis heavily relies on

hematologists, posing limitations in regions with a scarcity of specialists. Mortality rates are on the

rise particularly in South East Asia [3] creating a demand for an early detection approach.

The motivation for driving the proposed research arises from the observation that a plethora of

research has been conducted on cancer predictions—such as lung cancer, liver cancer, colon cancer,

ovarian cancer, etc.— utilizing MRI, CT scans, image processing techniques and protein sequences [4–

6]. However, the realm of gene data in bio-informatics, especially within the context of Chronic Myeloid

Leukemia (CML), remains relatively uncharted. At present, no AI-based Dashboard system predicts

Leukemia based on protein sequences, but the development of such a system could revolutionize

diagnosis, leading to saved lives and eased healthcare burdens. Collaborative efforts between Machine

Learning and Data Science can establish a robust model for accessible and timely Leukemia solutions.

The proposed research suggests the utilization of Machine Learning-based techniques to identify

genes that cause Leukemia through Protein Sequences, aiming for early detection and a reduction in

the mortality rate. This undertaking could emerge as a flagship initiative in health sciences, addressing

the shortage of specialized hematologists. Implementation of the system would result in timely

interventions and improved recovery prospects. Automation of certain diagnostic processes could ease

the load on specialists and enhance healthcare services. The potential impact goes beyond Leukemia

diagnosis, garnering recognition and interest from the medical community. Overall, this AI-driven

research holds immense promise in reshaping healthcare and propelling the advancement of AI

applications.

As a consequence of this research, innovative insights and progress in predicting and

comprehending CML could come to fruition. This might lead to more effective diagnostic and

treatment methodologies, ultimately benefiting patients and healthcare systems. Furthermore, the

successful integration of bio-informatics and AI could pave the way for pioneering applications and

further interdisciplinary research at the intersection of these two promising domains.

The main contribution of our proposed research is as follows:

• The current study focuses on protein sequential data rather than image data.
• The most frequently mutated genes were discovered through a literature review that was

responsible for chronic myeloid Leukemia.
• Datasets were formulated from the most frequently muted gene data.
• Features were extracted through physicochemical properties of Amino Acid composition, Pseudo

Amino Acid Composition, and di-peptide composition.
• The study focuses on enhancing early-stage prediction to improve patient recovery prospects

significantly.
• Our proposed solution encompasses a user-friendly web application dashboard that presents an

invaluable tool for early CML diagnosis, offering a deploy-able asset within healthcare institutions

and hospitals.

This paper follows a structured format that aims to provide a comprehensive understanding

of the research. Section 1, ’Introduction,’ outlines the problem statement. Section 2, ’Literature
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Review,’ discusses related research, positioning our study in the existing body of knowledge. Section 3,

’Materials and Methods,’ details the dataset creation process and experimental techniques. Section 4,

’Development of Individual Classifiers,’ presents our methodology and analysis. Section 5, ’Results

and Discussion,’ succinctly interprets the findings. Lastly, in Section 6, we offer a conclusion that

summarizes our contributions and outlines future directions for this research.

2. Literature Review

This section discusses the recently conducted Leukemia research comprehensive-ly, with a focus

on Protein Sequences, RNA, and blood cell imagery. It elaborates on the process of acquiring and

forming the dataset, a pivotal role in creating standardized Leukemia datasets by utilizing protein

sequences. Importantly, previous researchers have not combined these three distinct feature extraction

techniques while implementing a user-friendly dashboard, as done in this study.

In [7], the Random Forest model was employed to diagnose the cancerous growth of White Blood

Cells and its specific variants, achieving an accuracy of 94.3%. In the research by [8], the classifier

was evaluated using 60 photos, demonstrating that models like K-nearest neighbors and Naive Bayes

Classifier could identify ALL with an accuracy of 92.8%. According to research [9], the ABC-BPNN

scheme and Principal Component Analysis (PCA) were used to classify Leukemia cells with an average

accuracy of 98.72% while also speeding up the calculation.

In reference [10], the primary objective of the investigation was the identification of the Leukemia

sub-type, specifically ALL. The process involved BSA-based clustering in segregating Leukemia images,

followed by the utilization of the Jaya approach in combination with various advanced classification

algorithms, including decision tree (DT), (KNN) K-nearest neighbor, (NB) Naive Bayes, (SVM) support

vector machine, linear discriminant analysis and ensemble random under-sampling boost. Notably,

the Jaya approach, in tandem with decision tree and SVM exhibited superior accuracy. The SVM model

was used in research [11] to identify ALL, with an accuracy rate of 89.81%. The dataset was used

in [12] to classify ALL using the K-nearest neighbor method, with a 96.25% accuracy rate. In study [13],

the exploration centered around the use of ML algorithms to analyze gene expression patterns derived

from RNA sequencing (RNA-seq) for accurately predicting the likelihood of CR in pediatric AML

patient’s post-induction therapy

Research [14] focused on analyzing RNA-seq data of extracellular vesicles (EV) from healthy

individuals and colon cancer patients. The objective was to develop models for predicting and

classifying different stages of colon cancer. Five canonical ML and Deep Learning (DL) classifiers were

employed, resulting in accuracy of 94.6% for K-nearest neighbor, 97.33% for Random Forest, 93% for

LMT, and 92% for Random Tree. In [15], the early diagnosis and distinction between types of lung

cancers i.e, Non-Small Cell Lung Cancer) & (Small Cell Lung Cancer were highlighted as crucial for

improving patient survival rates. The proposed diagnostic system utilized sequence-derived structural

and physicochemical attributes of proteins associated with tumor types, employing feature extraction,

selection, and prediction models.

