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Abstract: Transforaminal lumbar interbody fusion (TLIF) is a commonly used technique for treating 

lumbar degenerative diseases. Here, we developed a fully computer-supported pipeline to predict 

the cage height and the degree of lumbar lordosis subtraction from the pelvic incidence (PI-LL) after 

TLIF surgery through preoperative X-ray images.The automated pipeline included two primary 

stages. First, a deep learning model was used to extract essential features from X-ray images. 

Second, five machine learning algorithms were trained to identify the optimal models to predict the 

interbody cage height and postoperative PI-LL. Lasso regression and support vector regression 

exhibited superior performance for predicting the interbody cage height and postoperative PI-LL, 

respectively. For cage height prediction, the root mean square error (RMSE) was calculated as 1.01, 

and the model achieved the highest accuracy at a height of 12 mm, with exact prediction achieved 

in 54.43% (43/79) of cases. In most of the remaining cases, the prediction error of the model was 

within 1 mm. In addition, the model demonstrated adequate performance for predicting PI-LL, with 
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an RMSE of 5.19 and an accuracy of 0.81 for PI-LL stratification. In conclusion, the interbody cage 

height and postoperative PI-LL can be reliably predicted using artificial intelligence and ML models. 

Keywords: Spinal fusion; Interbody cage; Sagittal balance; Artificial intelligence; Machine learning; 

Spinal parameters 

 

1. Introduction 

Over the past few decades, transforaminal lumbar interbody fusion (TLIF) has been commonly 

used to treat lumbar degenerative diseases, demonstrating the benefits of achieving satisfactory 

arthrodesis through a unilateral approach with minimal impingement on neural components [1,2]. 

In addition to relieving spinal nerve compression, the primary objective of TLIF is to restore sagittal 

balance and the intervertebral body height [3–5]. 

In terms of sagittal alignment, several studies have reported a close relationship between 

postoperative sagittal malalignment and postoperative residual symptoms in patients with lumbar 

fusion [5,6]. Among the parameters of spinal alignment, subtraction of lumbar lordosis (LL) from the 

pelvic incidence (PI) is a crucial indicator of postoperative outcomes after short-segment lumbar 

interbody fusion for lumbar pathologies. Patients with PI-LL (PI minus LL) mismatch have increased 

risks of adjacent segment disease (ASD), late surgical complications, and revision surgery [7–9]. 

Therefore, postoperative alignment prognosis, especially for critical parameters such as PI-LL, is 

required for optimal preoperative planning for lumbar fusion. However, predicting postoperative 

alignment in patients is challenging. Ailon et al. [10] reported that only 42% of cases were accurately 

predicted by 17 experienced surgeons specializing in treating spinal deformity. Although various 

methods exist for predicting postoperative parameters in patients with adult spinal deformity [11,12], 

a method for predicting the value of PI-LL in TLIF procedures still needs to be developed. 

Selecting an interbody cage with the correct height is a crucial aspect of lumbar interbody fusion. 

Utilizing an undersized cage may result in the inability to restore the intervertebral height and 

segmental lordosis, as well as in complications such as pseudarthrosis and cage migration [13–15]. 

By contrast, utilizing an oversized cage may increase the likelihood of nerve root compression, ASD, 

or cage subsidence [15]. In clinical practice, the cage height has long been selected subjectively by 

surgeons depending on their operational experience. Few studies have predicted the height of fusion 

cages on the basis of the intervertebral height of the pathological segment [16] or the anterior and 

posterior disc height on a preoperative computed tomography (CT) image [17]. However, in severe 

degenerative diseases, such as spondylolisthesis and spinal deformity, when the disc height is greatly 

reduced, these methods are often inaccurate. Thus, estimating the height of interbody cages remains 

a challenge. 

The choice of the cage height affects sagittal balance (and vice versa), and preoperative spinal 

parameters play a key role in determining the appropriate size of the implanted device for achieving 

favorable parameters after surgery [16,18]. Therefore, regression models should be developed to 

predict the interbody cage height and postoperative parameters from preoperative parameters. 

