Pre prints.org

Article Not peer-reviewed version

EEUR-Net: End-to-End Optimization of
Undersampling and Reconstruction
Network for 3D Magnetic Resonance
Imaging

Quan Dong,* , Yiming Liu, Jing Xiao , Yanwei Pang

Posted Date: 1 December 2023
doi: 10.20944/preprints202311.1988.v1

Keywords: deep learning; 3D MRI; k-space undersampling; image reconstruction; 3D U-Net

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/3204285
https://sciprofiles.com/profile/1584119
https://sciprofiles.com/profile/776550

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 December 2023 doi:10.20944/preprints202311.1988.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

EEUR-Net: End-to-End Optimization of
Undersampling and Reconstruction Network for 3D
Magnetic Resonance Imaging

Quan Dong *, Yiming Liu 2, Jing Xiao ? and Yanwei Pang !

1 TJK-BIIT Lab, School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China

2 Tiandatz Technology Co., Ltd, Tianjin 301723, China

3 Department of Economic Management, Hebei Chemical and Pharmaceutical College, Shijiazhuang 050026,
Hebei, China

* Correspondence: dongquan@tju.edu.cn

Abstract: It is time-consuming for acquiring complete data by fully phase encoding in two
orthogonal directions along with one frequency encoding direction. Undersampling in the 3D k-
space is promising in accelerating such 3D MRI process. Though 3D undersampling can be
conducted according to predefined probability density, the density based method is not optimal.
Because of the large amount of 3D data and computational cost, it is challenging to perform data-
driven and learning-based 3D undersampling and subsequent 3D reconstruction. To tackle this
challenge, this paper proposes a deep neural network called EEUR-Net, realized by optimizing
specific undersampling patterns for the fully-sampled 3D k-space data. Innovatively, our
undersampling algorithm employs an end-to-end deep learning approach to optimize phase
encoding patterns and uses a 3D U-Net for image reconstruction of undersampled data. Through
end-to-end training, we obtain an optimized 3D undersampling pattern, which significantly
enhances the quality of the reconstructed image under the same acceleration factor. A series of
experiments on a knee MRI dataset demonstrated that, in comparison to standard random uniform,
radial, Poisson and equispaced Cartesian undersampling schemes, our end-to-end learned
undersampling pattern considerably improves the reconstruction quality of undersampled MRI
images.

Keywords: deep learning; 3D MRI; k-space undersampling; image reconstruction; 3D U-Net

1. Introduction

Magnetic Resonance Imaging (MRI) is a prevalent technique in modern medical diagnostics. It
offers clear and stable imaging, non-invasiveness, absence of ionizing radiation, high tissue contrast,
and high resolution [1]. However, traditional MRI is not without its limitations, including prolonged
scanning times, leading to decreased patient throughput and suboptimal patient experience [2]. Such
constraints hinder the widespread use and further development of MRI equipment. Particularly,
during 3D MRI scans, capturing a full 3D k-space data under inherent physical constraints is time-
consuming [3]. Undersampling the k-space data and reconstructing images from the subsampled
data are crucial for fast MRI. Thus, accelerating the 3D MRI process is both urgent and challenging.

Existing fast MRI techniques can be broadly categorized into parallel imaging (PI) [4]and
compressed sensing (CS) [5]. The former captures multiple anatomical views simultaneously, while
the latter collects fewer samples than traditional methods. Parallel imaging utilizes phased-array coils
to reduce measurements required for image reconstruction, thereby shortening the scan duration. In
contrast, compressed sensing leverages the sparsity or compressibility of MRI data to achieve high-
quality reconstructions with fewer samples, enabling faster imaging at reduced costs. Yet, these
approaches have their limitations: PI is constrained by its reliance on spatially variant coil
sensitivities, which limits the exploitation of data correlations [4], while CS depends on the sparsity
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of data, becoming less effective at higher acceleration rates [5]. Consequently, both techniques face
challenges in efficiently handling high acceleration factors due to these inherent limitations.

