

Article

Not peer-reviewed version

Antimicrobial and Antibiofilm Effects of Enterocins Against Methicillin-Resistant *Staphylococcus aureus* Strains From Rabbits

[Monika Pogány Simonová](#) ^{*}, [Natália Záboľyová](#), [Andrea Lauková](#)

Posted Date: 30 November 2023

doi: [10.20944/preprints202311.1974.v1](https://doi.org/10.20944/preprints202311.1974.v1)

Keywords: antibiofilm effect; enterocin; methicillin-resistance; rabbit; *Staphylococcus aureus*

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Antimicrobial and Antibiofilm Effects of Enterocins against Methicillin-Resistant *Staphylococcus aureus* Strains from Rabbits

Monika Pogány Simonová ^{*}, Natália Zábolyová and Andrea Lauková

Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, 04001 Košice, Slovakia; simonova@saske.sk; kotesovska@saske.sk; laukova@saske.sk

^{*} Correspondence: simonova@saske.sk

Abstract: There is a major problem with the rising occurrence of highly virulent and multiply-resistant strains, including methicillin-resistant *Staphylococcus aureus* (MRSA), because of their difficult treatment. This study aimed to evaluate the antibacterial and antibiofilm effect of new enterocins (Ent) against potential pathogenic MRSA strains isolated from rabbits. *Staphylococci* ($n = 110$) were identified with PCR and screened for methicillin/oxacillin/cefoxitin resistance (MR) using the disk diffusion method and the PBP2' Latex Agglutination Test Kit. Enzyme production, hemolysis, DNase activity, slime production, and biofilm formation were tested in MRSA strains. The susceptibility of MRSA to eight partially-purified enterocins (Ent) produced by *E. faecium* and *E. durans* strains was checked using agar spot tests. The antibiofilm activity of Ent was tested using a quantitative plate assay. Out of 14 MRSA, PBP testing confirmed MR in 8 strains. The majority of MRSA showed DNase activity and β -hemolysis. Slime production and moderate biofilm formation were observed in all strains. MRSA were susceptible to tested Ent (100–12800 AU/mL; except Ent4231). The antibiofilm effect of Ent (except Ent4231) was noted in the high range (64.9–97.0%). These results indicate that enterocins offer a promising option for the prevention and treatment of bacterial infections caused by biofilm-forming MRSA.

Keywords: antibiofilm effect; enterocin; methicillin-resistance; rabbit; *Staphylococcus aureus*

1. Introduction

Staphylococcus aureus is found as a commensal on the skin and nasal flora of healthy humans and animals. On the other hand, during the last years, methicillin-resistant (MRSA) and multidrug-resistant *S. aureus* (MDSA) were noted as major causes of hospital-, community-, and livestock-acquired infections ranging from wound infections to life-threatening septicemia and toxic shock syndrome in humans [1] and from small skin lesions to invade subcutaneous tissue in domestic and food-producing animals, causing well-known mastitis, abscesses, and pododermatitis connected also with economic losses [2,3]. Because of the high capacity of pathogenic staphylococci to acquire resistance traits, therapy for these infections with antibiotics is usually ineffective. Moreover, *S. aureus* can strongly adhere to host tissues and consequently form biofilms [4]. Therefore, novel natural antimicrobial therapies are an urgent need. Bacteriocins have attracted attention as potential antimicrobial compounds to reduce or eliminate MRSA strains and prevent their infections and biofilm formation [5].

Bacteriocins are biologically active proteins or peptides ribosomally synthesized by several bacterial strains with antimicrobial effects against bacteria that are more or less related to the producer strains [6]. There are several groups of bacteriocins, classified according to their biochemical, genetic properties and mode of action [7]. Most studies provide the promising potential of bacteriocins regarding their antimicrobial activity, broad and narrow inhibitory spectrum against pathogens without disturbing the commensal bacterial microbiota, resistance to heat and pH variation, and low toxicity. The most studied bacteriocins are lantibiotics (both commercial – Nisin,

Gallidermin, and new) regarding also their antibacterial/antibiofilm effect and therapeutic application against MDSA and MRSA [8]. However, enterocins (small, thermo-stable bacteriocins produced by enterococci; [9]) are also characterized by strong antimicrobial activity; studies about their anti-MRSA activity, including their antibiofilm effect, are limited [10,11]. Although the use of bacteriocins for microbial biofilm control is a relatively new research field, the achieved results are promising, and new testing is required to expand the knowledge regarding the antibiofilm activity of enterocins.

Therefore, this study aims to evaluate (*in vitro*) the antibacterial and antibiofilm effects of new, non-commercial enterocins against biofilm-forming MRSA isolated from rabbits.

2. Materials and Methods

2.1. Isolation and Identification of *Staphylococcus aureus* Strains

Mixture samples (142) from 546 rabbits of both sexes and various ages (from two to four months) breed on 16 different farms in West Slovakia were screened. The selection, enumeration, and PCR identification of *S. aureus* strains were previously described by Simonová et al. [12]. Among 110 isolates (65 from feces, 9 from cecum, and 39 from meat) specified by PCR, only 14 (5 from feces, and 9 from meat) were allotted to the *S. aureus* species.

