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Article 

Simple Non-Linear Numerical Modelling for 
Unreinforced and FRP-Reinforced Masonry Domes 
Alessandro Gandolfi, Natalia Pingaro * and Gabriele Milani 

Department of Architecture, Built Environment and Construction Engineering, Piazza Leonardo da Vinci 32, 
20133 Milan, Italy 
* Correspondence: natalia.pingaro@polimi.it 

Abstract. This paper presents a new method to model the nonlinear behaviour of masonry double 
curvature structures, possibly reinforced by composite materials, by means of conventional elasto-
plastic analyses. It is meant to be used in professional design, especially for assessment and 
retrofitting purposes, therefore based on the exploitation of the simplest nonlinear Finite Elements 
available in a commercial software, namely trusses with elasto-fragile and elasto-ductile behaviour 
(Cutoff Bars). The numerical static nonlinear analyses are carried out by considering elastic 
hexahedral elements for bricks and lumping nonlinearities on joints. These have been assumed in 
turn elastic-brittle and elastic-plastic by using 1D elements, respectively Point Contacts, under No-
Tension Material hypothesis, and Cutoff Bars, assigning small tensile resistance to the material. The 
reinforcement, realised with FRP hooping strips, has been successfully modelled in a similar 
fashion, i.e. by applying perfectly bonded elastic-plastic Cutoff Bars at the extrados of the dome, 
where the debonding is accounted for in a conventional way limiting the tensile strength according 
to Italian Standards indications. The procedure is validated against benchmark models with the 
same geometry, using experimental data and more refined structural model results for comparison. 

Keywords: hemispherical dome; axisymmetric loading; masonry construction; heterogeneous 
approach; nonlinear static analysis; no-tension material; point contact elements; unilateral frictional 
contact; orthotropic material; cutoff bars; CFRP 

 

1. Introduction 

Double curvature structures are a common type of roofing technology in historical buildings. 
They may be found all-round the world in different countries. They were used to cover large rooms 
in public buildings because of their resistance to vertical loads guaranteed by the acceptable 
mechanical properties of materials involved (i.e., in compression for masonry), friction, but especially 
by their shape. Drawbacks of these structures are lateral thrust, transversal shear for asymmetric 
loading, dynamic and horizontal loading. 

Arches, vaults (and domes) are known to be “shape resistant” by virtue of their (double) 
curvature, as function of their loading condition [1]. In this paper, domes will be tackled in three 
dimensions. Indeed, they cannot be studied as arches or barrel vaults, because of stresses running 
horizontally. In Figure 1, the conical surfaces are those on which the mortar joints and bricks are laid. 
Because of this imposed shape and the slope toward the centre (O), on those surfaces only 
compression stresses act, as also demonstrated by means of membrane equations in [2]. Moreover, 
compression stress progressively increases, raising the height of the same cones (i.e., their slopes), up 
to the last crown. This can be an open oculus with a finite compression in the crown or a closed top, 
which – in large domes – may suffer from bending because of the verticality of the degenerate conical 
surface and insufficient compression. 

Going from the springing to the top, on meridian section planes 𝜋௜ (see Figure 1), nonlinearities 
emerge and form cracks, which separate the dome in meridian sectors. This allows the formation of 
plastic annular hinges at a generic angle 𝛼௛ from the vertical axis (i.e., degenerate cone Cr0). In the 
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case of closed top, one plastic hinge may open there (𝛼଴ ൌ 0). In any case, an excessive – symmetric – 
loading opens plastic hinges at the springing (𝛼௕ ൌ 90°) and in an intermediate position 𝛼௛. In [3] is 
demonstrated how the position of plastic hinge varies. When an oculus is present, it is more probable 
for the plastic hinge to occur lower on the base (at a major angle 𝛼௛). The presence of the oculus in 
facts visibly changes the equilibrium configuration in relation to the closed-top case. 

Contrarily, the same authors [3] state that the position of the intermediate plastic hinge 
undergoes very small variations for a change in material tensile resistance. Anyway, it can be noted 
that increasing the tensile resistance, the angle of the intermediate plastic hinge increases because of 
a better distribution of stresses on meridian planes. 

