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Abstract: Over the few decades, cancer-associated mortalities and morbidities were continuously increased 

worldwide despite sophisticated technological advancements. Pharmaceutical interventions associated with 

drugs exhibit a high degree of side effects and toxicities in addition to very high costs. Subsequently, to reduce 

or to vanish the side effects and high costs, researchers are now exploring natural bioactive compounds such 

as quercetin in its nanoformulations along with biologics as cargo delivery vehicles. Quercetin along with 

mesenchymal stromal lineage-derived extracellular vesicles (EVs) possesses an anti-cancer potential that can 

be explored to treat hepatocellular carcinoma (HCC). Exerting enhanced effect, nano quercetin synergistically 

with EVs triggers the anti-cancer mechanisms by regulating and dysregulating several signalling mechanisms 

including NF-κB, p53, JAK/STAT, MAPK, Wnt/β-catenin and PI3K/AKT, in addition to PBX3/ERK1/2/CDK2, and 

miRNAs modulation. In addition, findings regarding the potential checkpoints of anti-cancer signalling 

pathways were investigated that offer opportunities to develop engineered EVs incorporated with nano 

quercetin for the development of novel therapeutics to treat HCC in future. In this present mechanistic review, 

we abridged the regulation of such signalling mechanisms synergetic approach of nano quercetin and EVs. The 

regulatory role of EVs in the manifestation of innumerable miRNAs has also been tailed with special context 

to HCC.  

Keywords: nanoquercetin; extracellular vesicles; hepatocellular carcinoma; therapeutics; anticancer; drug 

delivery 

 

1. Background 

Liver cancer or primary hepatic malignancy accounts for the sixth most common form of human 

cancer worldwide and among this 90% of the liver cancer cases exhibit hepatocellular carcinoma 

(HCC) [1,2]. The major risk factors for HCC include hepatitis B and C infections, fatty liver disease 

and excess alcohol intake [3]. Among these risk factors, hepatitis B virus infection is among the 

prominent risk factor for the development of HCC, which alone accounts for 50% of cases [4]. 

Unrelenting virological response (UVR) with the usage of antiviral drugs has significantly 

diminished the risk of HCC attributed to hepatitis C virus infection [5]. However, in the West, non-

alcoholic steatohepatitis (NASH) attributed to metabolic disorders including diabetes mellitus and 

obesity is increasing at an alarming rate contributing to the aetiology of HCC [6,7]. Age is also 

considered to be the contributory risk factor in the progression of non-alcoholic fatty liver disease 

(NAFLD) related HCC. In one of the previously published studies, it was observed that patients with 

NAFLD-attributed HCC were more aged compared to virus-associated HCC [8]. Age-associated gut 

microbiota modulation in patients presenting NAFLD is also considered to be at high risk of 

developing HCC [9]. 

World Health Organization (WHO) considered liver cancer the prime cause of cancer-related 

mortalities worldwide. It is also estimated that in the year 2020, about 0.83 million people died due 

to it [10]. In Asia, HCC is among the most common form of liver cancer that accounts for 0.5 million 
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deaths with 0.6 million new cases in 2020 [11,12]. Asian men demonstrated higher incidence and 

mortality compared to Asian women making it fourth highest incidence and second highest 

mortality. Moreover, among Asian women, liver cancer accounted seventh-highest incidence and 

sixth-highest mortality in the year 2020 [10]. A sharp decline in the average annual percent change 

(AAPC) in incidence rates was observed in cases of liver cancer in South Korea (-2.2%), Japan, China 

(-1.6%) and the Philippines (-1.7%) as documented by previously published study [12]. On the 

contrary, South-Western Asian countries including Israel showed a hike in AAPC [12]. In another 

report published by GLOBOCAN 2020, countries including Iran, Afghanistan, Qatar, Azerbaijan, 

Iraq, and Nepal also showed a worrying trend [13]. Studies demonstrated that eastern Asia, northern 

Africa and Micronesia are with highest incidence rates while the highest mortality rates were shown 

by eastern Asia, northern Africa and south-eastern Asia [14,15] (Figure 1, 2, and 3). With the increased 

incidence and mortality rates of HCC in several parts of the world, it is necessary to focus on such 

issues with newer technologies and interventions.  