In the study conducted by [16], i], introduced a stacking classifier algorithm addressing CTS

selection criteria through feature-encoding techniques, generating feature vectors that encompass

k-mer nucleotide composition, dinucleotide composition, pseudo-nucleotide composition, and

sequence order coupling. This innovative stacking classifier algorithm outperformed previous

state-of-the-art algorithms in predicting functional miRNA targets, achieving an accuracy of 79.77%.

In the study [17], Using Next Generation Sequencing (NGS) and targeted RNA sequencing

along with a machine learning approach, Albitar et al. investigated the potential of discovering new

biomarkers that can predict Acute graft-vs.-host disease (aGVHD). In the study [18], Using Chou’s

Pseudo Amino Acid Composition (PseAAC) and statistical moments, Ahmad et al. predicted chronic

myeloid Leukemia using protein sequences.

In the study [19], Using deep learning (DL), Jian et al. constructed a prediction model for

transcription factor binding sites only from DNA original base sequences. Here, a DL method based on
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convolutions neural network (CNN) and long short-term memory (LSTM) was proposed to investigate

four Leukemia categories from the perspective of transcription factor binding sites using four large

non-redundant datasets for acute, chronic, myeloid, and lymphatic Leukemia, giving an average

prediction accuracy of 75%.

Table 1. A brid-eye view of Litrature.

Reference Data Set Classifier Classification Accuracy

Mohamed et al. [7] White Blood Cell Images Random Forest Detection of WBC Cancer 94.3%

Kumar et al. [8] Medical Images-ALL K-mean clustering
Detection of Acute

Lymphocytic Leukemia
(ALL)

92.8%

Sharma et al. [9]
Medical Images- Leukemia

cells
ABC-BPNN and PCA Classify Leukemia Cells 98.72%

Moshavash et al. [11]
Blood Microscopic Images-

Acute Leukemia
Support Vector
Machine (SVM)

Classify Acute
Lymphocytic Leukemia

(ALL)
89.81%

Gal et al. [13]
Gene expression

patterns-RNA sequencing-
AML

k-nearest neighbors
algorithm (K-NN)

Predicting complete
remission of AML

84.2%

Bostanci et al. [14]
RNA sequences- Colon

cancer
Random Forest Prediction of colon cancer 97.3%

Hosseinzadeh et al. [15]
Protein sequences-Lung

tumor
Support Vector
Machine (SVM)

Prediction of lung tumor
types based on protein

attributes
82.0%

Dhakal et al. [16]
miRNA–mRNA

interactions
Stacking-classifier

algorithm
Predicting functional

miRNA targets
79.77%

Albitar et al. [17] RNA sequences
Geometric Mean
Naïve Bayesian

Bone Marrow based
biomarker for predicting

aGVHD
93.0%

Ahmad et al. [18] Protein Sequences
SVM,Random Forest,

XGBoost

Prediction of Chronic
Lymphocytic Leukemia
using protein sequences

97.09%

Jian et al. [19] DNA sequences
Deep Learning (CNN

& LSTM)

to investigate leukemia
types from transcription

factor binding sites
75.0%

3. Materials and Methods

The proposed research centers on the detection of leukemia, specifically targeting Chronic Myeloid

Leukemia (CML), characterized by the neoplastic proliferation of White Blood Cells (WBCs) such

as neutrophils, basophils, and eosinophils, while excluding lymphocytes. As previously mentioned,

CML is linked to a heightened mortality rate due to its typical diagnosis at advanced stages, posing

challenges for effective recovery. In response to this concern, our objective is to create a dashboard

capable of identifying leukemia utilizing Protein Sequential data.

To achieve this goal, data related to leukemia cancer is collected and employed diverse machine

learning algorithms including SVM [20,21], XG Boost, Random Forest [22,23], KNN [24,25], logistic

regression, and decision tree, all of them are described comprehensively in a study review [26,27].

The accuracy of each algorithm will be evaluated and the one exhibiting the highest accuracy will

be integrated into our system. Subsequently, this chosen algorithm will determine the presence or

absence of cancer in an individual. In the final step, we serialized our model using tools such as pickle

or joblib, enabling us to save the trained model alongside its associated data. These trained models

are then incorporated into a Streamlit based dashboard, enhancing their user-friendly deployment in

hospitals and other medical facilities (Figure 2).
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3.1. Block Diagram

Figure 2. Block Diagram of Designed System.

3.2. Dataset Collection

There are many genes involved in CML. Based on literature review, genes that are most often

mutated i.e. BCL2, HSP90, PARP and RB were utilized for CML [20]. Moreover, by maintaining 0.6

as the cutoff level, the homologous samples were eliminated [22]. HSP90, functions as a chaperone

protein, playing a crucial role in protein folding and degradation processes. Its up-regulation has been

identified in various cancer types, including chronic myeloid leukemia (CML). Extensive research

has demonstrated that inhibiting HSP90 can attenuate the growth of CML cells and enhance their

susceptibility to chemotherapy and tyrosine kinase inhibitors (TKIs) [28,29]. PARP (Poly ADP-ribose

polymerase) is an essential enzyme involved in DNA re-pair processes. Inhibiting PARP has

demonstrated effectiveness in the treatment of cancers with BRCA mutations, and there is emerging

evidence suggesting its potential applicability in managing chronic myeloid leukemia (CML) [30,31].

