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Abstract: Robots in space are necessarily extremely light and lack structural stiffness resulting in 

natural frequencies of resonance so low as to reside inside the attitude controller’s bandwidth. A 

variety of input trajectories can be used to drive a controller’s attempt to ameliorate the control-

structural interactions where feedback is provided by low-quality, noisy sensors. Traditionally, step 

functions are used as the ideal input trajectory. However, step functions are not ideal in many 

applications, as they are discontinuous. Alternative input trajectories are explored in this 

manuscript and applied to an example system that includes a flexible appendage attached to a rigid 

main body. The main body is controlled by a reaction wheel. The equations of motion of the flexible 

appendage, rigid body, and reaction wheel are derived. A feedback controller is developed to 

account for the rigid body modes. Additional filters are added to compensate for the system’s 

flexible modes. Sinusoidal trajectories are autonomously generated to feed the controller. Whiplash 

compensation is additionally implemented for comparison. The control method without random 

errors with the smallest error is the sinusoidal trajectory method, which showed a 97.39% 

improvement when compared to the baseline response when step trajectories were commanded, 

while the sinusoidal method was inferior to traditional step trajectories when sensor noise and 

random errors were present. 

Keywords: analytic dynamics; celestial mechanics; stability, control, and synchronization; structural 

dynamics; equations of motion; finite element method; flexible robotics; bandpass filter; notch filter; 

structural filtering; trajectory generation; whiplash compensation 

 

1. Introduction 

The solutions and methods developed in this manuscript are applicable to a wide range of 

dynamics problems. A robotic arm is chosen here as an example of a highly flexible system, with 

implications across the industry. Robots are deployed in space for a variety of purposes. Figure 1a 

shows one such robot, NASA’s Robonaut 2. In addition to space applications, robotic arms can be 

deployed underwater, as evidenced by Figure 1b. Whether in space or underwater, the commanded 

trajectory can influence the tracking error of the robotic arm. 

  

(a) (b) 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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Figure 1. (a) NASA’s Robonaut 2, built at Johnson Space Center, became the first android astronaut 

to go to space in 2011. Now, about two dozen former NASA engineers, many of whom helped build 

the robot astronaut, have turned their skills to creating underwater robots at Nauticus Robotics. [1]; 

(b) Nauticus is also commercializing the robotic arm technology—known as Olympic Arm—that it 

developed while designing and building Aquanaut. Image credits: Nauticus Robotics Inc. [1] used in 

compliance with image use policy [2]. 

Minimizing tracking error can allow for more precise movements and support the execution of 

detailed motion. In-orbit servicing is an example of the need for precise control over a robotic arm’s 

movement. By identifying the most appropriate trajectory to command, the error in angular 

movement can be minimized. 

1.1. Placing the study in a broad context and highlight why it is important. 

Towards in–orbit servicing, the importance of spacecraft-mounted robotics missions is 

highlighted in reference [3] which stipulates: 

“…environmental, economic, and strategic considerations support the claim that the future 

of a space infrastructure will depend on the ability to perform on-orbit servicing, 

encompassing a broad array of in-space operations, such as inspection, berthing, refueling, 

repair, assembly, and so on.” 

According to a 2010 study by the U.S. National Air and Space Administration (NASA), [4] a key 

to enabling robotic servicing missions in space leading to advantageous future strategic impact, cost 

effectiveness, and environmental sustainability. Cost effectiveness is manifest in the ability to 

relatively cheaply replace spacecraft components rather than launch a replacement spacecraft. 

Reference [5] indicates since 1957 roughly 5,400 space missions have been flown, while nearly twenty-

thousand space objects are tracked by the north American air defense command (NORAD), where 

over two thousand are rocket upper stages spent of fuel and over ten thousand additional items are 

classified as debris. Current proposals [6,7] indicate intentions for very large future constellations 

together comprising another twenty thousand objects in orbit. Such a large number of craft in orbit 

constitute a potentially lucrative business model for system repair [8] and refueling on-orbit. 

Discovery of the very origins of life and human long-term habitability are postulated to be aided by 

space robotics in [9]. 

