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Abstract: Metasurface holography offers significant advantages, including a broad field of view,
minimal noise, and high imaging quality, making it valuable across various optical domains such
as 3D displays, VR, and color displays. However, the conventional pure-structured metasurface
holographic devices face a limitation: once fabricated, their functionality remains fixed, restricting
practical applications. In recent developments, the landscape of metasurface holography has
witnessed a notable shift from passive to active elements, spurred by the introduction of
multiplexed and reconfigurable metasurfaces. This paper provides a comprehensive review of the
latest advancements in multiplexing and reconfigurable metasurface holography, delving into
fundamental characteristics, design strategies, and diverse applications. In conclusion, we offer a
brief summary of this rapidly evolving research area, suggest potential future directions, and
explore applications. Finally, we briefly summarize this rapidly growing area of research, propose
future directions and potential applications.
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1. Introduction

Holography, initially conceived by Dennis Gabor in 1948 [1], serves as a technique for capturing
and reconstructing full-wave information from objects. However, conventional optical holography
requires a complex photographic process to record the interferogram pattern formed by the scattered
light from the object and a coherent beam. This makes optical holography susceptible to
environmental factors such as temperature, humidity, and light, leading to compromised imaging
quality. In response to this limitation, Brown and Lohman introduced the concept of computer-
generated holography (CGH) in 1966 [2]. In CGH, wavefront information at the hologram plane is
numerically calculated using diffraction theory, simplifying the recording process through computer
programming [3,4]. Compared with traditional optical holography, CGH not only facilitates the
reconstruction of virtual objects but also enhances imaging quality through optimization algorithms,
which greatly increases the degree of design freedom. Moreover, the integration of CGH with digital
light-field modulators, including spatial light modulators (SLM) [5] and digital micromirror devices
(DMD) [6,7], equipped with dynamic light manipulation capabilities, enables the realization of
multifunctional holography [8,9]. However, materials like phase-modulated materials with a finite
refractive index, accumulates sufficient phase changes only when the light propagates over a distance
much larger than the wavelength. Therefore, the size and thickness of the optical elements used to
construct the phase hologram become significantly larger than the wavelength, which lead to high-
order diffraction, low imaging efficiency, and limited resolution of hologram [10]. Therefore,
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identifying superior modulation materials as alternatives has become a pressing concern in the field
of optical holography.

In recent years, significant progress in nanofabrication technology holds the potential to
revolutionize holography. Metasurfaces [11-19], as two-dimensional(2D) forms of metamaterials,
typically comprise arrays of subwavelength planar optical elements with spatial geometric
variations. In comparison to digital light-field modulators and metamaterials, metasurfaces not only
have the powerful ability to modulate optical properties on the sub-wavelength scales, but also offers
advantages such as low absorption loss, lower fabrication difficulty, ultra-thinness, and small pixel
size. Metasurfaces provide a new perspective for the design of various optical devices, such as orbital
angular momentum devices [20-24], cloak devices [25-31], and ultra-thin planar lenses [32-34] and
spectroscopes [35,36]. A cutting-edge application of nanotechnology is the combination of
metasurface and CGH, which composes metasurfaces by mapping CGH-generated holograms based
on the local scattering properties of pre-designed nanostructures to realize holography. Metasurface
holography offers several advantages over previous holographic implementations, such as higher
spatial resolution, low noise, larger frequency bandwidth, and elimination of unwanted diffraction
levels [37,38]. Consequently, metasurfaces are considered promising devices for applications such as
display, imaging, encryption, etc.

Recently, with the proposal of multiplexing and reconfigurable metasurfaces, metasurface
holography has gradually transitioned from passive to active elements. This transition has sparked
noteworthy research, and we present a comprehensive overview of the progression from single
metasurface holography to multiplexed and reconfigurable metasurface holography. In section 2, we
introduced phase-only, amplitude-only and complex amplitude holography. In section 3, we focus
on orbital angular momentum multiplexed metasurface holography, including the theoretical design
and application. The subsequent discussion extends to angle-selective, wavelength-selective, and
polarization-selective multiplexed metasurface holography. In the next section, we offer an in-depth
review of the design theory and applications of reconfigurable metasurface holography, emphasizing
the integration of electrically tunable metasurfaces with machine learning techniques. In the last
section, we provide an overview of the future research perspectives and the challenges that lie ahead
in the realm of metasurface holography.