2.2. Antibiotic Susceptibility Testing

The antibiotic phenotype profile of identified staphylococci was tested using the agar disk diffusion method against antibiotics recommended for staphylococci. The spectrum of tested antibiotics presented in our previous study [12] was extended with amoxicillin and cefoxitin. Strains were cultivated in Brain Heart Infusion (BHI; Difco Laboratories, Detroit, MI, USA) overnight (A_{600} up to 0.8), then 100 μ L volumes were spread on Mueller Hinton agar (Difco) and the appropriate antibiotic disks were applied. The inoculum corresponded with 0.5 MacFarland. The following antibiotics were tested: methicillin (Met; 10 μ g), azithromycin (15 μ g) and streptomycin (Stm; 30 μ g) supplied by Liofilchem (Italy), oxacillin (Oxa; 5 μ g), clindamycin (Cln; 10 μ g), neomycine (Neo; 10 μ g), ampicillin (Amp; 10 μ g), gentamicin (Gen; 10 μ g), penicillin (Pen; 10 μ g), tobramycin (Tob; 10 μ g), erythromycin (Ery; 15 μ g), lincomycin (Lin; 15 μ g), cefoxitin (Fox; 30 μ g), chloramphenicol (Clm; 30 μ g), novobiocin (Nov; 30 μ g), tetracycline (Tet; 30 μ g), vancomycin (Van; 30 μ g) and phosphomycin (Pho; 200 μ g) supplied by Oxoid (Basingstoke, Hampshire, UK). Plates were incubated at 37 °C for 24 h and evaluated as susceptible or resistant according to the recommendations provided by the antibiotic disk suppliers and CLSI [13]. The control strain was *S. aureus* CB44 (Czech Culture Collection of Microorganisms - CCM, Brno, Czech Republic).

2.3. Detection of Penicillin-Binding Protein (PBP)2'

Based on the results from disk-diffusion testing, MRSA were further tested to confirm their resistance to methicillin. The PBP2' Latex Agglutination Test Kit (Oxoid) was used to test colonies grown for 24 hours according to the manufacturer's instructions. Quality control was done with *S. aureus* ATCC43300. Based on these positive results, eight MRSA strains were selected and tested for other activities.

2.4. Enzyme Production, Nuclease Activity, and Hemolysis of Selected Strains

Selected MRSA strains (8) were characterized for their enzymatic activity using the commercial API ZYM strips (Biomérieux, France) following the manufacturer's recommendations to detect the presence of bacterial enzymes. Enzymes evaluated were: alkalic phosphatase, esterase (C4), esterase lipase (C8), lipase (C14), leucin-arylamidase, valin arylamidase, cystein arylamidase, trypsin, α -chymotrypsin, acidiphosphatase, Naftol-AS-BI-phosphohydrolase, α -galactosidase, β -galactosidase, β -glucuronidase, α -glucosidase, β -glucosidase, N-acetyl- β -glucosaminidase, α -mannosidase, α -fucosidase. Inocula (65 μ L) of McFarland Standard one suspensions were pipetted

into each well of the kit. Enzymatic activities were evaluated after 4 h of incubation at 37 °C and after the addition of Zym A and Zym B reagents. Color intensity values from 0 to 5 and their relevant value in nanomoles were assigned for each reaction according to the color chart supplied with the kit.

To determine nuclease activity, each strain was inoculated onto the surface of DNase agar (Oxoid) and incubated for 24 h at 37 °C. After flooding and acidifying the medium with 1 N HCl, the DNA precipitated out, and the medium became turbid with clear zones around DNase-positive colonies. *S. aureus* SA4 from a dog (isolated in our laboratory by Dr. Strompfová) was used as a positive control.

Hemolysis was detected by streaking the cultures onto BHI agar (Difco) and supplementing with 5% defibrinated sheep blood. Plates were incubated at 37 °C for 24 h in an incubator. The presence or absence of clear zones around the colonies was interpreted as α - and β -hemolysis, respectively, while γ -hemolysis indicated negative strains [14].

2.5. Biofilm Formation (Slime Production) by Qualitative and Quantitative Methods

To test slime production or biofilm formation in identified staphylococci, the qualitative phenotypic method with Congo red agar (CRA) was used, according to Freeman et al. [15]. The cultivation medium was composed of Brain Heart infusion (Difco, 37 g/l) enriched with sucrose (36 g/l; Slavus a.s., Bratislava, Slovakia), pure agar (30 g/l; Difco) and Congo red dye (0.8 g/l, Merck, Germany). The medium was autoclaved at 121 °C for 15 min. Plates of the medium were inoculated with the tested staphylococcal strains and incubated at 37 °C for 24 h. A positive result was indicated by black colonies with a dry crystalline consistency. Non-slime producers usually remained pink. The color was also checked after 48 and 72 hours.