 

Figure 1. Estimated age-standardized incidence rates (ASR) (worldwide) for liver cancer, both sexes 

and all ages, in 2020. Data source: GLOBOCAN 2020. Map production: IARC (http://gco.iarc.fr/today) 

World Health Organization. (Copy Rights 2020).  https://gco.iarc.fr/today/online-analysis-

map?v=2020&mode=population&mode_population=continents&population=900&populations=900

&key=asr&sex=0&cancer=11&type=0&statistic=5&prevalence=0&population_group=earth&ages_gro

up%5B%5D=0&ages_group%5B%5D=17&nb_items=10&group_cancer=1&include_nmsc=0&include_

nmsc_other=0&projection=natural-

earth&color_palette=default&map_scale=quantile&map_nb_colors=5&continent=0&show_ranking=

0&rotate=%255B10%252C0%255D. (Ref [3]). 

 

Figure 2. Estimated age-standardized mortality rates (worldwide) in 2020 for liver cancer, both sexes 

and all ages. Data source: GLOBOCAN 2020. Map production: IARC (http://gco.iarc.fr/today) World 

Health Organization. (Copy Rights 2020). https://gco.iarc.fr/today/online-analysis-
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map?v=2020&mode=population&mode_population=regions&population=250&populations=250&ke

y=asr&sex=0&cancer=39&type=1&statistic=5&prevalence=0&population_group=0&ages_group%5B

%5D=0&ages_group%5B%5D=17&nb_items=10&group_cancer=0&include_nmsc=0&include_nmsc_

other=1&projection=globe&color_palette=default&map_scale=quantile&map_nb_colors=3&continen

t=0&show_ranking=0&rotate=%255B10%252C0%255D (Ref 3). 

 

Figure 3. Mortality-ASR (worldwide) vs. Incidence-ASR (worldwide) in 2020, for both sexes and all 

ages. Data source: GLOBOCAN 2020. Map production: IARC (http://gco.iarc.fr/today) World Health 

Organization. (Copy Rights 2020). https://gco.iarc.fr/today/online-analysis-scatter-

plot?v=2020&mode=cancer&mode_population=continents&population=900&populations=900&key=

asr&sex=0&cancer=11_11&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B

%5D=0&ages_group%5B%5D=17&nb_items=5&group_cancer=0&include_nmsc=0&include_nmsc_o

ther=1&fit_to_screen=1&same_scale=1&axis_indicators=%257B%2522x%2522%253A%2522inc%2522

%252C%2522y%2522%253A%2522mort%2522%257D&axis_keys=%257B%2522x%2522%253A%2522

asr%2522%252C%2522y%2522%253A%2522asr%2522%252C%2522log_scale_x%2522%253Afalse%25

2C%2522log_scale_y%2522%253Afalse%257D (Ref 3). 

Several staging approaches were fabricated to classify HCC including Hong Kong Liver Cancer 

(HKLC), cancer of the liver Italian program (CLIP), Okuda, Barcelona clinic liver cancer (BCLC) 

(Figure 4), American Association for the Study of Liver Diseases (AASLD) [16,17]. Among these 

staging approaches, the latter two were widely used worldwide. Some other staging regimes involve 

the classification of HCC using molecular genetics, metabolism, immunological properties and 

chromosomal arrangements [18].  
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Figure 4. Barcelona Clinic Liver Cancer (BCLC) staging system. 

Current interventional approaches for HCC include liver resection, transplantation, transarterial 

therapy, the implication of tyrosine kinase inhibitors (systemic therapy), and local ablative therapy. 

Moreover, along with conventional therapies, several drugs including sorafenib, lenvatinib, 

atezolizumab and bevacizumab along with chemotherapeutic agents such as doxorubicin (DOX) 

showed restricted effects along with associated extrinsic and intrinsic drug resistance [19].  