However, manual measurements are time-consuming for obtaining all parameters and are prone to 

rater-dependent errors. Currently, automated tools involving artificial intelligence (AI) are used to 

increase the accuracy and speed of measuring spinal alignment parameters from radiographic images 

[12,19]. The purpose of this study was to develop a dedicated pipeline based on AI and machine 

learning (ML) that can reliably predict the interbody cage height and postoperative PI-LL in TLIF 

surgery from preoperative X-ray images. 
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2. Materials and Methods 

2.1. Patient selection 

A total of 311 patients who underwent L4-L5 TLIF surgery between January 2019 and December 

2021 at our institution were included in this retrospective study. The following patients were 

included: (1) patients with lumbar degenerative diseases, such as lumbar disc herniation, lumbar 

spinal stenosis, and spondylolisthesis; (2) patients who underwent TLIF surgery to implant a single 

interbody cage; and (3) patients who did not experience any complications, such as cage migration, 

pseudarthrosis, or fusion failure, and did not require revision surgery because of cage problems or 

ASD during the follow-up period (at least 6 months). The following patients were excluded: (1) 

patients with a history of lumbar fractures or patients who received a diagnosis of one-segment 

lumbar degenerative disease at other levels, multiple lumbar degenerative diseases, lumbar scoliosis, 

spinal tumors, or severe osteoporosis; (2) patients who received two interbody cage implants; (3) 

patients with unstandardized sagittal radiographs with low image quality for segmentation or 

radiographs lacking a femoral head; and (4) patients who experienced neurological or neuromuscular 

episodes during the follow-up period. 

In addition to preoperative and postoperative X-ray images and the size of the surgically 

implanted interbody fusion cage, the demographics of each patient were obtained. Standing lateral 

X-ray images were used because they offer higher quality and standardization than intraoperative X-

ray images, thereby minimizing segmentation bias and error in parameter measurements. Imaging 

data were obtained using a Radnext 50 X-ray machine from Hitachi Global (Tokyo, Japan).  

2.2. X-ray segmentation and feature extraction 

A pretrained BiLuNet model was used to segment each input X-ray image into various semantic 

regions, including L1, L2, L3, L4, and L5 regions, a sacrum region, and two femoral head regions 

(Figure 1) [20]. After the size of the original image was changed to 512 × 512 pixels, the model 

generated an output image with four labels: background, lumbar vertebral regions, sacrum, and two 

femoral heads. Nearest-neighbor interpolation was then used to resize the segmented image to its 

original size. Depending on the contours of the segmented areas, multiple corner points were 

obtained to measure the spinal parameters on the preoperative X-ray images through a computer 

vision algorithm. Subsequently, these features were combined with four demographic features, 

namely age, gender, body mass index (BMI), and fusion indication, to obtain the input features for 

ML algorithms. Lastly, the PI-LL value was measured from the postoperative X-ray image by two 

experienced surgeons (C.-Y.L. and M.-H.W.) for use as a validation standard for ML models. 

To verify the measurement precision of the BiLuNet model, two authors (A.T.B. and G.M.T.) 

independently measured the aforementioned parameters by using magnetic resonance imaging 

(MRI) and compared their results with those of the model. Because the MRI angle parameters in the 

supine position differ from those obtained from standing X-ray images, we selected only bone 

distance features to evaluate interobserver reliability. 
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Figure 1. Study flowchart depicting four subprocesses: data cohort collection, feature extraction, 

feature validation, and ML model construction and validation. ML: machine learning; SVR: support 

vector regression; LR: lasso regression; DT: decision tree; KNN: K-nearest neighbor; MLP: multilayer 

perceptron; RFE: recursive feature elimination; RMSE: root mean square error; MAE: mean absolute 

error. 

2.3. ML implementation 

We divided our ML pipeline into three steps: data extraction, model building, and validation 

(Figure 1). All steps were performed using Python 3.7 and scikit-learn 1.1.2 package [21]. 

2.3.1. Data preprocessing 

Each value missing from the dataset of all aforementioned features was examined and replaced 

by the mean value of each parameter. Because all features exhibited distinct units and large 

differences between their ranges, the z-score was used in the data normalization step [22]. 