MRI measurements represent spatial frequency transformation coefficients, also known as k-
space. Images are computed by applying the inverse Fourier transform that maps k-space data to the
spatial domain. Medical images typically exhibit significant spatial regularities. For instance,
intensity values change smoothly in space, barring a few boundary voxels. This regularity induces
redundancy in k-space, providing opportunities for sub-Nyquist sampling [6]. Several Cartesian and
non-Cartesian undersampling patterns have been proposed and were widely applied in practice,
such as standard random uniform, radial, Poisson, or equispaced Cartesian undersampling schemes.
These k-space undersampling strategies speed up the MRI process.

Image reconstruction algorithms play an indispensable role in fast MRI. These algorithms aim
to reconstruct images from undersampled k-space data. Many solutions have been proposed to
address the inverse problem of recovering full k-space data from undersampled measurements.
These can be broadly classified into traditional optimization algorithms and deep learning-based
methods. Traditional algorithms deploy mathematical techniques, like compressed sensing and
iterative reconstruction, to harness the sparsity or structure of MRI data and recover lost information.
Classic techniques like SENSE [7], SMASH [8], and GRAPPA [9] exploit correlations between k-space
priors and imaging system sampling properties. Other methods include nonlinear optimization
based on low-rank [10] and total variation [11]. While these traditional algorithms are mature and
commercially implemented, they have limitations due to insufficient, inflexible priors and somewhat
longer reconstruction times due to iterative computation [12].

In recent years, deep learning-based methods have emerged as promising alternatives for MRI
reconstruction. Leveraging the potent representational capacity of deep neural networks, these
methods directly learn the mapping between undersampled k-space data and the corresponding
image. Trained on vast datasets, deep learning models can capture complex image priors and
produce high-fidelity reconstructions. End-to-end deep learning techniques excel at noise and artifact
removal, with many methodologies based on GAN networks [13], RNN networks [14], and U-Net
[15]. These models train on data to learn the mapping of sampled k-space measurements to image
domain reconstructions. The aforementioned machine learning-based methods are typically
optimized for given undersampling patterns. There are also techniques that optimize undersampling
patterns for specified reconstruction methods. Reconstruction model performance largely depends
on the undersampling pattern, making a good pattern pivotal in MRI tasks.

In this paper, for 3D MRI tasks, we address the challenge of time-consuming data acquisition by
focusing on optimizing undersampling patterns in a data-driven manner. Recognizing the limitations
of traditional density-based undersampling methods due to extensive data volume and
computational costs, our approach innovatively combines the optimization of undersampling
patterns with advanced 3D reconstruction. By employing an end-to-end deep learning strategy, our
method not only refines the undersampling pattern for enhanced image quality but also ensures
efficiency in the MRI process.

Our contributions include:

1. Inspired by the unique characteristics of 3D k-space, we designed a novel 3D k-space sampling
pattern. This pattern selectively undersamples in the two phase encoding directions while fully
sampling in the frequency encoding direction, enabling the generation of an optimal
undersampling pattern specifically tailored for the training dataset.

2. We propose an end-to-end 3D undersampling and reconstruction network (EEUR-Net), where
the integrated training process generates a learned undersampling pattern and enhances
reconstruction, significantly improving image quality.

3. Experiments reveal that our network performs well, with the learned undersampling pattern
surpassing many established methods. Furthermore, the end-to-end three-dimensional
undersampling and reconstruction approach achieves more robust and accurate results in 3D
MRI, demonstrating impressive performance on the Stanford University 3D FSE knee dataset.
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Future research can explore the integration with other fast MRI methods to har-ness their
complementary advantages, further enhancing scan speeds, and advancing the miniaturization of
MRI devices.

2. Related Works

The related work will be presented from the following perspectives: Firstly, we will discuss
studies on undersampling schemes. Subsequently, we will delve into research on MRI reconstruction
based on deep learning techniques.

