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Abstract: Fatigue fractures in materials are the main cause of approximately 80% of all material 

failures, and it is believed that such failures can be predicted and mathematically calculated in a 

reliable manner. It is possible to establish prediction modalities in cases of fatigue fracture, 

according to three fundamental variables in fatigue, such as volume, number of fracture cycles, as 

well as applied stress, with the integration of Weibull constants (length characteristic). This 

investigation was carried out mechanical fatigue tests on specimens smaller than 4 mm2 in section 

of different industrial materials for their subsequent analysis through precision computed 

tomography in search of microfractures. The measurement of these microfractures, along with their 

metrics and classifications, was recorded. A convolutional neural network trained with deep 

learning was used to achieve the detection of microfractures in image processing. The detection of 

microfractures in images with 480x854 or 960x960 pixels is the primary objective of this network, 

and its accuracy is above 95%. Images that have microfractures and those that do not are classified 

by the network. Subsequently, by means of image processing, the microfracture is isolated. Finally, 

the images that do contain this feature are interpreted by image processing to obtain their area, 

perimeter, characteristic length, circularity, orientation, and type microfracture metrics. All values 

will be obtained in pixels and converted to metric units (μm) through a conversion factor based on 

image resolution. 

Keywords: Microfracture; image processing; network; simulation analyzes 

 

1. Introduction 

A fatigue fracture is defined as a “partial or complete fracture due to its inability to withstand 

non-visible stresses applied rhythmically, repeatedly and below the threshold” (Guten, 1997). Fatigue 

fractures occur due to the accumulation of stress-induced microfractures. They begin as 

microfractures and become more extensive with repetitive stresses until reaching a macrofracture 

size of approximately 1 mm, this being the size necessary to result in a true fracture through the 

structure of a material (Presbitero et al., 2012 and 2017). Fatigue fractures involve approximately 80% 

of all material failures (Pang et al., 2008). In human bones, fatigue fractures often occur in military 

recruits, 0.91% of male recruits and 1.09% of female recruits suffer fatigue fractures. Between 4.7% 

and 15.6% of all runners’ injuries are stress fractures (Currey, 2012). 

Recent studies on the detection of fractures in materials through computer vision by deep 

learning in neural networks have obtained results with precision of up to 98% (Ramirez et al., 2011). 

Likewise, image processing techniques can be used for gradient detection, which varies and is 

analyzed to determine the most appropriate value (Kim et al., 2018). In a recent study of 2020 (Rezaie 

et al., 2020), both methods were compared for detecting cracks in concrete walls. It was found that 
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the deep learning method, using the TernausNet network, is more effective, obtaining an accuracy of 

81.9% compared to the threshold change method (Wang et al., 2020). 

The main objective of this project is to determine, establish and verify methodologies and fields 

of study towards precise prediction procedures for the prevention of fatigue fractures in industrial 

materials, through the development of microfractures and the use of non-destructive testing. There 

are studies in the literature based on the analysis of microfractures different types of materials, 

however, a wide field of research is still open for studies to clarify how microfractures are generated, 

grow and cause the fracture of the material in each case. We have implemented a methodology for 

analyzing microfractures, which we consider can be quantified and compared with other same or 

similar materials in relation to their generation and growth due to the external fatigue stresses 

applied to the material in each specific case to study and analyze. 

Our studies have been implemented mainly in cortical bone structures, although it is important 

to determine that bone is a composite material and this methodology can be executed in the analysis 

of the development of microfractures in different types of industrial materials (Diab et al., 2005), such 

as aerospace industry, metallurgy, composite materials, historical buildings, monuments, as well as 

earthquakes, among others. 

It is possible to implement prediction modalities in instances of fatigue fracture, according to 

three fundamental variables in fatigue, such as the volume, the number of cycles to fracture, as well 

as the applied stress, with the integration of the Weibull distribution constants of two parameters 

(characteristic length). Therefore, the implementation of a broad area of study and innovation is 

studied, which will be based on the performance of mechanical tests through application of fatigue 

stress and characterization of properties in materials through non-destructive testing, in prevention, 

comparison and evaluation of fractures in different types of industrial materials due to fatigue. 