2.3.2. Regression models 

Various ML models were evaluated to determine the models that performed well for the 

aforementioned features. These models included five regression algorithms: decision tree (DT), lasso 

regression (LR), support vector regression (SVR), K-nearest neighbor (KNN), and multilayer 

perceptron (MLP). Hyperparameter optimization was conducted for each ML algorithm through the 

GridSearchCV method to achieve improved results. The algorithm with the highest performance was 
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selected as the baseline model to construct the final ML model. After baseline ML models were 

obtained for either cage height or postoperative PI-LL prediction, feature selection with Recursive 

Feature Elimination (RFE) was used to remove the least crucial features and rebuild models with the 

remaining features. To determine the optimal number of features, an RFE loop was performed with 

cross-validation (RFECV function). The mean absolute error (MAE) of the model was then calculated 

across all repetitions and folds of the RFECV function. Generally, the scikit-learn library represents 

the MAE as a negative value to maximize it. Therefore, a model with a large negative MAE value is 

regarded as superior for RFE visualization. After the RFE process, the final model was built using the 

optimal subset of features, with the SHapley Additive exPlanations (SHAP) value indicating the 

importance of each feature in model prediction [23]. 

2.4. Statistical analysis and measurement metrics 

A five-fold cross-validation (k=5) was performed to assess the efficacy of the ML regression 

algorithms. The model was then trained on k − 1 data splits, and the trained model was tested on the 

remaining held-out split. Subsequently, the performance of each model was averaged across all data 

splits for comparison. This cross-validation scheme provided a more reliable test result than that 

derived using a single fixed testing data split, especially when training data were limited. It also 

guaranteed that each data point was tested exactly once. To compare the performance of all ML 

algorithms, both the root mean square error (RMSE) and the MAE of each model were calculated. 

The testing error in each case was then visualized to evaluate the accuracy of prediction. To examine 

the reliability of features in the deep learning model, the intraclass correlation coefficient (ICC) was 

calculated using SPSS version 18.0 (SPSS, Chicago, IL, USA). The 95% confidence interval of the ICC 

estimate suggests poor reliability for values below 0.5, moderate reliability for values between 0.5 

and 0.75, adequate reliability for values between 0.75 and 0.9, and excellent reliability for values 

greater than 0.9 [24]. Schwab classification was then performed with three levels of PI-LL, and the 

final model was evaluated in terms of its ability to stratify postoperative PI-LL based on the accuracy 

index and F1-score. Generally, a PI-LL value below 10° yields a modifier of 0, a value between 10° 

and 20° yields a modifier of 1, and a value greater than 20° yields a modifier of 2 [25]. 

3. Results 

3.1. Patient characteristics 

This study included 126 men and 185 women, with a mean age of 64.08 years (standard 

deviation: 11.19) and a mean BMI of 25.4 kg/m2 (standard deviation: 3.62). In total, 88 patients had 

lumbar disc herniation, 154 patients had lumbar spinal stenosis, and 69 patients had lumbar 

spondylolisthesis. Figure 2 depicts the ground truth distribution of two predictable parameters. Most 

of the cases (149/311 cases) had cage heights of 12–13 mm, with only few cases having fusion cage 

heights of 8, 9, and 15 mm. Similar uneven distribution was observed in PI-LL values after surgery, 

with the majority of patients having PI-LL values ranging from 0 to 20. These unbalanced proportions 

posed a challenge for the optimization of the ML algorithms. 
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Figure 2. Distribution of actual interbody cage heights and postoperative PI-LL values. 

3.2. Performance of ML algorithms 

A total of 53 features were extracted from preoperative X-ray images by using a deep learning 

model (Supplementary Table S1). These features were determined to be highly reliable, as indicated 

by the adequate to excellent interobserver reliability within an ICC range of 0.78–0.947 

(Supplementary Table S2). These results indicated that the deep learning model had adequate 

performance for measuring the spinal parameters. After four clinical features were added, 57 features 

were input into the regression models. 