1.2. The purpose of the work and its significance. 

This manuscript investigates the importance of the trajectory shaping fed to the control method 

used to rotate the space robot. The flexible spacecraft system examined in this manuscript is 

indicative of a larger dynamics problem. The solutions and methods explored are applicable to that 

larger set of dynamic problems. The requisite equations of motion are derived and feedback 

controllers and second-order structural filters are applied, following the methodology developed in 

[10]. Initially, sinusoidal trajectory generation is used to drive the controllers. Whiplash 

compensation is additionally investigated as a solution, per [11]. Three methods of trajectory shaping 

are applied to the flexible spacecraft robotic system and compared critically: step shaped, 

sinusoidally shaped, and whiplash shaped. The state errors, rate errors, and control efforts are 

compared for each of the three methods of input control to determine which is most appropriate for 

the flexible spacecraft system application. 

1.3. Review of the literature 

Elder techniques for controlling highly flexible systems relied foremost on feedback 

necessitating construction of feedback linearizing control laws [12]. The linear-quadratic regulator 

approach, robust control approaches minimizing the H∞ and H2 norms, and a disparate approach 

based in analytical dynamics, introduced as the Udwadia–Kalaba approach were compared in 

reference [13]. Very recently, integration of fuel slosh with centralized sensors and actuators, without 
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the usage of collocated devices for vibration management. into techniques to control the motion of 

flexible appendages was offered by [14] reiterating the relevance of classical proportional, derivative 

(PD) control with nonadaptive bandpass filters, where the novel proposition includes integration of 

wave-based control with the filtered PD control scheme. Vibration suppression was illustrated by 

establishing a dynamic grasping area to describe the contact procedure of the capture device grasping 

target in reference [15]. Control of rotation-floating space robots with flexible appendages specifically 

for on-orbit servicing was proposed in [16]. Techniques were suggesting using a composite two-time-

scale control system [17]. Open-loop methods were strictly used for analysis while closed-loop was 

utilized for control in reference [18]. 

1.4. State of the art benchmarks 

The following list highlights the current state of the art developing deterministic artificial 

intelligence: 

1. In 2019, reference [11] revealed an optimal control revealed by pseudospectral optimization 

software where the solution validation was provided using six theoretical necessary conditions 

of optimization: (1) Hamiltonian minimization condition; (2) adjoint equations; (3) terminal 

transversality condition; (4) Hamiltonian final value condition; (5) Hamiltonian evolution 

equation; and lastly (6) Bellman’s principle. The results are novel and unique in that they initially 

command full control in the opposite direction from the desired end state, while no such results 

are seen using classical control methods including classical methods augmented with structural 

filters typically employed for controlling highly flexible multi-body systems. 

2. Later in 2022, an interesting study of the use of feedback and structural filtering to maximize 

system stability was offered [11], leading to the recommendation to use single-sinusoidal 

trajectory shaping to maximize stability. 

1.5. Novelties presented 

The following brief list articulates the novel growth from the current state of the art methods in 

paragraph 1.4. 

1. Rather than propose options for maximizing stability [10], this study seeks to offer advice to 

minimize trajectory tracking errors.  

2. Rather than focus on feedforward [11] versus feedback [10], this study investigates commanded 

trajectory tracking options. 

1.6. Main aim of the work and principal conclusions 

This manuscript advises the readership on methods to shape the commanded trajectory to be 

tracked, where sinusoidal, whiplash, and step trajectories are critically compared using tracking 

errors (both angle and angular rate) and control effort as figures of merit.  

2. Materials and Methods 

In this manuscript, the flexible spacecraft system shown in Figure 2 is analyzed. The system 

consists of a rigid main body R, reaction wheel W, and a flexible appendage F. The flexible appendage 

F is split into beam elements 1 through 7, and node points 1 through 8. Table 1 lists parameters of the 

flexible spacecraft system and their descriptions. The methods applied in this section can be used for 

any dynamic, flexible system and is not limited to spacecraft application. The flexible spacecraft 

system in Figure 2 is explored in this manuscript as an example. 
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(a) (b) 

Figure 2. Flexible spacecraft system. (a) Atop a (planar) air bearing table, a free-floating space robot 

is autonomously controlled [16]. Imagery and photographs of the Department of Defense are in the 

public domain, unless otherwise noted [20]; (b) schematic diagram of the free-floating flexible space 

system depicted in subfigure (a). This schematic is identical to that used in references [10,11], where 

this manuscript comprises the latest iteration of continuing research. No special permission is 

required to reuse all, or part of the article published by MDPI, including figures and tables [21]. 

