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Abstract: Robots in space are necessarily extremely light and lack structural stiffness resulting in
natural frequencies of resonance so low as to reside inside the attitude controller’s bandwidth. A
variety of input trajectories can be used to drive a controller’s attempt to ameliorate the control-
structural interactions where feedback is provided by low-quality, noisy sensors. Traditionally, step
functions are used as the ideal input trajectory. However, step functions are not ideal in many
applications, as they are discontinuous. Alternative input trajectories are explored in this
manuscript and applied to an example system that includes a flexible appendage attached to a rigid
main body. The main body is controlled by a reaction wheel. The equations of motion of the flexible
appendage, rigid body, and reaction wheel are derived. A feedback controller is developed to
account for the rigid body modes. Additional filters are added to compensate for the system’s
flexible modes. Sinusoidal trajectories are autonomously generated to feed the controller. Whiplash
compensation is additionally implemented for comparison. The control method without random
errors with the smallest error is the sinusoidal trajectory method, which showed a 97.39%
improvement when compared to the baseline response when step trajectories were commanded,
while the sinusoidal method was inferior to traditional step trajectories when sensor noise and
random errors were present.

Keywords: analytic dynamics; celestial mechanics; stability, control, and synchronization; structural
dynamics; equations of motion; finite element method; flexible robotics; bandpass filter; notch filter;
structural filtering; trajectory generation; whiplash compensation

1. Introduction

The solutions and methods developed in this manuscript are applicable to a wide range of
dynamics problems. A robotic arm is chosen here as an example of a highly flexible system, with
implications across the industry. Robots are deployed in space for a variety of purposes. Figure 1a
shows one such robot, NASA’s Robonaut 2. In addition to space applications, robotic arms can be
deployed underwater, as evidenced by Figure 1b. Whether in space or underwater, the commanded
trajectory can influence the tracking error of the robotic arm.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 1. (a) NASA’s Robonaut 2, built at Johnson Space Center, became the first android astronaut
to go to space in 2011. Now, about two dozen former NASA engineers, many of whom helped build
the robot astronaut, have turned their skills to creating underwater robots at Nauticus Robotics. [1];
(b) Nauticus is also commercializing the robotic arm technology —known as Olympic Arm—that it
developed while designing and building Aquanaut. Image credits: Nauticus Robotics Inc. [1] used in
compliance with image use policy [2].

Minimizing tracking error can allow for more precise movements and support the execution of
detailed motion. In-orbit servicing is an example of the need for precise control over a robotic arm’s
movement. By identifying the most appropriate trajectory to command, the error in angular
movement can be minimized.

1.1. Placing the study in a broad context and highlight why it is important.

Towards in-orbit servicing, the importance of spacecraft-mounted robotics missions is
highlighted in reference [3] which stipulates:

“...environmental, economic, and strategic considerations support the claim that the future
of a space infrastructure will depend on the ability to perform on-orbit servicing,
encompassing a broad array of in-space operations, such as inspection, berthing, refueling,
repair, assembly, and so on.”

According to a 2010 study by the U.S. National Air and Space Administration (NASA), [4] a key
to enabling robotic servicing missions in space leading to advantageous future strategic impact, cost
effectiveness, and environmental sustainability. Cost effectiveness is manifest in the ability to
relatively cheaply replace spacecraft components rather than launch a replacement spacecraft.
Reference [5] indicates since 1957 roughly 5,400 space missions have been flown, while nearly twenty-
thousand space objects are tracked by the north American air defense command (NORAD), where
over two thousand are rocket upper stages spent of fuel and over ten thousand additional items are
classified as debris. Current proposals [6,7] indicate intentions for very large future constellations
together comprising another twenty thousand objects in orbit. Such a large number of craft in orbit
constitute a potentially lucrative business model for system repair [8] and refueling on-orbit.
Discovery of the very origins of life and human long-term habitability are postulated to be aided by
space robotics in [9].