The BCL2 (B-cell lymphoma 2) protein family plays a crucial role in regulating programmed cell

death, known as apoptosis. Elevated levels of BCL2 have been linked to resistance to chemo-therapy in

chronic myeloid leukemia (CML) cells. Studies have demonstrated that inhibiting BCL2 can reinstate

apoptosis in CML cells and boost the effectiveness of tyro-sine kinase inhibitors (TKIs) [32,33]. RB

(Retinoblastoma) is a pivotal tumor suppressor gene involved in the regulation of cell cycle progression.

The deactivation of RB is a prevalent characteristic in CML, and research has established that its

reactivation can impede the proliferation of CML cells [34,35]. The FASTA file format was used to

ex-tract the CML-related protein sequences from the Universal Resource of Proteins (UniProtKb) [21,36].

A successful dataset was created as a result. The same amount of negative samples as positive samples

were gathered for CML using the opposite query phrase to create a negative dataset. Consequently,

the dataset created for CML is balanced (Figure 3).
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Figure 3. Genes and Data Collection.

3.2.1. Fasta Format

In bioinformatics, the fasta format is a popular text-based format for representing proteins. It is

derived from the FASTA software suite and follows a specific structure. A FASTA sequence starts with

a single line that serves as a description, and it is fol-lowed by lines containing the sequencing data [36].

The description line is distinguished from the sequence data by the presence of a greater-than symbol

(">") in the first column. The term following the ">" sign is used to identify the sequence, while the rest

of the line can be used for providing additional description, though both are optional.

3.2.2. Sample of Protein Sequence (HSP90)

Initially protein sequences contained redundant data, to remove the redundancy in the data, a

benchmark method is used (if we remove redundancy without benchmark algorithm our data will not

be valid and reliable so we must need to remove redundancy with the help of benchmark method) i.e.

CD-Hit (Figure 4). CD-hit is an online clustered database that is used to remove the redundancy of the

data by setting the thresh-old to 0.6 [37].

Figure 4. gene sample.

3.2.3. Sample of Protein Sequence (HSP90)

Initially protein sequences contained redundant data, to remove the redundancy in the data, a

benchmark method is used (if we remove redundancy without benchmark algorithm our data will not

be valid and reliable so we must need to remove redundancy with the help of benchmark method) i.e.

CD-Hit (Figure 4). CD-hit is an online clustered database that is used to remove the redundancy of the

data by setting the thresh-old to 0.6 [37].
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3.3. Feature Extraction

This section elaborates the feature extraction techniques using physio-chemical properties of the

protein sequences. The feature extraction techniques that is used in the proposed research are of three

categories.

3.3.1. Amino Acid Composition

The presence of specific amino acids often in a protein sequence is highlighted by AAC

characteristics [38,39]. The percentage frequency of an amino acid, AAC i,j, in the jth protein, is

calculated using the formula below:

AACi,j =

(

ni,j

na,j

)

× 100 (1)

In Equation (1), n denotes the amount of amino acids type (I) found in proteins j while na,aj refers

to the total amount of amino acids contained in a protein. The jth protein sequence in the AAC features

dataset is represented as a 20-dimensional (20-D) feature vector as follows:

Xj = [AAC1,j, AAC2,j, . . . , AAC20,j]
T (2)

Where, Xj = [AAC1,j, AAC2,j, . . . , AAC20,j]
T demonstrates how amino acids are composed.

The technique of amino acid composition involves extracting features from our data, resulting in

a 20-dimensional feature set. However, the problem with this approach lies in the limited usefulness

of the features extracted. Despite employing various data science feature engineering approaches and

conducting hyper-parameter tuning, the accuracy remains constrained. Consequently, this approach

proves less efficacious in attaining the desired outcomes.

3.3.2. Pseudo Amino Acid Composition

A 25-dimensional feature set is produced by using the Pseudo Amino Acid Com-position (PAAC)

approach to extract features from our data [40]. The remarkable fact is that the features extracted

through this method prove to be highly valuable. By further applying data science methods and

feature engineering techniques, accuracy significantly improves, reaching an impressive range of 91%

to 93%. This achievement represents a remarkable success in our endeavors.

P = [P1, P2, . . . , P20, P20+1, . . . , P20+λ]
T (3)

Pu =
fu

∑
20
i=1 fi + w ∑

λ
k=1 Tk

(1 ≤ u ≤ 20) (4)

Pu =
WT(u − 20)

∑
20
i=1 fi + ζ ∑

λ
k=1 Tk

(20 + 1 ≤ u ≤ 20 + λ) (5)

In Figure 5a,b, we have depicted how the data is affected before and after removing outliers.

Additionally, we performed data augmentation on the dataset extracted using this method to increase

accuracy. The graph will illustrate these enhancements.

3.3.3. Di-peptide Composition

Protein sequences with dipeptide characteristics are denoted by the letters AA, AC, AD, YV,

YW, and YY. There are 400 components in these sequences. The DC feature of each component is

determined as follows:

DC(i) =
DC Total (i)

400
(6)
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(a) Data points with outliers (b) Results after removing outliers

(c) Data points with outliers (d) Results after removing outliers

Figure 5. Data before and after removing of Outliers

Where DC(i) represents the structure of ith dipeptide for i = 1, 2, . . . , 400. In vector form, this

feature space is represented as: XDC = [DCAA, DCAC, DCAD, . . . , DCYY]
T . The di-peptide composition

is a technique that extracts features from our data, resulting in 400 dimensions or four hundred features.