A quantitative plate assay was also used to test the biofilm formation ability of MRSA strains, according to Chaieb et al. [16]. One colony of each strain grown on BHI agar overnight at 37 °C (Difco) was transferred into 5 mL of Ringer solution (pH 7.0, 0.75% w/v) to obtain a suspension corresponding to 1×10^8 cfu/mL. A 100 μ L aliquot from that dilution was transferred into 10 mL of BHI broth (Difco). A 200 μ L volume of the dilution was inoculated into polystyrene microtiter plate wells (Greiner ELISA 12 Well Strips, 350 μ L, flat bottom, Frickenhausen GmbH, Germany) and incubated for 24 h at 37 °C. The biofilm that formed in the microtiter plate wells was washed twice with 200 μ L of deionized water and dried at 25 °C for 40 min. The remaining attached bacteria were stained for 30 min at 25 °C with 200 μ L 0.1% (m/v) crystal violet in deionized water. The dye solution was aspirated away, and the wells were washed twice with 200 μ L of deionized water. After the water removal, the plate was dried for 30 min at 25 °C, and the dye bound to the adherent biofilm was extracted with 200 μ L of 95% ethanol. A 150 μ L aliquot was transferred from each well into a new microplate well for absorbance (A) at 570 nm using an Apollo 11 Absorbance Microplate reader LB 913 (Apollo, Berthold Technologies, Oak Ridge, TN, USA). Each strain and condition were tested in two independent tests with 12 replicates. Sterile BHI was included in each analysis as a negative control. *Streptococcus equi* subsp. *zooepidemicus* CCM 7316 was used as a positive control (kindly provided by Eva Styková, University of Veterinary Medicine and Pharmacy, Košice, Slovakia). Biofilm formation was classified as highly positive ($OD_{570} \geq 1$), low-grade positive ($0.1 \leq OD_{570} < 1$), or negative ($OD_{570} < 0.1$), according to Chaieb et al. [16]. For classification, we used the average OD value and cut-off value (OD_c ; defined as 3 standard deviations (SD) above the mean OD of the negative control). The final OD value of a tested strain is expressed as the average OD value of the strain reduced by the OD_c value. For interpretation of the results, strains were divided into the following categories: non-biofilm producer ($OD \leq OD_c$), weak biofilm ($OD_c < OD \leq 2 \times OD_c$), moderate ($2 \times OD_c < OD \leq 4 \times OD_c$), and strong biofilm ($4 \times OD_c < OD$), as described by Stepanovic et al. [17].

2.6. Antibacterial and Antibiofilm Effects of Partially Purified Enterocins against Selected MRSA Strains

Eight partially purified enterocins (Ent) were used in the testing. Most of them are produced by our *Enterococcus faecium* strains of different origins (four registered with the CCM, Brno, Czech Republic): EntA(P)/EK13, produced by *E. faecium* EK13/CCM7419 environmental strain [18]; EntM/AL41, produced by *E. faecium* AL41/CCM8558 environmental strain [19]; Ent4231, produced

by ruminal strain *E. faecium* CCM4231 [20]; Ent7420, produced by rabbit-derived strain *E. faecium* EF2019/CCM7420 [21]; Ent55, produced by chicken-derived *E. faecium* EF55 [22]; Ent9296, produced by silage strain *E. faecium* EF9296 [23]; Ent412, produced by *E. faecium* EF412 (unpublished data); DurED26E/7, produced by *E. durans* ED26E/7 (isolate from ewe lump cheese; [24]). Enterocins were prepared using the following procedure: a 16 h culture (300 mL of producer strains) in De Man-Rogosa-Sharp (Merck, Germany) or Todd-Hewitt (Difco) broth was centrifuged for 30 min at 10,000 \times g to remove the cells. After adjusting the supernatant to pH 5.0 (5.5 for EntM/AL41), ammonium sulfate was added to the supernatants to obtain 40% (w/v) saturation and 80% (w/v) for ED26E/7. The mixture was gently stirred at the appropriate temperatures for different lengths of time depending on the enterocin-producing strain: 4 °C for 2 h (EK13/CCM7419, EF9296), 4 h (EF2019/CCM7420, EF412) and 24 h (EF55, CCM4231, ED26E/7), and at 21 °C for 1 h (AL41/CCM8558). After centrifugation at 10,000 \times g for 30 min, the resulting pellet was resuspended in 10 mmol/L of sodium phosphate buffer (pH 6.5).

Antibacterial/inhibition activity was determined using the agar spot test [25]. Briefly, BHI supplemented with 1.5% agar (BHIA; Difco) was used for the bottom layer. For the overlay, 0.7% BHIA enriched with 200 μ L of the indicator culture strain was used (A600 up to 1.0). Bacteriocin dilution (10 μ L) of all Ents was dropped on the surface of soft agar with each tested staphylococcal strain, and after incubation (37 °C for 18 h), clear inhibition zones around the doses of diluted bacteriocins were read. Inhibition activity was expressed in arbitrary units per milliliter (AU/mL) as the reciprocal of the highest two-fold dilution of bacteriocins, demonstrating complete growth inhibition of the tested strain. Tests were performed twice. The principal indicator, the fecal *Enterococcus avium* EA5 strain (our isolate from piglet), was used as a positive control; its inhibition activity reached up to 102400 AU/mL.

To determine the antibiofilm effect of the tested Ents, we used the quantitative plate assay. *MRSA* strains were precultured in BHI medium overnight and diluted 1,000-fold with BHI medium. Aliquots (180 μ L) of each bacterial suspension and 20 μ L of each Ent were added to the wells of a 96-well flat-bottomed polystyrene plate and incubated for 24 h at 37°C. After incubation, the solution was discarded, and each well was washed, stained, and prepared for absorbance measuring according to the method described previously [16]. Strains were tested in at least two independent tests, each with 12 replicates. The results were interpreted as the arithmetic mean of the measured values \pm standard deviation. The percentage inhibition of biofilm formation was calculated according to the formula described in a study by Jadhav et al. [26].

$$\text{Percentage inhibition} = [1 - (A_E/A_S)] \times 100$$

A_E represents the absorbance of the well with the test strain with the tested Ent, and A_S represents the absorbance of the well with the test strain without Ent.