However, the higher the plastic hinge, the better it is because a larger portion of the lower part 
of the fuse expends more energy in uplifting the self-weight. Friction and interlocking of bricks – in 
stretcher bond above all – are advantageous for what stated. On the contrary, it is worth noting that 
going from the springing to the top, bricks geometry adapts worse to progressively smaller conical 
surfaces. Therefore, in building practice, they are cut, and head joints distribution becomes more 
irregular. This ends in giving straighter paths for fractures (minimum energy path [4]), lowering the 
fracture power, so the ultimate collapse load. 

 

 

(a) (b) 

Figure 1. (a) Conical surfaces with vertexes in the centre of the hemisphere S(r) intersect the spherical 
surface in ‘parallel’ lines. Axisymmetric planes (𝜋 ∩ 𝜋ᇱ ∩ … ൌ 𝐶ሺ𝑟0ሻ) intersect with S(r) in ‘meridian’ 
lines. The vertical axis of symmetry C(r0) is a degenerate cone of null radius, while the springing 
plane C(h0) is the same but with null height. (b) Definition of angles 𝛼଴, 𝛼௛, 𝛼௕ on a generic vertical 
cross section (𝜋 plane). 

The present investigation deals with the nonlinear modelling of domes loaded at the crown by 
means of vertical point forces. Such configuration is typical for laboratory tests aimed at 
understanding the load carrying capacity of such structural elements. The newly proposed way of 
modelling is benchmarked against both experimental and advanced numerical techniques hereafter 
recalled. A hemispherical dome with an inner diameter of 2.2m, 0.12m thick (UNI Italian Bricks Size), 
with an oculus on the top of 0.2m in diameter was built in the Architectural University Institute of 
Venice and tested in its unreinforced and reinforced cases [5,6]. Further, a dome with the same 
geometry has been already studied numerically by Creazza et al. [7] through an isotropic Finite 
Element Damage Model, equipped with distinct damage parameters in tension and compression. The 
role played by orthotropy [8], which may have a certain importance in modifying the ultimate load 
carrying capacity, was left out and studied after in the framework of classic limit analysis [9]. The 
same problem has also been studied analytically by means of Lower Bound Limit Analysis 
approaches (LB-LA, Durand-Claye’s Method) and the Upper Bound Limit Analysis (UB-LA, 
kinematic method) [3,9–11], and by homogenised or macroscopic models [7,11–14]. 
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Concentrated forces applied on the top in experiments and simulations roughly represent the 
load of lanterns or – in even more interesting cases – larger superimposed constructions as happens 
for instance in the Vipassana Pagoda (described in [15]), that will be studied in the sequel of the 
research, having in mind to compare the results obtained with already existing computations carried 
out with a novel method combining FEs and Thrust Line Analysis [16,17]. 

As noted in [14], all the methods stated so far, even though very accurate in giving results, are 
usually exploited in the academy only, because of the time necessary to set up the models and run 
the analyses and the advanced mechanical knowledge sometimes required. Moreover, some of the 
existing assessment methods regarding hemispherical domes introduce excessive simplifications, as 
in [18], where domes are considered as set of arches and the presence of small tensile strength and of 
finite compressive strength are neglected. Indeed, Masonry is often considered a “No-Tension 
Material” (NTM) [16,19–21] even though accounting for suitable tensile and compressive strengths 
leads to results which better fit reality. 

The novel and simple method presented here for studying domes in a three-dimensional space 
avoids both the complexities (and limits) of homogenised or FE damage models and the excessive 
simplifications in the study of domes in Euclidean space or in 2D planes. It will consider clay bricks 
as always elastic, lumping material nonlinearities in mortar joints (as in [22]), which are modelled by 
simple unidimensional Finite Elements already available in commercial software (namely Point 
Contact and Cutoff Bars). In this way, masonry may be modelled both as a NTM and as a Tension 
Material (with small tensile resistance), according to the result to be pursued. 

It is worth to remind that the modelling method proposed in this paper accounts for 
axisymmetric vertical loading only, which generates also a distribution of normal stresses on 
meridian planes. Moreover, the method is validated for a dome with an oculus on the top, against 
literature data about the same benchmark model. Further analyses will be carried out in future. 

The paper is organised as follows: in the next section the reader will find information about the 
necessary instruments (i.e., the Finite Elements involved) to build a proper masonry model for 
pushover analysis, coherently with initial hypotheses. The motivation for the choice and the typology 
of 1D FE chosen will be exposed step by step. A section about the actual construction of the model 
and its validation follows. It will report the sensitivity analyses done to tune the mechanical 
parameters (e.g., joints fT) and to compare the results with literature data. In addition, the potential 
exploitability of the model for FRP reinforcement is proven. 