However, it became evident that not all of these features were essential. Through the application of

data science methods and feature engineering, it is concluded that only 229 features out of the initial

400 were necessary. Surprisingly, after this selection process, the accuracy of our results significantly

improved, reaching an impressive 91% to 93%. This outcome marks a great success. In graphs below,

it is depicted that how the data is affected before and after removing outliers.

3.3.4. Data Augmentation

Data augmentation process is initiated by segregating our dataset into positive and negative

segments. This entails isolating patients who have tested positive from those with negative results.

Subsequently, a series of operations are executed that are designed to generate numerical replicas of the

existing data, thereby augmenting the sample size. This augmentation serves the purpose of enhancing

the machine learning algorithm’s training procedure, attributed to the increased abundance of data

availa-ble. However, it’s important to note that during the creation of these numerical dupli-cates, the

data undergoes a transformation, transitioning from its initial format into a list structure. Consequently,

the modified data is transited from this list format into a data frame. This procedural sequence

ultimately leads to reintegrate the transformed data, thereby completing the data augmentation

process (Figure 6).
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Figure 6. Data Augmentation Procedure.

4. Development of Individual Classifiers

4.1. Support Vector Machine

By creating a hyperplane with the greatest distance between any two points, SVM classifies

data [41]. SVM’s decision surface is as follow.

Y(X) =
n

∑
i=1

αitiX
T
i X + bias (7)

The Lagrange multiplier is αi in this equation. support vectors are the data samples Xi that are

correlated to > 0. The following strategy is used to determine the objective function for categorizing

non-separable data

ψ(W, s) = 0.5WTW + C
n

∑
i=1

si (8)

Y(X) =
Sv

∑
i=1

αitiK(Xi, X) + bias, (9)

where K(Xi, X)=ψ(Xi)

Parameter C plays a crucial role in balancing the mis-classification of input train-ing instances and

the complexity of the decision surface [42–44]. A lower value of this parameter results in a smoother

decision boundary, while a higher value customizes the decision boundary to closely fit the input

training data by using more training in-stances as support vectors. However, this could potentially

result in decreased model performance when faced with unseen data. We selected the parameter such

as, Kernel =”rbf”, Degree =8, C =10000, gamma =100000, probability = True.

4.2. Random Forest

This method generates a substantial quantity of decision trees, that are subsequently combined to

arrive at a final decision. We employed this approach in the con-text of Leukemia classification due to

its strong performance and ability to generalize effectively when dealing with high-dimensional input

datasets. The training dataset serves as the foundation for constructing these trees. In Pseudo AAC
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Composition we performed data augmentation, so the size was quite heavy for training we selected

129,361 and for testing 86,228 samples were selected and we came up with best number of estimators

Equation (10) i.e., n=50. In case of Dipeptide Composition, we selected 2536 for training and 845 for

testing and n=150 estimators were giving optimal results

Y(X) =
nt

∑
i=1

hi(X) (10)

4.3. K-Nearest Neighbor (KNN)

The KNN algorithm is learned by observing samples [45,46]. Instance-based classifiers assume

that the classification of unknown instances can be accomplished by comparing the unidentified

instance to a known instance using a distance/similarity function [41,47,48]. If two instances are

positioned far apart in the instance space, they are less likely to belong to the same class than three

examples that are located close together. The calculation of the Euclidean distance (Equation (11),

denoted as d(Xi, Xj), between two m-dimensional vectors Xi and Xj is as follows:

d(Xi, Xj) =
√

(xi,1 − xj,1)2 + (xi,2 − xj,2)2 + · · ·+ (xi,m − xj,m)2 (11)

4.4. Naïve Bayes

Bayes rules represent this learning procedure, that is based on the notion of independent

attributes/features. The Gaussian function to train the model with equal prior probabilities in the

following manner:

P(X f 1, X f 2, . . . , X f n|c) =
n

∏
i=1

P(X f i|c) (12)

P(X f i|c) =
P(ci|X f )P(X f )

P(ci)
(13)

Where c ∈ {cancer, non-cancer}

Cnb = argmax
Ck

P(Ck)
n

∏
i=1

P(X f |Ck) (14)

4.5. XGBoost

Gradient boosting, a boosting approach that significantly lowers errors by adding several

classifiers to pre-existing models. One by one, these models are added until no more advancements

are possible. The term "gradient boosting" refers to the method’s use of a gradient descent strategy to

minimize loss. The steps involved in gradient boosting are as follows:

F0(x) = argmin
γ

n

∑
i=1

L(y, γ) (15)

rim = −α

[

∂L(yi, F(xi))

∂F(xi)

]

(16)

The multiplicative factor m is used to define the boosted model Fm(X) for each terminal node:

Fm(X) = Fm−1(X) + γmhm(X) (17)

4.6. Logistic Regression

In categorical binary classification, a statistical machine learning approach called logistic

regression is employed [49]. Logistic regression finds extensive use in various biological and social
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scientific applications. It is used to describe the connection between a dependent binary and one or

more dependent variables of different levels in plainer language. The parameters we selected were

C=10, tol = 0.1, penalty = L2.

P(y = 1|X) =
1

1 + e−βT X
(18)

where:

• P(y = 1X) is the probability of the target variable y being equal to 1 given the input features X
• β is the vector of model parameters
• X is the vector of input features

5. Results and Discussion

5.1. Results on Pseudo Amino Acid Composition (Pse-AAC) Data

The findings of the matrices employed in the project Accuracy score, F1-score, recall [50,51] and

specificity receptively on the data of Pse-AAC are displayed in the Table 2 below.