Despite multiple pharmacological interventions, treatment of advanced-stage HCC does not 

fulfil the standard health outcomes. Such unsatisfied outcomes may be attributed to several reasons 

including drugs associated adverse effects, low bioavailability, high toxicity, non-specific delivery of 

pharmacological agents, high cost at large-scale production, immune complications, and 

anaphylactic responses [20]. To overcome such limitations, researchers are now looking to explore 

possibilities of using nanoparticles and extracellular vesicles (EVs) as drug delivery vessels for the 

treatment of almost every cancer. The present review will focus on exploring the potential of EVs and 

quercetin nanoparticles (Qnps) for the treatment of HCC. Moreover, the mechanistic pathways 

inhibiting the pathogenesis of HCC with Qnps and EVs are also explored. We further examined the 

evidence supporting the use of biological molecules including EVs and quercetin for treatment 

regimes for HCC. Finally, we performed a critical analysis of current clinically approved 

drugs/immunotherapies for HCC and ongoing preclinical/clinical trials using EVs and Qnps as anti-

cancer agents in patients with HCC.    

2. Pathophysiology of HCC 

The pathophysiology of HCC exhibits complex multifactor mechanisms. HCC progression and 

hepatocytes' malignant transformation depend on the interplay between various factors including 

genetic predisposition, viral and non-viral elements, the severity of liver disease and the cellular 

microenvironment at its early stage. It was seen that nearly 80% of liver cirrhotic patients develop 
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HCC attributed due to molecular alterations [2]. Viral elements include etiological infections 

associated with HCV and HBV while the non-viral elements include alcohol consumption, NASH, 

use of aflatoxin, tobacco and aristolochic acid has been identified as a trigger of cancer mechanisms 

in the liver [21]. In addition to aforesaid factors, some specific immune and molecular causes were 

identified as an initiator of HCC [21]. In this respect, studies of such molecular and immunological 

checkpoints are necessary to understand the onset, progression and treatment using 

biopharmaceuticals for these targets. Some of the major checkpoints were extensively studied 

elsewhere [2,22,23]. 

3. Molecular triggers of hepatocellular carcinoma 

In patients with liver cirrhosis, the neoplasm advances through a sequential cascade of 

histopathological modulations ultimately initiating HCC. Histomorphological characteristics of HCC 

include highly vascularized tumours with prominent acinar and wide trabeculae along with loss of 

Kupffer cells and reticulin network [24]. In advanced HCC, tumours were found to be encapsulated 

with the presence of septae that are positive for CD34 and α-smooth muscle actin (SMA). Studies 

have found that mature hepatocytes are the primary cells responsible for HCC origin and progression 

in addition to liver stromal cells [23,25,26]. Studies in past demonstrated that repetitive stress to 

regenerating hepatocytes triggers genetic lesions that initiate transformation and oncogenesis 

progression [27]. The study observed that alterations in cyclin-A2 or E1 proteins of the cell cycle 

favour the progression of HCC, especially in non-cirrhotic patients which is further mediated by 

activation of E2F and ATR transcriptional pathways along with inactivation of RB1 and PTEN [27].  

In patients with NASH, CD8+PD1+ T cells promote hepatocyte death and thereby favour the 

micro-environment for HCC pathogenesis and progression [28]. On contrary, somatic, genomic and 

epigenetic modulations also trigger the HCC. A study showed the single nucleotide polymorphisms 

(SNP) of PNPLA3 (rs738409), TM6SF2 (rs585542926) and HSD17B13 (rs72613567) predispose to liver 

carcinogenesis that increases the probability of HCC [29]. Genotoxic compounds including aflatoxin 

B1 and aristolochic acid (promote inversion of T to A) were known to trigger somatic mutations that 

again increased the risk of HCC progression [30].  

4. Checkpoint targets of hepatocellular carcinoma 

Hepatocellular carcinoma pathogenesis is triggered by several mechanistic pathways that 

involved numerous checkpoints and can be explored as targeted therapies in HCC. The following 

checkpoints were considered to play a pivotal role in HCC. 