2.1. Studies on Undersampling Schemes

High-quality MR image reconstruction can be achieved with fewer samples by undersampling
in the k-space domain. Fan et al. [16] explored how to recover high-quality images by sparse
representation and optimization algorithms while reducing the number of samples. Compressed
sensing MRI methods based on random undersampling [5] examine the effects of different
undersampling patterns and reconstruction algorithms on the quality of reconstruction, and detailed
quantitative analysis has been carried out. Khare K et al. [17] discussed how to design effective
sampling patterns and reconstruction algorithms to maintain image quality while reducing sampling
time. Low-rank and sparse matrix decomposition [2] can also be used for sampling pattern
optimization in MRI, using this decomposition method to recover high-quality images while
reducing the quantity of sampling data.

Convolutional Neural Networks (CNN) can also be used to optimize undersampling patterns
using two-dimensional MRI data [18], but this method was designed for two-dimensional MRI data.
Therefore, in 3D MRI tasks, we should consider optimizing three-dimensional undersampling
patterns [19] to accelerate the process of MRL

2.2. MR Image Reconstruction Using Deep Learning

In the existing research, Ding et al. [18] presented a deep learning-based approach that enhances
image reconstruction in accelerated [20]MRI acquisition by refining the U-Net architecture to achieve
better image resolution. Wang et al. [21] capitalized on deep learning techniques to expedite the
process of 3D MRI. Their approach employs deep neural networks to learn and infer missing data,
enabling the reconstruction of high-quality 3D images from partially sampled data. Zhang et al.
proposed to apply of two-dimensional super-resolution techniques for the super-resolution
reconstruction of three-dimensional MRI images, boasting superiority in texture and frequency
information over other super-resolution methods. Han et al. [22] introduced a deep learning method
based on both ALOHA and U-net, realizing a mapping from K-space to the image domain to expedite
the reconstruction task in MRI image acquisition. Thus, for 3D MRI tasks, we contemplate employing
a deep learning approach using a network model based on 3D U-Net to accomplish the reconstruction
of three-dimensional MR images.

3. Methods

In the Methods section, we first present an undersampling strategy specifically for the distinct
characteristics of three-dimensional k-space data. Subsequently, we delve into our proposed EEUR-
Net, which is an integration of the learned optimization for the undersampling scheme and the
reconstruction process utilizing undersampled data into a singular end-to-end deep learning
framework. For the reconstruction of the undersampled data, we use the 3D U-Net architecture.

3.1.3. D k-space Characteristics and 3D Undersampling Scheme

In existing MRI scanning techniques, due to inherent physical constraints, obtaining fully
sampled data sequentially in k-space requires a significant amount of time [3]. For 2D k-space
scanning, the data to be collected in k-space can be represented as a data matrix: K € C*(N X F x P)
[23]. For 3D k-space scanning, the data to be collected in k-space can be represented as a data matrix
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K e CM(N x F x P1 x P2) [24]. Here, N represents the number of receiving coil arrays, F is the
number of frequency encoding steps, P denotes the quantity of phase encoding, and P1 , P2
respectively represent the first and second phase encoding quantities in 3D scanning.

The mechanisms underlying 2D scanning and 3D scanning diverge markedly, as shown in
Figure 1(a). In 2D scanning, imaging is conducted slice-by-slice. Initially, a radiofrequency (RF) pulse
is employed to selectively excite a specific slice, a process termed as "Slice Selection". Subsequently,
spatial encoding for each individual slice is achieved using frequency encoding gradients and phase
encoding gradients, culminating in the final imaging objective. Conversely, 3D scanning omits the
slice selection step, as shown in Figure 1(b). Instead, a volumetric region is directly excited using an
RF pulse. The spatial encoding for this volume is accomplished using three orthogonal encoding
gradients: one frequency encoding gradient and two phase encoding gradients.
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Figure 1. Scanning and undersampling scheme. (a) A diagram of 2D scanning. (b) A diagram of 3D
scanning. (c) A diagram of full Sampling and undersampling region. (d) Our 3D Undersampling
Scheme.