2. Methodology 

To establish comparisons in the determination of Weibull constants, specimens measuring 2x2x3 

mm were made, in order to establish compression tests under fatigue. Cyclic axial compression forces 

will be applied to the samples, under a frequency of 3 Hz with an applied stress of 80 MPa, with 

cycles between 11 and 91 MPa. This constant stress range will be applied until fracture. 

Once the fatigue tests were developed, the specimens were analyzed using X-ray computed 

tomography, in the facilities of the Center for Industrial Engineering and Development (CIDESI), 

belonging to the National Council of Humanities, Science and Technology (CONAHCYT), Mexico, 

where microfractures will be identified and isolated from the rest of the reconstructed specimen 

volume, to proceed to calculate the corresponding Weibull constants. 

Therefore, through these fatigue tests and the use of the study of microfracture accumulation, 

based on the concept of characteristic length through the Weibull distribution, the implementation of 

new methodologies will be allowed, as well as new areas of study within of fracture mechanics in 

materials, based on precise models towards the prevention of the development of fractures of 

industrial materials due to fatigue. 

As the first material, there is bone tissue, on which fatigue tests have already been carried out 

previously in a past investigation. This material gave way to start this research, as it already had 

computed tomography images (Figure 1) that allowed the neural network to be trained, as well as to 

be used in the simulation stage. Additionally, for image processing, images of metallic materials, 

nylon-based materials, ultra-high molecular weight polyethylene composite materials, and granite 

are available. 
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Figure 1. Computed tomography of specimens of a) bone tissue; b) nylon with 5% hollow 

microspheres; c) Sigma food material; d) ultra-high molecular weight polyethylene and b) granite. 

The fatigue tests on the specimens were carried out following the aforementioned characteristics 

in fatigue machines with cyclic loading for laboratory use, this load being compressed. Each specimen 

is fatigued or near complete failure for about 4,000 cycles. Once the specimen has been fatigued, each 

one is extracted and sent to the next process, obtaining computed tomography images of between 

800 and 1700 slices. 

The specimens are placed in a laboratory-grade tomograph (phoenix v|tome|x m from General 

Electric), at a distance of between 7 and 10 mm, as appropriate, to perform the tomography and obtain 

an image of each slice in a high resolution. 2014x2024 pixels. Approximately 1,700 cuts are made in 

the section of the specimen and processed with the definition required for the correct identification 

of the microfractures. To obtain correct cuts of the specimen, a power of 6W was assigned to the 

tomograph, a voltage of 60 kV and a current of 100μA was used. 

Previously, the detection of microfractures in test tubes was done individually, that is, a person 

analyzed each of the images, marking which and where microfractures were found. In this study, 

modern tools are used, such as image processing and the use of neural networks. The detection of 

microfractures is done jointly through two paths, as shown in Figure 2, one image analysis and 

processing and the other by semantic segmentation. Matlab, its machine learning and image 

processing tools, was used as a software for both cases, and codes were generated to put everything 

together. 
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Figure 2. Microfracture detection methods. 

The route that was followed as a methodology for the detection of microfractures and their 

analysis is described in Figure 3, which consists of 5 main stages. 

 

Figure 3. Methodology for detecting microfractures. 

It was decided to create a new neural network, which was designed specifically for the detection 

of microfractures. Said neural network should be able to read, as an input image, any resolution and 

take it to a resolution of 480x854 or 960x960 pixels with 3 color channels; translated to Matlab, a vector 

example [960 960 3] as Input Layer or to a color channel (grayscale). The neural network was 

generated, following the considerations, with 15 processing layers, in addition to integrating the 

SGDM (Stochastic Gradient Descent with Momentum) technique into its vectors. The results of the 

neural network allow us to classify, as a first instance, the images that do have microfracture and 

those that do not, dividing them into two classes. 

Due to the small database of tomography images, both with and without microfractures, the 

Data Augmentation tool was used to train the neural network. Using this technique allows you to 

significantly increase the amount of training data for the neural network in a synthetic way. In 

addition to this, semantic segmentation was used, which requires five stages: labeling images, 

training (Deep Learning), convolutional neural network, automatic detection and data extraction. 
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Figure 4. a) Original CT image; b) Binarized image; c) Image after removing isolated regions and 

filling gaps; d) Image after applying a Canny filter; e) Detection of interior (green) and exterior (red) 

edges. 