2. Single metasurface holography

Metasurface holography is categorized into three types based on the distinction between the
metasurface and electromagnetic modulation component in Computer-Generated Holography
(CGH): phase-only metasurface holography, amplitude-only metasurface holography and complex
amplitude metasurface holography.

2.1. Phase-only metasurface holography

The wavefront profiles of phase-only metasurface holograms can be generated by Gerchberg-
Saxton (GS) or point source algorithms. These algorithms simulate the diffuse reflection of objects by
incorporating random phase masks to achieve a uniform amplitude distribution. Among various
types of metasurfaces, geometric metasurfaces based on the Pancharatnam-Berry (PB) principle
exhibit excellent phase control capabilities. The abrupt phases related to the direction of spatial
change are frequency-independent (dispersion-free) and completely depend on the orientation angle
of the antenna [39,40]. Huang et al. [41] demonstrated a metasurface hologram by the geometric phase
principle, as shown in Figure la. For circularly polarized incident light, the metasurface hologram
can achieve the expected phase distribution in the orthogonal circularly polarized output light, and
a 3D reconstructed image with resolution, large field of view, and no multi-order diffraction and
twinning is displayed. However, the inherent ohmic loss in plasmonic materials will cause the
inefficient diffraction of the proposed visible wavelength hologram. To solve this problem, Zheng et
al. [42] demonstrated a reflective geometrical metasurface hologram based on grounded metal planes.
As shown in Figure 1b, the hologram has diffraction efficiency of 80% at 825 nm and ultra-high
bandwidth from 630 nm to 1050 nm. Notably, these geometric metasurface holograms can withstand
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up to 10% fabrication defects, including shape deformation and phase noise, which greatly reduces
fabrication difficulties.

2.2. Amplitude-only metasurface holography

Amplitude, as optical field component, also can be regarded as one of the degrees of freedom in
the design of metasurface holography. In amplitude-only metasurface holography, the local
transmission or reflection amplitude of each meta-atoms can be quantitatively divided into different
levels. The simplest and common strategy is to assume only two amplitude values, 0 and 1. Butt et
al. [43] used vertically aligned arrays of multi-walled carbon nanotubes as pixels to realize a binary
amplitude hologram, as shown in Figure 1c. However, the binary hologram mentioned above suffers
from the twin image problem. To solve this problem, Huang et al. [44] analyzed the diffraction field
of a large number of subwavelength photon sieves, and then used the genetic algorithm (GA) for
optimization to achieve a uniform, twin-free, and highly efficient binary amplitude hologram, as
shown in Figure 1d. However, the information storage capacity of binary holograms is inefficient. To
solve this problem, Walther et al. [45] tuned the transmission coefficient through the microscopic
description of nanoholes in metal films of different sizes, and demonstrated multistage amplitude
holography at two wavelengths, where such holes perforated in a metal film, which can be
approximated by holes perforated in a metal film as components of a dipole emitter.
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Figure 1. Phase-only and amplitude-only metasurface holography. (a) Schematic of three-
dimensional optical holography using a plasmonic metasurface [41]. (b) Schematic of Metasurface
holograms reaching 80% efficiency [43]. (c) Schematic of carbon nanotube based high resolution
holograms [43]. (d) Schematic of Ultrahigh-capacity non-periodic photon sieves operating in visible
light [44].

2.3. Complex amplitude metasurface holography

In fact, in order to reconstruct high-quality image without losing any information, the realization
of an arbitrary complex wavefront requires simultaneous modulation of phase and amplitude. Based
on the Babinet principle, Shalaev et al. [37] proposed a V-shaped nanoantenna with two levels of
amplitude and eight levels of phase modulation, and realized the reconstruction image with high-
resolution, low-noise in the visible range, as shown in Figure 2a. However, the bandwidth for
plasmon resonance-tuned metasurface based on the symmetric and antisymmetric resonance modes
is very limited. Wang et al. [46] used a CSRR with broadband characteristics as the basic meta-atom,
and simultaneously manipulated the amplitude and phase of the outgoing orthogonally polarized
linear wave by changing the geometrical parameters (radius 7, splitangle & and orientation angle
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@). The complex amplitude hologram with five levels of amplitude modulation and eight levels of
phase modulation is shown in Figure 2b.
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Figure 2. Complex amplitude metasurface holography. (a) The V-shaped meta-atom and schematic
of metasurface holograms for visible light [37]. (b) The CSRR meta-atom and schematic of broadband
metasurface holograms: toward complete phase and amplitude engineering [46]. (c¢) The X-shaped
meta-atom and schematic of complete amplitude and phase control of light using broadband
holographic metasurfaces [47]. (d) The X-shaped meta-atom and Schematic of dielectric metasurfaces
for complete and independent control of the optical amplitude and phase [48].