Subsequent experiments were conducted to determine the optimal parameters of each ML 

algorithm for predicting the cage height and postoperative PI-LL. Table 1 lists the ranges of all 

searched hyperparameters and their optimal values. Comparison of the five algorithms with optimal 

parameters revealed that LR outperformed the other models in terms of predicting the cage height, 

with an RMSE of 1.06 and an MAE of 0.76. With the lowest RMSE and MAE (5.4 and 4.15, 

respectively), SVR was regarded as the optimal model for predicting postoperative PI-LL, followed 

by LR, MLP, KNN, and DT (Table 2). Therefore, LR was selected as the baseline model for predicting 

the cage height, and SVR was selected for predicting PI-LL. 

Table 1. Hyperparameter optimization for ML algorithms for the prediction of interbody cage height 

and postoperative PI-LL. 

ML 

algorithm 
Hyperparameter ranges 

Optimal values 

for cage height 

prediction 

Optimal values 

for PI-LL 

prediction 

LR Alpha = [0, 1], interval = 0.001 0.001 0.01 

DT 

Criterion = [squared_error, friedman_mse, 

absolute_error, poisson] 

min_samples_split = [10, 20, 30, 40, 50] 

min_samples_leaf = [5, 10, 20, 30, 40] 

poisson 

30 

20 

squared_error 

50 

5 

SVR 

kernels = [poly, linear, rbf, sigmoid] 

C = [0.1, 1, 10, 100] 

gamma = [0.001, 0.01, 0.1, 1] 

sigmoid 

10 

0.001 

linear 

0.1 

1 
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MLP 

hidden_layer_sizes = [(50, 50, 50), (100, 100, 100), (200, 

200, 200)] 

activation = [tanh, relu] 

solver = [sgd, adam, lbfgs] 

alpha = [0.0001, 0.001, 0.05] 

(200, 200, 200) 

relu 

lbfgs 

0.05 

(200, 200, 200) 

tanh 

sgd 

0.0001 

KNN 

n_neighbors = [5, 10, 20, 30, 40, 50] 

metric = [euclidean, manhattan, minkowski] 

weights = [uniform, distance] 

20 

euclidean 

uniform 

5 

euclidean 

distance 

Table 2. Performance of ML algorithms in the prediction of interbody cage height and postoperative 

PI-LL. RMSE: root mean square error; MAE: mean absolute error. 

Algorithm 

Cage height Postoperative PI-LL 

RMSE MAE RMSE MAE 

DT 1.12 0.85 7.05 5.39 

LR 1.06 0.76 5.42 4.2 

SVR 1.09 0.77 5.4 4.15 

MLP 1.16 0.87 6.36 4.84 

KNN 1.25 0.498 6.98 5.21 

3.3. Final model 

3.3.1. Feature selection 

Figure 3 depicts the RFECV results of two baseline modes. In the LR model for predicting the 

interbody cage height, the RFE curve identified 23 features as the optimal input for achieving optimal 

results, with a negative optimum cut-off MAE of −0.693. Similarly, the SVR model for predicting 

postoperative PI-LL identified 24 features as the optimal number of features, with a negative cut-off 

MAE of −4.096. The two subsets of features were therefore used to retrain the models (Supplementary 

Table S3), and the final models were validated using the testing set. 
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Figure 3. RFECV curves of two baseline models with negative MAEs for different numbers of features: 

(A) a lasso model for interbody cage height prediction and (B) an SVR model for postoperative PI-LL 

prediction. 

3.3.2. Optimal model performance 

As shown in Table 3, the final lasso algorithm for cage height prediction exhibited an RMSE of 

1.01 and an MAE of 0.7, which are more favorable than the values obtained before feature reduction 

(i.e., 1.06 and 0.76, respectively). Figure 4 depicts the accuracy of cage height prediction using the 

testing set, with 42.12% (131/311) of cases achieving an exact value. Our model exhibited adequate 

results for the interbody cage height of 10–13 mm. The most accurate prediction was obtained for a 

height of 12 mm, with 54.43% (43/79) of cases having an right value. Meanwhile, the accuracy ratios 

for 10, 11, and 13 mm sizes were 52.63% (20 of 38 cases), 51.02% (25 of 49 cases), and 42.86% (30 of 70 

cases), respectively. In the majority of the remaining cases, the model exhibited a 1 mm prediction 

error, resulting in an accuracy rate of 88.75% (276 out of 311 cases) within the acceptable margin of 1 

mm. 