1.2. The purpose of the work and its significance.

This manuscript investigates the importance of the trajectory shaping fed to the control method
used to rotate the space robot. The flexible spacecraft system examined in this manuscript is
indicative of a larger dynamics problem. The solutions and methods explored are applicable to that
larger set of dynamic problems. The requisite equations of motion are derived and feedback
controllers and second-order structural filters are applied, following the methodology developed in
[10]. Initially, sinusoidal trajectory generation is used to drive the controllers. Whiplash
compensation is additionally investigated as a solution, per [11]. Three methods of trajectory shaping
are applied to the flexible spacecraft robotic system and compared critically: step shaped,
sinusoidally shaped, and whiplash shaped. The state errors, rate errors, and control efforts are
compared for each of the three methods of input control to determine which is most appropriate for
the flexible spacecraft system application.

1.3. Review of the literature

Elder techniques for controlling highly flexible systems relied foremost on feedback
necessitating construction of feedback linearizing control laws [12]. The linear-quadratic regulator
approach, robust control approaches minimizing the Hee and H2 norms, and a disparate approach
based in analytical dynamics, introduced as the Udwadia-Kalaba approach were compared in
reference [13]. Very recently, integration of fuel slosh with centralized sensors and actuators, without
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the usage of collocated devices for vibration management. into techniques to control the motion of
flexible appendages was offered by [14] reiterating the relevance of classical proportional, derivative
(PD) control with nonadaptive bandpass filters, where the novel proposition includes integration of
wave-based control with the filtered PD control scheme. Vibration suppression was illustrated by
establishing a dynamic grasping area to describe the contact procedure of the capture device grasping
target in reference [15]. Control of rotation-floating space robots with flexible appendages specifically
for on-orbit servicing was proposed in [16]. Techniques were suggesting using a composite two-time-
scale control system [17]. Open-loop methods were strictly used for analysis while closed-loop was
utilized for control in reference [18].

1.4. State of the art benchmarks

The following list highlights the current state of the art developing deterministic artificial
intelligence:

1. In 2019, reference [11] revealed an optimal control revealed by pseudospectral optimization
software where the solution validation was provided using six theoretical necessary conditions
of optimization: (1) Hamiltonian minimization condition; (2) adjoint equations; (3) terminal
transversality condition; (4) Hamiltonian final value condition; (5) Hamiltonian evolution
equation; and lastly (6) Bellman's principle. The results are novel and unique in that they initially
command full control in the opposite direction from the desired end state, while no such results
are seen using classical control methods including classical methods augmented with structural
filters typically employed for controlling highly flexible multi-body systems.

2. Later in 2022, an interesting study of the use of feedback and structural filtering to maximize
system stability was offered [11], leading to the recommendation to use single-sinusoidal
trajectory shaping to maximize stability.

1.5. Novelties presented

The following brief list articulates the novel growth from the current state of the art methods in
paragraph 1.4.

1. Rather than propose options for maximizing stability [10], this study seeks to offer advice to
minimize trajectory tracking errors.

2. Rather than focus on feedforward [11] versus feedback [10], this study investigates commanded
trajectory tracking options.

1.6. Main aim of the work and principal conclusions

This manuscript advises the readership on methods to shape the commanded trajectory to be
tracked, where sinusoidal, whiplash, and step trajectories are critically compared using tracking
errors (both angle and angular rate) and control effort as figures of merit.

2. Materials and Methods

In this manuscript, the flexible spacecraft system shown in Figure 2 is analyzed. The system
consists of a rigid main body R, reaction wheel W, and a flexible appendage F. The flexible appendage
F is split into beam elements 1 through 7, and node points 1 through 8. Table 1 lists parameters of the
flexible spacecraft system and their descriptions. The methods applied in this section can be used for
any dynamic, flexible system and is not limited to spacecraft application. The flexible spacecraft
system in Figure 2 is explored in this manuscript as an example.
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(a) (b)

Figure 2. Flexible spacecraft system. (a) Atop a (planar) air bearing table, a free-floating space robot
is autonomously controlled [16]. Imagery and photographs of the Department of Defense are in the
public domain, unless otherwise noted [20]; (b) schematic diagram of the free-floating flexible space
system depicted in subfigure (a). This schematic is identical to that used in references [10,11], where
this manuscript comprises the latest iteration of continuing research. No special permission is
required to reuse all, or part of the article published by MDP], including figures and tables [21].

