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Diffusion of an Active Particle Bound to a
Generalized Elastic Model: Fractional Langevin
Equation

Alessandro Taloni

Istituto Sistemi Complessi, Consiglio Nazionale delle Ricerche, via dei Taurini 19, 00185 Rome, Italy;
alessandro.taloni@isc.cnr.it

Abstract: We investigate the influence of a self-propelling, out-of-equilibrium active particle on
generalized elastic systems, including flexible and semiflexible polymers, fluid membranes, and
fluctuating interfaces, while accounting for long-ranged hydrodynamic effects. We derive the
fractional Langevin equation governing the dynamics of the active particle, as well as that of any
other passive particle (or probe) bound to the elastic system. Our study explores the diffusional
behavior emerging for both the active particle and a distant probe.

Keywords: active Ornstein-Uhlenbeck; generalized elastic model; fractional Langevin equation

1. Introduction

Active matter refers to a class of materials or systems whose individual components are active,

meaning they can convert athermal energy from the environment or internal sources into directed
motion or mechanical forces. These systems are characterized by the ability of their constituents to
exhibit self-propelled motion, leading to collective behaviors and dynamic patterns that distinguish
them from traditional equilibrium systems [1-5]. Thus, by definition, active systems violate the
fluctuation-dissipation theorem (FDT) and encompasses a wide range of phenomena observed in
biological systems, such as swarming of birds [6-8] or schooling of fish [9-11], the run-and-tumble
dynamics of microswimmers [12-16] and the molecular motors-driven transport phenomena inside
the cell [17-20]. Active matter can also originate synthetically, as seen in systems composed of Janus
particles that become active due to chemical reactions [21,22], magnetic [23-25] or electrodynamical
forces [26-29].
In the past decade, stochastic models have been devised to capture and reproduce observed
out-of-equilibrium scenarios and their properties [30-32], as well as the resulting collective
dynamics [26,33-38]. These models encompass run-and-tumble particle models [13,39,40], active
Brownian particle (ABP) models [22,41,42], and active Ornstein-Uhlenbeck particle (AOUP) models [1,
15,43-471].

Particular attention has been dedicated to the investigation of active polymer systems, specifically
polymeric chains composed of active particles [48-51] or immersed in an active bath [47,50,52-55].
This interest has been partially motivated by the observed out-of-equilibrium intracellular transport
and collective phenomena, where biopolymers and active elements coexist [18,34,56-90], and partially
by the design of new complex active materials. Usually, simulations of active polymers are enforced by
either a self-propelling force tangential to the elastic chain [91-95], or by considering the monomers as
active particles, thus resorting to the aforementioned models [49,50,96,97]. The phenomenology
exhibited by active polymers is heterogeneous, ranging from translational [98,99] to reptation
motion [92,93], swelling [49,50,100], looping [52], swirling [101] or shrinkage [102,103], according
to the different parameters characterizing the active polymer model scrutinized.

As emphasized, the numerous numerical studies mentioned above primarily focus on active
polymers or polymers embedded in a thermal bath. Nevertheless, three notable studies, both numerical
and analytical, specifically investigate the impact of an active particle (or force) confined to a local
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portion of polymeric chains. In the works by Natali et al. [104] and Joo et al. [105], the dynamics of
flexible (Rouse) polymers were examined with the addition of an active monomer, specifically an
AOUP. In the first study [104], the head of the polymer was permitted to exhibit active non-equilibrium
motion. In the second [105], the AOUP was positioned as the middle monomer, and the study extended
to a flexible polymer network with the central cross-linker being the AOUP. The third study [106],
conceptualized and conducted by part of the team from the second study, concentrated on investigating
the impact of an AOUP on a semiflexible polymer network. These works exhibit several common
features: i) they are primarily numerical studies, ii) their analysis is rooted in discrete polymer models,
and iii) they reveal intriguing and non-trivial physical scenarios, both in the dynamics of the AOUP
and in that of the other monomers. Particular interesting are the transition from globule to elongated
conformational dynamics observed in [104], the intermediate slowing down of the AOUP diffusional
motion, in spite of the active self-propelling force, in [105,106] and the fact that the AOUP dynamics
can be described by a fractional Langevin equation [107].