Table 2. Results on Pseudo Amino Acid Composition (Pse-AAC) Data.

Name of Algorithms Accuracy F1-Score Recall Specificity

Support Vector Classifier 92~94% 91~92% 91~93% 92~94%

Extreme Gradient Boost 79~85% 63~70% 51~55% 92~94%

Logistic Regression 66~69% 10~20% 6~10% 97~98%

Decision Tree 81~84% 73~76% 74~76% 84~86%

Random Forest 87~91% 85~87% 80~83% 96~97%

K Nearest Neighbor 82~86% 72~74% 61~64% 93~95%

The Table 3 below discusses the results of each ML model w.r.t to the data used i.e. PAAC and

shows the results of the some other matrices used in project which are Specificity and Confusion

Matrix, by using this matrix we will have values of True positive, True Negative, False Positive and

False Negative (Figure 7).

Table 3. Confusion Matrix.

Name of Algorithms Confusion Matrix

Support Vector Classifier
True Negative =424 False Positive =28
False Negative =14 True Positive =211

Extreme Gradient Boost
True Negative =26159 False Positive =2271
False Negative =3435 True Positive =10890

Logistic Regression
True Negative =25817 False Positive =2849
False Negative =11010 True Positive =3445

Decision Tree
True Negative =24388 False Positive =4278
False Negative =3803 True Positive =10652

Random Forest
True Negative =28014 False Positive =808
False Negative =2753 True Positive =11546

K Nearest Neighbor
True Negative =419 False Positive =23
False Negative =95 True Positive =140
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(a) Confusion Matrix for Decision (b) Confusion Matrix for KNN

(c) Confusion Matrix for Logistic Regression (d) Confusion Matrix for Random Forest

(e) Confusion Matrix for SVC (f) Confusion Matrix for XGB

Figure 7. Confusion Matrix of Table 3.
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Now, we need to plot the ROC curve for each algorithm (Figure 8) using the PAAC data as

mentioned earlier.

(a) ROC Curve for SVC (b) ROC Curve for XGB

(c) ROC Curve for LR (d) ROC Curve for DT

(e) ROC Curve for RF (f) ROC Curve for KNN

Figure 8. ROC Curves for Applied models (Table 2).

5.2. Accuracy Result on Amino Acid Composition (AAC) Data

The accuracy score, F1-score, recall score, and specificity receptively on the AAC data are the

matrices employed in the research, and the outcomes are shown in the table below (Table 4).
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Table 4. Result on Amino Acid Composition (AAC) Data.

Name of Algorithms Accuracy F1-Score Recall Specificity

Support Vector Classifier 54.95% 14.3% 0.7% 100%

Extreme Gradient Boost 56.8% 52.9% 45.9% 69%

Logistic Regression 51.1% 27.6% 19.1% 81.7%

Decision Tree 54.4% 52.25% 52.9% 55.8%

Random Forest 50.6% 41.1% 35.4% 64.9%

K Nearest Neighbor 54.2% 54.8% 57% 51%

The table below (Table 5) discusses the results of each ML model w.r.t to the data used i.e. PAAC

and shows the results of the some other matrices used in project which are Specificity and Confusion

Matrix, by using this matrix we will have values of True positive, True Negative, False Positive and

False Negative.

Table 5. Confusion Matrix.

Name of Algorithms Confusion Matrix

Support Vector Classifier
True Negative =271 False Positive =0
False Negative =121 True Positive =62

Extreme Gradient Boost
True Negative =409 False Positive =23
False Negative =119 True Positive =103

Logistic Regression
True Negative =9028 False Positive =2022
False Negative =8519 True Positive =2015

Decision Tree
True Negative =124 False Positive =98
False Negative =95 True Positive =107

Random Forest
True Negative =12612 False Positive =6817
False Negative =11832 True Positive =6510

K Nearest Neighbor
True Negative =112 False Positive =105
False Negative =89 True Positive =118

Now, the ROC curve is plotted for each algorithm (Figure 9) using the AAC data as mentioned

earlier.
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(a) ROC Curve for SVC (b) ROC Curve for XGB

(c) ROC Curve for LR (d) ROC Curve for DT

(e) ROC Curve for RF (f) ROC Curve for KNN

Figure 9. ROC Curves for Applied models 4.

5.3. Accuracy Results on Di-Peptide Composition (DPC)

The accuracy score, F1-score, and recall score matrices utilized in the research are represented in

the table below along with their outcomes when applied to DPC data (Table 6).
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Table 6. Results on Di-Peptide Composition (DPC).

Name of Algorithms Accuracy F1-Score Recall Specificity

Support Vector Classifier 92~94% 87~88% 91~93% 90~93%

Extreme Gradient Boost 79~84% 66~68% 55~57% 92~94%

Logistic Regression 66~69% 0~0% 6~10% 100%

Decision Tree 81~84% 70~73% 56~59% 96~97%

Random Forest 82~84% 67~68% 57~58% 94~95%

K Nearest Neighbor 72~73% 31~32% 20~21% 95~97%

In the table above (Table 6), each machine learning model’s performance is discussed in relation to

the DPC data that was used, and the Specificity and Confusion Matrix results are also shown (Table 7).

Using this matrix, we can obtain values for True Positive, True Negative, False Positive, and False

Negative.