Another strategy for realizing complex amplitude modulation is to expand the geometrical
metasurface. Lee et al. [47] proposed an X-shaped meta-atom that could provide two independent
modes of PB phase superposition to independently and completely control the amplitude and phase
distributions at subwavelength spatial resolution. As shown in Figure 2c, the experimental
demonstration at visible wavelengths was realized based on this meta-atom. In addition, Overvig
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et al. [48] proposed a dielectric metasurface composed of meta-atoms with different forms of
birefringence and rotation angles. As shown in Figure 2d, metasurfaces control the amplitude by
structurally birefringent meta-atoms changing the conversion efficiency of one-handed circularly
polarized light to backhandedly polarized circularly polarized light, and the phase by the in-plane
orientation of the meta-atoms.

3. Multiplexed metasurface holography

With the potential of huge spatial bandwidth product and information capability, metasurfaces
are very suitable for developing multiplexing techniques based on different optical properties. In this
section, we present recent advances in multiplexed metasurface holography, including OAM-
multiplexed, wavelength-multiplexed, angle-of-incidence-multiplexed and polarization-multiplexed
metasurface holography.

3.1. Orbital angular momentum multiplexed metasurface holography

Orbital angular momentum (OAM) is of great interest as one of the fundamental physical
properties. Vortex beams with OAM have a donut-shaped intensity distribution and exhibit a helical

phase factor e’ , where [ denotes the topological charge number and ¢ denotes the azimuthal

angle. Because of the orthogonality between different OAM modes, it is considered to a perfect
approach to realize optical multiplexing, which play an important role in applications such as optical
communication [49-51], stimulated emission loss microscopy [52,53], and optical tweezers [54,55].
Recently, there have been a number of multiplexed metasurface holography techniques with OAM
as the degree of freedom proposed. In 2019, Ren et al. [56] demonstrated OAM metasurface
holography with GaN nanopillars. As shown in Figure 3a, three kinds of metasurface holograms with
discrete spatial frequency distributions have been proposed including OAM-conserving, selective
and multiplexed metasurface holograms, where OAM beams with different topological charges can
reconstruct different character images.

In addition, orthogonality makes OAM naturally have huge advantages in data encryption. In
2020, Zhou et al. [57] combined OAM and polarization selectivity, proposing a technique for
holographic information encryption and image generation using an all-media birefringent
metasurface. Interestingly, this method provides additional degrees of freedom for erasing and
modifying the holographic image, similar to the always-known stimulated emission depletion
(STED) technique in microscopy [58,59]. Furthermore, the number of topological charges between
different OAM beams is infinite, thus has tremendous potential for data storage. In 2021, Ren et al.
[60] demonstrated a momentum-space ultrahigh-dimensional large-scale OAM multiplexed
holography on the basis of complex amplitude metasurface, as shown in Figure 3c. vortex beams that
range from -50~50 OAM modes are sequentially incident on the metasurface hologram in order to
solve the orthogonal image framing problem of OAM, and two different holographic videos will be
reconstructed simultaneously in momentum space. Besides, OAM can also solve the coupling
problem of nonlinear waves. In 2021, Fang et al. [61] demonstrated a high-dimensional OAM
multiplexed nonlinear holography. As shown in Figure 3d, through combining the class II second
harmonic generation process [62], different OAM holographic images in the fundamental and second
harmonics can be reconstructed independently in the spatial frequency domain.
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Figure 3. OAM multiplexed metasurface holography. (a) Schematic of metasurface orbital angular
momentum holography by utilizing the strong orbital angular momentum selectivity offered by
meta-holograms consisting of GaN nanopillars with discrete spatial frequency distributions [56]. (b)
Schematic of OAM multiplexing in different polarization channels using a birefringent metasurface
for holographic encryption [57]. (c) Schematic of ultrahigh-dimensional OAM-multiplexed
holography based on a large-scale complex-amplitude OAM-multiplexed metasurface hologram [60].
(d) Schematic of OAM multiplexing nonlinear holography [61].