1. FE Modelling 

1.1. Modelling for Nonlinear Analysis 

In [18], domes have been modelled as arches on a vertical cross section, neglecting to some extent 
the actual axisymmetric geometry, especially as far as meridian boundary conditions are concerned. 
This makes a dome closer to a single curvature vault. However, differently from the latter case, domes 
should be better studied by properly considering their second curvature in the third dimension. 
Geometrically speaking they have infinite planes of symmetry intersecting in the vertical axis. Hence, 
to build a lighter model and speed up calculations, accounting for realistic boundary conditions, here 
only a meridian slice (or fuse, δθ/2π wide) of a dome has been considered [23] in the nonlinear 
analysis (NLA). Hence, the results for the slice are made commensurate with those of the whole 
dome. The width of the fuse shall not be too small in order to model separately all the materials 
involved (both bricks and mortar joints) in suitable proportions. Moreover, the fact that masonry is 
very rigid and typically made by interlocked units, allows to consider stresses as effectively 
exchanged between contiguous slices. Therefore, with reference to the single slice considered, the 
stresses are transferred on meridian planes imposing classic symmetry constraints on displacements 
(see Figure 2a). 

In the modelling phase, the fuse has been generated by extruding an arch of an angle δθ (Figure 
2a) in a cylindrical reference system. It is composed of 3D elements (8-node hexahedrons) with the 
mechanical characteristics of the blocks adapted from [11] and reported in the following Table 1, 
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node-to-node connected by 1D truss elements lumping masonry nonlinearity. A rough scheme of 
how the material has been modelled is shown in Figure 2. 

  
(a) (b) 

Figure 2. (a) Boundary conditions symmetry assigned to the fuse under analysis; (b) Small portion of 
a fuse showing 8-node elastic hexahedrons (for blocks) node-to-node connected by unidimensional 
nonlinear elements. 

As a result of the extrusion in the cylindrical reference system, the model of the dome has bricks 
made by curved trapezoidal prisms, which let parallel joints have constant thickness through the 
dome cross section. In real scale domes it happens the contrary because mortar adapts the given 
geometry of the bricks (parallelepipeds with rectangular faces) to the double curvature. Vertical joints 
are tapered in any case. However, the assumption over the shape of the elements, already done by 
two of the authors in [22], does not significantly interfere with the results because of the relatively 
small size of the blocks. 

Table 1. Mechanical properties of clay bricks assigned in the FE model [11]. 

Mechanical Properties   u.m. 
Young’s Modulus E 1.7 ∙ 103 MPa 

Poisson Ratio ν 0 - 
Density ρ 2.0 ∙ 10-6 Kg ∙ mm-3 

    
Nonlinear Type  Elastic Plastic  
Yield Criterion  Von Mieses  

Once obtained the meridian slice and set the boundary conditions as specified, the nonlinear 
analysis is run by the application of a progressively increasing displacement on the top of the fuse – 
i.e., on the crown surrounding the oculus – thus proceeding with a classic displacement control 
strategy. The solver will provide a node reaction for each step, in function of the displacement and 
for the given material properties. The final result, being the ultimate collapse load (λu) of the structure 
considered, is reached asymptotically because the nonlinear ‘beam’ elements are assumed either 
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elastic-brittle or elastic-ductile. When elastic-brittle Cutoff Bars (null tensile strength) are used, the 
asymptotic value of λu is that of the classic NTM. In the following Figure 3 the reader finds a scheme 
summarizing the nonlinear analysis process. 

 
Figure 3. Nonlinear analysis procedure adopted for unreinforced dome. 

In the next sections, two approaches in which nonlinearities can be modelled are detailed. 

1.2. Modelling of Joints by Means of Point Contacts 

Masonry is often modelled as a NTM. This comes from the studies of Heyman [2], who noted 
how in historical masonry constructions, compression acting in reality is far below the actual strength 
associated to crushing. On the contrary, any intense tensile contribution is impossible because of 
masonry incapacity to bear it. Hence, masonry was studied by Heyman [24] according to the 
following set of hypotheses: 

ቐ 𝑓𝑇 ⟶ 0𝑓𝐶 ⟶ ∞𝑣𝑏 ൌ 0  

where 𝑓𝑇 is the tensile strength, 𝑓𝐶 is the compressive strength, 𝑣𝑏 is the sliding between blocks, 
valid for small displacements. 