3. Results

Among 110 staphylococcal isolates of rabbit origin, 14 were previously allotted to this species by the PCR method [12]. However, 13 MRSA were resistant to methicillin (except 2A/3), and 5 strains (2A/3, 3A/2, 3A/3, Bel1, K1/2) were susceptible to amoxicillin and cefoxitin. In the remaining eight *S. aureus* strains, the PBP2' latex agglutination method repeatedly confirmed the phenotypic methicillin/oxacillin/cefoxitin-resistance.

Testing the enzymatic activity of selected MRSA strains, all strains showed slight production (5–10 nmol) of the most enzymes (Table 1).

Table 1. The enzymatic activity (nmol) of MRSA strains.

MRSA	ALP	E	EL	L	LA	VA	CA	T	CHT
2A/2	5	10	10	5	10	5	5	5	5
5A/2	5	20	10	5	5	5	5	5	5
5B/1	5	20	10	5	5	5	5	5	5
6A/1	5	20	10	5	5	5	5	5	5

6A/2	5	20	10	5	10	10	5	5	5
Nip	5	20	10	5	5	5	5	5	5
RUM1	10	20	10	5	5	5	5	5	5
K/2	5	10	10	5	5	5	5	5	5
MRSA	ACP	N	AGA	BGA	BGLR	AGL	BGL	NABGL	AM
2A/2	10	10	5	5	5	5	5	5	5
5A/2	10	10	5	5	5	5	5	5	5
5B/1	10	10	5	5	5	5	5	5	5
6A/1	5	10	5	5	5	5	5	5	5
6A/2	10	10	5	5	5	10	5	5	5
Nip	5	10	5	5	5	5	5	5	5
RUM1	5	10	5	5	5	5	5	5	5
K/2	10	10	5	5	5	10	5	5	5

Abbreviations: MRSA – methicillin-resistant *S. aureus*, ALP – alcalic phosphatase, E - esterase (C4), EL – esterase lipase (C14), L – lipase, LA – leucin-arylamidase, VA – Valin-arylamidase, CA – cystin-arylamidase, T – trypsin, CHT - α -chymotrypsin, ACP – acidic phosphatase, N - Naftol-AS-BI-phospho-hydrolase, AGA - α -galactosidase, BGA - β -galactosidase, BGLR - β -glucuronidase, AGL - α -glucosidase, NABGL - N-acetyl- β -glucosamidase, AM - α -mannosidase, AF - α -fucosidase.

The majority of strains showed a positive reaction for esterase (C4; 20 nmol; except the SA2A/2 and K/2 strains; 10 nmol). It was important to check if tested strains had negative reactions to β -glucuronidase and β -glucosidase; surprisingly, our strains showed only slight reactions. The strain 6A/2 possessed the highest pathogenicity potential because of the highest values of enzymes produced compared with other tested strains.

The majority of MRSA (6) showed β -hemolysis (Table 2); the 2A/2 and 6A/1 strains showed γ -hemolysis (which means they did not form hemolysis). While strains 2A/2 and 6A/2 did not produce the enzyme DNase, a virulence factor that catalyzes DNA degradation, the rest of the staphylococci were DNase-positive (Table 2).

Table 2. PBP2' test, hemolysis, DNase activity, slime production (biofilm formation on CRA), biofilm formation (plate assay) of MRSA strains.

MRSA	PBP2' test		Hemolysis	DNase activity	Slime production/biofilm formation				Plate assay (A ₅₇₀)
	CRA-24 h	CRA-48 h			CRA-72 h	Plate assay (A ₅₇₀)			
2A/2	+	γ	-	-	+	+	+	+	0.546
5A/2	+	β	+	+	+	+	+	+	0.606
5B/1	+	β	+	+	+	+	+	+	0.556
6A/1	+	γ	+	+	+	+	+	+	0.556
6A/2	+	β	-	-	+	+	+	+	0.526
Nip1	+	β	+	-	+	+	+	+	0.546
RUM1	+	β	+	+	+	+	+	+	0.586
K/2	+	β	+	-	-	-	+	+	0.606

Abbreviations: MRSA – methicillin-resistant *S. aureus*; CRA – Congo red agar.

Testing the slime production (qualitative biofilm formation), 5 strains were positive already after 24 h, 7 strains after 48 h/72 h, and the K/2 strain produced slime and form biofilm only after 72 h. Using the quantitative plate assay, those 7 MRSA with positive biofilm formation on CRA were also found to be positive and showed low-grade biofilm formation according to Chaieb et al. [16] (0.1 < OD₅₇₀ \leq 1.0; Table 2). Regarding to category of biofilm production [17], moderate biofilm formation (0.4 < OD \leq 0.8) was observed in all strains.

The antibacterial effect of tested EntS was noted, whereas all MRSA were susceptible to tested EntS, except EntCCM4231, which was not able to inhibit the growth of all strains (Table 3). Strains 5A/2, and 5B/1 were more resistant to all EntS (100–200 AU/mL), and the 5B/1 strain did not show

any inhibition zone against Ent7420 (0 AU/mL). Other strains showed higher susceptibility to tested Ents in the range of 400-12800 AU/mL.

Table 3. Antibacterial (AU/mL) of enterocins (Ent) against MRSA.