2.1. Equations of Motion 

The equations of motion of the flexible spacecraft system are derived using the Lagrange 

method. The Lagrange method requires kinetic and potential energies. See Table 1 for parameter 

definitions.  

Table 1. Flexible Spacecraft System Parameters. 

Variable Definition Variable Definition Variable Definition 𝑇 Kinetic energy 𝜔௜ Natural frequency of i-th mode 𝑉 Potential energy 𝐼௭௭ Moment of inertia of rigid body 𝜙௜ Modal coordinates 𝑊 Displacement 𝐼௪ Moment of inertia of reaction wheel 𝑥ி Final position, x 𝑄 Sheer forces 𝜃 Angle of flexible appendage 𝑦ி Final position, y 𝑀 Moments 𝜃௪ Angle of reaction wheel 𝑛 Number of independent modes 𝐿 Lagrangian 𝑞௜ Modal coordinates 𝐷௜ Elastic decoupling coefficients 𝑇஽ Disturbance torque 

The kinetic energy of the entire flexible spacecraft system was found by summing the kinetic 

energies of the rigid main body, flexible appendage, and reaction wheel. The kinetic energies are 

written in terms of the moments of inertia and the modal coordinates, as seen in Equation (1). 𝐷௜ are 

the rigid-elastic coupling terms and are defined in Equation (2). The modal coordinates are expressed 

in terms of q and F, which are defined in Equations (4) and (5) for a given beam i.  

𝑇 = 12 𝐼௭௭𝜃ሶଶ + 12 𝐼௪𝜃ሶ௪ଶ + 𝐼௪𝜃ሶ𝜃ሶ௪ + 12෍𝑞ሶ௜௡
௜ୀଵ + 𝜃ሶ ෍𝐷௜𝑞ሶ௜௡

௜ୀଵ  (1)

The potential energy is shown in Equation (3), where 𝜔௜  are the natural frequencies of the 

flexible spacecraft system for mode i. 𝐷௜ = න[𝑥ி𝜙௜௬ − 𝑦ி𝜙௜௫]𝑑𝑚 (2)

𝑉 = 12෍𝜔௜ଶ𝑞௜ଶ௡
௜ୀଵ  (3)
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ሼ𝑞ሽ = ሼ𝑊ଵ 𝜃ଵ 𝑊ଶ 𝜃ଶሽ் (4)

ሼ𝐹ሽ = ሼ𝑄ଵ 𝑀ଵ 𝑄ଶ 𝑀ଶሽ் (5)

The Lagrange equation, shown in Equation (6) is applied to the Lagrangian L, where L=T-V. The 

Lagrange method results in the equations of motion (EOM) of the flexible spacecraft system, which 

are shown in Equation (7). −𝑑𝑑𝑡 ൬ 𝛿𝐿𝛿𝑢ሶ ௜൰ − ൬ 𝛿𝐿𝛿𝑢௜൰ = 𝑄௜ (6)

𝐸𝑂𝑀:⎩⎪⎨
⎪⎧𝐼௭௭𝜃ሷ + 𝐼௪𝜃ሷ௪ +෍𝐷௜𝑞ሶ௜௡

௜ୀଵ = 𝑇஽𝐼௪(𝜃ሷ௪ + 𝜃ሷ) = 𝑇𝑞ሷ௜ + 𝜔௜ଶ𝐷௜𝜃ሷ = 0  (7)

2.2. Natural Frequencies 

The natural frequencies of the flexible spacecraft system were derived using the finite element 

method and by solving the eigenvalue problem using the stiffness and mass matrices. It was assumed 

that all displacements are normal, and the system is constrained in Nastran. The stiffness (k) and 

mass (m) matrices are constructed for each beam element. The individual stiffness and mass matrices 

are shown for a given beam element i in Equations (8) and (9).  