Distinctly different from 2D k-space data, 3D k-space data comprises three spatial frequency
axes. This 3D space encompasses a comprehensive spatial frequency domain enriched with intricate
and detailed structural information, which is advantageous for imaging outcomes. However, this
advantage comes at the expense of an exponentially increased scanning duration due to the expanded
volume of data. Through an in-depth analysis of k-space characteristics, we observed that, in terms
of energy distribution, the center of 3D k-space data exhibits a spherical concentration, as opposed to
the circular concentration evident in 2D k-space. This most pivotal information is centralized in the
heart of the k-space, often termed the "DC component." This central region is referred to as the
"central k-space”, while the surrounding area is designated as the "peripheral k-space". The central k-
space encapsulates data regarding contrast and the overall image impression, whereas the peripheral
k-space captures details and edges. Given these unique features of the 3D k-space, an effective
strategy for reconstructing high-quality images involves dense sampling within the energy-
concentrated central k-space and employing techniques such as compressed sensing or machine
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learning-based methods to undersample the insufficiently sampled k-space, as illustrated in Figure
1(c).

Our proposed undersampling strategy capitalizes on the energy concentration in 3D k-space.
For a given sparsity constraint, we opt for full sampling over a fixed-size central region and
undersample in other areas, maintaining the sparsity constraints. This approach facilitates
undersampling operations at a designated acceleration rate. To implement this strategy in our
experiments, we chose to fully sample along the frequency-encoding direction and perform
undersample encoding on the first and second phase encoding directions. Viewed from a three-
dimensional volumetric perspective, we conducted full sampling within the central cuboid region of
the 3D k-space as depicted below, while other areas are sampled based on the optimized
undersampling patterns, as shown in Figure 1(d).

3.2. EEUR-Net

In this section, we delve deeply into the architecture and compositional structure of the
framework utilized for learning the sampling patterns as well as the image reconstruction network.
We further elucidate the associated mathematical principles and implementation details.

3.2.1. Overall Framework of EEUR-Net

The diagram of our proposed overall network framework is shown in Figure 2(a), which can be
viewed as a whole consisting of undersampling pattern optimization network and an image
reconstruction network, and using an end-to-end training deep learning framework. Our network
flow can be explained as follows: first, we first obtain 3D K-space data from 3D FSE Knees dataset.
Then, the learned undersampling pattern can be obtained by the undersampling pattern optimization
network, which in turn obtains the undersampled k-space data. Following this, an inverse Fourier
transform results in zero-filled images, which then undergo image reconstruction via the
reconstruction network. In the final step, the loss function is computed, and the relevant network
parameters are updated. Through end-to-end training, we achieve an optimized learned
undersampling pattern and superior reconstruction outcomes.
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(a) The proposed framework of End-to-End Optimization of Undersampling and Reconstruction Network (EEUR-Net)
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(b) Undersampling Pattern Optimization Network

Figure 2. Overall framework of EEUR-Net. (a) the proposed framework of End-to-End Optimization
of Undersampling and Reconstruction Network (EEUR-Net). (b) the proposed framework of
undersampling pattern optimization network.
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The undersampling pattern optimization network framework is depicted in Figure 2(b). The
flow of this network can be explained as follows: Firstly, we initialize the sampling pattern using
relevant weight parameters. The 3D k-space encoding direction is composed of two phase encoding
directions and one frequency encoding direction. Typically, undersampling is applied to the two
phase encoding directions, while the frequency encoding direction remains fully sampled. We input
a fixed proportion of the central fully-sampled region and, based on the given acceleration factor,
initialize the phase encoding directions to a state of random uniform sampling. Additionally,
independent random variables are present at each k-space location on the full-resolution grid. From
the probability values of frequency encoding for each grid point, a Probabilistic Mask' is formed. A
higher probability value indicates a greater likelihood that the particular point is selected for
sampling. Subsequent binarization leads to the formation of a 'Binary Mask." A value of 1 (or 0) in the
binary mask denotes that the corresponding k-space location is (or isn't) sampled. Through end-to-
end training, by calculating the loss function and updating the network's relevant parameters, the
probabilistic mask can be altered. This, in turn, modifies the binary mask, resulting in an optimized
learned undersampling pattern.