MRSA	EntA/P	EntM	Ent7420	Ent9296	Ent55	Ent412	Ent4231	DurED26E/7
2A/2	12800	6400	3200	3200	800	1600	0	800
5A/2	200	100	100	200	200	100	0	200
5B/1	200	100	0	100	100	100	0	100
6A/1	12800	6400	12800	6400	3200	6400	0	800
6A/2	400	6400	12800	400	400	200	0	200
Nip1	12800	6400	3200	1600	1600	800	0	400
RUM1	12800	6400	12800	6400	1600	3200	0	1600
K/2	12800	6400	12800	6400	3200	3200	0	1600

Abbreviations: MRSA – methicillin-resistant *S. aureus*, Ent – enterocin.

Evaluating the antibiofilm activity/effect of the tested Ents, only Ent4231 did not inhibit the biofilm formation of MRSA strains (Table 4). The rest of the Ents exhibited a high level of antibiofilm activity, ranging from 64.9-97.0%. The highest antibiofilm activity, with an average of 96.4%, ranging from 84.8 to 97.0%, was shown by Ent7420. The most inhibited biofilm formation was noted in K/2 and 5A/2 (92.8 respectively 92.7% on average) after Ents addition. The biofilm formed by the RUM1 strain appeared to be the strongest, with the lowest antibiofilm activity of the tested Ents (87.5% on average).

Table 4. Percentage biofilm inhibition (%) exhibited by enterocins.

MRSA	EntA/P	EntM	Ent7420	Ent9296	Ent55	Ent412	Ent4231	DurED26E/7
2A/2	87.6	88.9	96.8	90.3	96.1	90.4	0	94.7
5A/2	91.0	85.7	97.0	95.9	96.9	88.2	0	94.2
5B/1	86.9	88.4	96.4	87.0	94.5	90.4	0	93.4
6A/1	88.0	86.9	96.0	87.0	96.4	88.4	0	93.2
6A/2	89.5	81.9	94.8	93.6	95.2	90.7	0	93.4
Nip1	90.5	88.0	96.8	87.1	94.5	90.7	0	95.7
RUM1	91.2	84.7	96.8	91.1	64.9	90.4	0	93.2
K/2	91.1	87.0	96.2	96.3	93.2	90.9	0	94.7
Average	89.5	86.4	96.4	91.0	91.5	90.0	0	94.1

Abbreviations: MRSA – methicillin-resistant *S. aureus*, Ent – enterocin.

4. Discussion

Staphylococcus aureus is a well-known commensal (skin, mucose of the respiratory, alimentary, and urogenital tract) and pathogen of a lot of animal species and humans. They are easily spread between animals and humans by skin-to-skin contact, excretions, aerosols, and animal products (meat, non-pasteurized milk), and when they are getting deeper into the organism (e.g., to blood, lungs, gastrointestinal tract, kidneys, etc.), they become pathogenic staphylococci. *S. aureus* produces a large repertoire of virulence factors, including surface-associated proteins and polysaccharides, toxins, and exoenzymes, which contribute to its success as a pathogen [27]. The gut microbiota in the large intestine of humans and animals exhibits a variety of enzymatic activities with potential impact on the organism's health through the biotransformation of secondary plant products and xenobiotic compounds. Some of these enzymes, such as α -chymotrypsin, β -glucuronidase, β -glucosidase, and N-acetyl- β -glucosaminidase, respectively in the presence of bacterial strains characterized by their high activity are associated with intestinal diseases and tumors [28]. Our *S. aureus* strains did not show a reaction to "negative" enzymes; however, they showed high resistance to methicillin and other tested antibiotics [12]. Although staphylococci are also known as producers of microbial lipases

and esterases for their use as catalysts in the cosmetic, medicinal, food, or detergent industries [29], our isolates possessed only slight lipase and higher, but still moderate esterase production.

Determination of the prevalence of phenotypic virulence factors among the tested MRSA revealed that the majority of them (75%) were characterized by the presence of DNase, but still at a lower level than in *S. aureus* strains of milk origin [30]. Staphylococcal nuclease is an endo- and exo-nuclease that breaks down DNA and RNA substrates and it is encoded by two staphylococcal nuclease genes, Nuc (SA0746) and Nuc2 (SA1160). Kiedrowski et al. [31] observed a correlation between Nuc activity and biofilm formation. The authors noted that Nuc levels have a significant impact on *in vitro* biofilm formation in *S. aureus* and can disperse biofilm by breaking down extracellular DNA. They also presented enhanced biofilm formation in strains that do not produce Nuc, which was not confirmed by us.

The presence of β -hemolysin enhances *S. aureus* colonization of the skin and can also contribute to biofilm formation [32]; a positive correlation between hemolysis and biofilm-forming ability was also noted by us. Regarding the detection of hemolytic activity, almost all MRSA showed β -hemolysis, contrary to Motamedi et al. [33], who detected hlb genes for β -hemolysin production only in 5% of MRSA.

As it was mentioned above, *S. aureus* strains have a wide spectrum of virulence factors, including secreted and cell surface-associated factors, and especially the last of them is connected with biofilm formation. Staphylococcal bacterial biofilms remain a serious clinical problem due to resistance to antibiotics and disinfectants, as well as resistance to phagocytosis and the host immune system, and to the continued difficulties in treating staphylococcal biofilm-associated infections.

Slime factor is a viscous extracellular polysaccharidic layer that makes phagocytosis difficult and enhances adhesion to host tissues and plastic or metallic surfaces. Our MRSA strains showed a higher prevalence of slime-producing activity right after 24 hours of testing (5 positive/8 strains and 8/8 after 72 hours) than was presented by Dubravka et al. [34] in *S. aureus* isolated from bovine mastitis.