[𝑘௜] = ൦ 12 6𝐿 −12 6𝐿6𝐿 4𝐿ଶ −6𝐿 2𝐿ଶ−12 −6𝐿 12 −6𝐿6𝐿 2𝐿ଶ −6𝐿 4𝐿ଶ ൪ (8)

[𝑚௜] = ൦ 156 22𝐿 54 −13𝐿22𝐿 4𝐿ଶ 13𝐿 −3𝐿ଶ54 13𝐿 156 −22𝐿−13𝐿 −3𝐿ଶ −22𝐿 4𝐿ଶ ൪ (9)

The individual stiffness and mass matrices are added by superposition to form the total stiffness 

and mass matrices respectively, which are presented in the Appendix. The solution to the eigenvalue 

problem, presented in Equation (10), provides the natural frequencies and mode shapes of the flexible 

spacecraft system. The resulting natural frequencies are listed in Table 2, and their corresponding 

mode shapes can be found in the Appendix. 

Table 2. Natural Frequencies, 𝜔௡ for the Flexible Spacecraft System, in rad/s. 

1809.46 596.81 43.72 10.22 

1415.52 478.77 30.89 2.07 

1042.16 419.02 15.77 0.69 

774.31 54.87   

2.3. PID Controller 

A PID controller was designed to control the motion of the reaction wheel. The PID controller 

was designed to meet the following specification requirements: 15% overshoot and control 

bandwidth of 4 rad/s. It is assumed that the natural frequency of the closed loop response is equal to 

the control bandwidth. The rise time, damping ratio, settling time, and period are calculated 

according to Equations (10), (11), (12), and (13), respectively. 𝑡௥ = 1.8𝜔௡ = 1.84 = 0.45𝑠 (10)
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𝜁 = −𝑙𝑛(0.15)ඥ𝜋ଶ + 𝑙𝑛ଶ(0.15) = 0.517 (11)

𝑡௦ = 4.6𝜁𝜔௡ = 4.60.517 ∗ 4 = 2.22𝑠 (12)

𝑇 ≅ 10𝜁𝜔௡ = 100.517 ∗ 4 = 4.84 (13)

The proportional, integral, and derivative gain values are calculated according to Equations (14), 

(15), and (16).  𝐾௉ = 𝐼௪ ൬𝜔௡ଶ + 2𝜁𝜔௡𝑇 ൰ = 1.537 (14)

𝐾ூ = 𝐼௪𝜔௡ଶ𝑇 = 0.301 (15)

𝐾஽ = 𝐼௪ ൬1𝑇 + 2𝜁𝜔௡൰ = 0.396 (16)

The PID controller and the flexible spacecraft system were modeled in MATLAB®, and the 

simulation results are presented in Section 3. 

2.4. Second-Order Structural Filters 

After the addition of the PID controller, it was determined that additional filtering was needed 

to compensate for the system’s flexible modes. Additional filtering was added in the form of second-

order structural filters. Classical second-order structural filters were designed to compensate for the 

flexible modes, following the convention defined in Equation (17), where 𝜔௭  and 𝜔௣  are the 

frequencies of the zeros and poles respectively and 𝜁௭ and 𝜁௣ are the damping ratios of the zeros 

and poles. 

𝑂𝑢𝑡𝑝𝑢𝑡(𝑠)𝐼𝑛𝑝𝑢𝑡(𝑠) = 𝑠ଶ𝜔௭ଶ + 2𝜁௭𝜔௭ଶ 𝑠 + 1𝑠ଶ𝜔௣ଶ + 2𝜁௣𝜔௣ଶ 𝑠 + 1 (17)

Equation (17) was used to generate bandpass and notch filters to compensate for the valley and 

peaks for each of the flexible mode cantilever responses.  

2.5. Sinusoidal Trajectory Generation 

The feedback controller was commanded by an autonomously generated sinusoidal trajectory 

to achieve the desired behavior. A piecewise function was created to support the desired quiescent 

and maneuver times. The generated sinusoid is structured according to equation (18). Table 3 lists 

the proximal variable definitions. 𝑧 = (𝐴 − 𝐴଴)[1 + sin(𝜔𝑡 + ∅)] (18)

Table 3. Table of proximal variables and nomenclature 1. 