In addition to the analysis of the isolated microfractures from the tomography scans, the model 

of the test tube is reconstructed based on the images obtained with isolated microfractures, 

generating a 3D element that presents only the characteristics sought in this research, such as: number 

of total microfractures, volume total microfractures, microfracture volumetric density and 

microfracture properties. 

The 3D model of the test tube is reconstructed using the FIJI software (Image J), for which the 

folder containing the images obtained from automatic identification is taken. It is important to 

generate the model and carry out a series of comparisons between automatic models and manually 

generated models, in order to find the accuracy of the automatic identification software. 

The mesoscale model of microstructure in OOF2 software was developed from a cross-sectional 

image of a microstructure obtained by computed tomography. The tomography image was 

previously digitized using Image J software to differentiate the phases present in the bone cortical 

tissue. The bone cortical microstructure was separated into osteonal tissue and interstitial lamellae. 

Subsequently, using OOF2, the mechanical properties were assigned to the previously differentiated 

phases. Finally, a finite element model was implemented to determine the effect of the deformation 

generated by the differences between the mechanical properties of each of the cortical bone phases. 

The differences in mechanical properties are based on the constituent elements of cortical bone, these 

being: collagen with an E = 800 MPa and hydroxyapatite with an E = 22.1 GPa. 

Figure 5 shows the meshing of the structure in the digitized image of the bone tissue. For the 

finite element model, the movement was restrained at the bottom and a tensile stress of 100 MPa was 

applied. 
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Figure 5. Meshing in the cortical bone structure. Boundary conditions are shown. 

As a comparison, the commonly used software SolidWorks was used, which is based on the 

ANSYS methodology for its finite element calculations. When comparing both methods, two main 

factors are taken into account: processing time and the number of nodes. 

For the mechanical simulation analysis with isolated microfracture, the resulting image from the 

automatic microfracture detection software is used, which is a binary image that includes only the 

microfractures and empty the rest, Figure 6. It is important to take into account that, when be a square 

image and not the actual shape of the specimen, the microfracture analysis will be affected. 

 

Figure 6. a) Original binarized image; b) Drawing on the binarized image; c) Section of the digitized 

test tube; d) Meshing, loads and fixings for the test piece section; e) Study carried out under the 

conditions of microfracture in edges. 

3. Results and discussion 

For the mechanical simulation analysis with isolated microfracture, the image resulting from the 

automatic microfracture detection software is used, which is a binary image that includes only the 

microfractures and empty the rest. The image is entered into the SolidWorks software to generate the 

drawing that simulates the microfractures. This process is done automatically with the Autotrace 

function. Once the figure is generated, the previously determined thickness of 2.35 μm is added and 

the material (Figure 6), which is a mixture of collagen and hydroxyapatite, of which its mechanical 
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characteristics are described in this same section. Microfractures are taken as hollow sections. The 

corresponding mesh is generated with the greatest possible precision by the software, which has a 

maximum edge dimension of 69 μm and a minimum of 1.4 μm, according to its equivalence in image 

pixels. The specimen is analyzed with the load equivalent to the corresponding section of 100 MPa, 

that is, the load is divided among the 1277 sections, resulting in a load of 0.078 MPa. Once the fixed 

point and load variables has been adjusted, the analysis is carried out to obtain results of total 

displacements, in each axis, normal, shear and von Mises forces. 

Figure 7 shows the analysis process carried out for the cortical bone microstructure. Figure 7a 

represents an X-ray computed tomography image of a bone segment. This image makes it possible 

to differentiate osteons from the matrix. Figure 7b shows the digitization of the image using Image J 

software. Finally, Figure 7c shows the meshing of the phases, as well as the assignment of properties 

(red for osteons and white for the matrix). 

 

Figure 7. a-g) Original tomography images. b-h) Digitization of images for phase separation. c-i) 

Meshing of the microstructure. 

Figure 8 shows the simulation results. In the microstructure of cortical bone, there is a rigid 

phase (hydroxyapatite phase) and a ductile phase (collagen phase). This difference in mechanical 

behavior produces an irregularity in its deformation. Figures 8a,b show the deformation field of the 

composite microstructure. In this case, collagen is more ductile than hydroxyapatite; Fractures are 

centered in the matrix and stop growing when they reach the osteon. 
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Figure 8. Displacement field generated in the cortical bone structure. a) Mesh displacement. b) 

Displacement of osteonal tissue. (Units in mm). 