2.1. Equations of Motion

The equations of motion of the flexible spacecraft system are derived using the Lagrange
method. The Lagrange method requires kinetic and potential energies. See Table 1 for parameter

definitions.
Table 1. Flexible Spacecraft System Parameters.

Variable Definition Variable Definition Variable Definition

T Kinetic energy w; Natural frequency of i-th mode 4 Potential energy

I, Moment of inertia of rigid body ¢; Modal coordinates w Displacement

W Moment of inertia of reaction wheel Xp Final position, x Q Sheer forces

0 Angle of flexible appendage Ve Final position, y M Moments

O Angle of reaction wheel n Number of independent modes L Lagrangian

q; Modal coordinates D; Elastic decoupling coefficients Tp Disturbance torque

The kinetic energy of the entire flexible spacecraft system was found by summing the kinetic
energies of the rigid main body, flexible appendage, and reaction wheel. The kinetic energies are
written in terms of the moments of inertia and the modal coordinates, as seen in Equation (1). D; are
the rigid-elastic coupling terms and are defined in Equation (2). The modal coordinates are expressed
in terms of q and F, which are defined in Equations (4) and (5) for a given beam i.

1
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The potential energy is shown in Equation (3), where w; are the natural frequencies of the
flexible spacecraft system for mode i.
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The Lagrange equation, shown in Equation (6) is applied to the Lagrangian L, where L=T-V. The
Lagrange method results in the equations of motion (EOM) of the flexible spacecraft system, which
are shown in Equation (7).

—d /6L 5L
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2.2. Natural Frequencies

The natural frequencies of the flexible spacecraft system were derived using the finite element
method and by solving the eigenvalue problem using the stiffness and mass matrices. It was assumed
that all displacements are normal, and the system is constrained in Nastran. The stiffness (k) and
mass (m) matrices are constructed for each beam element. The individual stiffness and mass matrices
are shown for a given beam element i in Equations (8) and (9).

12 6L —12 6L
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The individual stiffness and mass matrices are added by superposition to form the total stiffness
and mass matrices respectively, which are presented in the Appendix. The solution to the eigenvalue
problem, presented in Equation (10), provides the natural frequencies and mode shapes of the flexible
spacecraft system. The resulting natural frequencies are listed in Table 2, and their corresponding
mode shapes can be found in the Appendix.

Table 2. Natural Frequencies, w,, for the Flexible Spacecraft System, in rad/s.

1809.46 596.81 43.72 10.22
1415.52 478.77 30.89 2.07
1042.16 419.02 15.77 0.69
774.31 54.87

2.3. PID Controller

A PID controller was designed to control the motion of the reaction wheel. The PID controller
was designed to meet the following specification requirements: 15% overshoot and control
bandwidth of 4 rad/s. It is assumed that the natural frequency of the closed loop response is equal to
the control bandwidth. The rise time, damping ratio, settling time, and period are calculated
according to Equations (10), (11), (12), and (13), respectively.

18 18
= == =045s (10)
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The proportional, integral, and derivative gain values are calculated according to Equations (14),
(15), and (16).

2{w
Kp =1, (wnz +%) =1.537 (14)
I 2
K, = W _ 0301 (15)
T
1
Kp =1, (?+ zzwn> = 0.396 (16)

The PID controller and the flexible spacecraft system were modeled in MATLAB®, and the
simulation results are presented in Section 3.

2.4. Second-Order Structural Filters

After the addition of the PID controller, it was determined that additional filtering was needed
to compensate for the system’s flexible modes. Additional filtering was added in the form of second-
order structural filters. Classical second-order structural filters were designed to compensate for the
flexible modes, following the convention defined in Equation (17), where w, and w, are the
frequencies of the zeros and poles respectively and ¢, and {, are the damping ratios of the zeros

and poles.
52 2C
Output(s)  w,? + w—zis +1 an
=2
Input(s) %"‘w—(pzs"‘ 1
p p

Equation (17) was used to generate bandpass and notch filters to compensate for the valley and
peaks for each of the flexible mode cantilever responses.
2.5. Sinusoidal Trajectory Generation