The analysis presented in this paper expands the scope of the applicability of the reported models.
Specifically, we explore how an AOUP influences the thermal dynamics of a general viscoelastic
system, whether it be a polymer, a membrane, a fluctuating interface, or any other system falling under
the category of a generalized elastic model (GEM) [107,108]. The GEM is defined by its stochastic
evolution equation:

Z

a|x|*

d

s h(¥,t)+7(Zt). 1

h(%f) = /ddx’A (F-%)C

It is formally defined for D-dimensional stochastic field h defined in the d-dimensional infinite space
X. The GEM encompasses also the presence of hydrodynamic effects, as in the case of a Zimm polymer
model by instance [109]. The hydrodynamic friction kernel is

B

A7) = o

|IX (2)

where % < a < d, B is a constant with the dimensions of L*~% and v is the friction constant.

a/ _
The Fourier transform of (2) is A(§) = (47;26 2%% 7*% = Al7|* In case of local
hydrodynamic interactions, (2) simplifies to A (7) = @, with § the Dirac’s delta function. The

fractional derivative appearing in the right hand side of (1) is commonly defined as fractional Laplacian
(ﬁ = — (—VZ)Z/2 [110]), and is expressed in terms of its Fourier transform F; {%} = —|g]*
[111]. Finally the Gaussian random noise source satisfies the fluctuation-dissipation (FD) relation

(nj (%, 6) e (F,8)) = 2kgT 1A (R = %) 6;0(t — 1), ©)

where j, k € [1, D], I is the microscopical length scale of the model, kp is the Boltzmann constant and T
is the temperature.

Although the GEM equation (1) is continuous, it simplifies to the Rouse chain model for z = 2,
d = 1, the semiflexible polymer model for z = 4, d = 1, and the Zimm polymer model forz =2,d =1,
and « = 1/2. The influence of an active non-equilibrium particle on the elastic system described by
(1) can be examined using the framework developed in [112-114], where the effect of a local external
perturbation was investigated within the context of the Kubo fluctuation relations. It's worth noting
that this analysis can be formally extended to the case of out-of-equilibrium stochastic forces.

1.1. Generalized elastic model with active Brownian particle

According with the theory outlined in [112-114], it is possible to include in the GEM stochastic
evolution (1) the action of an ABP at a given position ¥*:
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Here the active noise ¢(t) is due to an athermal energy source, leading to the breakdown of the
FDT [15,30,115]. It is governed by the Langevin equation [49,115]

of &) |27avp

of TA 3tx

At) Q)

where 0, 74, Vp and T4 are the characteristic length, the frictional coefficient, the propulsion velocity
and the correlation times of the Brownian active particle. The zero-mean Gaussian noise in Eq.(5)
satisfies the fluctuation-dissipation relation (A, (t)Ay(t')) = 6,,,0(t —t') (u,v € [1, D]). The Langevin
Eq.(5) rules the dynamics of the active Ornstein-Ulhenbeck (OU) noise [15,30,115] with (¢(¢)) = 0 and
exponential decaying autocorrelation function

2v2 =

(G (E(E) = 15 Gume” ©)

Hence, hereafter, we will refer to the self-propelling particle at ¥* as the AOUP. The Eq.(4) jibes with

that furnished in [105], provided that C = kI2, where k is the flexible polymer’s elastic constant. On

the other side, the corresponding GEM equation for AOUP in a semiflexible chain is obtained by

setting A (7) = @, z =4,d = 1[108]. It is possible to reconcile the evolution equation (4) with that

introduced in [106], assuming that C = kpTlyl, where [, is the persistent length of the semiflexible
polymer.

As anticipated, we demonstrate that Eq.(4) constitutes the more general and suitable framework
to study the effect of a self-propelling AOUP on a systems whose interactions are non-local and linear,
and possibly mediated by long-ranged hydrodynamics. In Section 2 we derive the fractional Langevin
equation for the AOUP and for any particle belonging to the elastic system at a generic position %,
hereafter called probe. In Section 3 we derive the position autocorrelation function within the FLE
framework. In Section 4 we furnish the analytical derivation of the mean squared displacement of
the AOUP and of the different regimes attained. Moreover we describe qualitatively the effect of the
OU noise on the other regions (or probes) belonging to the elastic system and far from the AOUP. In
Section 5 we end up with concluding remarks.