Table 7. Confusion Matrix.

Name of Algorithms Confusion Matrix

Support Vector Classifier
True Negative =416 False Positive =37
False Negative =17 True Positive =207

Extreme Gradient Boost
True Negative =413 False Positive =25
False Negative =105 True Positive =134

Logistic Regression
True Negative =453 False Positive =0
False Negative =224 True Positive =0

Decision Tree
True Negative =433 False Positive =16
False Negative =94 True Positive =134

Random Forest
True Negative =437 False Positive =23
False Negative =93 True Positive =124

K Nearest Neighbor
True Negative =438 False Positive =15
False Negative =179 True Positive =45

Now, the ROC curve is plotted for each algorithm (Figure 10) for each algorithm using the PAAC

data as mentioned earlier.

5.4. Machine Learning Based Dashboard

In the below screenshot (Figure 11), is overview of dashboard which has been developed in

streamlit where you can choose your desired model. Our dashboard is deployed on Streamlit Cloud.

Within this system, dashboard users are required to upload patient records through the web application

and select a specific model. They can then review the results to determine whether the individual is

affected by leukemia or not.
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(a) ROC Curve for SVC (b) ROC Curve for XGB

(c) ROC Curve for LR (d) ROC Curve for DT

(e) ROC Curve for RF (f) ROC Curve for KNN

Figure 10. ROC Curves for Applied models (Table 6)
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Figure 11. Screenshot of dashboard.

Click on the browse button and select patient record from computer (Figure 12).

Figure 12. Main screen for browsing data.

After uploading data you can have a view of data and prediction as well (Figure 13).
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Figure 13. Main screen for browsing data.

6. Conclusions

This research focuses on Chronic Myeloid Leukemia, a condition where the production of WBC,

RBC, and Platelets is controlled by genes. However, mutations in DNA can lead to the production of

the Philadelphia chromosome, which causes unnecessary neoplastic proliferation. As a result, normal

cells become malignant and extensively involve the bone marrow.Numerous studies and research have

been conducted to detect cancer using MRI and CT scan, but the research on Protein Sequential data

in this area is relatively limited compared to other domains. By utilizing information from mutant

genes, the research’s major goal is to build a new paradigm for the early prediction of Chronic Myeloid

Leukemia (CML).

For this study, we focused on the most frequently mutated genes, namely BCL2, HSP90, PARP,

and RB, that are associated with CML. The presence of unusual mutations in these genes is linked to

CML cancer development. We were able to reach an amazing accuracy rate of 92–94% by implementing

multiple data pre-processing approaches and feature extraction using physiochemical parameters,

indicating a substantial success in our study project. At the end we developed a Dashboard that can be

used in hospitals and healthcare institutions to predict CML in patients. This way, doctors can easily

upload patient data to the website, and our system will swiftly provide accurate predictions.

Through extensive research and collaboration, it is aimed to establish seamless in-tegration with

hospital workflows, ensuring efficient data exchange and analysis.we hope to have a substantial impact

in the field of cancer diagnosis that ultimately save lives.

Expanding beyond CML, the project aims to create a multi-cancer detection system covering

various leukemia types. The ultimate vision involves integrating AI and Bioinformatics with healthcare

systems, providing affordable cancer detection in collaboration with hospitals. This initiative seeks

to improve early detection rates, advance cancer diagnosis, and save lives through cutting-edge

technology and research.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 December 2023                   doi:10.20944/preprints202312.0053.v1

https://doi.org/10.20944/preprints202312.0053.v1


20 of 22

References

1. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A.; others. Cancer statistics, 2021. Ca Cancer J Clin 2021,

71, 7–33.

2. Bibi, N.; Sikandar, M.; Ud Din, I.; Almogren, A.; Ali, S. IoMT-based automated detection and classification

of leukemia using deep learning. Journal of healthcare engineering 2020, 2020, 1–12.

3. IAfRoC, I. Leukaemia Source: Globocan 2020 2020 [Available from: https://gco. iarc.

fr/today/data/factsheets/cancers/36-Leukaemia-fact-sheet. pdf, 2022.

4. Munteanu, C.R.; Magalhães, A.L.; Uriarte, E.; González-Díaz, H. Multi-target QPDR classification model

for human breast and colon cancer-related proteins using star graph topological indices. Journal of theoretical

biology 2009, 257, 303–311.

5. Ramani, R.G.; Jacob, S.G. Improved classification of lung cancer tumors based on structural and

physicochemical properties of proteins using data mining models. PloS one 2013, 8, e58772.

6. Yang, J.Y.; Yoshihara, K.; Tanaka, K.; Hatae, M.; Masuzaki, H.; Itamochi, H.; Takano, M.; Ushijima, K.;

Tanyi, J.L.; Coukos, G.; others. Predicting time to ovarian carcinoma recurrence using protein markers. The

Journal of clinical investigation 2013, 123, 3740–3750.

7. Mohamed, H.; Omar, R.; Saeed, N.; Essam, A.; Ayman, N.; Mohiy, T.; AbdelRaouf, A. Automated detection

of white blood cells cancer diseases. 2018 First international workshop on deep and representation learning

(IWDRL). IEEE, 2018, pp. 48–54.

8. Kumar, S.; Mishra, S.; Asthana, P.; Pragya. Automated detection of acute leukemia using k-mean clustering

algorithm. Advances in Computer and Computational Sciences: Proceedings of ICCCCS 2016, Volume 2.

