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Abstract: It is time-consuming for acquiring complete data by fully phase encoding in two 

orthogonal directions along with one frequency encoding direction. Undersampling in the 3D k-

space is promising in accelerating such 3D MRI process. Though 3D undersampling can be 

conducted according to predefined probability density, the density based method is not optimal. 

Because of the large amount of 3D data and computational cost, it is challenging to perform data-

driven and learning-based 3D undersampling and subsequent 3D reconstruction. To tackle this 

challenge, this paper proposes a deep neural network called EEUR-Net, realized by optimizing 

specific undersampling patterns for the fully-sampled 3D k-space data. Innovatively, our 

undersampling algorithm employs an end-to-end deep learning approach to optimize phase 

encoding patterns and uses a 3D U-Net for image reconstruction of undersampled data. Through 

end-to-end training, we obtain an optimized 3D undersampling pattern, which significantly 

enhances the quality of the reconstructed image under the same acceleration factor. A series of 

experiments on a knee MRI dataset demonstrated that, in comparison to standard random uniform, 

radial, Poisson and equispaced Cartesian undersampling schemes, our end-to-end learned 

undersampling pattern considerably improves the reconstruction quality of undersampled MRI 

images. 

Keywords: deep learning; 3D MRI; k-space undersampling; image reconstruction; 3D U-Net 

 

1. Introduction 

Magnetic Resonance Imaging (MRI) is a prevalent technique in modern medical diagnostics. It 

offers clear and stable imaging, non-invasiveness, absence of ionizing radiation, high tissue contrast, 

and high resolution [1]. However, traditional MRI is not without its limitations, including prolonged 

scanning times, leading to decreased patient throughput and suboptimal patient experience [2]. Such 

constraints hinder the widespread use and further development of MRI equipment. Particularly, 

during 3D MRI scans, capturing a full 3D k-space data under inherent physical constraints is time-

consuming [3]. Undersampling the k-space data and reconstructing images from the subsampled 

data are crucial for fast MRI. Thus, accelerating the 3D MRI process is both urgent and challenging. 

Existing fast MRI techniques can be broadly categorized into parallel imaging (PI) [4]and 

compressed sensing (CS) [5]. The former captures multiple anatomical views simultaneously, while 

the latter collects fewer samples than traditional methods. Parallel imaging utilizes phased-array coils 

to reduce measurements required for image reconstruction, thereby shortening the scan duration. In 

contrast, compressed sensing leverages the sparsity or compressibility of MRI data to achieve high-

quality reconstructions with fewer samples, enabling faster imaging at reduced costs. Yet, these 

approaches have their limitations: PI is constrained by its reliance on spatially variant coil 

sensitivities, which limits the exploitation of data correlations [4], while CS depends on the sparsity 
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of data, becoming less effective at higher acceleration rates [5]. Consequently, both techniques face 

challenges in efficiently handling high acceleration factors due to these inherent limitations. 

MRI measurements represent spatial frequency transformation coefficients, also known as k-

space. Images are computed by applying the inverse Fourier transform that maps k-space data to the 

spatial domain. Medical images typically exhibit significant spatial regularities. For instance, 

intensity values change smoothly in space, barring a few boundary voxels. This regularity induces 

redundancy in k-space, providing opportunities for sub-Nyquist sampling [6]. Several Cartesian and 

non-Cartesian undersampling patterns have been proposed and were widely applied in practice, 

such as standard random uniform, radial, Poisson, or equispaced Cartesian undersampling schemes. 

These k-space undersampling strategies speed up the MRI process. 

Image reconstruction algorithms play an indispensable role in fast MRI. These algorithms aim 

to reconstruct images from undersampled k-space data. Many solutions have been proposed to 

address the inverse problem of recovering full k-space data from undersampled measurements. 

These can be broadly classified into traditional optimization algorithms and deep learning-based 

methods. Traditional algorithms deploy mathematical techniques, like compressed sensing and 

iterative reconstruction, to harness the sparsity or structure of MRI data and recover lost information. 