2. Fractional Langevin equation

We firstly furnish the solution of the Eq.(4) in the Fourier space. We first define the Fourier
transform in space and time as

+oo +o0 s
h (7, w) = / dx L dth (%,1) e i@ @)

The solution of Eq.(4) reads
_ Adly §(w)e T 1(q,w)

h(g,w) = + . (8)
= 717 (i + AC | ")  —iw + AC |

We then multiply both sides of the former equation by K*(—iw)f where

z—d

:z—l—zx—d ©)

B

and
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K™ =r sin (77B) 2-d  APCET (10)
achieving
d F A (v \Bp—id-E* > +(_i\B
. . o w)KTA(—iw)Pe Lw) K iw
K (i) (7 ) = T S ALZIe B0 1@ KAl =gy
74 |g) “(_1w+Ac|q|Z x ) —iw + AC 7]
In analogy to [112-114] we define the force-propagator in the Fourier space as
i \Bp—if-i*
0 (], @) = KrA——— )

71 (i + ACIg )

Inverting in space and time, the force-propagator reads [113,114]

+oo
S| a—d/2 S = _AC|7|7/?
| aa " aaa (3115 = #1) o DF (49 0(1)), (13)
where 6(t) is the Heaviside step function, J;,,_1 is the Bessel function of fractional order 4/2 — 1 and

the pseudo-differential operator

B _ 1 d ., 1 /
”Dt¢(t>_mﬁ/a dt (t—t’)5¢(t)' 0<p<1l, (14)

represents the left side Riemann-Liouville derivative with lower bound a < ¢ [116,117].
We also introduce the noise-propagator as

@ () = KF —— ;HM (15)
which, once inverted, attains the following form in space and time
@710 = K a1 e (719D (497 o). a9
Thanks to the definitions (12) and (15), we can formally invert the Eq.(11):
of t
K" wDfh(gh =TT [_atethe (12—t 1) + (&), (17)
where the non-Markovian noise, defined as
(%) = /f:’ d7 /:o dt'y (F,6) @ (|7 — 7|t 1), (18)
fulfills the generalized fluctuation-dissipation relation
K+
60 G0 6 (1) = kT (19)

The Eq.(17) is the fractional equation governing the dynamics of any probe placed at the generic
position ¥. By a close inspection, its structure unveils how the action of the AOUP in the position
x* affects the stochastic behavior of a distant point ¥, through the propagator (13). This is mirrored
by the fGN definition (18), resulting from the convolution of any stochastic Gaussian force 5 (X', '),
performing on the entire GEM, with the noise-propagator (16).
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We now turn to the expression of the effective stochastic equation ruling out the motion of the
AOUP. For such a purpose we first perform the Fourier inverse transform in space of the expression
(12):

AR (—iw)P |72 /+ood|ﬁ| 171~ Jaya—r (1] 1% — 7))

O (% — x|, w) = ) (20)

hence we use the expansion of the Bessel function for small arguments as [118]

1 o\ 1-d/2
Jaja-1(r) ~ T(d/2) <r> , (1)
getting
Br+ol1—d/2 400 a—1
®(0,w) ~ —AK2 / T — 22)
(27)4/2T (%) Cc1-8 Jo 1+ yzte-
Solving the integral [119], we finally obtain that
0 (0,0) ~ —5(t — ') (23)
’ 204 )
Therefore the Eq.(17) reduces to the following fractional equation for the AOUP:
+ B ok O'dly oK
K* _oDyh(XF,t) = 21%6(0 +7(X%1). (24)

Thus, it is immediately seen how the active noise applies to the AOUP as a bare stochastic force. Similar
equations were conjectured in Ref.s[105] and [106], while analyzing the case of flexible and semiflexible
polymers under the action of an ABP. We hereby offered the rigorous derivation in the more general
case represented by the GEM (1). Moreover we established the formal validity of the FLE framework
for any particle, not only for the AOUP.