3.2. Wavelength multiplexed(colorful) metasurface holography

Conventional optical holography usually works at single frequency point because of the
limitation of the diffraction principle. However, the realization of specific optical functions at
different wavelengths is a fundamental requirement for integrated photonics, such as colorful
holographic displays. Currently, metasurface with interleaved design become an effective way for
wavelength-multiplexed and multifunctional meta-device design. In 2015, Huang et al. [63]
presented an interleaved nanoblocks structure that consisted of four subunits to achieve independent
phase modulation for linearly polarization of red, green and blue. the colorful metasurface
holography was achieved, as shown in Figure 4a. However, the orientation directions of all
nanoblocks above are the same, which makes the device only obtain a phase difference of O ~ 7z . In
order to broke this limitation, Wang et al. [64] changed the orientation angle among the nanoblocks
to achieve full-phase modulation under circular polarization, and the corresponding achromatic and
high-dispersion colorful holograms was shown in Figure 4b.

Besides, the interleaved metasurfaces can provide some control of polarization. As shown in
Figure 4c, the meta-atom consisted of two interlaced nanoblocks. Each of nanoblock could
approximately independently control the phase of specific wavelength and polarization of beam [65].
As shown in Figure 4d, the holographic images of "chameleon" in LCP green light and RCP red light
are displayed at the same time, and the color of “chameleon” will be changed by control of the
polarization of the incident wave. The realization of full color gamut holographic display has always
been a human dream, but the current color holography mainly focuses on hue and saturation, with
little exploration of luminance. Bao et al. [66] proposed a dielectric metasurface made of crystal silicon
nanoblocks. The meta-atom not only achieved a customizable coverage of the three primary colors,
but also enabled intensity control. The color gamut of holographic images was extended from 2D to
3D HSB space. Moreover, as shown in Figure 4f, a single-layer silicon metasurface can simultaneously
display arbitrary HSB color nano-printed and full-color holographic images.
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Figure 4. Wavelength multiplexed(colorful) metasurface holography. (a) lllustration of a multicolor
hologram under linearly polarized incidence in an aluminum-nanorod-based array [63]. (b)
Illustration of multiwavelength hologram in a dielectric interleaved array [64]. (c) Schematic of the
polarization-controlled color hologram in a dielectric interleaved metasurface [65]. (d) Target
holographic images for different polarization states, and the corresponding experimental measured
results, while lasers of 632.8 and 532 nm provide illumination simultaneously [65]. (e) Metasurface
for sub-micron resolution HSB color printing and full-color hologram integration [66]. (f) Comparison
between HS and HSB images, due to the lack of a brightness dimension, the HS image cannot display
the chiaroscuro information [66].

3.3. Angular multiplexed metasurface holography

In metasurface holography, plane waves (Gaussian beam excitation) are the most common type.
The plane wave imposes a constant (normal incidence) or linear gradient (titled incidence) phase on
the metasurface, and is modulated into the desired wavefront. Typically, when the angle of incident
deviates from the design, the holographic image is shifted or distorted, as shown in Figure 5a.
Currently, there are some strategies to break this limitation. In 2017, Kamali et al. [67] demonstrated
an angle-multiplexed metasurface holography composed of U-shaped dielectric resonators. As
shown in Figure 5b, it can excite symmetric and antisymmetric resonance modes at different
incidence angles, and the tremendous difference between the two modes exhibits the potential for
independent phase modulation. The proposed angle-multiplexed metasurface hologram can encode

different holographical images under 0" and 30 incidence angles with TE polarization, as shown
in Figure 5c. Similar to this principle, Shuai et al. [68] further proposed a Fabry-Platino (FP) [69]
resonator meta-atom. The discrepancy between the critical resonance lengths of the surface plasmon
and MIM nanocavity for different illumination angles allows modulating the phase and amplitude
at the same time. As shown in Figure 5d, this method enables independent encryption that displays

near-field microscopic image (3D dice) at 6, and far-field holographic image (K or Q) at 0,.
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Figure 5. Wavelength multiplexed(colorful) metasurface holography. (a) Schematic illustration of
diffraction of light by a grating at different angles. (b) Different field distributions at normal and 30°
incidence are an indication of excitation of different resonant modes under different incident angles
[67]. (c) Simulated and experimental measured holographic images captured under a 915 nm TE-
polarized laser at 0° and 30° incidence angles [67]. (d) Schematic of Independent-Encoded
Amplitude/Phase Dictionary for Angular Illumination. Different functions are created under different
illumination angles [68]. (e) Schematic illustration of functionality of the detour phase holograms.
Functionality of conventional detour phase holograms using apertures [70]. (f) Top view of a
composite composed of meta-atoms 1 and 2 and their diffraction characteristics depending on the
incident angles [70].