According to what stated so far, the best way to model nonlinearity of such a NTM is the use of 
unilateral frictional contacts, namely Point Contacts (PCs), working in compression. PCs are the 
implementation in FE software of the Signorini-Fichera contact problem, also known as “the problem 
with ambiguous boundary conditions”. It states the impossibility for an elastic non-homogeneous 
anisotropic body to penetrate a rigid frictionless surface. It has been already used in [25], which 
retraces the theoretical solution given by Fichera for one single body [26] then applied in [27] for 
multiple body interaction. 

PC elements have been chosen specifically for the nonlinear analyses to constantly monitor the 
contact status. Indeed, between two nodes, there can be either the formation or the closure of a gap, 
but also sliding in function of the friction coefficients set. In the case presented in this paper, the 
friction coefficients assigned to the meridian joints (PCs set to work in compression) are equal to 1 
(see Table 2), making the problem defined by a unilateral frictional contact (a little different from the 
theoretical frictionless problem of 1964 [26]). 

Despite the PC models an impenetrability condition, a small value of penetration (“non-zero 
penetration”) is necessary for the solver to calculate the contact condition efficiently. So very high 
values of stiffness can be accounted for – until they do not generate numerical issues – to have the 
minor penetration possible. In this case the penetration was automatically controlled by the solver. 
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An initial value of stiffness is set (k0 value in Table 2), which is then automatically adapted by the 
software through the steps of the NLA [28]. 

Table 2. Point Contact FE software settings. 

Joint Position Type 
Friction 

Coefficients 
Stiffness 
Values 

   
C1 C2 Initial k0 

[kN∙mm-1] 
Initial kiter 

Parallel IN 
OUT 

Tension 
Tension 

- 
- 

- 
- 

61.2 
30.6 

- 
- 

Meridian 
IN 

OUT 
Normal 
Normal 

1 
1 

1 
1 

93.84 
46.92 

✓ 
✓ 

2.3. Load Distribution 

The possibility to model a distributed load (a condition close to the experimental one) is checked. 
The imposed displacement for such NLA is distributed over a larger area thanks to a frame 
constituted by rigid beams (mechanical characteristics in Table 3) leaning on the extrados of the dome 
by PCs set to work only in compression (tension type with null tensile resistance). Indeed, doing like 
this, whenever a tensile stress reaches the contact surface, the boundaries are inactivated. The reader 
will find the mechanical characteristics of the PCs involved in Table 3 and a scheme of the FE model 
in Figure 4b. 

 
 

(a) (b) 

Figure 4. (a) Scheme of the second way of modelling, i.e. when a distributed load is applied on its 
crown. Example of regions of constant influence area for beam elements along the meridian are 
highlighted; (b) Scheme of the Distributed Load on the crown as implemented in the second model. 

Table 3. Mechanical characteristics of Load Distribution Plate and its restraints. 

Mechanical Properties   u.m. 
Rigid Beams (Load Plate)    

Young’s Modulus E 1.7 ∙ 108 MPa 
Section Area A 100 mm2 

I11 = I22 I 8.33 ∙ 102 mm4 
Point Contact    

Type  Tension  
Initial Stiffness K0 1.0 ∙ 103 kN ∙ mm-1 
Max Tension Tmax 0 kN 
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By this expedient, it is possible to simulate historical domes surmounted by lanterns, and more 
realistically the actual loading conditions of a laboratory test (see Figure 3).  

2.4. Modelling of Joints by Means of Cutoff Bars 

The second approach to model masonry is by assuming small but non-zero tensile strength (fT) 
and orthotropy, which is given by material properties (taken as constant through the whole 
construction), can be modelled as well, by assigning different values for fT along both meridian and 
parallel directions. Typically, the fT is higher on meridians because of blocks staggering, whereas on 
parallels – if the cross section of the CoBs is assumed constant – it progressively decreases going from 
the bottom to the top to take into account the change of the influence area.  

Elastic perfectly ductile Cutoff Bars (CoBs), which are truss elements with predefined tensile and 
compressive limits (i.e., cutoff values) represent the best option in this case. Cutoff values can be 
properly tuned to better model orthotropy by means of consolidated homogenisation techniques as 
illustrated in [9]. 