Most importantly, Eqs.(17) and (24) highlight how the motion of any probe in the elastic system,
being the AOUP at ¥* or another at a position ¥, corresponds to a fractional Brownian motion [120].

3. h-autocorrelation function

The MSD of any particle belonging to the GEM is affected by the presence of the active noise &(f).
As a matter of fact the general expression for the MSD reads

(01 (%,0) = ([ (%) = h(Z0)P) =2 [(R (%) — (1(% ) h(Z,0)] (25)

where h (X, t) represents one of the components of the stochastic field h (¥, t). From the definition (25)
it turns out that the calculation of the MSD, as of any other physical observable, needs the explicit
expression of the two times autocorrelation function ( (X, t) h (X,t')).

Starting from the single component solution of the Eq.(17) in the Fourier space

_ M@)o (F-¥|w)  {(Fw)
YA K+ (—iw)P K+ (—iw)P’

h (%, w) (26)

we can write down

doi:10.20944/preprints202311.1935.v1
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2
- - o ey S N R .
(h(%,w)h (%)) = (J) % — 2 d/o d1q (71" Jaje-1 (] |% — 2]) x

+oo | | = x—d/2 S| |2 o <§(w)§<w/)>
/O d|q | ‘q ‘ ]d/zfl (|q | |x—x |) (—iw—%—ACW'lZJraid) (—zw’+AC W»/lerutfd) T

(C(x w)i(¥, "))
K+2(—iw)B(—iw")B’ @7)

where we made use of the force-propagator Fourier transform (20). The first addendum on the RHS of
the previous equation can be further simplified by resorting to the active noise correlation properties
in Fourier space, i.e.

ATviYs (w4 w')
3ta (L

TA

(C(w)E(w) =

)2+a)2

The second addendum is the usual term accounting for the correlations inherent to the GEM [108].
Therefore the h—autocorrelation function gets the final form

(09yAv,)? |2 — J_C’*|27d

Zd_lﬂd+13TA
+°°d ~ (=ja—d/2 S Foo a—d/2
LA daaa (=2 [ a7 T e (717 - 1) x

—iw(t—t")
/ dw ¢
[ (2) . -

Ts +w2] (_lw—i—AC‘q'leroc d) (_iw_f_Aclq/lzﬂxfd)

X

(h(E 00 (%F)) =

22-dj T4 ABCP1 w(t—+
B (nﬁ / dw cos[w( )] (28)

(Z—l-oc—d)ﬂd/zF( )cos wlth 7

The two terms appearing on the RHS of the autocorrelation function have a different origin and
different behaviors. While in the first one it appears clear the dependence on the internal coordinate ¥
as well as the absence of any divergence in the w space, the second does not depend on the specific
internal position but diverges as |w|~(1*#) in the limit of w — 0 [108]. Therefore, any physically
measurable quantity must be organized in a manner that ensures the cancellation of this divergence.
The h—autocorrelation function of the AOUP is obtained from Eq.(28) using the property (21)

oy, \ 2 « w(t—t'
(h (Z,8) b (%5, 1)) = <ld;+p> 67'[1TA/0 dwwz;,o[sél(i;ziizr

22-dkp TI4 APCP-1 cos[w(t —t)]
- 7) / dwo L 29)
(z+a —d)md/2T (§> cos (
The same expression is achievable from the solution of the Eq.(24) in Fourier space:

© 21y, K (—iw)P T KF(—iw)P’

doi:10.20944/preprints202311.1935.v1
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4. Mean Square Displacement

By substituting the expression (28) into the MSD definition (25), it becomes evident that the MSD
is composed of the sum of two contributions:

(0%h (%,)) = (0%h (%,£))oun + (6%h (X, 1)) fon- (31)