Variable/acronym Definition Variable/acronym Definition 𝑧 Sinusoidal trajectory 𝜔 Frequency 𝐴 Desired magnitude 𝑡 Time 𝐴0 Initial magnitude ∅ Phase offset 
1 Such tables are offered throughout the manuscript to aid readability. 
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The frequency, 𝜔, is directly and inversely proportional to the desired time of the maneuver. By 

increasing the frequency, a faster maneuver time can be achieved. During the quiescent periods, a 

constant signal will be applied. The final piecewise trajectory is formed by summing the constant 

signals during the quiescent periods with the sinusoidal function as it traverses one valley to the next 

peak. This sinusoidal trajectory generation technique was added to the MATLAB® SIMULINK® 

project and the results are detailed in Section 3. 

2.6. Whiplash Compensation 

Whiplash compensation was proposed as a solution to the flexible spacecraft system control 

problem in [2]. To prevent overshoot, [2] proposed a driving function that creates motion in the 

opposite direction as the desired final position.  

The whiplash compensation trajectory generation scheme was implemented in SIMULINK® and 

follows the format of Equation (19). 𝑧 = (𝐴 − 𝐴଴)[sin(𝜔𝑡 + ∅)] (18)

The flexible spacecraft system was simulated using MATLAB®’s SIMULINK®. A variable-step 

size was used along with MATLAB®’s automatic solver selection. Figure 3 shows the topography of 

the flexible spacecraft system SIMULINK® model. The input trajectory options are shown on the left 

part of the figure and include a sine trajectory, a square wave, and the shaped-whiplash trajectory. 

The PID controller and second order filters are applied, and have been described in Sections 2.3 and 

2.4, respectively. The final rotation angle is examined, and its performance assessed Section 3. 

The state and rate sensor errors are introduced in the SIMULINK® model in order to mimic 

realistic performance. The state and rate sensor errors are defined by a normally distributed random 

number with 0 mean and 0.01 variance. The sample time used is 0.01 for the state, rate, and inertia 

error values. The seed value is generated as a uniformly distributed random number. 

The simulation was performed 1000 times for Monte Carlo analysis. Each simulation included the 

state and rate sensor noises. The Monte Carlo analysis was performed for each of the three trajectory 

generation schemes: (1) step function, (2) sinusoid trajectory, and (3) whiplash compensation.  

3. Results 

The various control methods were applied in MATLAB®/SIMULINK® in three different trials, 

where the following inputs were used to drive the system controller: (1) step response, (2) sinusoidal 

trajectory, and (3) whiplash compensation. Figure 4 depicts each trajectory as a function of time. The 

system is expected to complete its maneuver by t = 5s. As seen in Figure 4, the step function has an 

instantaneous change in value because the step occurs at t = 0s. The sinusoid and whiplash 

trajectories, on the other hand, are not instantaneous and have a duration. The sinusoid trajectory 

starts at an amplitude of 0, while the whiplash trajectory starts at an amplitude of -1. The whiplash 

method generates motion in the opposite direction as the final desired state to prevent overshoot. 

 

Figure 3. Flexible spacecraft system simulation created in SIMULINK®. Subsystems are displayed in 

Appendix B. 
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Figure 4. Generated Trajectories. 

The flexible spacecraft system is driven by each of the three trajectories in Figure 2. The resulting 

angle of the reaction wheel is plotted in Figure 3 for all three cases. The reaction wheel’s speed is 

additionally plotted in Figure 4. Similarly, Figure 5 shows the reaction wheel speed error for each 

controller method. In each figure, the response to a step function input is shown in blue, the response 

to the generated sinusoid is shown in a dashed green line, and the response to the whiplash 

compensator is shown in a bolded red line. Figure 3 depicts these results without state and rate sensor 

noise included. 

The mean error value and standard deviation of the error value was calculated and is tabulated 

in Table 4. Surprisingly, the sinusoid trajectory response shows less error than either the step 

response or the whiplash response. Monte Carlo simulations were performed for each of the three 

input trajectory generation schemes. There were 1000 Monte Carlo trials executed in each simulation. 

There are two sensor noises included in the model: rotation angle state noise and rotation angle rate 

noise. Three combinations of noise were included in the Monte Carlo trials: (1) state noise only, (2) 

rate noise only, and (3) both state and rate noise.  