The simulations of the specimens in SolidWorks were done in two different ways: with 

unisulated microfracture and with isolated microfracture. This methodology was used to compare 

the development of microfractures, not only between finite element methods, but also between 

elements that affect the material. 

The results of the main stresses in the microfractures (Figure 9 and 10) showed a growth trend 

in the areas where they are thinner, likewise, in the areas where two microfractures converge, 

becoming one and generating a larger one, the which leads to the material fracturing completely. The 

principal stresses do not represent a value even close to the maximum stress supported by the 

material, however, being subjected to fatigue means that the energy cannot be dissipated elastically 

and generates microfractures. Compression stress values in the upper area of the specimen made it 

possible to simulate the physical fatigue analyzes to which they were subjected. 

 

Figure 9. First principal stress in the region of interest of the specimen (units in MPa). 
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Figure 10. Principal stress in the Z axis; the values indicate that the material supports the main load, 

however, there are areas between microfractures that promote their conjunction (units in MPa). 

Like simulation studies with isolated microfractures, the generation of the digital model of the 

tomography in its mechanical analysis determines the concentration of stress on the microfractures. 

In this case, two types of models were made: thickness of the cross section of the tomography (Figure 

11) and total thickness of the specimen if it were the same throughout its section (Figure 4.11). For 

the cross section of the tomography, the thickness of 2.35 μm was used. Being a specimen with a 

microfracture on the edge, this resulted in a section fracture. Furthermore, it was found that 

hydroxyapatite osteons absorb the main stresses in the specimen, moving through the ductile 

collagen tissue. 

 

Figure 11. Material displacement in cross section simulation (units in mm). 
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Figure 12. Meshing for full section simulation. 

 

Figure 13. Displacement for full section simulation (units in mm). 

In the first instance, the neural network was designed to read 640x640 pixel images, however, 

very low precision results were obtained (Figure 14). It was decided to reduce the resolution of the 

image to facilitate training. The different previous stages in which the network was trained are 

described in Table 1. 
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Figure 14. Training statistics for net with a resolution of 640x640 pixels. 

Table 1. Previous iterations of the net neural network with their summarized values. Data obtained 

directly from Matlab except for approximate precision. 

Interaction
Microfracture

entry images 

Entry images 

without 

microfracture 

Resolution 

in pixels 

Processing 

time 

Theoretical 

precision 
Data loss 

Approximate 

precision 

1 81 36 640x640 18 min 03 seg 69.57% 4% 70% 

2 81 36 480x480 08 min 08 seg 95.65% 0% 80% 

3 301 290 480x480 48 min 14 seg 49.15% 1% 95% 

4 1505 1450 480x480 52 min 49 seg 50.85% 0.5% 90% 

5 1505 1450 480x480 46 min 12 seg 86.55% 0% 90% 

Throughout the time in which this research has been carried out, modifications, updates and 

new training have been made to the neural network. Staying with the version that worked best for 

the classification of microfracture images. The processing time has also been improved depending on 

the training iterations, despite the greater number of images available to train the network, being 

3028 with microfracture and 687 without microfracture. As the last training stage, it was decided to 

use the data augmentation technique only for images without microfracture and thus equalize the 

distribution of the classes. However, the results obtained were not satisfactory (Figure 15) and it was 

decided to use previous training. 
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Figure 15. Results of training the neural network with data augmentation for images without 

microfractures. 

Several stages and several iterations of the detection software were generated to find a correct 

result of each type of material. An example is shown in Figure 16, which is from a group of scans that 

turned out to complicate the development of the software. 

 

Figure 16. Computed tomography and its process of identifying microfractures until they are 

isolated. 

Figures 17–19 show the results of the identification software in its previous stages until reaching 

very precise results in its final stage. 
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Figure 17. Detection in the previous stage of automatic identification. Unwanted items are 

displayed. 

 

Figure 18. Detection in the previous stage of automatic identification. Elements that do not correspond 

to microfractures are shown. 

 

Figure 19. Detection in the previous stage of automatic identification. The largest microfractures are 

shown, however, the smallest ones are not detected. 
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All the necessary modifications were made to the automatic detection model until reaching the 

current model, in which the greatest number of microfractures with their greatest extension are 

identified, no unwanted elements are included and there is a detection precision of 5 pixels up to the 

total dimensions of the image, in addition to not modifying its morphology (Figure 20). 