Table 3. Performance of two final models. RMSE: root mean square error; MAE: mean absolute 

error. 

 Baseline model performance Optimal model performance 

RMSE MAE RMSE MAE 

Cage height prediction 1.06 0.76 1.01 0.7 

Postoperative PI-LL prediction 5.5 4.15 5.19 3.86 
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Figure 4. Confusion matrix for final model performance in the prediction of interbody cage height. 

Because of the limited number of samples in the 8, 9, and 15 mm fusion cage groups, the model 

exhibited high prediction errors. Specifically, four of six cases with an actual cage height of 8 mm 

were predicted to have a height of 9 mm. In the 9 mm group, the predicted values were 8 mm in three 

cases and 9 mm in two cases. In the 15 mm group, the model tended to predict interbody cage heights 

in the range of 13 to 14 mm in 10 of 14 cases. 

For postoperative PI-LL prediction, the final SVR model achieved lower RMSE and MAE values 

on the testing set than the baseline model (5.19 and 3.86 versus 5.4 and 4.15; Table 3). Figure 5A 

depicts the performance of the model on both the training and testing data, indicating a well-

calibrated model in which most points are clustered around the regression line; this observation 

suggested that the predicted PI-LL values were close to the actual values. However, in cases with PI-

LL values greater than 20, more considerable errors were observed. The model also exhibited high 

precision in stratifying postoperative PI-LL, achieving an accuracy of 0.81 and a high F1-score for the 

0 group (Figure 5B). 

 

Figure 5. Performance of SVR. (A) Calibration plot (actual and predicted values) for predicting 

postoperative PI-LL on both training and testing data. (B) Confusion matrix for stratifying 

postoperative PI-LL on the testing set into three groups: 0 (<10), 1 (10–20), and 2 (>20). 

3.3.3. Feature importance 

Figure 6 visualizes the 10 most important features of the two final models. For interbody cage 

height prediction, the intervertebral height at the midpoint of L4-L5 (L4L5_mid) was the most crucial 

factor in our model. This prediction was influenced by three angles: LL, PI, and the L4-L5 

intervertebral disc angle (L4L5_angle). Additionally, the intervertebral heights of lumbar segments 
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from L3 to S1 served as crucial parameters, including the intervertebral height at the midpoint of 

L3L4 and L5S1 (L3L4_mid and L5S1_mid), the posterior intervertebral height of L3L4 (L3L4_post), 

and the anterior intervertebral height of L3L4 and L4L5 (L3L4_ant and L4L5_ant). Only one factor 

related to the size of the vertebral body, namely the upper vertebral width of L3 (L3Width_up), was 

included in this list. 

Preoperative LL, relative LL (RLL), and PI played crucial roles in predicting the postoperative 

PI-LL. The essential features associated with PI-LL after surgery were primarily angles involved in 

preoperative sagittal alignment, such as the sacrum slope (SS), pelvic tilt (PT), and L5S1 intervertebral 

disc angle (L5S1_angle). Other factors influencing PI-LL prediction were related to the height of the 

vertebral body, such as the anterior height of the L5 vertebra and the posterior height of the L2 and 

L3 vertebrae (L2Height_Post and L3Height_Post). 

 

Figure 6. (A) Most crucial features for the model of interbody cage height prediction. (B) Most crucial 

features for the model of postoperative PI-LL prediction. *Note: The explanations of feature 

abbreviations are provided in Supplementary Table S1. 