Classic techniques like SENSE [7], SMASH [8], and GRAPPA [9] exploit correlations between k-space 

priors and imaging system sampling properties. Other methods include nonlinear optimization 

based on low-rank [10] and total variation [11]. While these traditional algorithms are mature and 

commercially implemented, they have limitations due to insufficient, inflexible priors and somewhat 

longer reconstruction times due to iterative computation [12]. 

In recent years, deep learning-based methods have emerged as promising alternatives for MRI 

reconstruction. Leveraging the potent representational capacity of deep neural networks, these 

methods directly learn the mapping between undersampled k-space data and the corresponding 

image. Trained on vast datasets, deep learning models can capture complex image priors and 

produce high-fidelity reconstructions. End-to-end deep learning techniques excel at noise and artifact 

removal, with many methodologies based on GAN networks [13], RNN networks [14], and U-Net 

[15]. These models train on data to learn the mapping of sampled k-space measurements to image 

domain reconstructions. The aforementioned machine learning-based methods are typically 

optimized for given undersampling patterns. There are also techniques that optimize undersampling 

patterns for specified reconstruction methods. Reconstruction model performance largely depends 

on the undersampling pattern, making a good pattern pivotal in MRI tasks. 

In this paper, for 3D MRI tasks, we address the challenge of time-consuming data acquisition by 

focusing on optimizing undersampling patterns in a data-driven manner. Recognizing the limitations 

of traditional density-based undersampling methods due to extensive data volume and 

computational costs, our approach innovatively combines the optimization of undersampling 

patterns with advanced 3D reconstruction. By employing an end-to-end deep learning strategy, our 

method not only refines the undersampling pattern for enhanced image quality but also ensures 

efficiency in the MRI process.  

Our contributions include:  

1. Inspired by the unique characteristics of 3D k-space, we designed a novel 3D k-space sampling 

pattern. This pattern selectively undersamples in the two phase encoding directions while fully 

sampling in the frequency encoding direction, enabling the generation of an optimal 

undersampling pattern specifically tailored for the training dataset. 

2. We propose an end-to-end 3D undersampling and reconstruction network (EEUR-Net), where 

the integrated training process generates a learned undersampling pattern and enhances 

reconstruction, significantly improving image quality. 

3. Experiments reveal that our network performs well, with the learned undersampling pattern 

surpassing many established methods. Furthermore, the end-to-end three-dimensional 

undersampling and reconstruction approach achieves more robust and accurate results in 3D 

MRI, demonstrating impressive performance on the Stanford University 3D FSE knee dataset. 
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Future research can explore the integration with other fast MRI methods to har-ness their 

complementary advantages, further enhancing scan speeds, and advancing the miniaturization of 

MRI devices. 

2. Related Works 

The related work will be presented from the following perspectives: Firstly, we will discuss 

studies on undersampling schemes. Subsequently, we will delve into research on MRI reconstruction 

based on deep learning techniques. 

2.1. Studies on Undersampling Schemes 

High-quality MR image reconstruction can be achieved with fewer samples by undersampling 

in the k-space domain. Fan et al. [16] explored how to recover high-quality images by sparse 

representation and optimization algorithms while reducing the number of samples. Compressed 

sensing MRI methods based on random undersampling [5] examine the effects of different 

undersampling patterns and reconstruction algorithms on the quality of reconstruction, and detailed 

quantitative analysis has been carried out. Khare K et al. [17] discussed how to design effective 

sampling patterns and reconstruction algorithms to maintain image quality while reducing sampling 

time. Low-rank and sparse matrix decomposition [2] can also be used for sampling pattern 

optimization in MRI, using this decomposition method to recover high-quality images while 

reducing the quantity of sampling data.  

Convolutional Neural Networks (CNN) can also be used to optimize undersampling patterns 

using two-dimensional MRI data [18], but this method was designed for two-dimensional MRI data. 