 

Figure 20. Automatic identification current detection. All microfractures larger than 5 pixels are 

detectable. 

It is important to give the software user the possibility of changing parameters to be able to find 

the microfracture in the image, which is why the resolution of the tomography, the number of images 

to be processed, the material and the folders where they are included as input data; images are read 

and saved. However, despite having powerful software, there are microfractures that cannot be 

detected due to their size in pixels, which is independent of the resolution in μm/pixel, due to the 

characteristic of circularity or eccentricity of the figure; which is a calculated parameter to a certain 

extent in image processing. The minimum extension to detect microfractures is 5 pixels, which 

translates to an extension in microns of between 7 μm and 20 μm, depending on the tomography. An 

artificial increase in the resolution of the images is proposed in order to be detected. 

The mechanical analysis of finite elements was carried out through the comparison of ANSYS 

and ABAQUS methodologies, both being conclusive in studies with similar results. Due to the 

complexity of the research study, the mechanical simulation analyzes were carried out in two 

different blocks. In the first instance, manual image processing for phase isolation and meshing was 

performed in the OOF2 software. As a second part, we worked with the images obtained from the 

microfracture identification software, as well as the manually processed images. The objective of 

working with the methodology of both sections was to determine how much precision existed in the 

automatic identification software and the feasibility of using the resulting images for mechanical 

simulations. 

Based on the advances in the automatic identification of microfractures, the aim is to validate 

the precision of the neural network to identify these microfractures in new materials that are awarded 

by research institutions and private companies. We are working on the identification of 

microfractures in materials for food use, granite and composites with high precision, thanks to the 

higher resolution tomography obtained. Likewise, the mentioned materials are added to the database 

to feed back to the neural network. 

The subsequent fatigue tests, as well as their corresponding computed tomography scans, will 

allow us to continue working to identify microfractures and, once detected, carry out simulations 

that allow us to compare their development physically with computerized analyses. Within the 

simulation stage, it is necessary to continue processing images with microfractures to generate finite 

element analysis, vibration modes and loads in both software, which will allow a broader perspective 

of the behavior of microfractures. The conclusion of the identification software is of great support to 

obtain the images that must be worked within simulations, as well as the generation of the 3D model 
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for finite element analysis in total volume. Following the objective of the project and the extension 

granted to it, the mathematical model that describes the microfractures and how they lead to a total 

fracture of the material must be developed, as well as finding methodologies for predicting the 

extension of the microfracture. 

4. Conclusions 

The sequence of the methodology, as well as its parts, was constantly updated. As a main 

change, within the identification of microfractures, the segmentation stage was eliminated to carry 

out image processing based on morphological operations, which provided shorter processing time 

and more precise identification results. The processing time for the automatic identification software 

met the overall goal of this part, which was to reduce detection time. It was possible to identify and 

isolate the microfractures from a series of more than 1,200 images in an approximate time of 3 

minutes, which is infinitely less than the identification, isolation and processing of the images 

manually, which can take months. 

The simulations, both from ANSYS and ABAQUS, resulted in an advance in understanding the 

development of microfractures, by indicating that they tend to join together to form one of greater 

length. It was important to make a comparison between both finite element methods to confirm the 

results of both or determine if there were differences. Making a comparison between results from 

ABAQUS and ANSYS, it is very evident that they converge on the same point: The hydroxyapatite 

fabric gives the material rigidity to withstand the loads, moving through the collagen fabric, which 

provides a field material that dissipates the stresses. 

It is of utmost importance to generate various simulations with different types of microfractures 

to determine their general behavior, which would help generate the generalized mathematical model 

for the materials. Due to the extension of the research project and the inconveniences generated in 

the instrumentation necessary for the fatigue analyzes and computed tomography, the objective of 

generating a general methodology for the prediction of fractures has not been fulfilled to its full 

extent. However, the advances in the sections described in this document are conclusive and provide 

the necessary material to achieve the general objectives. 

In the next stage of the research, it is intended to present results that lead to the implementation 

of the mathematical model that describes the behavior of microfractures and generates a field of 

predictive study for fractures in industrial materials, as well as inorganic materials. 
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