As noticed in Ref.[106], this superposition makes non-trivial the possible diffusive scenario arising
when we are consdering both the AOUP and a generic probe. We consider the case of high Péclet
number where the active dynamics is definitely larger that the thermal counterpart. Indeed, the first in
Eq.(31) arises from the action of the non-equilibrium Ornstein-Uhlenbeck noise ruled by the Langevin
equation (5), whereas the second stems from the fractional Gaussian noise (18) and represents the
typical subdiffusive thermal dynamics exhibited by any element belonging to the GEM (1) [107,108]:

4kg Tre*/2(AC)PT (1 — B) 8

6%h (X, t = 32
The first term on the RHS of (31) is formally defined as
= 2—d
2 _ (@A) |7 -3
<5 h (x’ t)>OUN - 2d717'[d+13TA X
o L mad N —d/2 N
LA e (3 E =2 [ a7 T e (7] - )
00 _ ,—iwt
/ deo—— L-e . (@33
- {(;A) +w2} (—iw+Ac |~ (—iw + AC|g |+~

The equivalent term in case of the AOUP can be derived from (29)

d 2 oo _
(8%h (¥, 1)) oun = <‘;I’ZZP> 37117_— / dew 1 cosgwt) (34)
A J0 wzg[(rlA) +w2}

and it is definitely easier to treat. Hence, in the following we develop our analysis starting from the
expression (34).

4.1. AOUP’s MSD

Firstly we notice how in the integral

_/ e 1 — cos(wt)

w?h [(A) + aﬂ]

there is no issue of divergence in the limit as w — 0. In fact, the integrand function behaves as
~ w?1=P) for small frequencies. We then introduce a change of variable, y = wTy, so that

y

e anl®)

Its time behavior differs whether ¢ < T4 or t > 14 and we will treat them separately.

doi:10.20944/preprints202311.1935.v1
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411t < Ty

The integral (35) must be handled differently in the three cases 0 < § < 1/2, § = 1/2 and
1/2<p<1.

e < pB<1/2
We can split the integral and solve the first one [119]:

7= 1+2/5 {Zcosec [ (1-2p) } / dy ;0514—]/ )} (36)

Hence we integrate the second by parts and we expand the resulting trigonometric functions for
small arguments

7 = T [ U2807)

1—12[%[( ></ y1+y / y1+y > /dy1+

By evaluating the remaining integrals we obtain the final result

} . 37)

2B-3)m 1-2B8)m
I Tl+2,3 b i 2 | cosec [#} N cosec {%} N
4 2\ 14 1-28 2

cosec [(ligﬁ)n} B cosec [7tf]
T [ 5 — = 26 . (38)

e p=1/2.
The integral (35) is in this case

_ yt
I-7 [ ay— ) ioiy)>- (39)

Integrating by parts we have

In(y) sm 1—Cos gj
I:Tf‘{_r;/o 1+y /dy 1+y)< ﬂ} (40)

We can neglect the second and split the first into two contributions

I:Ti{_t/olln(y)Sin(g’i)_F_t ooln(y)sm(”)} (41)

TA 1+y2 T4 J1 1+y2

Then we can retain only the first one, as the second is nearly zero, and expand the sine for small
arguments, getting [119]
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o (N [ty |,
I—TA{ (TA) . =5 (42)
¢ 1/2<B<1.

This case is the easier to be handled. Expanding the cosine for small arguments in (35) yields

B 2 (3—-2B)m
= 1 2/52/ 1+ lfwzcosec [2} (43)
y? N

412.t> Ty

This time limit presents the same symmetry of the previous one, therefore we study the behaviour
of 7 in the three cases 0 < p < 1/2,=1/2and 1/2 < B < 1.

s 0<p<l/2
From (36), after integrating by parts, it is obtained

2 wi-28h YF T

/ y CcOoSs ) } (44)
T h YT |

The major contributions to the integrals appearing in (44) come from y ~ 0, hence Z may be

v [ fa—opa] ¢ 1 ge sin(H)
:TA+/S 2cosec[ ] 4

properly approximated to

142 1-—-28)m t 1 oo _op . t
I—TA+’3{2cosec[( ZIB) :|_TAl_2,B/O dyy! Zﬁsm(ly_A)—

¥ a2 eos (UL
Zﬁ/o dyy cos(TA>}. (45)

We can thus use the method of summation of improper integrals [112,121] to finalize the
calculation

T {Cosec [(1 —22;3)71 B (T;)zﬁ-l - Zﬁi s_inz[g(l -B)]

(>2ﬁ 3T(3—2p)cos {%25)} } )

TA 1—2[3

¢« p=1/2.