3.2.2. Related Mathematical Principle

In the mathematical model of sampling and reconstruction, a given undersampling pattern and
corresponding 3D k-space data can be expressed as obtaining a reconstructed image p by
minimizing the following objective function

~ . I 2
p= argmin ) [[AFSp-k |} +R(p) M
]

where p is the MR image to be reconstructed, S; is the coil sensitivity map of the j-th coil, i is the
number of receiving coils, F is the three-dimensional Fourier transform, A is the k-space
undersampling pattern, and k; is the k-space undersampled data of the j-th coil. R(p) is the
regularization term.

Equation 1 can also be implemented by a neural network, where we can learn a parameterized
mapping to model the input {k;} to the output {p}. We represent the above mapping as p = Net(k;)
using a deep neural network.

A describes an independent (binary) random variable B at each k-space location on a full-
resolution grid in the discrete Fourier domain. Thus, the probability mask A forms an image of
probability values within the k-space. A binary mask value of 1 (or 0) signifies that the corresponding
k-space position is (or is not) sampled.

Ours is to obtain the optimal undersampling pattern A with fixed undersampling ratio a from
K fully sampled data by retrospective undersampling. The mathematical formulation of this problem
is as follows:

min <3N, Loss (pLB(A)) - Bi(A)=Net({Apy}) )

where p; is the t-th MR image reconstructed from the fully sampled k-space data {k;} by direct
Fourier inverse transform, and the Loss() function is defined as a loss function measuring the
similarity between the reconstructed images, with the fully sampled data, and generates A at a fixed
acceleration factor a. Net() is the anti-aliasing network. By implementing the above optimization
problem through end-to-end training, we can obtain the optimal sampling mask. We implement this
using a deep neural network, which solves the learning problem by stochastic gradient descent.

3.2.3. Network Architecture of EEUR-Net

The network diagram of the EEUR-Net is illustrated in Figure 3, which provides a
comprehensive depiction of the undersampling pattern optimization network and the image
reconstruction network encompassed within the EEUR-Net.
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Figure 3. Network Architecture of EEUR-Net. (a) architecture of Undersampling Pattern
Optimization Network. (b) architecture of Reconstruction Network. (c) architecture of Conv_Block3D.

Figure 3(a) shows the implementation details of the undersampling pattern optimization
network. The network is capable of generating probability values at each k-space grid point and
optimizing them, and then generating the optimized k-space undersampling pattern. Specifically, the
input layer generates the probability value at each grid point in both phase-encoding directions as a
probabilistics mask through an initialized weight parameter, and this probabilistics mask is then
passed through a fully connected layer with tunable parameters to optimize the probability values.
This layer determines the importance of a single k-space data point, with a higher probability value
indicating a higher probability that the point will be selected for undersampling. Next is the
binarization layer, which converts the continuous data from the fully connected layer into binarized
data. The output layer then generates a 3D k-space undersampling mask that is undersampled in
both phase encoding directions and remains fully sampled in the frequency encoding direction,
resulting in the "Binary Mask" shown in the figure. The value of the binary mask is 1(0), which
indicates yes (no) sampling at the corresponding encoding position. Multiplying the obtained 3D k-
space undersampled mask with the k-space data becomes the undersampled k-space data, which can
be obtained as the zero-filled image as the input of the reconstruction network after the 3D inverse
Fourier transform.