Therefore, in 3D MRI tasks, we should consider optimizing three-dimensional undersampling 

patterns [19] to accelerate the process of MRI. 

2.2. MR Image Reconstruction Using Deep Learning 

In the existing research, Ding et al. [18] presented a deep learning-based approach that enhances 

image reconstruction in accelerated [20]MRI acquisition by refining the U-Net architecture to achieve 

better image resolution. Wang et al. [21] capitalized on deep learning techniques to expedite the 

process of 3D MRI. Their approach employs deep neural networks to learn and infer missing data, 

enabling the reconstruction of high-quality 3D images from partially sampled data. Zhang et al.  

proposed to apply of two-dimensional super-resolution techniques for the super-resolution 

reconstruction of three-dimensional MRI images, boasting superiority in texture and frequency 

information over other super-resolution methods. Han et al. [22] introduced a deep learning method 

based on both ALOHA and U-net, realizing a mapping from K-space to the image domain to expedite 

the reconstruction task in MRI image acquisition. Thus, for 3D MRI tasks, we contemplate employing 

a deep learning approach using a network model based on 3D U-Net to accomplish the reconstruction 

of three-dimensional MR images. 

3. Methods 

In the Methods section, we first present an undersampling strategy specifically for the distinct 

characteristics of three-dimensional k-space data. Subsequently, we delve into our proposed EEUR-

Net, which is an integration of the learned optimization for the undersampling scheme and the 

reconstruction process utilizing undersampled data into a singular end-to-end deep learning 

framework. For the reconstruction of the undersampled data, we use the 3D U-Net architecture. 

3.1.3. D k-space Characteristics and 3D Undersampling Scheme 

In existing MRI scanning techniques, due to inherent physical constraints, obtaining fully 

sampled data sequentially in k-space requires a significant amount of time [3]. For 2D k-space 

scanning, the data to be collected in k-space can be represented as a data matrix: K ∈ C^(N × F × P) 

[23]. For 3D k-space scanning, the data to be collected in k-space can be represented as a data matrix 
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K ∈ C^(N × F × P1 × P2)  [24]. Here, N represents the number of receiving coil arrays, F  is the 

number of frequency encoding steps, P  denotes the quantity of phase encoding, and P1  , P2 

respectively represent the first and second phase encoding quantities in 3D scanning. 

The mechanisms underlying 2D scanning and 3D scanning diverge markedly, as shown in 

Figure 1(a). In 2D scanning, imaging is conducted slice-by-slice. Initially, a radiofrequency (RF) pulse 

is employed to selectively excite a specific slice, a process termed as "Slice Selection". Subsequently, 

spatial encoding for each individual slice is achieved using frequency encoding gradients and phase 

encoding gradients, culminating in the final imaging objective. Conversely, 3D scanning omits the 

slice selection step, as shown in Figure 1(b). Instead, a volumetric region is directly excited using an 

RF pulse. The spatial encoding for this volume is accomplished using three orthogonal encoding 

gradients: one frequency encoding gradient and two phase encoding gradients. 

 

Figure 1. Scanning and undersampling scheme. (a) A diagram of 2D scanning. (b) A diagram of 3D 

scanning. (c) A diagram of full Sampling and undersampling region. (d) Our 3D Undersampling 

Scheme. 