The feedback controller was commanded by an autonomously generated sinusoidal trajectory
to achieve the desired behavior. A piecewise function was created to support the desired quiescent
and maneuver times. The generated sinusoid is structured according to equation (18). Table 3 lists
the proximal variable definitions.

z=(A—Ay[1 + sin(wt + 0)] (18)

Table 3. Table of proximal variables and nomenclature *

Variable/acronym Definition Variable/acronym Definition
z Sinusoidal trajectory w Frequency
A Desired magnitude t Time
Ay Initial magnitude @ Phase offset

! Such tables are offered throughout the manuscript to aid readability.
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The frequency, w, is directly and inversely proportional to the desired time of the maneuver. By
increasing the frequency, a faster maneuver time can be achieved. During the quiescent periods, a
constant signal will be applied. The final piecewise trajectory is formed by summing the constant
signals during the quiescent periods with the sinusoidal function as it traverses one valley to the next
peak. This sinusoidal trajectory generation technique was added to the MATLAB® SIMULINK®
project and the results are detailed in Section 3.

2.6. Whiplash Compensation

Whiplash compensation was proposed as a solution to the flexible spacecraft system control
problem in [2]. To prevent overshoot, [2] proposed a driving function that creates motion in the
opposite direction as the desired final position.

The whiplash compensation trajectory generation scheme was implemented in SIMULINK® and
follows the format of Equation (19).

z = (A —Ap)[sin(wt + ?)] (18)

The flexible spacecraft system was simulated using MATLAB®s SIMULINK®. A variable-step
size was used along with MATLAB®'s automatic solver selection. Figure 3 shows the topography of
the flexible spacecraft system SIMULINK® model. The input trajectory options are shown on the left
part of the figure and include a sine trajectory, a square wave, and the shaped-whiplash trajectory.
The PID controller and second order filters are applied, and have been described in Sections 2.3 and
2.4, respectively. The final rotation angle is examined, and its performance assessed Section 3.

The state and rate sensor errors are introduced in the SIMULINK® model in order to mimic
realistic performance. The state and rate sensor errors are defined by a normally distributed random
number with 0 mean and 0.01 variance. The sample time used is 0.01 for the state, rate, and inertia
error values. The seed value is generated as a uniformly distributed random number.

The simulation was performed 1000 times for Monte Carlo analysis. Each simulation included the
state and rate sensor noises. The Monte Carlo analysis was performed for each of the three trajectory
generation schemes: (1) step function, (2) sinusoid trajectory, and (3) whiplash compensation.

3. Results

The various control methods were applied in MATLAB®/SIMULINK® in three different trials,
where the following inputs were used to drive the system controller: (1) step response, (2) sinusoidal
trajectory, and (3) whiplash compensation. Figure 4 depicts each trajectory as a function of time. The
system is expected to complete its maneuver by t = 5s. As seen in Figure 4, the step function has an
instantaneous change in value because the step occurs at t = 0s. The sinusoid and whiplash
trajectories, on the other hand, are not instantaneous and have a duration. The sinusoid trajectory
starts at an amplitude of 0, while the whiplash trajectory starts at an amplitude of -1. The whiplash
method generates motion in the opposite direction as the final desired state to prevent overshoot.

trajectory
Sine Trajectory C] error
—LV—O
—o/o_ >
+
-0 _ PID Notchl Notch2 | BP3 Notch3|>Flexible robot Rotation angle
L2 & L2 .2 $ ¥
Shaped-Whinlash PID Mode 1 Mode 1 Mode2 Mode2 Mode 3 Mode 3

P P Controller! Bandpass Notch Bandpass Notch Bandpass Notch

Filter Filter Filter Filter Filter Filter

Figure 3. Flexible spacecraft system simulation created in SIMULINK®. Subsystems are displayed in
Appendix B.
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Figure 4. Generated Trajectories.

The flexible spacecraft system is driven by each of the three trajectories in Figure 2. The resulting
angle of the reaction wheel is plotted in Figure 3 for all three cases. The reaction wheel’s speed is
additionally plotted in Figure 4. Similarly, Figure 5 shows the reaction wheel speed error for each
controller method. In each figure, the response to a step function input is shown in blue, the response
to the generated sinusoid is shown in a dashed green line, and the response to the whiplash
compensator is shown in a bolded red line. Figure 3 depicts these results without state and rate sensor
noise included.