The reconstruction network architecture based on 3D U-Net is shown in Figure 3(b), where each
vertical blue line represents an image within the image domain, alongside the results of each step of
the processing. The grey arrows denote the "Conv_Block3D" modules, further detailed in Figure 3(c).
Each module consists of a series of operations starting with a three-dimensional convolution, which
expands the two-dimensional kernel of traditional convolutions into the third dimension, enabling
the network to incorporate information from the depth of the input volume. Following the 3D
convolution, a ReLU activation function introduces non-linearity, which is essential for the model to
capture complex patterns within the data. Each layer of the encoding pathway in the reconstruction
network includes a "Conv_Block3D" module, followed by a downsampling through "MaxPooling3D"
operations. In the decoding pathway, upsampling techniques are employed to incrementally restore
the spatial dimensions, achieved by "Upsampling3D" operations. The concatenation steps,
symbolized by the yellow arrows, merge the upsampled features with the corresponding feature
maps from the encoding pathway, allowing the network to preserve high-resolution features
throughout the network. The 3D U-Net extends the conventional U-Net into the three-dimensional
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space, enhancing its capacity for analyzing volumetric images. Our model is designed to learn the
optimal undersampling scheme within the three-dimensional k-space. The undersampling mask is
treated as a trainable parameter, which is updated during the training process to optimize the quality
of the reconstructed image.

4. Experiments and Results

In this section, we provide a comprehensive overview of the datasets employed in the relevant
experiments and delve into the specific implementation details. Furthermore, we present the
experimental results, elucidating their significance in relation to established evaluation metrics.

4.1. Dataset

The dataset used in this study is Stanford Fully sampled 3D FSE Knees dataset [25]. The images
in the dataset were collected from the knee joints of multiple patients and imaged using the Fast Spin
Echo (FSE) sequence. These images were obtained by acquiring a large amount of k-space data in
three directions: axial, coronal, and sagittal. Each image features high resolution and rich tissue
contrast, including joint cartilage, ligaments, tendons, and surrounding tissues.

The dataset contains 19 volumes, collected using a 3T GE medical system scanner with an 8-
channel phased-array coil. A notable characteristic of the Stanford Fully sampled 3D FSE Knees
dataset is its complete sampling; that is, every k-space sampling point is measured, without involving
any undersampling techniques.

While there are many 2D MRI databases, 3D databases are scarce. This makes the dataset an
ideal choice for evaluating and comparing different reconstruction algorithms, providing a
benchmark to measure the reconstruction quality and accuracy of other methods. Utilizing this
dataset, our study aims to investigate and develop end-to-end sampling and reconstruction methods
for three-dimensional knee joint MRI. The availability of high-quality, fully sampled knee images
allows us to explore these advanced algorithms that can effectively utilize the rich information
contained within the complete k-space data. By evaluating these methods on the Stanford Fully
sampled 3D FSE Knees dataset, we can assess their performance in terms of reconstruction
effectiveness, evaluation metrics, and accurately capturing the complex anatomical structures within
the knee joint.

4.2. Implementation details

Our research was implemented in the PyTorch framework and trained on an NVIDIA Titan Xp
GPU. We divided the Stanford Fully sampled 3D FSE Knees dataset, consisting of 19 volumes, into
training, validation, and test sets with 14, 3, and 2 volumes, respectively. The network optimization
was performed using the RMSProp optimizer. We trained the network for 50 epochs with a batch
size of 1 and an initial learning rate of 0.001. At the 40th epoch, the learning rate was reduced to
0.0001. During training, we utilized the SSIM loss function.

For evaluating the reconstruction results, we employed several quality metrics: structural
similarity index (SSIM), peak signal to noise ratio (PSNR), and normalized mean squared error
(NMSE). These metrics were used to assess the quality of the reconstructed images and provide
quantitative measurements of their fidelity.

SSIM indicates the degree of similarity that exists between the undersampled reconstructed
images and fully sampled ground truth images. We use NMSE to represent the normalized mean
square error existing between the undersampled reconstructed images and the fully sampled ground
truth images. We can use PSNR to describe the ratio between the maximum possible energy of the
image's intensity and the power of the noise.