Figure 5 depicts the shotgun plot analysis for each of the noise combinations for the step function 

input trajectory. Each dot represents one Monte Carlo trial. The one-, two-, and three- sigma ellipses 

are depicted in red. Table 5 details the mean and standard deviations for each of the methods and 

combinations of sensor noise. 

   

(a) (b) (c) 

Figure 5. Generated trajectories (a) reaction wheel angle 𝜃; (b) reaction wheel speed 𝜃ሶ ; (c) reaction 

wheel rotation angle error. 

Table 4. Reaction wheel error values. “e-4” notation indicates “× 10–ସ”. 

Method Rotation angle 𝜽 error mean Rotation angle 𝜽 error standard deviation 

Step 0.0102 0.2051 

Sinusoid -2.66e-4 0.0141 

Whiplash -0.0145 0.2097 
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Figure 6. Monte Carlo analysis of random perturbations for the step function input trajectory, final 

rotation angle value is on the abscissa and final rotation angle rate value is on the ordinant, each blue 

dot represents one Monte Carlo trial (a) space robot rotation angle in the presence of angle sensor 

noise; (b) space robot rotation rate in the presence of angle rate sensor noise; (c) space robot rotation 

rate in the presence of both angle sensor noise and angle rate sensor noise. 

Table 5. Monte Carlo analysis of random perturbations. “e-4” notation indicates “× 10–ସ”. 

Method 
Rotation angle  𝜽 error mean 

Rotation angle  𝜽 error  

standard  

deviation 

Rotation angle  𝜽 error mean 

Rotation angle  𝜽 error  

standard  

deviation 

Rotation angle  𝜽 error mean 

Rotation angle 𝜽 error  

standard  

deviation 

 
With rotation angle  

sensor noise 

With rotation angle  

rate sensor noise 

With rotation angle sensor  

and rate sensor noise 

Step -0.0005 -0.0021 -0.0003 -0.0044 -0.0022 -0.0039 

Sinusoid -0.0016 -1.9424e-4 -2.7023e3 16.7673 -0.0025 -0.0019 

Whiplash -0.0007 0.0017 0.0001 -8.8541e-4 -0.0059 -0.0054 

4. Discussion 

The mean and standard deviation values are compared to the baseline step response error values 

and tabulated as percent differences in Table 6. The sinusoid trajectory method shows the most 

improvement, with an error value 97.39% closer to the desired trajectory than the step response. The 

whiplash compensation method, on the other hand, proves to be less accurate than the step response, 

showing a 42.16% increase in mean error. 

Table 6. Percent errors for reaction wheel angle. 

Method Rotation angle 𝜽 error mean Rotation angle 𝜽 error standard deviation 

Step --- --- 

Sinusoid -97.39% 0.0141 

Whiplash 42.16% 0.2097 

Driving the flexible spacecraft system with a sinusoidal trajectory is the solution with minimal 

error when sensor noise is not included. The sinusoidal trajectory generation scheme creates a near 

step response trajectory, without the discontinuities associated with a step response. The whiplash 

response is similarly continuous however, it shows more errors than the baseline step response. These 

results confirm the whiplash solution as a suboptimal result, as was first proposed in [2].  

When normally distributed random sensor noise is added to the state and rate sensors, the results 

align more closely to real world applications. The Monte Carlo simulations performed are summarized 

in Table 7. The whiplash trajectory generation scheme shows a 133.3% improvement when only rate 

sensor noise is included. The step function method has the least mean error in rotation angle when only 

the state sensor noise is enabled, as well as when both rate and state sensor noises are enabled. 
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Table 7. Monte Carlo analysis of random perturbations (percent performance improvement). 

Method 
Rotation angle 𝜽 error mean 

Rotation angle 𝜽 error  

standard  

deviation 

Rotation angle 𝜽 error mean 

Rotation angle  𝜽 error  

standard  

deviation 

Rotation angle 𝜽 error mean 

Rotation angle,  𝜽 error  

standard  

deviation 

 
With rotation angle  

sensor noise 

With rotation angle  

rate sensor noise 

With rotation angle sensor  

and rate sensor noise 

Step --- --- --- --- --- --- 

Sinusoid 220.0% -90.75% 900 × 106% -381× 103% 13.64% -51.28% 

Whiplash 40.00% -181.0% -133.3% -79.88% 168.2% 38.46% 

Without noise included, the sinusoid trajectory shows the most improved performance. 