Testing for biofilm production showed that all MRSA strains were moderate biofilm producers. Silva et al. [35] also presented the ability to form biofilms by *S. aureus* isolated from a wide range of animals. Moreover, they noted an association between biofilm formation and antimicrobial resistance, with stronger biofilms produced by MDSA strains. Bino et al. [36] also detected most coagulase-negative staphylococci from horses as biofilm-forming strains, similarly to our results. On the other hand, wild staphylococci isolated from roe deer were low-grade biofilm producers or non-forming biofilm [37], although two strains of them were multi-resistant to antibiotics. Pathogenic staphylococci beyond their ability to form biofilm have an amazing capacity to acquire resistance traits to antibiotics, and therefore, infections caused by these bacteria are very difficult to treat. All the tested strains that were able to form biofilm were also methicillin- and multidrug-resistant [12]; the results indicate that these strains could be virulent agents.

For treating infections by multiresistant bacteria, including MDSA and MRSA, new natural compounds are needed. The synergistic effect of enterocins DD28 and DD93 (in the range of 800-6400 AU/mL of their activity) in combination with erythromycin or kanamycin against the clinical MRSA-S1 strain was noted [10]. An equally effective and promising way to inhibit highly virulent *S. aureus* strains, including biofilm-forming and/or MRSA and MDSA, could be the application of antimicrobial peptides-bacteriocins themselves-without antibiotics. David et al. [38] also reported the inhibition activity of PPE E3 from *E. faecalis* against *S. aureus* isolated from a wound and also a good healing process after its application right to the wound. The inhibition activity of partially purified enterocins (PPEs) produced by enterococci against the target of indicators, including *S. aureus* strains, has already been described [39] and repeatedly confirmed in this study against MRSA. The anti-staphylococcal effect of durancin DurED26E/7 was observed, similarly to Hanchi et al. [40], who described the high inhibition effect of durancin 61A alone and combined with other bacteriocins and antibiotics against clinical pathogens, including MRSA.

While the majority of studies with bacteriocins used to target biofilms have used lantibiotics, other groups of bacteriocins have also been investigated. Caballero Gómez et al. [41] and Al Atya et al. [10] reported the efficacy of enterocins AS-48, resp. DD93 and DD28 in combination with several

biocides and antibiotics against MRSA biofilms. Molham et al. [42] observed significant destruction (80% and 48%) of *Streptococcus mutans* ATCC 25175-associated preformed biofilms treated with crude supernatants of *Ent. faecium* FM43 and *Ent. faecium* FM50. Our tested Ents, in addition to their strong anti-MRSA activity, were also able to inhibit MRSA biofilms in a higher range (89.5-96.4%). Since studies on the direct effect of enterocins on biofilms formed by MRSA are limited, the high antibiofilm activity of tested Ents is very promising. These results show that antimicrobial peptides – enterocins – may serve as a potential treatment against biofilm-forming MDSA and MRSA strains.

5. Conclusions

In conclusion, the tested Ents showed high antimicrobial and antibiofilm activity against MRSA strains isolated from rabbits. These bioactive substances offer a promising option for the treatment of infections caused by MRSA, with a focus on the strains with biofilm-forming ability. Justification for other laboratory and clinical studies of them is required. The advantage of Ents that they mitigate the development of bacterial resistance and biofilm formation by resistant bacterial strains. However, more significant results can be achieved by combining several bioactive substances. Therefore, Ents are promising as a candidate for the development of antibacterial drugs against MRSA.

Author Contributions: Conceptualization, M.P.S.; methodology, M.P.S. and N.K.; validation, M.P.S.; formal analysis, M.P.S. and A.L.; investigation, M.P.S.; resources, M.P.S.; data curation, M.P.S.; writing—original draft preparation, M.P.S.; writing—review and editing, M.P.S.; visualization, M.P.S.; supervision, M.P.S. and A.L.; project administration, M.P.S.; funding acquisition, M.P.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Scientific Grant Agency of the Ministry for Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences VEGA, grant number 2/0005/21.

Data Availability Statement: Data are available upon reasonable request to the corresponding author.

Acknowledgments: Part of results regarding the isolation, antibiotic resistance and antimicrobial activity of staphylococci was published in the journal *Folia Microbiologica*, 2007, 52(3), by Pogány Simonová et al. (2007).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