The mean error value and standard deviation of the error value was calculated and is tabulated
in Table 4. Surprisingly, the sinusoid trajectory response shows less error than either the step
response or the whiplash response. Monte Carlo simulations were performed for each of the three
input trajectory generation schemes. There were 1000 Monte Carlo trials executed in each simulation.
There are two sensor noises included in the model: rotation angle state noise and rotation angle rate
noise. Three combinations of noise were included in the Monte Carlo trials: (1) state noise only, (2)
rate noise only, and (3) both state and rate noise.

Figure 5 depicts the shotgun plot analysis for each of the noise combinations for the step function
input trajectory. Each dot represents one Monte Carlo trial. The one-, two-, and three- sigma ellipses
are depicted in red. Table 5 details the mean and standard deviations for each of the methods and
combinations of sensor noise.

1. 1
o) ) S
5 3 g oS
— ﬁ -
g ko] g 0 K=~ "2
o0, : o g
g ——Step Function g et
= = Sinusoid Trajectory 2 -0.5
o === Whiplash Compensation
-1
0 20 40 60 0 20 40 60
Time [s] Time [s]
(a) (b) (©
Figure 5. Generated trajectories (a) reaction wheel angle 8; (b) reaction wheel speed 6; (c) reaction
wheel rotation angle error.
Table 4. Reaction wheel error values. “e-4” notation indicates “x 107",
Method Rotation angle 0 error mean Rotation angle 0 error standard deviation
Step 0.0102 0.2051
Sinusoid -2.66e-4 0.0141

Whiplash -0.0145 0.2097
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Figure 6. Monte Carlo analysis of random perturbations for the step function input trajectory, final
rotation angle value is on the abscissa and final rotation angle rate value is on the ordinant, each blue
dot represents one Monte Carlo trial (a) space robot rotation angle in the presence of angle sensor
noise; (b) space robot rotation rate in the presence of angle rate sensor noise; (c) space robot rotation
rate in the presence of both angle sensor noise and angle rate sensor noise.
Table 5. Monte Carlo analysis of random perturbations. “e-4” notation indicates “x 10™*".
Rotation angle Rotation angle Rotation angle
Rotation angle 0 error Rotation angle 0 error Rotation angle 0 error
Method
6 error mean standard 0 error mean standard 6 error mean standard
deviation deviation deviation
With rotation angle With rotation angle With rotation angle sensor
sensor noise rate sensor noise and rate sensor noise
Step -0.0005 -0.0021 -0.0003 -0.0044 -0.0022 -0.0039
Sinusoid -0.0016 -1.9424e-4 -2.7023e3 16.7673 -0.0025 -0.0019
Whiplash -0.0007 0.0017 0.0001 -8.8541e-4 -0.0059 -0.0054

4. Discussion

The mean and standard deviation values are compared to the baseline step response error values
and tabulated as percent differences in Table 6. The sinusoid trajectory method shows the most
improvement, with an error value 97.39% closer to the desired trajectory than the step response. The
whiplash compensation method, on the other hand, proves to be less accurate than the step response,
showing a 42.16% increase in mean error.

Table 6. Percent errors for reaction wheel angle.

Method Rotation angle 6 error mean Rotation angle 0 error standard deviation
Step - -
Sinusoid -97.39% 0.0141
Whiplash 42.16% 0.2097

Driving the flexible spacecraft system with a sinusoidal trajectory is the solution with minimal
error when sensor noise is not included. The sinusoidal trajectory generation scheme creates a near
step response trajectory, without the discontinuities associated with a step response. The whiplash
response is similarly continuous however, it shows more errors than the baseline step response. These
results confirm the whiplash solution as a suboptimal result, as was first proposed in [2].

When normally distributed random sensor noise is added to the state and rate sensors, the results
align more closely to real world applications. The Monte Carlo simulations performed are summarized
in Table 7. The whiplash trajectory generation scheme shows a 133.3% improvement when only rate
sensor noise is included. The step function method has the least mean error in rotation angle when only
the state sensor noise is enabled, as well as when both rate and state sensor noises are enabled.
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Table 7. Monte Carlo analysis of random perturbations (percent performance improvement).