We recap from the expression (40), neglecting the second integral on the RHS and retaining only
the contributions coming from y ~ 0 in the first:

=1} {—T;/Omln(y) sin (ZIZ)} (47)
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Then we can split the resulting integral into two terms

1 <)
=135 {_Tiq/o In(y) sin (Z:) —+ —% A In(y) sin <ZI:> } (48)

and consider only the first one as the second yields almost no contribution. Finally, solving the

integral [119]:
_ 2 LY _ (L
=1y {’y+ln<TA> C1<TA>}, (49)

where 7 is the Euler-Mascheroni constant and Ci is the cosine integral [118].
e 1/2< B <1

As in the previous situations the main contributions to the integral in (35) will arise from y ~ 0,

hence
1 —cos y :
7172 / dy ) . (50)
By integration by parts it becomes
L1426 gt
_ " 1-28
1= 261 < >/ dyy Sm(m) (51)
and, using the methods of improper integrals [121], the final result is
2-1
_ A (b -2 . _
1-o (L) T sin - ) 62

Now, collecting the expressions achieved in these subsections, we can wrap them up in a unique
compact formula:
when t < T4:

(2B—3)7 (1-28)7
zﬁ l cosec 5 cosec >
d 2, T3 1[—2ﬁ }‘" {2 | 0<p<1/2
[ 71/,,) t

2 % ~
(0%h (X, 1)) oun =~ ( i) 3o, z 172 (53)
Tiﬂfl%cosec [W} 1/2<B<1;
when t > T4:
oy 2 Tif’sgcosec[(l %’3)”} 0<B<1/2
2 by sl 7? i _

(0°h (X*,t))oun =~ (l‘ﬁ(*) AT, A lzr;)(r ) p=1/2 (54)

PP sin[n(1-B)] 1/2<p<1;

Hence, we can infer that the impact of the OUN on the AOUP diffusive dynamics exhibits
pseudo-ballistic behavior for time intervals shorter than the active decorrelation time (t4). However,
this impact varies depending on whether B is less than, equal to, or greater than 1/2. This result
must be summed to the contribution arising from the fGn according to the formula (31). It is clear
that, in the long time limit, the term (6%h (X%, 1)) fGn will dominate. However, the transition from

doi:10.20944/preprints202311.1935.v1
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the the dynamics dictated by (6%h (¥*,t))oun to the asymptotic one will depend on the values of
the parameters appearing in (4). Defining this transition time as 13, and assuming 7, > T4 a
rough estimate of 75,5 could be given by equating the contributions of the expression (54) with (32):
(8% (%, Tp)Youn = (6%h (¥*, Tsub)) fGn- This is schematically shown in Figure 1.

However, it’s essential to emphasize that when we relax the assumption of 7g,, > T4, the dynamics
become less straightforward. Although the asymptotic behavior remains unchanged, the intermediate
ultraslow dynamics can be significantly compressed or reduced.

I — 0<B<12 -

— B=12 '
— l/2<B<1 2p-1 /

2

<& h(x*,t)>

Figure 1. MSD of the AOUP. The three situations described in the text, 0 < < 1/2 (black curve),
B = 0 (red curve) and 1/2 < B < 1 (green curve) are qualitatively shown. Assuming 75, > T4
the three regimes appear well distinct. After a pseudo- ballistic initial phase, the behaviors in (54)
represent a considerable slowing down of the diffusive dynamics, which is followed by the asymptotic
subdiffusive GEM usual behaviour (32).