1. Götz, F. *Staphylococcus* and biofilms. *Mol. Microbiol.* **2002**, *43*, 1367-1378.
2. Lozano, C.; Gharsa, H.; Ben Slama, K.; Zarazaga, M.; Torres, C. *Staphylococcus aureus* in animals and food: methicillin resistance, prevalence and population structure. A review in the African continent. *Microorganisms* **4**(1), 12.
3. Bzdil, J.; Zouharova, M.; Nedbalcova, K.; Sladecek, V.; Senk, D.; Holy, O. Oxacillin (*methicillin*) resistant staphylococci in domestic animals in the Czech Republic. *Pathogens*. **2021**, *10*(12), 1585.
4. Merghni, A.; Nejma, M.B.; Dallel, I.; Tobji, S.; Amor, A.B.; Janel, S.; Lafont, F.; Aouni, M.; Mastouri, M. High potential of adhesion to biotic and abiotic surfaces by opportunistic *Staphylococcus aureus* strains isolated from orthodontic appliances. *Microb. Pathog.* **2016**, *91*, 61-67.
5. Mathur, H.; Field, D.; Rea, M.C.; Cotter, P.D.; Hill, C.; Ross, R.P. Fighting biofilms with lantibiotics and other groups of bacteriocins. *NPJ Biofilms Microbiomes*, **2018**, *4*, 9.
6. Klaenhammer, T.R. Genetics of bacteriocins produced by lactic acid bacteria, *FEMS Microbiol. Rev.*, **1993**, *12*, 39e85.
7. Nes, I.F.; Holo, H. Class II antimicrobial peptides from lactic acid bacteria. *Biopolymers*, **2000**, *55*, 50-61.
8. van Staden, A.D.P.; van Zyl, W.F.; Trindade, M.; Dicks, L.M.T.; Smith, C. Therapeutic application of lantibiotics and other lanthipeptides: old and new findings. *Appl. Environ. Microbiol.*, **2021**, *87*(14), e0018621.
9. Franz, C.H.M.A.P.; van Belkum, M.J.; Holzapfel, W.H.; Abriouel, H.; Gálvez, A. Diversity of enterococcal bacteriocins and their grouping in a new classification scheme, *FEMS Microbiol. Rev.* **2007**, *31*, 293-310.
10. Al Atya, A.K.; Belguesmia, Y.; Chataigne, G.; Ravallec, R.; Vachée, A.; Szunerits, S.; Boukherroub, R.; Drider, D. Anti-MRSA activities of enterocins DD28 and DD93 and evidences on their role in the inhibition of biofilm formation. *Front. Microbiol.*, **2016**, *7*, A.817, 1-12.
11. Simonová, M.P.; Maďar, M.; Lauková, A. Effect of enterocins against methicillin-resistant animal-derived staphylococci. *Vet. Res. Commun.*, **2021**, *45*, 467-473.

12. Simonová, M.; Fotta, M.; Lauková, A. Characteristics of *Staphylococcus aureus* isolated from rabbits. *Folia Microbiol.*, **2007**, 52(3), 291-296.
13. Clinical and Laboratory Standard Institute (CLSI). *Performance Standards for Antimicrobial Susceptibility Testing*. 30th ed.; The Clinical & Laboratory Standards Institute: Wayne, PA, USA. 2020.
14. Semedo, T.; Santos, M.A.; Lopes, M.F.S.; Figueiredo Marques, J.J.; Barreto Crespo, M.; Tenreiro, R. Virulence factors in food, clinical and reference Enterococci: a common trait in the genus? *Syst. Appl. Microbiol.* **2003**, 26, 13-22.
15. Freeman, D.J.; Falkiner, F.R.; Keane, C.T. New method for detecting slime production by coagulase negative staphylococci. *J. Clin. Pathol.*, **1989**, 42(8), 872-874.
16. Chaieb, K.; Chehab, O.; Zmantar, T.; Rouabchia, M.; Mahdouani, K.; Bakhrouf, A. *In vitro* effect of pH and ethanol on biofilm formation by clinical *Staphylococcus epidermidis* strains. *Ann. Microbiol.*, **2007**, 57, 431-437.
17. Stepanović, S.; Vuković, D.; Hola, V.; Di Bonaventura, G.; Djukić, S.; Ćirković, I.; Ruzicka, F. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. *APMIS*, **2007**, 115, 891-899.
18. Mareková, M.; Lauková, A.; De Vuyst, L.; Skaugen, M.; Nes, I.F. Partial characterization of bacteriocins produced by environmental strain *Enterococcus faecium* EK13. *J. Appl. Microbiol.*, **2003**, 94, 523-530.
19. Mareková, M.; Lauková, A.; Skaugen, M.; Nes, I. Isolation and characterization of a new bacteriocin, termed enterocin M, produced by environmental isolate *Enterococcus faecium* AL41. *J. Ind. Microbiol. Biotechnol.*, **2007**, 94, 523-530.
20. Lauková, A.; Mareková, M.; Javorský, P. Detection and antimicrobial spectrum of a bacteriocin-like substance produced by *Enterococcus faecium* CCM4231. *Lett. Appl. Microbiol.*, **1993**, 16, 257-260.
21. Pogány Simonová, M.; Lauková, A.; Chraštinová, L.; Strompfová, V.; Faix, Š.; Vasilková, Z.; Ondruška, L.; Jurčík, R.; Rafay, J. *Enterococcus faecium* CCM7420, bacteriocin PPB CCM7420 and their effect in the digestive tract of rabbits. *Czech J. Anim. Sci.*, **2009**, 54, 376-386.
22. Strompfová, V.; Lauková, A. *In vitro* study on bacteriocin production of enterococci associated with chickens. *Anaerobe*, **2007**, 13, 228-237.
23. Marciňáková, M.; Lauková, A.; Simonová, M.; Strompfová, V.; Koréneková, B.; Nadš, P. A new probiotic and bacteriocin-producing strain of *Enterococcus faecium* EF9296 and its use in grass ensiling. *Czech J. Anim. Sci.*, **2008**, 53(8), 336-345.
24. Lauková, A.; Strompfová, V.; Szabóová, R.; Kmet, V.; Tomáška, M. Bioactive strains of *Enterococcus durans* isolated from ewes' lump cheese. *Slovak Vet. J.*, **2012**, 37, 277-278.
25. De Vuyst, L.; Callewaert, R.; Pot, B. Characterization of the antagonistic activity of *Lactobacillus amylovorus* DCE471 and large scale isolation of its bacteriocin amylovorin L471. *Syst. Appl. Microbiol.*, **1996**, 9, 9-20.
26. Jadhav, S.; Shah, R.; Bhave, M.; Palombo, E.A. Inhibitory activity of yarrow essential oil on *Listeria* planktonic cells and biofilms. *Food Control*, **2013**, 29, 125-130.
27. Lowy, F.D. *Staphylococcus aureus* infections. *N. Engl. J. Med.*, **1998**, 339, 520-532.
28. De Preter, V.; Raemdonck, H.; Cloetens, L.; Houben, E.; Rutgeerts, P.; Verbeke, K. Effect of dietary intervention with different pre- and probiotics on intestinal bacterial enzyme activities. *Eur. J. Clin. Nutr.* **2008**, 62(2), 225-231.
29. Sarmah, N.; Revathi, D.; Sheelu, G.; Yamuna Rani, Y.; Sridhar, S.; Mehtab, V.; Sumana, C. Recent advances on sources and industrial applications of lipases. *Biotechnol. Prog.*, **2018**, 34(1), 5-28.
30. Gündoğan, N.; Citak, S.; Turan, E. Slime production, DNase activity and antibiotic resistance of *Staphylococcus aureus* isolated from raw milk, pasteurised milk and ice cream samples. *Food Control*, **2006**, 17(5), 389-392.
31. Kiedrowski, M.R.; Kavanaugh, J.S.; Malone, C.L.; Mootz, J.M.; Voyich, J.M.; Smeltzer, M.S.; Bayles, K.W.; Horswill, A.R. Nuclease modulates biofilm formation in community-associated methicillin-resistant *Staphylococcus aureus*. *PLoS One*, **2011**, 6(11), e26714.
32. Tam, K.; Torres, V.J. *Staphylococcus aureus* secreted toxins and extracellular enzymes. *Microbiol. Spectr.*, **2019**, 7(2), 1-59.
33. Motamedi, H.; Asghari, B.; Tahmasebi, H.; Arabestani, M.R. Identification of hemolysine genes and their association with antimicrobial resistance pattern among clinical isolates of *Staphylococcus aureus* in West of Iran. *Adv Biomed Res.*, **2018**, 7, 153.
34. Dubravka, M.; Lazić, S.; Vidić, B.; Petrović, J.; Bugarski, D.; Šeguljev, Z. Slime production and biofilm forming ability by *Staphylococcus aureus* bovine mastitis isolates. *Acta Vet. Beograd*, **2010**, 60(2-3), 217-226.
35. Silva, V.; Correia, L.; Pereira, J.E.; González-Machado, C.; Capita, R.; Alonso-Calleja, C.; Iglesias, G.; Poeta, P. Biofilm formation of *Staphylococcus aureus* from pets, livestock, and wild animals: relationship with clonal lineages and antimicrobial resistance. *Antibiotics*, **2022**, 11(6), 772.
36. Bino, E.; Lauková, A.; Ščerbová, J.; Kubašová, I.; Kandričáková, A.; Strompfová, V.; Miltko, R.; Belzecki, G. Fecal coagulase-negative staphylococci from horses, their species variability and biofilm formation. *Folia Microbiol.*, **2019**, 64(6), 719-726.