4. Discussion 

Spinopelvic alignment restoration is essential for both adult spinal deformity surgery and short-

segment lumbar interbody fusion [8,26,27]. However, determining the influence of each factor on 

sagittal alignment is difficult because the normal standing posture is jointly determined by multiple 

lumbosacral factors [28,29]. As shown in Figure 6 in the present study, the postoperative value of PI-

LL is substantially influenced by the preoperative values of LL, RLL, and PI. However, because the 

PI value is regarded as a constant anatomic feature with slight variation in pathologic disorders or lumbar 

spine interventions [30], determining the postoperative LL is typically necessary for predicting the optimal PI-

LL. According to previous research, LL restoration after surgery is closely linked to preoperative LL 

and PI [31–34]. Therefore, LL and PI can be used to predict the LL and PI-LL values after surgery, as 

in our model. 

Appropriate parameters must be obtained for enhancing surgical quality, and surgeons must 

develop effective strategies to achieve harmonious sagittal alignment. Our model demonstrated a 

strong capacity to generate a satisfactory PI-LL value while being able to forecast the potential range 

of this value. By selecting patients without ASD for the dataset, the algorithm trained on these data 

was able to generate a favorable PI-LL value, which can be used to reduce the incidence of ASD in 

patients [7]. Our PI-LL prediction model was also able to provide predictions for surgical planning 

in selecting the appropriate surgical technique and instruments. Actually, the optimal PI-LL has been 

the subject of debate. Satoshi et al. [35] reported that this value is inconsistent. Meanwhile, multiple 

studies have suggested that surgeons must strive to reduce PI-LL to 10° or less whenever possible 

[8,36,37]. According to our model, if unsatisfactory PI-LL prediction values are obtained before 

surgery, surgeons could consider implementing additional intraoperative techniques. To achieve an 

adequate LL value, strong fixation with a curved rod system can be implemented. In some cases of 

severe hypolordosis, osteotomy techniques such as pedicle subtraction osteotomy are also a viable 

option [38]. Furthermore, the predictive results of postoperative PI-LL from our algorithm may aid 
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in rod bending or in the determination of the number of spinal levels requiring fixation when a 

surgeon receives intraoperative fluoroscopic images. However, previous studies have revealed 

substantial discrepancies between standing and prone angle measurements [39,40]. Therefore, these 

models must be further developed to ensure their seamless integration from preoperative planning 

to actual surgery. 

Size, shape, and position play a crucial role in the insertion of an intervertebral cage. However, 

findings regarding the importance of the implant shape and placement have been inconsistent. Cage 

lordosis and final LL after surgery are strongly correlated, with more anterior placement resulting in 

greater intervertebral lordosis [18]. Conversely, some in vitro biomechanical and clinical studies have 

reported that the cage position and geometry do not affect sagittal alignment after lumbar interbody 

fusion [41–43]. The cage height typically serves as a key factor applied by surgeons for improving 

lordosis [44,45], and our research has primarily focused on predicting this index. Most of our cage 

height values were between 12 and 13 mm, which are consistent with the recommended cage heights 

of 11, 12, or 13 mm for the L3-4 and L4-5 levels in a previous study conducted in the Chinese 

population [16]. In addition, our model performed well for cases within this range, indicating its 

potential clinical applicability for the Asian population. Overall, predicting the appropriate interbody 

cage size can assist surgeons in decision-making and improve postoperative outcomes, particularly 

for inexperienced surgeons. Prediction using our model can also provide the cage height with an 

error of approximately 1 mm only (Figure 4). Consequently, fewer cages need to be sterilized, thus 

reducing the costs of surgery. In addition, the costs of treatment decrease due to the reduced 

operation duration and complication rates. Therefore, patients evidently benefit from the 

development of these models. 

Our results indicated that the disc height of the pathological segment and the two adjacent levels 

plays a crucial role in predicting the height of the interbody cage (Figure 6). To predict this value, 

Wang et al. [16] developed a regression model that emphasizes the importance of the intervertebral 

height at the midpoint of the pathological segment (MIVH): interbody cage height = 11.123 − 

0.563*gender + 0.149*MIVH. In our study, gender was one of the final 23 features used to build the 

optimal model, but its influence was not as evident as that of the other parameters. With the exception 

of the parameters associated with the intervertebral disc height, PI and LL contributed to the 

prediction of the interbody cage height. These two parameters also contributed to the aforementioned 

prediction of postoperative PI-LL. Lafage et al. [11] discovered that pelvic retroversion and global 

sagittal balance in adult patients with spinal deformities were primarily influenced by the PI and LL 

values. Here, we emphasized that PI and LL are among the most crucial parameters for both long- 

and short-segment fusion surgeries. 