4.2. MSD at a generic position ¥

The expression (33) is not straightforward to manipulate, making it challenging to deduce the
impact of the AOUP dynamics on a tracer positioned at a distance of |¥ — X¥*|. The reason is the
appearance of a correlation time

o |J_(’f 9—5*|z+4x—d
(7)) =

which can be seen as the time up to which the dynamics of two distinct probes in ¥ and ¥* is

uncorrelated [112-114,122]. As a matter of fact, both the force- and the noise-correlators are expressed as
® (ﬁ) and © (ﬁ) . The dependence of (31) and, in particular, the dependence of the (62h (%, t))
on the correlation time (55) can be achieved by the following changes of variable in the integrals of

1/(z+a—d) 1/(z+a—d)
@3y = (<4) 7y = (<) 7' and A = wt:

/ (55)

—iw
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o0 a—d/2 Cidt(1% — 7))\ aa
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As previously mentioned, the formal analysis of (33) is not straightforward, and it will be the
focus of an upcoming investigation. Nonetheless, we can qualitatively examine the limiting behaviors
of the equivalent expression (56).

In the regime where t < 7(|¥ — ¥*|), the Bessel functions exhibit high oscillations. As a result, the
major contributions to the integrals come from values where y ~ 0, ' ~ 0, and A ~ 0. Surprisingly,
these contributions are almost negligible, leading to:

(0%h (%,)) ~ (8*h (%,1)) fGn- (57)

In the opposite limit, where ¢ > T(|X — X¥*|), we can employ the expansion of the Bessel functions for
small arguments (21). This results in the same expression (34) as that valid for the AOUP. Consequently,
we obtain:

(%R (%,t)) = (3R (T, 1)) oun + (6h (T, 1)) fGn- (58)

Given these limiting situations, we can provide an approximate study of the possible scenarios:

o T(|X —X*|) < Ta.
Probes very close to the AOUP exhibit an initial thermal subdiffusive behavior o t#. Subsequently,
the probe at ¥ behaves identically to the AOUP.

¢ A K T(lf_ f*|) < Tsup-
In this case, the probe’s diffusion is primarily governed by thermal noise. The non-equilibrium
dynamics becomes significant only for 7(|¥ — ¥*|) < t < Ty, leading to the results in (54). For
longer times, i.e., t > Ty, the thermal MSD (32) is recovered.

® Toup < T(W_ f*|)
Probes that satisfy this condition, i.e., probes far away from the AOUP, are not influenced by the
action of the active force.

5. Concluding remarks

In this paper we have examined the diffusional dynamics of an AOUP connected to an elastic
system such a (semi)flexible polymer, a membrane, or a fluctuating interface, including hydrodynamic
fluid-mediated interactions. Moreover we have investigated the action of the non-equilibrium OU force
on the other element belonging to the elastic system. We have demonstrated that the FLE constitutes
the correct description of the AOUP dynamics, where the thermal contributions deriving from the
rest of the elastic system are incorporated into the f{Gn, in addition to a renormalized OUN (24). We
also have derived the FLE for any other probe placed at an arbitrary distance from the AOUP |X¥ — X*|.
Here the effect of the nonequilibrium force is delayed in time, propagating through the medium thanks
to the force-propagator @(|X — X*|, t) (17).

Our analytical theory constitutes a significant improvement over the arguments presented in
previous works on this subject. In Ref. [105], the FLE for the AOUP was inferred from the numerical
evidence of the velocity autocorrelation function’s time behavior and from that of the MSD. In other
words, it was proposed as an effective equation supported by analytical calculations drawn from a
normal mode expansion [91,123-125]. However, a formal derivation of the FLE, based on the analysis
by Panja [126,127], was not attempted.

In Ref. [106], the mesoscopic FLE for the AOUP attached to a (semi)flexible chain was introduced
to reproduce its stochastic non-equilibrium dynamics. The fractional equation, namely the damping
kernel, was derived by resorting to the tension propagation theory in the absence of active noise.
However, even in this case, a formal derivation from the semiflexible evolution equation was not
provided.

In this article, we have offered such an analytical derivation, significantly expanding the domain
of its applicability to any elastic system, including hydrodynamics. This became possible because the
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framework of the FLE with a localized applied potential [112] could be entirely shifted to the case of
the AOUP particle bound to an elastic system. Moreover, this framework entails the derivation of the
FLE for any other probe belonging to the GEM, different from the AOUP.