4.1. Wnt–β-catenin signalling 

CTNNB1 

A CTNNB1-related active mutation is a major canonical component of the Wnt signalling 

pathway and is exhibited in nearly 11-41 % of patients with liver cancer [32–34]. CTNNB1 is actively 

involved in the synthesis of actin cytoskeleton responsible for halting cell division [35]. Indeed 

mutations of CTNNB1 were reported to be significantly correlated with TERT promoter, NFE2L2, 

MLL2, ARID2, and APOB [36,37]. Studies related to human HCC found that CTNNB1 mutations 

concurrently occurred with the upregulation of Met, Myc, or Nrf2 [38–40]. Drugs including sorafenib 

and gamma-secretase inhibitors were also studied as effective targets indulging the CTNNB1 

mechanism [30,41].  

Adenomatous Polyposis Coli (APC)  

Human APC mutations originated within the central core region of the open reading frame 

(ORF) commonly known as MCR (mutation cluster region) that produces truncated proteins [42]. 

Moreover, this event triggers the loss of several factors including β-catenin binding sites (20R), 

nuclear localization sequences (NLS), axin binding sites (ABS) and C-terminal basic domain (CTBD), 
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which are responsible for cytoskeletal interfaces. Sporadic APC mutations are considered to be the 

contributory factor for tumorigenesis. Mutations in APC significantly modulate the Wnt–β-catenin 

signalling, that in turn initiates the origin and progression of HCC.     

AXIN1 

AXIN1 mutations were found to be associated with nearly 5-19% of patients with liver cancer 

[32,33]. AXIN1 negatively regulate the Wnt/β-catenin signalling by modulating the expression of β-

catenin [43]. A study found that upregulated expression of wild-type AXIN1 intimidated the cellular 

proliferation in HCC along with induction of programmed cell death, and thereby can be used as a 

molecular target to treat HCC [43]. In continuation with this study, another author used adenovirus-

mediated gene transfer of AXIN1 and initiated HCC cell apoptosis [44]. AXIN was found to be an 

inhibitor of tankyrase 1 and 2 through XAV 939 and hence can be used as a novel therapeutic target 

within Wnt signalling [45].     

4.2. Telomere maintenance 

TERT 

TERT promoter mutations were known to be associated with the pathogenesis of HCC. It was 

reported by previous studies that the TERT promoter showed mutation at the upstream of ATG 

translation start site at positions -124 (G>A) and -146 (G>A) [46,47]. Mutations in TERT promoter 

sequences produce a de novo consensus binding region for the ETS (E-twenty-six) transcription factor 

that further triggers the increased production of TERT proteins that in turn attenuate the telomerase 

activity and length [48–50]. A recent study reported mutation of the TERT promoter in HCC patients 

at -297 (C>T) upstream of the ATG translational region generating an AP2 consensus sequence [51]. 

It has been found that the protein expressed by RB/E2F gene regulates the activity of the TERT 

promoter and contributed to liver cancer [52]. A past study also showed that TERT gene activation 

was triggered by the binding of RNA-binding fox-1 homolog 3 (RBFOX3) with AP2β that in turn 
activates telomerase and promotes HCC [53]. In another study, it was found that SP1 and YAP1 

activate the TERT gene expression in the HepG2 cell line [54].   

4.3. Cell cycle regulation 

TP53 

Nearly 13-48% of patients with liver cancer exhibit TP53 mutations [32,33]. TP53 gene suppresses 

the tumours by arresting the growth and apoptosis of cancerous cells [32]. A previously published 

study from West demonstrated that mutations in the TP53 gene especially in patients with HCC are 

associated with poor health outcomes and prognosis [33]. In another study, it was found that non-

inflamed tumours exhibit T-cell exclusion mediated either through TP53 gene mutations also known 

as an intermediate class [55]. Authors of another study concluded that TP53 mutations especially 

known as hot spot mutations at R249S and V157F were associated with poor outcomes and prognosis 

of patients with HCC [56].   

Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)/DR4/DR5 

TRAIL receptor 2/DR5 is a member of the TNF receptor family and is associated with 

chromosome 8p21-22. The study has reported mutations of TRAIL-R2 in cancer [57]. A similar study 

detected single point mutation in the DR5 domain among 1% of HCC patients suggesting the 

importance in the pathogenesis of carcinogenesis [57]. It was found that TRAIL and IER3 proteins 

trigger the inhibition of Wnt/β-catenin signalling [58]. The study suggested that TRAIL/IER3/β-

catenin axis plays important role in HCC and can be explored as a checkpoints or therapeutic target 

against HCC [58]. 
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DR4/5 clustering and oligomerization mediated by TRAIL protein recruit several adaptor factors 

to generate a death-inducing signalling complex (DISC) that in turn further activates the caspases-8 

and 10 within this complex along with TRADD and RIP kinases  [59–63].  

CDKN2A, CCND1, FGF3, FGF4 or FGF19 

It seems that nearly 8% of the HCC cases exhibit CDKN2A deletions mutation [36]. It was known 

that CDKN2A is also a tumour suppressor gene that triggers the arresting of the cell cycle at the G1 

and G2 phases and can act as a potential checkpoint for HCC therapy. Moreover, it also inhibits the 

expression of CDK4/6 and MDM2, which are responsible for oncogenic action [64]. A previous study 

reported that loss of CDKN2A in patients with HCC attenuates the rise of CDK4/6 inhibitors in the 

advanced stage [65].  

In liver cancer, it was found that nearly 5-7% and 4-6% of the patients exhibit mutations of 

CCND1 and FGF3, FGF4, or FGF19 respectively [36,66]. It was studied that augmentation of CCND1, 

FGF3, FGF4, or FGF19 in patients with resected HCC is associated with poor prognosis and outcome 

[36]. A plausible study showed suppression of 11q13.3 amplicon by anti-FGF19 antibody along with 

anti-sense RNA mediated knockdown of FGF19 or CCND1 [67].  

4.4. Oxidative stress 

Hepatocytes exhibit numerous fatty acids that trigger oxidative stress along with endoplasmic 

reticulum (ER) stress. Furthermore, these stresses cause cellular damage and inflammation [68]. In 

one of the animal studies, it was found that ER stress can cause NASH-triggered HCC due to the 

activation of several pathways including NF- κB and TNF [69]. One of the previously published 

studies suggested that ER stress is mediated through the activation of hepatosteatosis and secondly 

due to the promotion of SREBP1 activation and increasing the process of lipogenesis [69]. ER stress 

in association with steatosis generates ROS in hepatocytes that are the primary cause of oxidative 

stress and oncogenic mutations. These ROS triggers the lipotoxic death of hepatocytes and thereby 

activate the macrophages. Further release of TNF-α also triggers the activation of chemokines and 
growth factors that attenuate the inflammatory microenvironment of hepatocytes [69]. In addition, 

ROS production induces DNA damage due to mitochondrial dysfunction and hence contributes to 

the pathophysiology of HCC in humans [70].    

In the previously published study, it was found that mTORC2 activations within the hepatocytes 

trigger the concentration of sphingolipid glucosylceramide and thereby increased ROS generation 

which in turn leads to HCC [71]. Impaired cholesterol metabolism also triggers the pathophysiology 

of HCC [72]. A clinical study demonstrated the trend of HCC in patients and found that NASH posed 

a higher risk for HCC pathogenesis compared to NAFLD [73].   

5. Potential anti-cancer mechanism of nano quercetin in HCC 

Quercetin belongs to the naturally occurring flavonoid class and is widely known for its 

therapeutic effect including pro-apoptotic, proliferative and antioxidant [74]. It is a well-known 

inhibitor of casein kinase-2α that is responsible for HCC pathogenesis [75]. Some studies also 

decipher the role of casein kinase-2α in the apoptosis mechanism and activation of death receptors 
pathways [76–78]. Moreover, studies showed that nanoformulation of quercetin improves the 

mechanistic action and therapeutic properties compared to pure quercetin form due to several 

limitations including less bioavailability, slow absorption and short action. Therefore, nano quercetin 

showed enhanced anti-cancer activities by significantly modulating the signalling pathways as 

shown below:- 

5.1. Wnt/β-catenin signaling pathway  

The wnt/β-catenin signalling pathway regulates several biological processes including cell 

differentiation, proliferation, migration, and APC/β-catenin/Tcf pathway [79]. In another in-vitro 

study, it was found that quercetin showed inhibition of SOX2, Nanog, and Oct4 expression along 
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with β-catenin nuclear translocation that in turn resulted in downregulated expression of β-catenin-

dependent transcriptional activity [80]. In another study, it was found that 20µM quercetin showed 

reduced viability through regulating DKK1, 2 and 3 proteins that in turn act as checkpoints of Wnt 

signalling [81]. 