Besides, the angular multiplexed technique is a suitable method for independent multichannel
wavefront control. In 2020, Zhang et al. [70] combined the wraparound phase holograms with the
spatial multiplexing to record four phase profiles in a single metasurface hologram. As shown in
Figure 5e-f, four different images can be generated independently with high fidelity depending on
the incidence angle. The wavefront control scheme can be applied not only to metasurface
holographic multiplexing, but also extended to multifunctional planar optics and wearable devices.

3.4. Polarization multiplexing metasurface holography

As a transverse wave, electromagnetic wave has polarization property. Traditional CGH devices
are either polarization insensitive (diffractive optical elements) [71,72] or can only operate in specific
polarization states (liquid crystal [73]). Metasurface hologram consisting of anisotropic
subwavelength structure can provide the ability to respond differently depending on the polarization
state. This property makes them suitable for polarization multiplexed holography. In 2020, Guan et
al. [74] achieved two different information channels by manipulating the transmitted cross-polarized
and co-polarized components of a 1-bit encoded metasurface at linearly polarized incidence. The
orientation of the double-layer open ring (SR) aperture of the meta-atom was specifically designed to
be 45° or 135° to achieve the same multiplexing functionality for both x-polarized and y-polarized
incidence. A proof-of-concept experiment was demonstrated in Figure 6a, the proposed coded
metasurface holograms could project two separate holographic images at the same time without
altering the incidence state, and avoided the crosstalk between the different channels. In addition to
linearly polarization states, circularly polarization states can also be considered as a degree of
freedom for metasurface hologram. Muller et al. [75] combined geometric and propagating phase to
achieve two independent and arbitrary phase distributions for any pair of orthogonal polarization
states (linear, elliptical or circular). Muller et al. demonstrated chiral metasurface holography by the
way for left- and right-handed circularly polarization states, respectively, as shown in Figure 6b.
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Circularly polarization (CP) modulation based on geometric phase (Pancharatnam-Berry (P-B))
[76,77] has been widely explored for metasurface engineering. However, the inherent nature of the P-
B phase produces antisymmetric (equal and opposite) response properties between orthogonal CP
states, which means that the same functionality cannot be achieved under right- and left-handed
circularly polarization (RHCP and LHCP). To overcome this limitation, guan et al. [78] proposed a
polarization-free encoded metasurface to manipulate circularly polarization. The proposed design
not only overcomes the antisymmetric response properties between orthogonal circularly
polarization states, thus enabling the same functionality under illumination of right- and left-handed
circularly polarized wave and avoiding polarization transition loss, but also provides additional
degrees of freedom for controlling inertia. guan et al. designed a polarization-free multibit encoded
metasurface for realizing a helical-switching hologram in the microwave region, as shown in Figure
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Figure 6. Polarization multiplexed metasurface holography. (a) Schematic illustration of dual-
polarized multiplexed meta-holograms utilizing coding metasurface [74]. (b) Schematic diagram and
experimental realization of a cartoon dog and cat with tailored Si nanofins for orthogonal circular
polarization multiplexing [75]. (c) A co-polarization reflection coded hologram under the incidence
of x-and y-polarized plane waves [78]. (d) schematic of a multi-freedom metasurface which achieving
full-color complex-amplitude vectorial meta-hologram [79].

In addition, P-B phase methods can be combined with other modulation methods. In 2020, Deng
et al. [79] presented a multi-freedom metasurface that could simultaneously modulate phase,
polarization and amplitude independently, and further realized frequency multiplexing through k-
space engineering techniques. The multi-freedom metasurface seamlessly combined geometric
Pancharatnam-Berry phases and meander phases, both of which were frequency independent. Thus,
it allowed complex amplitude vector holograms at different frequencies based on the same design
strategy without the need for complex nanostructure searches for a large number of geometric
parameters. Based on this principle, Deng et al. demonstrated visible light full-color complex
amplitude metasurface holograms, as shown in Figure 6d.