The FLE framework provides a crucial additional value through the formally easy calculation of
any observable composed as a function of the elementary correlation function (28). In particular, we
examined the MSD of AOUP, uncovering some unexpected diffusional scenarios, which include, as
special cases, those found in the simulations and theoretical analyses of Refs. [105,106].

Firstly, we observed how three different types of diffusion arise depending on the value of
B. This is not immediately apparent in the early time regime, i.e., t < T4, when the action of the
non-equilibrium OU noise drives the directional motion of the AOUP. In this regime, a superdiffusive
pseudo-ballistic dynamics emerges, analogous to the result in [105] where the Rouse model yields
B =1/2[107,108]. However, although the ~ #2 behavior is maintained for any value of j, the prefactors
change significantly as shown in Eq. (53). Moreover, we observe that the ballistic regime may not
distinctly emerge from simulations. Specifically, at low Péclet numbers, the contribution to the MSD
from the thermal part, attributed to the action of the fractional Gaussian noise in (31), cannot be entirely
neglected. This observation might underlie the ~ t3/2 behavior exhibited by the AOUP connected
to semiflexible polymers [106]. Simultaneously, this discrepancy could be attributed to the fact that,
in the presented simulation results, the AOUP was attached to a network of four semiflexible arms.
Regardless, as highlighted by the same authors, in the simulations, "the superdiffusion for t < 74
occurs with an anomalous exponent slightly greater than 3/2’.

For times ¢ >> T4 and for high Péclet number, the diffusion is still dictated by the non-equilibrium
active force, and the diffusional scenario are different according to the values of B, see Eq.(54). For
example, we both recover the logarithmic dependence of the Rouse chains, obtained analytically
in [105], and the +'/2 behaviour observed in the numerical simulations of Ref.[106]. In case of the Zimm
polymers model instead, we predict ~ #!/3 in this regime, being g = % Importantly, we anticipate that
for B in the range 0 < B < 1/2, the diffusion tends to slow down till to a constant value, see Eq.(54).

The asymptotic diffusion requires special attention. The FLEs (17) and (24) involve the

superposition of both non-equilibrium and thermal contributions, resulting in the expression (31). This
implies that, for a high Péclet number, there is a crossover between the active subdiffusive motion and
the long-time thermal subdiffusive dynamics. The time scale on which this crossover occurs, denoted
as Tyyp, is not easily determined and crucially depends on the microscopic parameters of the model,
as illustrated in Figure 1. Situations may arise in which 73, >~ T4, causing the contribution in (54) to
become less apparent. For the sake of clarity in our analysis, we focus on cases where T, > T4.
The transition to thermal motion was also observed in the analysis presented in Ref.s [105,106]. This
crossover time was defined as 7, signifying Rouse’s time in [105] and the relaxation time in the case of
semiflexible chains [106]. Both interpretations could be seen as thresholds marking the transition to the
Browinan linear regime. As we are dealing with infinite systems, TR — oo in our context. Consequently,
as the influence of the non-equilibrium OU active drive diminishes (t > 7,4), the thermal dynamics
predominates (t > T,p).

The analysis of the MSD of probes other than AOUP is complex and will be addressed elsewhere.

However, even without a detailed analytical derivation, some important conclusions can be drawn. As
discussed in Section 4.2, the dynamics of regions in the elastic system close to the AOUP are primarily
influenced by the active non-equilibrium force up to T, with an initial thermal subdiffusive motion.
For t > 15,5, the MSD of the probes is still governed by fractional Gaussian noise (fGn).
The initial thermal regime becomes more pronounced as one considers regions progressively farther
from the AOUP. Consequently, the non-equilibrium component of the MSD, denoted as (6%h (¥t))oun,
diminishes. In the limit of very distant regions satisfying 7(|¥ — X!) > 1., the diffusion of the probes
is entirely dictated by thermal fluctuations, rendering the impact of any non-equilibrium driving force
negligible. It’s worth highlighting that this diffusional scenario precisely aligns with the findings from
the numerical simulations in Ref. [105].
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Overall, these results may help to elucidate in vivo dynamics observed in experiments [62,87].
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