Multiple researchers have attempted to develop algorithms for predicting postoperative sagittal 

parameters and the interbody cage height, with the primary goal of improving the accuracy and 

usability of these algorithms in daily practice. Previous formulas typically included a limited number 

of significant variables to simplify computations. Lafage et al. [11,46] developed one of the most 

accurate formulas for predicting the sagittal vertical axis (SVA). They used only four variables in their 

formula: PI, LL, thoracic kyphosis, and age. Legaye and Duval-Beaupère [30,47] proposed multilinear 

regression models for calculating LL by using only basic parameters, such as thoracic kyphosis, SS, 

PI, PT, and T9 spinopelvic inclination. In contrast to previous research, our goal was to incorporate 

all significant parameters that can be measured in the lumbar region for developing an algorithm. 

Because our prediction models (LR for the interbody cage height and SVR for postoperative PI-LL) 

and previous models share the same characteristic of utilizing multiple linear algorithms, we took 

advantage of the current technological advancements and incorporated as many variables as 

possible. However, certain factors, such as the width and length of the vertebral body, were found to 

be crucial features in our model, which has never been mentioned in the medical literature; this is 

likely due to a coincidence during model training with our dataset, necessitating further verification 

in future research. Previously, the use of multiple parameters may have been inconvenient for daily 

practice. With the help of computers, the accuracy of predictions can now be improved, and these 

predictions can be applied in clinical settings. According to Langella et al. [48], computer-assisted 
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methods are associated with a failure rate below 20% for predicting PI and SVA. To the best of our 

knowledge, this is the first study to provide a pipeline and various models for predicting PI-LL and 

the cage height from preoperative X-ray images by using AI. 

This study has several limitations. First, this was a retrospective, single-center study with a small 

sample size. As a result, the optimal interbody cage height or postoperative PI-LL may be influenced 

by subjective factors such as the surgeon’s technique and patient demographics. Nevertheless, by 

using multiple algorithms, this study introduced a novel concept and laid the foundation to ensure 

that these predictions are more accurate in future multicenter studies. Second, this study was limited 

to patients with monosegmental TLIF at the L4L5 level, and only one sagittal parameter, PI-LL, was 

predicted. However, using our algorithms, a large number of postoperative parameters can be 

predicted not only for single-level fusion surgery but also for surgeries involving multiple levels. 

Third, sagittal balance is associated with factors such as SVA, T1 spinopelvic inclination, and C7 

plumb line, which are evaluated using full-length spine radiographs [37,49,50]. Because we focused 

only on short-segment fusion, we examined only the lumbar region. Therefore, global sagittal balance 

factors must be examined for TLIF surgery in the future. Finally, our model comprised many steps, 

thereby increasing the likelihood of errors. To increase the accuracy of predictions, a synthetic model 

must be developed using radiographic parameters from X-ray, MRI, and CT scans. 

5. Conclusion 

In this study, we developed an end-to-end AI models capable of accurately predicting the 

interbody cage height and postoperative PI-LL in TLIF surgery. Our results confirmed that powerful 

computer-assisted models are a valuable tool in spinal morphometry, with ML models exhibiting 

high levels of accuracy and the potential to aid surgeons in preoperative planning and postoperative 

evaluation. Our results also indicated that the incorporation of multiple crucial parameters, 

particularly preoperative PI and LL, into multilinear regression equations is a promising method for 

predicting the outcomes of spinal fusion surgery. However, to ensure model reliability and 

generalizability, further validation and refinement with larger datasets and multicenter studies are 

required. 

Supplementary Materials: The following supporting information can be downloaded at the website of this 

paper posted on Preprints.org. Table S1: Spinal parameter features extracted using a deep learning model; Table 
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