Distinctly different from 2D k-space data, 3D k-space data comprises three spatial frequency 

axes. This 3D space encompasses a comprehensive spatial frequency domain enriched with intricate 

and detailed structural information, which is advantageous for imaging outcomes. However, this 

advantage comes at the expense of an exponentially increased scanning duration due to the expanded 

volume of data. Through an in-depth analysis of k-space characteristics, we observed that, in terms 

of energy distribution, the center of 3D k-space data exhibits a spherical concentration, as opposed to 

the circular concentration evident in 2D k-space. This most pivotal information is centralized in the 

heart of the k-space, often termed the "DC component." This central region is referred to as the 

"central k-space", while the surrounding area is designated as the "peripheral k-space". The central k-

space encapsulates data regarding contrast and the overall image impression, whereas the peripheral 

k-space captures details and edges. Given these unique features of the 3D k-space, an effective 

strategy for reconstructing high-quality images involves dense sampling within the energy-

concentrated central k-space and employing techniques such as compressed sensing or machine 
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learning-based methods to undersample the insufficiently sampled k-space, as illustrated in Figure 

1(c). 

Our proposed undersampling strategy capitalizes on the energy concentration in 3D k-space. 

For a given sparsity constraint, we opt for full sampling over a fixed-size central region and 

undersample in other areas, maintaining the sparsity constraints. This approach facilitates 

undersampling operations at a designated acceleration rate. To implement this strategy in our 

experiments, we chose to fully sample along the frequency-encoding direction and perform 

undersample encoding on the first and second phase encoding directions. Viewed from a three-

dimensional volumetric perspective, we conducted full sampling within the central cuboid region of 

the 3D k-space as depicted below, while other areas are sampled based on the optimized 

undersampling patterns, as shown in Figure 1(d). 

3.2. EEUR-Net 

In this section, we delve deeply into the architecture and compositional structure of the 

framework utilized for learning the sampling patterns as well as the image reconstruction network. 

We further elucidate the associated mathematical principles and implementation details. 

3.2.1. Overall Framework of EEUR-Net 

The diagram of our proposed overall network framework is shown in Figure 2(a), which can be 

viewed as a whole consisting of undersampling pattern optimization network and an image 

reconstruction network, and using an end-to-end training deep learning framework. Our network 

flow can be explained as follows: first, we first obtain 3D K-space data from 3D FSE Knees dataset. 

Then, the learned undersampling pattern can be obtained by the undersampling pattern optimization 

network, which in turn obtains the undersampled k-space data. Following this, an inverse Fourier 

transform results in zero-filled images, which then undergo image reconstruction via the 

reconstruction network. In the final step, the loss function is computed, and the relevant network 

parameters are updated. Through end-to-end training, we achieve an optimized learned 

undersampling pattern and superior reconstruction outcomes. 

 

Figure 2. Overall framework of EEUR-Net. (a) the proposed framework of End-to-End Optimization 

of Undersampling and Reconstruction Network (EEUR-Net). (b) the proposed framework of 

undersampling pattern optimization network. 
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The undersampling pattern optimization network framework is depicted in Figure 2(b). The 

flow of this network can be explained as follows: Firstly, we initialize the sampling pattern using 

relevant weight parameters. The 3D k-space encoding direction is composed of two phase encoding 

directions and one frequency encoding direction. Typically, undersampling is applied to the two 

phase encoding directions, while the frequency encoding direction remains fully sampled. We input 

a fixed proportion of the central fully-sampled region and, based on the given acceleration factor, 

initialize the phase encoding directions to a state of random uniform sampling. Additionally, 

independent random variables are present at each k-space location on the full-resolution grid. From 

the probability values of frequency encoding for each grid point, a 'Probabilistic Mask' is formed. A 

higher probability value indicates a greater likelihood that the particular point is selected for 

sampling. Subsequent binarization leads to the formation of a 'Binary Mask.' A value of 1 (or 0) in the 

binary mask denotes that the corresponding k-space location is (or isn't) sampled. Through end-to-

end training, by calculating the loss function and updating the network's relevant parameters, the 

probabilistic mask can be altered. This, in turn, modifies the binary mask, resulting in an optimized 

learned undersampling pattern. 