As already mentioned, in order to account for a change in fuse cross-section, the influence area 
of CoB should be changed going from the top to the bottom of the structure. In a very accurate model, 
the CoB properties of each horizontal joint should be changed smoothly. Anyway, being this method 
thought to be simple, the user can decide in how many regions divide the hemispherical dome to 
assign them an average value for CoBs influence area. In this case, the fuse is divided into two regions, 
which are considered to be enough to obtain sufficiently reliable results. The scheme in Figure 4a 
points them out. 

2.4.1. Joint Modelling 

Differently from the first model, for which the Heyman’s hypotheses [2,24] are valid and the 
dome vertically loaded until collapse sees its portions rotating around flexural plastic hinges, in the 
second model, the joints can fail also for shear. Therefore, a shear-resistant joint – i.e., a complex 
network of 1D elements involving the utilisation of rigid beams, CoBs and shear trusses – has been 
conceived. 

It is the three-dimensional correspondent of the joint proposed in [22]. A scheme illustrating 
follows in Figure 5a, together with Table 4 reporting the mechanical parameters adopted for the 1D 
FEs involved. 

  
(a) (b) 

Figure 5. Scheme representing the ductile (or fragile) joint in its (a) undeformed & (b) deformed 
configurations. The latter one indicating the position of the plastic hinge. 
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Table 4. Mechanical characteristics of Mortar Joint Elements: Parallel Joints. 

Mechanical Properties    u.m. 
Rigid Beams (Joints)    

Young’s Modulus E 1.0 ∙ 103 MPa 
Section Area A 100 mm2 

I11 = I22 I 8.33 ∙ 102 mm4 
Inertia J 1.41 ∙ 103 mm4 

Shear Truss (CoB)    
Young’s Modulus E 1.7 ∙ 104 MPa 

Initial Stiffness K0 1.00 mm2 
Max Compression Cmax 1.0 ∙ 1011 kN 

Max Tension Tmax 1.0 ∙ 1011 kN 

The failure of such a joint allows the user to point out the actual presence and position of plastic 
and shear hinges. Representations of the way the failure occurs are provided in Figure 5b for flexural 
hinges and in Figure 6 for shear sliding. Because of the geometrical characteristics and mechanical 
properties assigned, in presence of shear inelastic sliding, blocks faces remain at the same angular 
distance (no mutual rotation) and failed shear trusses are removed (if CoBs are fragile) or substituted 
with nodal forces equal to the ultimate strength of the bars (if CoBs are ductile).  

 

Figure 6. Scheme representing the ductile/fragile joint undergoing inelastic shear deformation, with 
the typical jagged deformed shape indicating the shear failure. 

In order to avoid unnatural and excessive transversal displacements at the base, the nodes 
constraints have been set as fully fixed on the impost plane, as well as on the meridian section planes 
generating the fuse. 

2.5. Modelling of FRP by Means of Cutoff Bars 

This section deals with the modelling of a hooping reinforcement. As from common practice and 
experience, domes are mechanically stabilized on the extrados by addition of buttressing mass (e.g., 
Pantheon stepped rings up to half-height of the dome) or of drums (e.g., Middle Age crossing roofs). 
The act of reinforcing by hoops is the bi-dimensional correspondent of the one-dimensional tie for 
arches, usually put at springing level. The efficacy of applying a tensile-resistant material on the 
extrados of domes has been demonstrated by practical experience in history and in contemporary 
literature too [5,29]. 

Even though assigning a major tensile strength on meridian direction is very effective in rising 
the collapse load, the application of buttresses of any material on the extrados – when strongly linked 
to the structure – does not more than increasing the inertia of the section. For instance, the buttresses 
on St. Peter’s dome in Rome failed to contain the thrust of the dome. Therefore, it needed to be 
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reinforced by iron rings according to the project proposed by Poleni. Reinforcing a dome with 
meridian strips of FRP would directly increase the tensile resistance of a fuse, while enforcing the 
formation of a failure mechanism associated to a higher collapse multiplier. Rings or hooping 
reinforcement indirectly contain the thrust and delay the opening of meridian cracks. 

In order to model in a simple way the application of an FRP hooping reinforcement, elastic 
perfectly plastic (EPP) CoBs have been applied to the extrados of the fuse. In this model, the interface 
between FRP and masonry is in the nodes of the elements. ‘Perfect adhesion’ is assumed, so no 
relative displacement is contemplated and FRP CoBs are directly applied, node by node. The 
mechanical parameters adopted (see Table 5) correspond to those of the FRP and refer to those 
already used in a numerical model fund in the literature [30,31]. 