37. Lauková, A.; Bino, E.; Kubašová, I.; Strompfová, V.; Miltko, R.; Belzecki, G.; Pogány Simonová, M. Characterisation of faecal staphylococci from Roe Deer (*Capreolus capreolus*) and Red Deer (*Cervus elaphus*) and their susceptibility to gallidermin. *Probiotics Antimicrob. Proteins*, **2020**, *12*(1), 302-310.
38. David, O.M.; Alese, M.O.; Komolafe, D.M.; Adejare, I.J.; Alese, O.O.; Omonisi, A.E. *In vitro* and *in vivo* antimicrobial activity of partially purified enterocin produced by *Enterococcus faecalis* and its application in wound healing. *Afr. J. Clin. Exp. Microbiol.*, **2017**, *18*(1), 1-10.
39. Simonová, M.; Lauková, A. Isolation of fecal *Enterococcus faecium* strains from rabbits their sensitivity to antibiotics and ability to bacteriocin production. *Bull. Vet. Inst. Puławy*, **2004**, *48*, 383-386.
40. Hanchi, H.; Hammami, R.; Gingras, H.; Kourda, R.; Bergeron, M.G.; Ben Hamida, J.; Ouellette, M.; Fliss, I. Inhibition of MRSA and of *Clostridium difficile* by durancin 61A: synergy with bacteriocins and antibiotics. *Future Microbiol.*, **2017**, *12*, 205-212.
41. Caballero Gómez, N.; Abriouel, H.; Grande, M.J.; Pérez Pulido, R.; Gálvez, A. Combined treatments of enterocin AS-48 with biocides to improve the inactivation of methicillin-sensitive and methicillin-resistant *Staphylococcus aureus* planktonic and sessile cells. *Int. J. Food Microbiol.*, **2013**, *163*(2-3), 96-100.
42. Molham, F.; Khairalla, A.S.; Azmy, A.F.; El-Gebaly, E.; El-Gendy, A.O.; AbdelGhani, S. Anti-proliferative and anti-biofilm potentials of bacteriocins produced by non-pathogenic *Enterococcus* sp.. *Probiotics & Antimicrob. Prot.*, **2021**, *13*, 571-585.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.