However, in the presence of state and rate sensor noises, the step function has the smallest mean error 

values for the rotation angle. When noise is included, the step function has a 13.64% improvement in 

mean error when compared to the sinusoid trajectory. 

Future research should be conducted to investigate more optimal, continuous trajectory 

schemes. This could also include investigating the most appropriate solver in MATLAB®. Depending 

on the solver and step size chosen in MATLAB®’s SIMULINK®, the resulting trajectories could 

produce different results. Investigating which solver and step size is the most appropriate for this 

application would render additional confidence in the results. Additionally, more trajectory 

generation schemes could be evaluated and compared to the sinusoid and whiplash methods. 

Evaluating additional methods could lead to a more optimal solution with less error. 
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Appendix A 

Table A1. Stiffness Matrix, [K]. 

 𝑾𝟐 𝜽𝟐 𝑾𝟑 𝜽𝟑 𝑾𝟒 𝜽𝟒 𝑾𝟓 𝜽𝟓 𝒖𝟔 𝜽𝟔 𝒖𝟕 𝜽𝟕 𝒖𝟖 𝜽𝟖 𝑾𝟐 958.818 0 -479.41 59.926 0 0 0 0 0 0 0 0 0 0 𝜽𝟐 0 19.975 -59.926 4.9938 0 0 0 0 0 0 0 0 0 0 𝑾𝟑 -479.41 -59.926 958.82 0 -479.41 59.926 0 0 0 0 0 0 0 0 𝜽𝟑 59.926 4.9938 0 19.975 -59.926 4.9938 0 0 0 0 0 0 0 0 𝑾𝟒 0 0 -479.41 -59.926 958.82 0 -479.41 59.926 0 0 0 0 0 0 𝜽𝟒 0 0 59.9260 4.9938 0 19.975 -59.926 4.9938 0 0 0 0 0 0 𝑾𝟓 0 0 0 0 -479.41 -59.926 479.41 -59.926 0 0 0 0 0 0 𝜽𝟓 0 0 0 0 59.926 4.9938 -59.926 19.975 -59.926 4.9938 0 0 0 0 𝒖𝟔 0 0 0 0 0 0 0 -59.926 958.82 0 -479.41 59.926 0 0 𝜽𝟔 0 0 0 0 0 0 0 4.9938 0 19.975 -59.926 4.9938 0 0 𝒖𝟕 0 0 0 0 0 0 0 0 -479.41 -59.926 958.82 0 479.41 59.926 𝜽𝟕 0 0 0 0 0 0 0 0 59.926 4.9938 0 3.39e-5 -59.926 4.9938 𝒖𝟖 0 0 0 0 0 0 0 0 0 0 -479.41 -59.926 479.41 -59.926 𝜽𝟖 0 0 0 0 0 0 0 0 0 0 59.926 4.9938 -59.926 9.9877 
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Table A2. Mass Matrix, [M]. 