5.2. PI3K/AKT pathway  

PI3K mediates the translocation process of AKT to the plasma membrane and regulates the 

mechanism of cell cycle progression, differentiation, cell survival and cell proliferation [82]. 

PI3K/AKT is also observed to regulate the expression of Bax (Bcl-2 protein family member) which is 

responsible for the anti-apoptotic mechanism [83]. Authors from the previously published study 

reported the anti-cancer activity of quercetin against HCC1937 PTEN cancer cell lines through 

regulation of AKT/PKB phosphorylation [84].    

In one of the studies, it was suggested that flavonoids directly or indirectly inhibit the mTOR 

signalling mechanism [85]. It is known that PDK1 is considered to be a major kinase necessary for the 

development of the mammalian cell. It is found that in the cancer microenvironment, the degree of 

phosphorylation of AKT kinase at Thr-308 was significantly increased [86]. Another study found that 

quercetin triggers the down-regulation of phosphorylation of PDK1 and is hence considered to be 

the therapeutic target of quercetin and regulatory checkpoints at Ser-473 and Thr-308 [87]. Quercetin 

is considered to be a broad-spectrum inhibitor of PI3K/AKT1/2 as found by a previous study [88]. 

Hence, it was considered that quercetin inhibits the AKT1/2 by acting directly by inducing Ser/Thr 

kinase activity and down-regulating the PI3K.    

5.3. JAK/STAT signalling  

JAK/STAT signalling mechanism regulates the immune microenvironment, cell death, 

proliferation, division and tumour growth. It is known that JAK/STAT pathway is controlled by ERK, 

MAPK and PI3 kinase. It was reported that carcinomas were associated with the deregulation of the 

JAK/STAT pathway [89]. Qin and their coworkers observed the role of quercetin on the JAK/STAT 

pathway and observed that MGC-803 cells were arrested at the G2/M stage of the cell cycle mediated 

through p-STAT3 signalling and also reduces the expression of leptin along with its corresponding 

receptors [90]. It was also reported that quercetin inhibits the IL-6-triggered glioblastoma cell 

migration, proliferation and growth by regulating the STAT-3 signalling mechanism mediated 

through reduced expression of GP130 and JAK1 [91].  

Quercetin is known to modulate apoptosis through activation of caspase 3, 8 and PARP cleavage 

that enable the cell to arrest in the sub-G0/G1 phase of the cell cycle along with reduction of p-JAK1, 

MMP-9 and p-STAT3 expression [92]. Authors from previous studies claimed that quercetin regulates 

the apoptosis and autophagy mechanism through the expression of caspase-3 that is further inhibited 

by JAK2 along with cyclin D1 and mTOR that in turn suppressed STAT3/5 signalling mechanism 

[93,94]. Moreover, quercetin was found to show reduced proliferation potential of HCC along with 

an increased rate of cellular apoptosis due to regulation of the cell cycle through the expression of 

CyclinB1 protein [95]. CyclinB1 is a cell cycle protein which is synthesized in S and G2/M phases. 

Therefore it is believed that quercetin inhibits the cell cycle at the G2/M phase along with triggering 

apoptosis.    

5.4. The MAPK signalling  

Mitogen-Activated Protein Kinase (MAPK) exhibits three primary classes of kinases including 

ERKs, JNK/SAPK and p38s. It is considered that MAPK 14,7 and 12 regulate cellular proliferation, 

gene expression, differentiation, growth, mitosis and apoptosis [96]. In addition, one study done on 

SMMC7221 cells found that quercetin suppresses the proliferation, and reduces the 

lipopolysaccharide-initiated oxidation along with inhibition of the MAPK signalling pathway [97]. It 

was also found that quercetin significantly suppresses the activity of p38 MAPK in the fibrotic liver 

of rats [98]. It was found that isoquercetin activates the caspases 3, 8 and 9 that in turn significantly 
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increases the apoptosis and triggers the JNK phosphorylation through suppression of ERK and p38 

MAPK as shown in Figure 5 [99].   