3.2.2. Related Mathematical Principle 

In the mathematical model of sampling and reconstruction, a given undersampling pattern and 

corresponding 3D k-space data can be expressed as obtaining a reconstructed image p̂  by 

minimizing the following objective function p̂= argminp ∑‖AFSjp-kj‖22j +R(p) (1) 

where p is the MR image to be reconstructed, Sj is the coil sensitivity map of the j-th coil, i is the 

number of receiving coils, F  is the three-dimensional Fourier transform,  𝐴  is the k-space 

undersampling pattern, and kj  is the k-space undersampled data of the j-th  coil. R(p)  is the 

regularization term. 

Equation 1 can also be implemented by a neural network, where we can learn a parameterized 

mapping to model the input {kj} to the output {p̂}. We represent the above mapping as p̂ = Net(kj) 

using a deep neural network. 𝐴 describes an independent (binary) random variable 𝐵  at each k-space location on a full-

resolution grid in the discrete Fourier domain. Thus, the probability mask 𝐴 forms an image of 

probability values within the k-space. A binary mask value of 1 (or 0) signifies that the corresponding 

k-space position is (or is not) sampled. 

Ours is to obtain the optimal undersampling pattern 𝐴 with fixed undersampling ratio α from 

K fully sampled data by retrospective undersampling. The mathematical formulation of this problem 

is as follows:  minA 1N ∑ Loss (pt*,pt̂(A))  Nt=1 ，  pt̂(A)=Net({Aptj* }) (2) 

where pt* is the t-th MR image reconstructed from the fully sampled k-space data {kij} by direct 

Fourier inverse transform, and the Loss()  function is defined as a loss function measuring the 

similarity between the reconstructed images, with the fully sampled data, and generates 𝐴 at a fixed 

acceleration factor α. Net() is the anti-aliasing network. By implementing the above optimization 

problem through end-to-end training, we can obtain the optimal sampling mask. We implement this 

using a deep neural network, which solves the learning problem by stochastic gradient descent. 

3.2.3. Network Architecture of EEUR-Net 

The network diagram of the EEUR-Net is illustrated in Figure 3, which provides a 

comprehensive depiction of the undersampling pattern optimization network and the image 

reconstruction network encompassed within the EEUR-Net.  
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Figure 3. Network Architecture of EEUR-Net. (a) architecture of Undersampling Pattern 

Optimization Network. (b) architecture of Reconstruction Network. (c) architecture of Conv_Block3D. 

Figure 3(a) shows the implementation details of the undersampling pattern optimization 

network. The network is capable of generating probability values at each k-space grid point and 

optimizing them, and then generating the optimized k-space undersampling pattern. Specifically, the 

input layer generates the probability value at each grid point in both phase-encoding directions as a 

probabilistics mask through an initialized weight parameter, and this probabilistics mask is then 

passed through a fully connected layer with tunable parameters to optimize the probability values. 

This layer determines the importance of a single k-space data point, with a higher probability value 

indicating a higher probability that the point will be selected for undersampling. Next is the 

binarization layer, which converts the continuous data from the fully connected layer into binarized 

data. The output layer then generates a 3D k-space undersampling mask that is undersampled in 

both phase encoding directions and remains fully sampled in the frequency encoding direction, 

resulting in the "Binary Mask" shown in the figure. The value of the binary mask is 1(0), which 

indicates yes (no) sampling at the corresponding encoding position. Multiplying the obtained 3D k-

space undersampled mask with the k-space data becomes the undersampled k-space data, which can 

be obtained as the zero-filled image as the input of the reconstruction network after the 3D inverse 

Fourier transform. 

The reconstruction network architecture based on 3D U-Net is shown in Figure 3(b), where each 

vertical blue line represents an image within the image domain, alongside the results of each step of 

the processing. The grey arrows denote the "Conv_Block3D" modules, further detailed in Figure 3(c). 