Springer, 2018, pp. 655–670.

9. Sharma, R.; Kumar, R. A novel approach for the classification of leukemia using artificial bee colony

optimization technique and back-propagation neural networks. Proceedings of 2nd International

Conference on Communication, Computing and Networking: ICCCN 2018, NITTTR Chandigarh, India.

Springer, 2019, pp. 685–694.

10. Jothi, G.; Inbarani, H.H.; Azar, A.T.; Devi, K.R. Rough set theory with Jaya optimization for acute

lymphoblastic leukemia classification. Neural Computing and Applications 2019, 31, 5175–5194.

11. Moshavash, Z.; Danyali, H.; Helfroush, M.S. An automatic and robust decision support system for accurate

acute leukemia diagnosis from blood microscopic images. Journal of digital imaging 2018, 31, 702–717.

12. Umamaheswari, D.; Geetha, S. A framework for efficient recognition and classification of acute

lymphoblastic leukemia with a novel customized-KNN classifier. Journal of computing and information

technology 2018, 26, 131–140.

13. Gal, O.; Auslander, N.; Fan, Y.; Meerzaman, D. Predicting complete remission of acute myeloid leukemia:

machine learning applied to gene expression. Cancer informatics 2019, 18, 1176935119835544.

14. Bostanci, E.; Kocak, E.; Unal, M.; Guzel, M.S.; Acici, K.; Asuroglu, T. Machine learning analysis of RNA-seq

data for diagnostic and prognostic prediction of colon cancer. Sensors 2023, 23, 3080.

15. Hosseinzadeh, F.; KayvanJoo, A.H.; Ebrahimi, M.; Goliaei, B. Prediction of lung tumor types based on

protein attributes by machine learning algorithms. SpringerPlus 2013, 2, 1–14.

16. Dhakal, P.; Tayara, H.; Chong, K.T. An ensemble of stacking classifiers for improved prediction of

miRNA–mRNA interactions. Computers in Biology and Medicine 2023, 164, 107242.

17. Albitar, M.; Zhang, H.; Pecora, A.L.; Ip, A.; Goy, A.H.; Antzoulatos, S.; De Dios, I.; Ma, W.; Kaur, S.;

Suh, H.C.; others. Bone Marrow-Based Biomarkers for Predicting aGVHD Using Targeted RNA Next

Generation Sequencing and Machine Learning. Blood 2021, 138, 2892.

18. Ahmad, W.; Hameed, M.; Bilal, M.; Majid, A. ML-Pred-CLL: Machine Learning based prediction of Chronic

Lymphocytic Leukemia using protein sequential data. 2022 International Conference on Recent Advances

in Electrical Engineering & Computer Sciences (RAEE & CS). IEEE, 2022, pp. 1–7.

19. He, J.; Pu, X.; Li, M.; Li, C.; Guo, Y. Deep convolutional neural networks for predicting leukemia-related

transcription factor binding sites from DNA sequence data. Chemometrics and Intelligent Laboratory Systems

2020, 199, 103976.

20. Rodríguez, D.; Bretones, G.; Quesada, V.; Villamor, N.; Arango, J.R.; López-Guillermo, A.; Ramsay,

A.J.; Baumann, T.; Quirós, P.M.; Navarro, A.; Royo, C.; Martín-Subero, J.I.; Campo, E.; López-Otín, C.

Mutations in CHD2 cause defective association with active chromatin in chronic lymphocytic leukemia.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 December 2023                   doi:10.20944/preprints202312.0053.v1

https://doi.org/10.20944/preprints202312.0053.v1


21 of 22

Blood 2015, 126, 195–202, [https://ashpublications.org/blood/article-pdf/126/2/195/1390271/195.pdf].

doi:10.1182/blood-2014-10-604959.

21. Apweiler, R.; Bairoch, A.; Wu, C.H.; Barker, W.C.; Boeckmann, B.; Ferro, S.; Gasteiger, E.; Huang, H.;

Lopez, R.; Magrane, M.; others. UniProt: the universal protein knowledgebase. Nucleic acids research 2004,

32, D115–D119.

22. Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: accelerated for clustering the next-generation sequencing

data. Bioinformatics 2012, 28, 3150–3152.

23. Feng, P.M.; Lin, H.; Chen, W.; others. Identification of antioxidants from sequence information using naive

Bayes. Computational and mathematical methods in medicine 2013, 2013.

24. Feng, P.M.; Ding, H.; Chen, W.; Lin, H.; others. Naive Bayes classifier with feature selection to identify

phage virion proteins. Computational and mathematical methods in medicine 2013, 2013.

25. Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. pSuc-Lys: predict lysine succinylation sites in proteins with

PseAAC and ensemble random forest approach. Journal of theoretical biology 2016, 394, 223–230.

26. Lin, W.Z.; Fang, J.A.; Xiao, X.; Chou, K.C. iDNA-Prot: identification of DNA binding proteins using

random forest with grey model. PloS one 2011, 6, e24756.

27. Qu, K.; Han, K.; Wu, S.; Wang, G.; Wei, L. Identification of DNA-binding proteins using mixed feature

representation methods. Molecules 2017, 22, 1602.

28. Khajapeer, K.V.; Baskaran, R. Hsp90 inhibitors for the treatment of chronic myeloid leukemia. Leukemia

research and treatment 2015, 2015.