 

Figure 5. The most important signalling pathways affected by quercetin during cancer prevention. A) 

Wnt/β catenin pathway; quercetin inhibits β-catenin translocation to the nucleus, B) PI3K/Akt 

pathway; inhibition of phosphorylation of PI3k, Akt, and S6K, C) JAK/STAT pathway; inhibition of 

p-STAT formation; D) MAPK pathway; induced phosphorylation of p38, JNK, and ERK, E) p53 

pathway; induced phosphorylation of p53 and induction of apoptosis. (Adopted from Ref. 99 under 

the terms of the Creative Commons Attribution License (CC BY)). 

5.5. NF-ĸB, p53 and apoptotic signaling  

Quercetin triggers the stimulation of 5-fluorouracil-initiated apoptosis in a p53-dependent 

manner [100]. A similar study also observed that quercetin and p53 work in a synergistic manner 

[100]. In another study, quercetin along with doxorubicin down regulates the Bcl-xl in a p53-

dependent phase [101]. Quercetin was found to promote cell death-associated gene expression 

including p53 along with downregulation of AKT and Bcl-2 expression [102]. It was also found that 

quercetin suppresses the mTOR expression simultaneously activation of p53, Sestin-2 via AMPK. In 

a relevant study performed using nano-quercetin of HepG2 cells it was observed that it activates the 

p53-ROS crosstalk and triggers apoptosis along with modification at the epigenetic level and cell 

cycle arrest at the sub-G phase [103]. Another study showed that quercetin activates the p21, p53 and 

GADD45 signalling mechanism along with simultaneous suppression of JNK mediated through 

Foxo3a [104].   

6. Protective mechanism of EVs in HCC 

Extracellular vesicles are known to enhance the anti-cancerous potential by hampering several 

signalling pathways involved in the metastasis of HCC. In one of the previously published studies, 

it was found that the Vps4A level is higher in EVs derived from HCC which inhibits the PI3K-Akt 

signalling pathway that in turn inhibits the HCC progression and metastasis [105]. EVs also served 

as a mediator in the regulation of intracellular micro-RNA (miRNAs). In one of the studies it was 

found that Vps4A exhibits two oncogenic miRNAs (miR-27b-3p and miR-92a-3p) and that is found 

to be upregulated in SMMC-Vps4A [105].  

In addition to this SMMC-Vps4A also possesses miR-193a-3p, miR-320a, and miR-132-3p as 

tumour suppressor miRNAs [105]. Similar study further detected six tumor suppressor miRNAs 
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(miR-122-5p, miR-33a-5p, miR-34a-5p, miR-193a-3p, miR-16-5p, and miR-29b-3p) that showed 

upregulated trend [105]. The findings of this study were supported by the other authors and they 

found the role of tumour suppressor miRNAs miR-122-5p, miR-33a-5p, miR-34a-5p, miR-16-5p, and 

miR-29b-3p in HCC [106]. The authors of a previously published study performed western blotting 

and found that overexpression of Vps4A leads to the inactivation of the PI3K/Akt signalling pathway 

that also modulates the miRNAs [105]. So, it was concluded that Vps4A showed a therapeutic target 

against HCC in miRNAs dependent and independent manner and can be explored as checkpoints 

for the treatment of patients with HCC.   

Another study found that expression of SENP3-EIF4A1 and SENP3-EIF4A1 in secretory EVs 

suppress the HCC proliferation through miR-9-5p mediated action of ZFP36 [107]. Moreover, 

IncRNA 85 controls the cancer cell invasion by acting on miR-324-5p by regulating the expression of 

MMPs, ETS1 and SP1 in HCC [108]. EVs containing miR-320a showed a protective effect against HCC 

through suppression of the PBX3/ERK1/2/CDK2 signaling pathway [109]. 