Each module consists of a series of operations starting with a three-dimensional convolution, which 

expands the two-dimensional kernel of traditional convolutions into the third dimension, enabling 

the network to incorporate information from the depth of the input volume. Following the 3D 

convolution, a ReLU activation function introduces non-linearity, which is essential for the model to 

capture complex patterns within the data. Each layer of the encoding pathway in the reconstruction 

network includes a "Conv_Block3D" module, followed by a downsampling through "MaxPooling3D" 

operations. In the decoding pathway, upsampling techniques are employed to incrementally restore 

the spatial dimensions, achieved by "Upsampling3D" operations. The concatenation steps, 

symbolized by the yellow arrows, merge the upsampled features with the corresponding feature 

maps from the encoding pathway, allowing the network to preserve high-resolution features 

throughout the network. The 3D U-Net extends the conventional U-Net into the three-dimensional 
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space, enhancing its capacity for analyzing volumetric images. Our model is designed to learn the 

optimal undersampling scheme within the three-dimensional k-space. The undersampling mask is 

treated as a trainable parameter, which is updated during the training process to optimize the quality 

of the reconstructed image. 

4. Experiments and Results 

In this section, we provide a comprehensive overview of the datasets employed in the relevant 

experiments and delve into the specific implementation details. Furthermore, we present the 

experimental results, elucidating their significance in relation to established evaluation metrics.  

4.1. Dataset 

The dataset used in this study is Stanford Fully sampled 3D FSE Knees dataset [25]. The images 

in the dataset were collected from the knee joints of multiple patients and imaged using the Fast Spin 

Echo (FSE) sequence. These images were obtained by acquiring a large amount of k-space data in 

three directions: axial, coronal, and sagittal. Each image features high resolution and rich tissue 

contrast, including joint cartilage, ligaments, tendons, and surrounding tissues. 

 The dataset contains 19 volumes, collected using a 3T GE medical system scanner with an 8-

channel phased-array coil. A notable characteristic of the Stanford Fully sampled 3D FSE Knees 

dataset is its complete sampling; that is, every k-space sampling point is measured, without involving 

any undersampling techniques.  

While there are many 2D MRI databases, 3D databases are scarce. This makes the dataset an 

ideal choice for evaluating and comparing different reconstruction algorithms, providing a 

benchmark to measure the reconstruction quality and accuracy of other methods. Utilizing this 

dataset, our study aims to investigate and develop end-to-end sampling and reconstruction methods 

for three-dimensional knee joint MRI. The availability of high-quality, fully sampled knee images 

allows us to explore these advanced algorithms that can effectively utilize the rich information 

contained within the complete k-space data. By evaluating these methods on the Stanford Fully 

sampled 3D FSE Knees dataset, we can assess their performance in terms of reconstruction 

effectiveness, evaluation metrics, and accurately capturing the complex anatomical structures within 

the knee joint. 

4.2. Implementation details 

Our research was implemented in the PyTorch framework and trained on an NVIDIA Titan Xp 

GPU. We divided the Stanford Fully sampled 3D FSE Knees dataset, consisting of 19 volumes, into 

training, validation, and test sets with 14, 3, and 2 volumes, respectively. The network optimization 

was performed using the RMSProp optimizer. We trained the network for 50 epochs with a batch 

size of 1 and an initial learning rate of 0.001. At the 40th epoch, the learning rate was reduced to 

0.0001. During training, we utilized the SSIM loss function.  

For evaluating the reconstruction results, we employed several quality metrics: structural 

similarity index (SSIM), peak signal to noise ratio (PSNR), and normalized mean squared error 

(NMSE). These metrics were used to assess the quality of the reconstructed images and provide 

quantitative measurements of their fidelity. 

SSIM indicates the degree of similarity that exists between the undersampled reconstructed 

images and fully sampled ground truth images. We use NMSE to represent the normalized mean 

square error existing between the undersampled reconstructed images and the fully sampled ground 

truth images. We can use PSNR to describe the ratio between the maximum possible energy of the 

image's intensity and the power of the noise. 