Table 5. Mechanical properties of FRP according to [31] 

CFRP Properties    u.m. 
Thickness tfibre 0.2 mm 

Young’s Modulus EFRP 1.6 ∙ 105 MPa 
    

Factor c1 c1 0.015 - 
Reducing code factor γfd 1.2 - 

Masonry partial safety factor γM 1 - 
    

Fracture Energy ΓFK 0.073 N ∙ mm-1 
Design Bond Strength ffdd 164 MPa 

A conventional tensile strength (ffdd), which takes into account the possible failure due to 
debonding or delamination, is assigned by adopting the simplified procedure proposed by the Italian 
guidelines [30] and as elaborated in a specific case-study in [31]. The design bond strength ffdd is 
function of the fracture energy (ΓFK), which in case of debonding is spent in the damage of the support 
surface (i.e., of a foil with a certain thickness, depending on the actual mechanical properties of the 
masonry material, as specified in [31]). 

Figure 7 illustrates the application of CoBs on the extrados at the same position as in [11], so that 
results will be comparable. 

 

Figure 7. Nonlinear analysis process for reinforced dome. Application of FRP annular reinforcement 
on the extrados of the meridian slice at equal angular distance from the vertical axis. 

The application of FRP in a hooping reinforcement avoids the issue of the loss of exploitable 
strength in proximity of the strip margins (as highlighted in [31]), because of a virtually infinite bond 
length running within the hoop itself. 
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3. Non-Linear Static Analyses 

3.4. Unreinforced Dome 

3.4.1. NTM hypothesis: Sensitivity Analysis 

In Heyman’s demonstration [2], which however pertains to gravity loads and not to point forces, 
along the meridians of the dome, the stress is always compressive, progressively increasing going 
towards the oculus as already stated before (§1, & Figure 1). On the contrary, along the parallels, the 
stress distribution through the membrane section changes going from compression in the upper zone 
to tension in the lower part (from around 52° from the vertical axis to 90°, i.e., the base), where cracks 
start spreading and split the membrane in fuses. Annular tensile resistance of a real structure helps 
in preventing excessive deformation induced by parallel stresses and dome natural equilibrium 
configuration (catenary profile). 

On the dome subjected to a point load at the crown and increased up to failure, a sensitivity 
analysis with the data reported in Table 2 has been carried out considering null tensile strengths 
down the meridian direction, so vertical joints fail every time tensile stress reaches them. Along 
parallel direction instead, small values of tensile strength (𝑓 ,௛) are added and progressively increased 
to study the behaviour of the dome as function of them. Indeed, the tensile resistance along parallel 
directions helps the dome in bearing loads. The post-elastic behaviour is assumed perfectly brittle. A 
total number of 133 load steps under a displacement control analysis has been considered. The 
numerical model, for a 20° wide fuse, relies in 1700 elastic 8-node hexahedrons, 1128 PCs (516 
meridians and 612 parallel), and 3612 nodes. 

The results obtained are summarized in the load-displacement curves of Figure 8. 

 

 
(b) 

 
(a) (c) 

Figure 8. (a) Sensitivity analysis under NTM hypothesis on the unreinforced dome and validation by 
comparison with literature data; (b) Elastic perfectly brittle constitutional law for PCs; (c) 
Representation of the field of action of the tensions considered. 
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The higher 𝑓 ,௛, the more the load-displacement chart in Figure 8 has a jagged profile. Indeed, 
increasing the tensile resistance, the dome is made more capable of redistributing the stresses through 
its cross-section after the formation of plastic hinges. Plastic hinges occurrence is easily spotted on 
the chart wherever its profile suddenly drops. After each drop, some strength is recovered because 
of stress redistribution through the residual uncracked cross section. Going for major displacement 
(plastic hinge developing), the dome strength progressively decreases until the asymptote. The 
asymptote value roughly corresponds to the result given by a Lower Bound Limit Analysis (Durand-
Claye approach) under NTM hypothesis [3], which has been used to validate the results. The collapse 
load obtained by means of such approach is in the range 3.8 kN ൏ λ୳ ൏ 4.0 kN, depending on the fT 
value considered. 