Rotation angle Rotation angle Rotation angle,
Method Rotation angle 6 error Rotation angle 0 error Rotation angle 0 error
6 error mean standard 6 error mean standard 6 error mean standard
deviation deviation deviation
With rotation angle With rotation angle With rotation angle sensor
sensor noise rate sensor noise and rate sensor noise
Step -—- - - - - -
Sinusoid 220.0% -90.75% 900 x 10°% -381x 10°% 13.64% -51.28%
Whiplash 40.00% -181.0% -133.3% -79.88% 168.2% 38.46%

Without noise included, the sinusoid trajectory shows the most improved performance.
However, in the presence of state and rate sensor noises, the step function has the smallest mean error
values for the rotation angle. When noise is included, the step function has a 13.64% improvement in
mean error when compared to the sinusoid trajectory.

Future research should be conducted to investigate more optimal, continuous trajectory
schemes. This could also include investigating the most appropriate solver in MATLAB®. Depending
on the solver and step size chosen in MATLAB®s SIMULINK®, the resulting trajectories could
produce different results. Investigating which solver and step size is the most appropriate for this
application would render additional confidence in the results. Additionally, more trajectory
generation schemes could be evaluated and compared to the sinusoid and whiplash methods.
Evaluating additional methods could lead to a more optimal solution with less error.
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Appendix A
Table A1l. Stiffness Matrix, [K].

W, 0, Ws 03 W, 04 Ws 05 Us 06 Uy 6, Ug 0
W, |958.818 0 -479.41 59.926 0 0 0 0 0 0 0 0 0 0
0, 0 19.975 -59.926 4.9938 0 0 0 0 0 0 0 0 0 0
W3 |-479.41 -59.926 958.82 0 -479.41 59.926 0 0 0 0 0 0 0 0
05 59.926 4.9938 0 19.975 -59.926 4.9938 0 0 0 0 0 0 0 0
W, 0 0 -479.41 -59.926 958.82 0 -479.41 59.926 0 0 0 0 0 0
0, 0 0 59.9260 4.9938 0 19.975 -59.926 4.9938 0 0 0 0 0 0
Wi 0 0 0 0 -479.41 -59.926 479.41 -59.926 0 0 0 0 0 0
05 0 0 0 0 59.926 4.9938 -59.926 19.975 -59.926 4.9938 0 0 0 0
Ug 0 0 0 0 0 0 0 -59.926 958.82 0 -479.41 59.926 0 0
O¢ 0 0 0 0 0 0 0 4.9938 0 19.975 -59.926 4.9938 0 0
u; 0 0 0 0 0 0 0 0 -479.41 -59.926 958.82 0 479.41 59.926
0, 0 0 0 0 0 0 0 0 59.926 4.9938 0 3.39e-5 -59.926 4.9938
ug 0 0 0 0 0 0 0 0 0 0 -479.41 -59.926 479.41 -59.926
Og 0 0 0 0 0 0 0 0 0 0 59.926 4.9938 -59.926 9.9877
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Table A2. Mass Matrix, [M].
w, 0, W, 0, w, 0, Wi 0 U 0, u, 0, ug 04

w, 0.4760 0 0.0037 -2.2e-4 0 0 0 0 0 0 0 0 0 0
0, 0 3.39e-5 2.2e-4 -1.27e-5 0 0 0 0 0 0 0 0 0 0
W3 0.0037 2.2e-4 0.4760 0 0.0037 -2.2e-4 0 0 0 0 0 0 0 0
03 -2.2e-4 -1.27e-5 0 3.39e-5 2.2e-4 -1.27e-5 0 0 0 0 0 0 0 0
W, 0 0 0.0037 2.2e-4 0.4760 0 0.0037 -2.2e-4 0 0 0 0 0 0
0, 0 0 -2.2e-4 -1.27e-5 0 3.39e-5 2.2e-4 -1.27e-5 0 0 0 0 0 0
Wy 0 0 0 0 0.0037 2.2e-4 2.63 -3.73e-4 0 0 0 0 0 0
0 0 0 0 0 -2.2e-4 -1.27e-5-3.73e-4 3.39e-5 2.2e-4 -1.27e-5 0 0 0 0
Ug 0 0 0 0 0 0 0 2.2e-4 0.4760 0 0.0037 -2.2e-4 0 0
O¢ 0 0 0 0 0 0 0 -1.27e-5 0 3.39e-5 2.2e-4 -1.27e-5 0 0
u; 0 0 0 0 0 0 0 0 0.0037 2.2e-4 0.4760 0 0.0037 -2.2e-4
0, 0 0 0 0 0 0 0 0 -2.2e-4 -1.27e-5 0 3.39e-5 2.2e-4 -1.27e-5
Uug 0 0 0 0 0 0 0 0 0 0 0.0037 2.2e-4 0.4660 -3.73e-4
Og 0 0 0 0 0 0 0 0 0 0 -2.2e-4 -1.27e-5 -3.73e-4 1.69e-5