4.3. Comparison with Other methods 

4.3.1. Visualization of undersampling patterns of various methods 
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In this study, to validate the efficacy of an end-to-end learning-based approach that optimizes 

both the undersampling scheme and the reconstruction model, we conducted a comparative analysis 

with our method against several prevalent sampling techniques, all employing the same acceleration 

factor. These techniques included standard random uniform, radial, Poisson, and equispaced 

Cartesian undersampling schemes.  

Importantly, to ensure a consistent basis for comparison, all experiments utilized the 3D U-Net 

for image reconstruction of undersampled data, maintaining uniformity in the reconstruction 

methodology across different undersampling schemes. 

 

Figure 4. Visualization of undersampling patterns of various methods, specifically at 4x and 8x 

acceleration levels. The white dots represent sampled k-space points, while the black regions 

correspond to unacquired measurements. All the presented images are two-dimensional 

representations along the Phase encoding and the second Phase encoding directions. 

Notably, standard random uniform sampling, equispaced Cartesian undersampling, Poisson 

sampling, and the learned sampling pattern proposed in this paper all feature a fixed 32 x 26 fully-

sampled rectangular region at the center of the k-space, contributing to enhanced reconstruction 

performance.  

Each comparison method employed the same training dataset during their training phase, and 

evaluations for the various techniques were also conducted on a same test set. For the aforementioned 

sampling techniques, undersampling experiments were carried out at fourfold and eightfold 

acceleration rates. In both the first phase encoding and second phase encoding directions, the 

resultant undersampling patterns can be visualized in Figure 4. 

Figure 4 illustrates the undersampling patterns obtained from various acceleration rates. 

Notably, the learned undersampling pattern exhibits more sampling in the central region. This 

observation aligns well with our experimental expectations, since the center region contains more 

information that is beneficial to the reconstruction results. 

4.3.2. Quantitative Evaluation 

To quantitatively evaluate the reconstruction performance, we compared the reconstructed 

images, resulting from different undersampling methods, at 4x and 8x undersampling rates, with 

full-sampled images. The comparison metrics include Normalized Mean Square Error (NMSE), Peak 

Signal-to-Noise Ratio (PSNR), and Structural Similarity Index Measure (SSIM).  

The quantitative comparison results are shown in Tables 1 and 2. Our primary focus is on the 

SSIM metric, a highly valued measure in the MRI field. SSIM closely approximates human visual 

perception and is therefore of great significance for clinical diagnosis. 
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Table 1. Evaluation metrics of various methods at acceleration factor(AF) = 4. The methods in the 

table use the same test set. 

Method AF NMSE↓ PSNR↑ SSIM↑ 

Uniform 4 0.01712 36.44 0.9034 

Radial 4 0.02377 34.68 0.8854 

Equispaced 4 0.02198 35.32 0.8979 

Poisson 4 0.01928 36.71 0.9123 

EEUR-Net (Ours) 4 0.01013 38.65 0.9324 

Table 2. Evaluation metrics of various methods at acceleration factor(AF) = 8. The methods in the 

table use the same test set. 

Method AF NMSE↓ PSNR↑ SSIM↑ 

Uniform 8 0.0597 33.67 0.8896 

Radial 8 0.07092 32.71 0.867 

Equispaced 8 0.05505 33.45 0.8774 

Poisson 8 0.4762 34.88 0.8921 

EEUR-Net (Ours) 8 0.02484 36.67 0.9109 

In the experiments with 4x acceleration, our method achieved the best SSIM value of 0.9324. 

Compared to the baseline (random uniform sampling), our method increased the SSIM by 0.029 and 

improved the PSNR by 2.21 dB. For the 8x acceleration experiments, our method recorded an optimal 

SSIM of 0.9109, an improvement of 0.0213 over the baseline SSIM, and a PSNR enhancement of 3 dB. 