The following Figure 9 shows the deformed shape resulting from the nonlinear analysis. As can 
be seen, because only a unilateral contact in compression has been accounted, intermediate plastic 
(annular) hinge forms roughly at 45° from the vertical axis of the dome and at the springing, in good 
accordance with the analytical results from the literature under the same hypothesis [3]. 

  
(a) (b) 

Figure 9. (a) Side view of the deformed shape at the 98th step of nonlinear analysis under NTM 
hypothesis. (b) Isometric scheme of annular plastic hinge formation on a fuse with brittle joints. 

3.1.2. Orthotropic Material: Sensitivity Analysis 

Considering masonry as an orthotropic material means considering the behaviour given by 
cohesion, friction, and interlocking of bricks. The last feature, combined with the first two is strongly 
related to masonry texture [4]. The consequences on the results will be explained soon in this section 
and are given assuming a perfect ductility of the joints. 

A total number of 86 load steps under a displacement control analysis has been considered. The 
numerical model in this case, for a 10° wide fuse, relies in 340 elastic 8-node hexahedrons, 1551 
unidimensional joints elements (20 Rigid Beams and 20 PCs for the top load, 622 Rigid Beams, 889 
CoBs, 170 of which set as Shear Trusses) and 1773 nodes. 

A sensitivity analysis has been carried out to properly tune the cutoff parameters and to reach 
the best configuration fitting the LA results. The different tensile resistances for the parallel fT,p and 
meridian directions fT,m (may the reader refer to the table in Figure 10) are multiplied by the influence 
area relative to the region considered. The Young’s Modulus of the elements is assumed equal to E = 
1.7 103 MPa, while the maximum tension is in the order of 10-2 and the maximum compression in the 
order of 108. The chart in Figure 10 reports the results of the sensitivity analysis. 
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(b) 

 
(a) (c) 
Chart Line Test fT,p fT,m 

  Upper part Lower part  

 1 0.00 0.00 0.00 
 2 0.05 0.05 0.08 
 3 0.05 0.05 0.12 
 4 0.05 0.07 0.12 
 5 0.05 0.05 0.17 
 6 0.10 0.10 0.17 
 7 0.07 0.07 0.05 
 8 0.10 0.10 0.05 

Figure 10. (a) Sensitivity Analysis with Orthotropy in tension; (b) Elastic perfectly plastic 
constitutional law for joints CoBs; (c) Representation of the field of action of the tensions considered. 

As can be noted from the previous chart and by comparing the input parameters reported in the 
table, a raise in fT,m is more effective in the improvement of the ultimate collapse load of the dome. 
Indeed, with a larger meridian tensile resistance, the energy expended in opening the meridians 
raises considerably [3,32]. 

In the following chart (Figure 11), the curve previously fitting the LA results of [11] is compared 
with the results of other studies on the same topic from the literature [6,7,9–11,33]. The closeness of 
the curves shows a general agreement among the results – yet with some differences due to the 
method exploited. The collapse load resulting from this approach is λ୳ ൌ 50.6 kN. 
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Figure 11. Validation of the present model by comparison with data found in the literature. 
Comparison between results from obtained with a NTM model and ductile-joints model. 

In the following Figure 12, the deformed shape of one fuse is reported to show the position of 
the annular plastic hinges. While the plastic hinge at the base is still well defined, the one in the 
intermediate position is smeared. As demonstrated in the sections above (§2.4.1), due to the ductility 
of the joints, the energy is not fully dissipated in discrete loci (in single joints), but in a range of angles. 
Hence, in the area highlighted in the grey circle in Figure 12, the single joint-structures do not fully 
fail but they are subjected to a certain inelastic deformation. 

 

Figure 12. Deformed shape of the 82nd step of nonlinear analysis under orthotropy hypothesis. 

However, in the first steps of the nonlinear analysis, the results in terms of deformed shape show 
to be different from those in the final configuration, as it usually occurs when the elastic part is still 
dominating. The deformation, concerning mutual sliding between blocks at the crown and at the 
springing, is illustrated in Figure 13. 
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Figure 13. Deformed shape of the 12th step (out of 86), with, highlighted in light grey, the effect of 
sliding both at the base and as a result of the application of a distributed load on the crown. 

As can be seen in the deformed shapes and as expected, the presence of the distributed load 
induces flexural and shear deformations on the top blocks of the dome. The joint construction, as 
detailed in §2.4.1, undergoes shear deformation as depicted in Figure 6. However, as already pointed 
out, this effect tends to subside further in the steps. 