 𝑾𝟐 𝜽𝟐 𝑾𝟑 𝜽𝟑 𝑾𝟒 𝜽𝟒 𝑾𝟓 𝜽𝟓 𝒖𝟔 𝜽𝟔 𝒖𝟕 𝜽𝟕 𝒖𝟖 𝜽𝟖 𝑾𝟐 0.4760 0 0.0037 -2.2e-4 0 0 0 0 0 0 0 0 0 0 𝜽𝟐 0 3.39e-5 2.2e-4 -1.27e-5 0 0 0 0 0 0 0 0 0 0 𝑾𝟑 0.0037 2.2e-4 0.4760 0 0.0037 -2.2e-4 0 0 0 0 0 0 0 0 𝜽𝟑 -2.2e-4 -1.27e-5 0 3.39e-5 2.2e-4 -1.27e-5 0 0 0 0 0 0 0 0 𝑾𝟒 0 0 0.0037 2.2e-4 0.4760 0 0.0037 -2.2e-4 0 0 0 0 0 0 𝜽𝟒 0 0 -2.2e-4 -1.27e-5 0 3.39e-5 2.2e-4 -1.27e-5 0 0 0 0 0 0 𝑾𝟓 0 0 0 0 0.0037 2.2e-4 2.63 -3.73e-4 0 0 0 0 0 0 𝜽𝟓 0 0 0 0 -2.2e-4 -1.27e-5 -3.73e-4 3.39e-5 2.2e-4 -1.27e-5 0 0 0 0 𝒖𝟔 0 0 0 0 0 0 0 2.2e-4 0.4760 0 0.0037 -2.2e-4 0 0 𝜽𝟔 0 0 0 0 0 0 0 -1.27e-5 0 3.39e-5 2.2e-4 -1.27e-5 0 0 𝒖𝟕 0 0 0 0 0 0 0 0 0.0037 2.2e-4 0.4760 0 0.0037 -2.2e-4 𝜽𝟕 0 0 0 0 0 0 0 0 -2.2e-4 -1.27e-5 0 3.39e-5 2.2e-4 -1.27e-5 𝒖𝟖 0 0 0 0 0 0 0 0 0 0 0.0037 2.2e-4 0.4660 -3.73e-4 𝜽𝟖 0 0 0 0 0 0 0 0 0 0 -2.2e-4 -1.27e-5 -3.73e-4 1.69e-5 

Table A3. Mode Shapes for each Natural Frequency. 

1.07e-4 -2.55e-4 -2.32e-4 -8.22e-6 3.08e-4 -5e-4 2.67e-4 0.15 0.0383 0.104 0.0443 -0.0692 -0.024 0.0181 

0.11 -0.308 -0.448 -0.499 -0.451 0.317 -0.115 -0.455 -0.0136 0.239 0.222 -0.405 -0.167 0.14 

9.94e-5 -7.34e-5 3.19e-4 6.74e-4 4.71e-4 1.36e-4 -2.44e-4 -0.157 -0.0215 0.0204 0.0667 -0.143 -0.0712 0.067 

0.216 -0.486 -0.396 -0.0028 0.381 -0.488 0.221 -0.0943 -0.204 -0.706 -0.0867 -0.0912 -0.186 0.246 

8.64e-5 0.00014 5.08e-4 -7.13e-7 -7.17e-4 2.86e-4 2.09e-4 0.13 -0.0125 -0.108 0.0125 -0.0995 -0.106 0.139 

0.311 -0.45 0.106 0.499 0.119 0.448 -0.314 0.581 0.212 0.0369 -0.257 0.406 -0.0683 0.32 

2.43e-5 1.39E-05 4.69E-05 -6.04e-5 -5.41e-5 -9.16e-5 7.14E-05 -0.0099 0.00299 0.0113 -0.0105 0.0248 -0.0954 0.225 

0.39 -0.22 0.486 0.00468 -0.488 -0.207 0.394 -0.429 -0.343 0.45 0.188 0.475 0.169 0.365 

4.84e-5 3.19e-4 -4.01e-4 -1.45e-5 0.00059 6.16e-4 1.07e-4 0.0536 -0.0918 0.0135 0.0898 0.0754 0.0736 0.0946 

0.449 0.106 0.314 -0.499 0.306 -0.123 -0.452 0.0815 0.229 -0.242 0.309 0.0891 0.4 0.389 

2.55e-5 2.06e-4 -4.67e-4 6.73e-4 -6.69e-4 -3.84e-4 -4.63e-5 -0.0294 0.0753 -0.0446 0.0881 0.041 0.191 0.194 

0.487 0.39 -0.213 -0.00747 0.223 0.392 0.483 -0.247 0.339 -0.021 -0.366 -0.339 0.518 0.401 

1.33e-4 1.61e-4 -2.12e-4 2.94e-4 -4.02e-4 -5.22e-4 -6.19e-4 0.00905 -0.0261 0.0192 -0.0699 -0.0732 0.325 0.295 

0.503 0.505 -0.501 0.503 -0.506 -0.498 -0.497 0.358 -0.782 0.394 -0.765 -0.515 0.55 0.405 

Appendix B 

 
(a) 

 

(b) 
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(c) (d) 

 

(e) (f) 

Figure A1. SIMULINK® models used to produce the results in this manuscript. (a) actuator reaction 

wheel simulation subsystem; (b) noisy sensor subsystem. 
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