Mesenchymal stromal cells (MSCs) derived EVs are known to exhibit anti-cancer properties and 

can be explored for the treatment of HCC. A previous study showed that umbilical cord-derived 

MSCs significantly improved the anti-tumour response of NKT cells in liver cancer by inhibiting 

oxidative stress [110]. In another study, it was found that miR-122 provides an anti-cancer effect 

against HCC by suppressing the PI3-K/Akt signaling pathway as shown in Figure 6 [111]. In another 

study, it was found that fibroblast-derived EVs exhibit less quantity of miR-320a and thus inhibit 

HCC by suppressing the MAPK signalling pathway [109]. Another study claimed that fibroblast-

derived EVs were rich in miR-150-3p and exhibit anti-cancer properties against HCC [112]. Some 

studies found that miR-195 presence in fibroblast-derived EVs suppresses the activation of VEGF, 

CDC42, CDK1, CDK4, CDK6, and CDC25 and is considered to be a new therapeutic target for HCC 

[113,114]. In another study, mi331-3p also inhibits the progression of HCC through the regulation of 

BAK1 [115].   

 

Figure 6. Regulation of hepatocellular carcinoma by different cell-derived EVs. (Adopted from Ref. 

111 under the terms of the Creative Commons Attribution License (CC BY)). TAMs, tumor-associated 

macrophages; CSCs, cancer stem cells; CAFs, cancer-associated fibroblasts; EMT, epithelial-

mesenchymal transition. 
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7. Challenges and perspectives of anti-cancer EVs biopharmaceuticals   

In the last decades, the unrelenting progress of biologics encourages to development of a 

thorough understanding and technological advancement of biopharmaceutical manufacturing 

procedures. This sharp evolution has deepened the interest of the biopharmaceutical industries in 

process analytical technology  (PAT), which is known as a system for designing, analyzing and 

controlling the manufacturing of the products along with ensuring the final quality of the product 

[116]. Nanoparticles are well known to deliver many biologics including proteins, peptides and 

antibodies. However, such particles face severe challenges including physiological barriers, fast 

wash-off from targeted sites, poor permeation-retention effect etc. With the spent of time, 

technological advancements help researchers to overcome several hurdles with the advent of 

extracellular vesicles. EVs if compared to synthetic drug delivery nanomaterial exhibits natural site 

targeted features along with improved stability, biocompatibility, and increased bioavailability. 

Therefore, EVs are considered to be the biggest opportunity for the biopharmaceutical industry to be 

used as drug/nanoparticle delivery vehicles. Although substantial breakthroughs were fabricated 

using these engineered EVs as anti-cancer therapy still some challenges may hinder the path to 

making a bench to bedside products. The complex structure of EVs is associated with a high degree 

of inconsistency that might affect the therapeutic properties. Moreover, large-scale isolation and 

purification approaches of EVs still compromised their yield. Researchers nowadays concentrate 

their research on testing customized EVs in preclinical animal models but data is still lacking in 

clinical trials. Cargo loading efficiency is still an un-addressable issue and needs serious attention. 

Summing up the issues of biosafety, bioavailability, biocompatibility, and biostability are some of the 

peculiar challenges for future clinical translational research.   

Conclusions 

Quercetin is a polyphenolic flavonoid exhibiting anti-cancerous features that exert its 

therapeutic mechanism in hepatocellular carcinoma through dysregulation of several signalling 

mechanisms including PI3K/AKT, NF-κB, P53, Wnt/β-catenin, MAPK, JAK/STAT and Hedgehog 

pathway. Moreover, quercetin is known to modulate several intracellular signalling biologics 

including TNF-α, Bax, Bcl-2, caspases, and VEGF. The anticancer potential of quercetin was 

extensively studied in various cancers including hepatocellular carcinoma. However, the majority of 

the research was evident in preclinical studies. Studies are lacking in demonstrating clinical trials. 

EVs derived from mesenchymal lineages were considered to trigger anti-cancerous effects through 

several miRNAs and IncRNAs. Not a single study was conducted in past that demonstrated the 

synergistic effect of quercetin and mesenchymal stem cells derived EVs at the clinical trial phase. 

There are significantly high expectations of such phase III trials focusing on all stages of HCC.   
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