Table A3. Mode Shapes for each Natural Frequency.

1.07e-4 -2.55e-4 -2.32e-4 -8.22e-6 3.08e-4 -5e-4 2.67e-4 0.15 0.0383 0.104 0.0443 -0.0692 -0.024 0.0181
0.11 -0.308 -0.448 -0499 -0451 0317 -0.115 -0455 -0.0136 0.239 0222 -0405 -0.167 0.14
9.94e-5 -7.34e-5 3.19e-4 6.74e-4 4.7le-4 136e-4 -2.44e-4 -0.157 -0.0215 0.0204 0.0667 -0.143 -0.0712 0.067
0216 -0486 -0.396 -0.0028 0.381 -0.488 0.221 -0.0943 -0.204 -0.706 -0.0867 -0.0912 -0.186 0.246
8.64e-5 0.00014 5.08e-4 -7.13e-7 -7.17e-4 2.86e-4 2.09e-4 0.13 -0.0125 -0.108 0.0125 -0.0995 -0.106 0.139
0.311 -045 0106 0499 0119 0448 -0.314 0581 0212 0.0369 -0.257 0.406 -0.0683 0.32
2.43e-5 1.39E-05 4.69E-05 -6.04e-5 -5.41e-5 -9.16e-5 7.14E-05 -0.0099 0.00299 0.0113 -0.0105 0.0248 -0.0954 0.225
0.39 -0.22  0.486 0.00468 -0.488 -0.207 0394 -0429 -0.343 045 0.188 0475 0.169  0.365
4.84e-5 3.19e-4 -4.0le-4 -1.45e-5 0.00059 6.16e-4 1.07e-4 0.0536 -0.0918 0.0135 0.0898 0.0754 0.0736 0.0946
0449 0106 0314 -0499 0306 -0.123 -0.452 0.0815 0.229 -0.242 0.309 0.0891 0.4 0.389
2.55e-5 2.06e-4 -4.67e-4 6.73e-4 -6.69e-4 -3.84e-4 -4.63e-5 -0.0294 0.0753 -0.0446 0.0881 0.041 0.191 0.194
0.487 039 -0213 -0.00747 0223 0392 0483 -0247 0339 -0.021 -0.366 -0.339 0.518 0.401
1.33e-4 1.6le-4 -2.12e-4 2.94e-4 -4.02e-4 -5.22e-4 -6.19e-4 0.00905 -0.0261 0.0192 -0.0699 -0.0732 0.325  0.295
0503 0505 -0.501 0.503 -0.506 -0498 -0.497 0358 -0.782 0394 -0.765 -0.515 0.55 0.405

Appendix B
trajectory
Sine Trajectory —L> [:] error
-0
—O/o‘b =
- L PID Notchl Notch2 Notdﬁ}yFlexiblerobot Rotation angle
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Filter  Filter  Filter Filter  Filter  Filter
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sin 1/2 o
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D 1

O ) i

(c) (d)
lqdot——lqddot=T/lzz T=lgddotilzz - e ga D
WheelSpeed %4— 3 4 omega
degrees M o
control M theta

(e) ()

Figure Al. SIMULINK® models used to produce the results in this manuscript. (a) actuator reaction
wheel simulation subsystem; (b) noisy sensor subsystem.
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