3.2. Reinforced Dome 

In this section, some conclusions about the implementation of CFRP reinforcement in the model 
are reported. As from literature results, FRP annular reinforcement (see §2.5) for curved structures is 
more effective when applied at the extrados, where it can better work in tension, counteracting the 
tensile components in lower parallel planes. Figure 16a shows the position of the FRP annular 
reinforcement on a single fuse of the dome. 

The use of nonlinear CoBs for simulating the behaviour of the reinforcement has some 
precedents in the literature, for both innovative [22,34,35] and simplified approaches [36]. 
Considering the applicability to real cases and the easiness in pre-processing, elastic perfectly plastic 
CoBs (see the constitutive behaviour reported in Figure 14b), assigned with the mechanical properties 
listed in Table 5, proved to be suitable for FRP reinforcement design. 

In Figure 14, the results of such application (in terms of collapse load λ୳ ൌ 82.5 kN) are reported 
and compared with the few numerical results available in the literature [11]. No experimental data 
are available to the authors for the benchmark model considered. 
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(b) 

 

(a)  

Figure 14. (a) Validation of the model with CFRP annular reinforcement by comparison with 
numerical analyses in the literature; (b) Elastic perfectly plastic constitutional law for CFRP CoBs. 

In Figure 15, the ratio between the collapse loads of reinforced (λreinf.) and unreinforced (λunreinf.) 
dome is reported. The reinforced dome exhibited a load carrying capacity 1.6 times larger than that 
observed for the unreinforced one, because of the addition of a tensile-resistant material which delays 
the formation of meridian cracks, globally increasing their strength. In Figure 16, the deformation 
induced by the displacement-controlled analysis in presence of FRP reinforcement is shown. The FRP 
strips position is still indicated so that conclusions can be drawn on their influence on the global 
deformation. The position of intermediate plastic hinge field is highlighted in light grey and still 
indicated by the deformation of joints construction as shown in §2.4.1. 
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Figure 15. Efficiency of FRP reinforcement as designed. 

 
 

(a) (b) 
Figure 16. (a) Side view of the undeformed fuse with the position of FRP highlighted on the extrados; 
(b) Deformed shape of the 82nd step of nonlinear analysis for FRP reinforced dome. 

The following Figure 17 shows a comparison between the deformed shapes of unreinforced and 
reinforced cases. The red arrows in the image qualitatively represent the displacement prevented by 
the presence of FRP. While in correspondence of the lower reinforcement hooping the FRP tends to 
keep the dome from displacing outwards, the upper hooping increases compression and enhances 
the downward displacement. In the same image, the change in position of plastic hinge field is 
highlighted too. Indeed, it moved from the 8th – 9th – 10th joints from the vertical axis to the 10th – 11th 
joints in the FRP reinforced case, just under the hooping reinforcement – as already noted in [11]. 
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Figure 17. Effect of FRP application in displacement prevention, by comparison between 
UnReinforced and Reinforced cases (82nd step of NLA). 

Differently from arches, in which the FRP extrados reinforcement changes considerably the 
failure mechanism (triggering also shear sliding and reinforcement spalling) [22], in this case as 
modelled, the presence of hooping reinforcements does not significantly change the mode (at least as 
far as the typology of the mechanism is concerned). 

Having assumed a perfect bonding as a hypothesis, a limitation of this study, is the interface 
relationship between the reinforcement and the substrate. Even though the anchoring length is here 
virtually infinite (as previously stated in §2.5), a brittle debonding from the substrate could happen 
letting the dome again unreinforced, which would be detrimental and dangerous in the case of a real 
case scenario. Further studies can be done to look for failure modes of the reinforcement that involve 
the interface with the substrate, according to more sophisticated modelling strategies [22,34]. 

5. Conclusions 

The method proposed here for the non-linear static analysis of masonry domes proved to be 
enough accurate and robust to be used by practitioners. A detailed comparison with literature data 
proved the reliability of the model proposed. Masonry nonlinearities have been lumped in mortar 
joints by the use of elastic –brittle and –plastic in turn unidimensional finite elements. Evidently, the 
results obtained so far in terms of ultimate collapse load and plastic hinge position are strongly 
related to the initial hypothesis on joints. 

Some considerations over a possible reinforcement layout have been done to generate a simple 
and fast modelling procedure including the possibility to use or adapt the method to cultural heritage 
conservation. 
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