29. Alves, R.; Santos, D.; Jorge, J.; Gonçalves, A.C.; Catarino, S.; Girão, H.; Melo, J.B.; Sarmento-Ribeiro, A.B.

Alvespimycin Inhibits Heat Shock Protein 90 and Overcomes Imatinib Resistance in Chronic Myeloid

Leukemia Cell Lines. Molecules 2023, 28, 1210.

30. Ellisen, L.W. PARP inhibitors in cancer therapy: promise, progress, and puzzles. Cancer cell 2011,

19, 165–167.

31. Liu, Y.; Song, H.; Song, H.; Feng, X.; Zhou, C.; Huo, Z. Targeting autophagy potentiates the anti-tumor

effect of PARP inhibitor in pediatric chronic myeloid leukemia. AMB Express 2019, 9, 1–9.

32. Kaloni, D.; Diepstraten, S.T.; Strasser, A.; Kelly, G.L. BCL-2 protein family: Attractive targets for cancer

therapy. Apoptosis 2023, 28, 20–38.

33. Ko, T.K.; Chuah, C.T.; Huang, J.W.; Ng, K.P.; Ong, S.T. The BCL2 inhibitor ABT-199 significantly enhances

imatinib-induced cell death in chronic myeloid leukemia progenitors. Oncotarget 2014, 5, 9033.

34. Zhou, L.; Ng, D.S.C.; Yam, J.C.; Chen, L.J.; Tham, C.C.; Pang, C.P.; Chu, W.K. Post-translational

modifications on the retinoblastoma protein. Journal of Biomedical Science 2022, 29, 1–16.

35. Yin, D.D.; Fan, F.Y.; Hu, X.B.; Hou, L.H.; Zhang, X.P.; Liu, L.; Liang, Y.M.; Han, H. Notch signaling inhibits

the growth of the human chronic myeloid leukemia cell line K562. Leukemia research 2009, 33, 109–114.

36. Cai, Y.D.; Chou, K.C. Predicting subcellular localization of proteins in a hybridization space. Bioinformatics

2004, 20, 1151–1156.

37. Chou, K.C. Impacts of bioinformatics to medicinal chemistry. Medicinal chemistry 2015, 11, 218–234.

38. Chou, K.C. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins:

Structure, Function, and Bioinformatics 2001, 43, 246–255.

39. Khan, Y.D.; Ahmad, F.; Anwar, M.W. A neuro-cognitive approach for iris recognition using back

propagation. World Applied Sciences Journal 2012, 16, 678–685.

40. of Clinical Oncology (ASCO), A.S. Genes and Cancer. Cancer.net 2023.

41. Hart, P.E.; Stork, D.G.; Duda, R.O. Pattern classification; Wiley Hoboken, 2000.

42. Khan, Y.D.; Ahmed, F.; Khan, S.A. Situation recognition using image moments and recurrent neural

networks. Neural Computing and Applications 2014, 24, 1519–1529.

43. Butt, A.H.; Khan, S.A.; Jamil, H.; Rasool, N.; Khan, Y.D.; others. A prediction model for membrane proteins

using moments based features. BioMed research international 2016, 2016.

44. Butt, A.H.; Rasool, N.; Khan, Y.D. A treatise to computational approaches towards prediction of membrane

protein and its subtypes. The Journal of membrane biology 2017, 250, 55–76.

45. Khan, Y.D.; Khan, S.A.; Ahmad, F.; Islam, S.; others. Iris recognition using image moments and k-means

algorithm. The Scientific World Journal 2014, 2014.

46. Sugiyama, M. Introduction to statistical machine learning; Morgan Kaufmann, 2015.

47. Theodoridis, S. Machine learning: a Bayesian and optimization perspective; Academic press, 2015.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 December 2023                   doi:10.20944/preprints202312.0053.v1

http://xxx.lanl.gov/abs/https://ashpublications.org/blood/article-pdf/126/2/195/1390271/195.pdf
https://doi.org/10.1182/blood-2014-10-604959
https://doi.org/10.20944/preprints202312.0053.v1


22 of 22

48. Vapnik, V. The nature of statistical learning theory; Springer science & business media, 1999.

49. Montesinos López, O.A.; Montesinos López, A.; Crossa, J. Multivariate statistical machine learning methods

for genomic prediction; Springer Nature, 2022.

50. Jiao, Y.; Du, P. Performance measures in evaluating machine learning based bioinformatics predictors for

classifications. Quantitative Biology 2016, 4, 320–330.

51. Fawcett, T. ROC graphs: Notes and practical considerations for researchers. Machine learning 2004, 31, 1–38.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 December 2023                   doi:10.20944/preprints202312.0053.v1

https://doi.org/10.20944/preprints202312.0053.v1

	Introduction 
	Literature Review 
	Materials and Methods 
	Block Diagram
	Dataset Collection
	Fasta Format
	Sample of Protein Sequence (HSP90)
	Sample of Protein Sequence (HSP90)

	Feature Extraction
	Amino Acid Composition
	Pseudo Amino Acid Composition
	Di-peptide Composition
	Data Augmentation


	Development of Individual Classifiers 
	Support Vector Machine
	Random Forest
	K-Nearest Neighbor (KNN)
	Naïve Bayes
	XGBoost
	Logistic Regression

	Results and Discussion 
	Results on Pseudo Amino Acid Composition (Pse-AAC) Data
	Accuracy Result on Amino Acid Composition (AAC) Data
	Accuracy Results on Di-Peptide Composition (DPC)
	Machine Learning Based Dashboard

	Conclusions 
	References