4.3. Comparison with Other methods

4.3.1. Visualization of undersampling patterns of various methods
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In this study, to validate the efficacy of an end-to-end learning-based approach that optimizes
both the undersampling scheme and the reconstruction model, we conducted a comparative analysis
with our method against several prevalent sampling techniques, all employing the same acceleration
factor. These techniques included standard random uniform, radial, Poisson, and equispaced
Cartesian undersampling schemes.

Importantly, to ensure a consistent basis for comparison, all experiments utilized the 3D U-Net
for image reconstruction of undersampled data, maintaining uniformity in the reconstruction
methodology across different undersampling schemes.

Radial EEUR-Net

Equispaced Poisson

4 X8

8><---

Figure 4. Visualization of undersampling patterns of various methods, specifically at 4x and 8x

acceleration levels. The white dots represent sampled k-space points, while the black regions
correspond to unacquired measurements. All the presented images are two-dimensional
representations along the Phase encoding and the second Phase encoding directions.

Notably, standard random uniform sampling, equispaced Cartesian undersampling, Poisson
sampling, and the learned sampling pattern proposed in this paper all feature a fixed 32 x 26 fully-
sampled rectangular region at the center of the k-space, contributing to enhanced reconstruction
performance.

Each comparison method employed the same training dataset during their training phase, and
evaluations for the various techniques were also conducted on a same test set. For the aforementioned
sampling techniques, undersampling experiments were carried out at fourfold and eightfold
acceleration rates. In both the first phase encoding and second phase encoding directions, the
resultant undersampling patterns can be visualized in Figure 4.

Figure 4 illustrates the undersampling patterns obtained from various acceleration rates.
Notably, the learned undersampling pattern exhibits more sampling in the central region. This
observation aligns well with our experimental expectations, since the center region contains more
information that is beneficial to the reconstruction results.

4.3.2. Quantitative Evaluation

To quantitatively evaluate the reconstruction performance, we compared the reconstructed
images, resulting from different undersampling methods, at 4x and 8x undersampling rates, with
full-sampled images. The comparison metrics include Normalized Mean Square Error (NMSE), Peak
Signal-to-Noise Ratio (PSNR), and Structural Similarity Index Measure (SSIM).

The quantitative comparison results are shown in Tables 1 and 2. Our primary focus is on the
SSIM metric, a highly valued measure in the MRI field. SSIM closely approximates human visual
perception and is therefore of great significance for clinical diagnosis.
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Table 1. Evaluation metrics of various methods at acceleration factor(AF) = 4. The methods in the
table use the same test set.

Method AF NMSE | PSNR t SSIM 1
Uniform 4 0.01712 36.44 0.9034
Radial 4 0.02377 34.68 0.8854
Equispaced 4 0.02198 35.32 0.8979
Poisson 4 0.01928 36.71 0.9123
EEUR-Net (Ours) 4 0.01013 38.65 0.9324

Table 2. Evaluation metrics of various methods at acceleration factor(AF) = 8. The methods in the
table use the same test set.

Method AF NMSE | PSNR 1 SSIM 1
Uniform 8 0.0597 33.67 0.8896
Radial 8 0.07092 32.71 0.867
Equispaced 8 0.05505 33.45 0.8774
Poisson 8 0.4762 34.88 0.8921
EEUR-Net (Ours) 8 0.02484 36.67 0.9109

In the experiments with 4x acceleration, our method achieved the best SSIM value of 0.9324.
Compared to the baseline (random uniform sampling), our method increased the SSIM by 0.029 and
improved the PSNR by 2.21 dB. For the 8x acceleration experiments, our method recorded an optimal
SSIM of 0.9109, an improvement of 0.0213 over the baseline SSIM, and a PSNR enhancement of 3 dB.

From the above metrics, it's evident that the approach proposed in this paper delivers superior
performance in terms of NMSE, PSNR, and SSIM. This highlights the efficacy of our proposed EEUR-
Net, designed to simultaneously optimize the undersampling scheme and the reconstruction process,
in achieving optimal sampling patterns and reconstruction outcomes. In summary, our method
demonstrates excellent performance on the 3D FSE knee dataset.