From the above metrics, it's evident that the approach proposed in this paper delivers superior 

performance in terms of NMSE, PSNR, and SSIM. This highlights the efficacy of our proposed EEUR-

Net, designed to simultaneously optimize the undersampling scheme and the reconstruction process, 

in achieving optimal sampling patterns and reconstruction outcomes. In summary, our method 

demonstrates excellent performance on the 3D FSE knee dataset. 

4.3.3. Qualitative Evaluation 

The resulting images from different sampling methods at 4x and 8x acceleration are illustrated 

in Figure 5. All experiments employed the 3D U-Net for image reconstruction of undersampled data. 

From the image reconstruction results, the learned undersampling pattern generated by this 

method (EEUR-Net) can produce higher quality reconstruction than other widely used 

undersampling patterns, with less aliasing artifacts than other methods, and the reconstruction 

results better preserved image details, with significant improvement in the visualization of the main 

structures of the knee joint. 
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Figure 5. The reconstruction results. Displayed are the reconstructed images corresponding to 

different ac-celeration factors from various sampling strategies: standard random uniform, radial, 

Poisson, or equispaced Cartesian undersampling schemes, and optimized learned undersampling 

pattern de-rived from our study. At the very top is the image derived from full sampling (referred to 

as the “Truth”). The two subsequent rows depict the reconstruction outcomes at fourfold and 
eightfold acceleration, respectively. 

In order to provide a more direct and visual observation of the effect of each network 

reconstruction, we displayed additional three sets of reconstruction results in Figure 6, all of which 

were reconstructed using the 3D U-Net. Examining the results of reconstructed images, it is evident 

that the results produced by our method (EEUR-Net) are superior, with the clearest reconstruction of 

image details and the least artifacts. This demonstrates that the learned undersampling pattern can 

yield higher-quality reconstructions compared to other widely utilized undersampling masks. The 

end-to-end optimization of undersampling significantly contributes to the improvement of image 

reconstruction quality. 
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Figure 6. Additional three sets of reconstruction results. Displayed are the reconstructed images 

corresponding to different acceleration factors from various sampling strategies: standard random 

uniform, radial, Poisson, or equispaced Cartesian undersampling schemes, and optimized learned 

undersampling pattern derived from our study. At the very top is the image derived from full 

sampling (referred to as the “Truth”). The two subsequent rows depict the reconstruction outcomes 
at fourfold and eightfold acceleration, respectively. 

5. Discussion and Conclusions 

The undersampling in 3D k-space significantly accelerates the 3D MRI process. In this paper, we 

introduce the EEUR-Net, a network capable ofgenerating specific 3D undersampling patterns by 

optimizing phase encoding from a data-driven perspective, thus enhancing undersampling efficiency 

in 3D k-space. The EEUR-Net can be holistically viewed as a fusion of an undersampling scheme 

optimization network and an image reconstruction network using an end-to-end deep learning 

framework. We derive optimized undersampling patterns through the undersampling scheme 

optimization network, and perform image reconstruction using the 3D U-Net network. This 

methodology, adopting an end-to-end learning strategy, concurrently optimizes both the 

undersampling pattern and the reconstruction model, aiming for robust and precise sampling and 

reconstruction in 3D MRI. 
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For tasks involving 3D magnetic resonance reconstruction, we embraced a data-driven 

approach, leveraging the unique properties of 3D k-space data, and proposed an integrated end-to-

end undersampling and reconstruction strategy. Joint training of the k-space undersampling network 

and the reconstruction network allows our method to efficiently generate optimized undersampling 

patterns. Experiments on the 3D FSE Knees dataset demonstrated that our undersampling patterns 

achieve superior reconstruction quality compared to other commonly used undersampling masks, 

exhibiting exceptional results at 4x and 8x acceleration rates. Looking forward, we plan to explore 

deeper into the properties of k-space data to further enhance undersampling efficiency. Additionally, 

the exploration of advanced data-driven undersampling techniques [26], in conjunction with more 

sophisticated network architectures, presents an exciting avenue for faster and more accurate 

reconstruction performance in future research. 
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