4. Reconfigurable metasurface holography

In fact, most of the reported metasurface holography is either static or realizes several different
states by the multiplexing method described above. Recently, reconfigurable metasurfaces have been
proposed to provide the possibility of realizing arbitrary, real-time dynamic metasurface holography
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[80,81]. Reconfigurable metasurfaces integrated with various functional materials (e.g., phase-change
materials [82,83], 2D materials [84,85], electronic components [86,87], etc.) allow pixel-level
independent control of the optical properties for dynamic metasurface holography through various
modulation methods (e.g., thermal excitation, voltage bias, mechanical deformation, etc.) [88,89].
GeSbTe(GST) [90], a phase-change material widely used in optical storage and reconfigurable
photonic devices. It can be repeatedly switched between amorphous and crystalline states by thermal,
exhibiting different refractive indices and high contrast in the near- and mid-infrared spectral ranges.
By combining plasmonic metasurface with GST, Zhang et al. [91] realized switchable metasurface
holography, as shown in Figure 7a. When the GST was in the amorphous state, the holographic
images and vortex beams were performed, as shown in Figure 7b. When heating these devices, the
GST changes to crystalline state and these functions disappeared.

However, it is similar to multiplexed metasurfaces, which can only perform several functions.
Loading electronic components to achieve reconfigurable metasurface is a smarter solution. In 2017,
Cui et al. [92] designed 1-bit digital metasurface loaded with PIN diode. The digital metasurface has
both “on” and “off” scattering characteristics by varying the bias voltage on PIN diode, as shown in
Figure 7c. Therefore, various wave fronts can be dynamically manipulated by controlling the state of
meta-atom with a field-programmable gate array (FPGA). Cui et al. demonstrates an efficient active
metasurface hologram by the method, as shown in Figure 7d.
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Figure 7. Reconfigurable metasurface holography. (a) Schematic of the demonstrated switchable
photonic SOIs [91]. (b) Different optical performances of three designed meta-devices can be
switched when the GST layer is in amorphous or crystalline states [91]. (¢) The Phase and
amplitude of the digital metasurface at the state of ‘'OFF” and ‘ON’ [92]. (d) Sketch of the proposed
dynamic holographic imaging [92]. (e) Schematic diagram of the unsupervised generative adversarial
network by physically-assisted [96]. (f) Testing results of the intelligent metasurface hologram system
[96]. (8) Schematic diagram of the hologram-generating neural networks for dynamic imaging
distance [97]. (h) Simulation results of the dynamic imaging distance metasurface hologram system
[97].

Besides, electrically tunable metasurfaces with low latency and field programmability are
extremely suitable for combining with deep learning [93-95], and here have been some intelligent
dynamic holograms by this method capable of instantaneously generating arbitrary targets. In 2021,
Liu et al. [96] proposed unsupervised generative adversarial network by physically-assisted, as
shown in Figure 7e. This network, combined the physical mechanism between the electric field
distribution and the metasurface, was able to efficiently and non-iteratively design encoded
metasurface holograms. Liu et al. demonstrated the quick dynamic imaging effect of this method, as
shown in Figure 7f. In fact, deep learning has more powerful potential for hologram generation. In
2022, Zou et al. [97] considered the effect of imaging distance on the physical model, and proposed a
deep learning network that could generate holograms at the corresponding imaging distance on
demand, as shown in Figure 7g. Combined with reconfigurable metasurface by varactor diode, Zou
et al. demonstrated a 3D hologram slice display, as shown in Figure 7h.

5. Discussion and outlook

In summary, we have explored recent advancements in multiplexed and reconfigurable
metasurface holography. Metasurfaces, capable of modulating phase, amplitude, polarization, and
various optical parameters at subwavelength scales, offer distinct advantages. In comparison to
conventional holography methods employing Spatial Light Modulators (SLM) or diffractive optical
elements, metasurface holography harnesses these attractive properties to achieve high-quality, high-
resolution holographic images across expansive fields of view. The introduction of multiplexed and
reconfigurable metasurfaces extends the functional capabilities of holography, with implications for
applications in optical storage, encryption, and holographic displays.

Dynamic control of the hologram is essential for realizing the full potential of holographic
displays, demanding an infinite number of vivid frames at a substantial frame rate. However, most
of the current metasurface holograms are static or have several functions after fabrication. Although
new techniques for dynamic control based on reprogrammable encoded metasurfaces have been
proposed, it is still very difficult to obtain in real time the ultimate holographic displays shown in
science fiction movies. The integration of electrically tunable metasurface holography and machine
learning gives us a brand-new perspective, and we believe that the ideal dynamic metasurface
holography will appear in the near future.

Funding: This work is supported by the Natural Science Foundation of China Grant No. 62171410.
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