4.3.3. Qualitative Evaluation

The resulting images from different sampling methods at 4x and 8x acceleration are illustrated
in Figure 5. All experiments employed the 3D U-Net for image reconstruction of undersampled data.

From the image reconstruction results, the learned undersampling pattern generated by this
method (EEUR-Net) can produce higher quality reconstruction than other widely used
undersampling patterns, with less aliasing artifacts than other methods, and the reconstruction
results better preserved image details, with significant improvement in the visualization of the main
structures of the knee joint.
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Figure 5. The reconstruction results. Displayed are the reconstructed images corresponding to

Uniform

different ac-celeration factors from various sampling strategies: standard random uniform, radial,
Poisson, or equispaced Cartesian undersampling schemes, and optimized learned undersampling
pattern de-rived from our study. At the very top is the image derived from full sampling (referred to
as the “Truth”). The two subsequent rows depict the reconstruction outcomes at fourfold and
eightfold acceleration, respectively.

In order to provide a more direct and visual observation of the effect of each network
reconstruction, we displayed additional three sets of reconstruction results in Figure 6, all of which
were reconstructed using the 3D U-Net. Examining the results of reconstructed images, it is evident
that the results produced by our method (EEUR-Net) are superior, with the clearest reconstruction of
image details and the least artifacts. This demonstrates that the learned undersampling pattern can
yield higher-quality reconstructions compared to other widely utilized undersampling masks. The
end-to-end optimization of undersampling significantly contributes to the improvement of image
reconstruction quality.

Truth

(4

Radial

Uniform Equispaced Poisson

EEUR-Net

[ 4 [ 4 [ 4

4x



https://doi.org/10.20944/preprints202311.1988.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 December 2023 doi:10.20944/preprints202311.1988.v1

Poisson

il

Uniform Equispaced

il

Radial EEUR-Net

-

P 4 4 &

4x

Poisson EEUR-Net

Figure 6. Additional three sets of reconstruction results. Displayed are the reconstructed images
corresponding to different acceleration factors from various sampling strategies: standard random

Uniform Equispaced

uniform, radial, Poisson, or equispaced Cartesian undersampling schemes, and optimized learned
undersampling pattern derived from our study. At the very top is the image derived from full
sampling (referred to as the “Truth”). The two subsequent rows depict the reconstruction outcomes
at fourfold and eightfold acceleration, respectively.

5. Discussion and Conclusions

The undersampling in 3D k-space significantly accelerates the 3D MRI process. In this paper, we
introduce the EEUR-Net, a network capable ofgenerating specific 3D undersampling patterns by
optimizing phase encoding from a data-driven perspective, thus enhancing undersampling efficiency
in 3D k-space. The EEUR-Net can be holistically viewed as a fusion of an undersampling scheme
optimization network and an image reconstruction network using an end-to-end deep learning
framework. We derive optimized undersampling patterns through the undersampling scheme
optimization network, and perform image reconstruction using the 3D U-Net network. This
methodology, adopting an end-to-end learning strategy, concurrently optimizes both the
undersampling pattern and the reconstruction model, aiming for robust and precise sampling and
reconstruction in 3D MRI.
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For tasks involving 3D magnetic resonance reconstruction, we embraced a data-driven
approach, leveraging the unique properties of 3D k-space data, and proposed an integrated end-to-
end undersampling and reconstruction strategy. Joint training of the k-space undersampling network
and the reconstruction network allows our method to efficiently generate optimized undersampling
patterns. Experiments on the 3D FSE Knees dataset demonstrated that our undersampling patterns
achieve superior reconstruction quality compared to other commonly used undersampling masks,
exhibiting exceptional results at 4x and 8x acceleration rates. Looking forward, we plan to explore
deeper into the properties of k-space data to further enhance undersampling efficiency. Additionally,
the exploration of advanced data-driven undersampling techniques [26], in conjunction with more
sophisticated network architectures, presents an exciting avenue for faster and more accurate
reconstruction performance in future research.
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