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Abstract: A viable radiation dominated era in the early universe is best described by the standard

(FLRW) model of cosmology. In this short review, we demonstrate reconstruction of the forms of

F(R) in the modified theory of gravity, and the metric compatible F(T) together with the symmetric

F(Q) in alternative teleparallel theories of gravity from different perspectives, primarily rendering

emphasis on a viable FLRW radiation era. Inflation has also been studied for a particular choice of

the scalar potential. The inflationary parameters are found to agree appreciably with the recently

released observational data.

Keywords: modified and alternative theories of gravity; reconstruction; inflation

1. Introduction:

Luminosity versus red-shift data curve associated with SN1a standard candles requires a

modification of FLRW universe at the late stage of cosmic evolution. On the other hand, the early

vacuum dominated era requires to incorporate a stage of very rapid growth of the universe (Inflation),

in order to alleviate the flatness, the horizon and the structure formation problems associated with the

standard model of cosmology. However, the radiation dominated era and the early matter dominated

era are best described by the standard model of cosmology.

After more than two decades of intense research, most of the scientists now believe that neither

a cosmological constant, nor dark energy is responsible for solving the cosmic puzzle - the early

decelerated expansion followed by late-time cosmic acceleration in the current matter dominated era.

The reason being, on one hand the theoretical estimation of cosmological constant is 10120 order of

magnitude higher than the value required to solve the issue, and on the other, no trace of dark energy

is observed after performing precession experiments [1]. Consequently, a host of modified theories

of gravity have been proposed in recent years as alternatives to the dark energy. Since the modified

F(R) theories, being associated with higher derivative terms, sometimes run from Ostrogradsky’s

instability [2]; alternative theories of gravity, commonly known as teleparallel theories are currently in

the limelight.

Curvature is the trait of (attributed to the) ‘general theory of relativity’ (GTR), where the

torsion-less Levi-Civita connection is used. The minimal modified version of GTR is the so called F(R)

theory of gravity. Alternatively, it is possible to ascribe gravity to torsion, by using the curvature-less

(Rα
βµν = 0) Weitzenböck connection. Since, ∇µgαβ = 0, where ∇ is the covariant derivative with

respect to the affine connection instead of the Levi-Civita connection; therefore it is often referred to as

metric (compatible) teleparallel gravity. Its extended version is the F(T) theory of gravity, where T is

the quadratic torsion scalar constructed from the torsion tensor. Yet another class of gravity theory

exists by the name symmetric teleparallel gravity. It is constructed from curvature-less (Rα
βµν = 0) and

torsion-less (Tλ
µν = 0) general affine connection, which is symmetric in lower indices. It’s generalized

version is the F(Q) gravity theory, where, Q stands for the quadratic non-metricity scalar constructed

from the non-metricity tensor (Qλµν = ∇λgµν). Clearly, in these so-called teleparallel theories of
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gravity, the affine connection is independent of the metric tensor, and so these are essentially the

metric-affine theories, where both the metric and the connection act as dynamic variables. To the

first order, both the teleparallel theories end up with GTR, apart from a total derivative term, and

are dubbed as ‘Teleparallel Equivalent of General Relativity’ (TEGR) and ‘Symmetric Teleparallel

Equivalent of General Relativity’ (STEGR) respectively. However, their extended versions deviate

considerably from GTR and its modified versions F(R) or else, particularly giving second order

differential field equations, and thus avoiding Ostrogradsky’s instability. However, F(T) gravity

theory is endured with coupling issues and local Lorentz invariance problem. This is because, some of

the genuine physical degrees of freedom lose their kinetic term at the quadratic order and consequently,

the standard perturbation theory breaks down on these backgrounds [3,4]. Since the extended version

of symmetric teleparallel F(Q) gravity theory being free from such problems [5], attracted lot of

attentions in the recent years. Nonetheless, it is to be mentioned that, as long as the cosmic puzzle is

not being resolved unambiguously, focus on different modified and alternative theories of gravity will

persist.

Whatever might be the theory, whenever an arbitrary functional form like F(R), F(T) or F(Q)

is retained in the action, it becomes mandatory to expatiate such functional forms in view of some

additional physically viable conditions. Two possibilities have largely been explored so far. One is: to

invoke the presence of dynamical (Noether) symmetry, while the other: is to follow the reconstruction

program. Both have come out with certain specific functional forms in all the cases. Additionally,

some forms are also chosen by hand (on some physical ground). Most of these claim to associate

early inflation in the vacuum era together with late-time accelerated expansion in the current matter

dominated era. The important point to be noticed is that the cosmic evolution in the radiation

dominated era is not studied, as if the universe jumped from early inflationary stage to the late stage

of matter dominated era. On the contrary, a viable radiation dominated era, which can accomplish

observed structure formation and the CMBR is best described by the standard (FLRW) model of

cosmology. This manuscript is devoted to reconstruct all the three different forms for the gravity

theories with curvature [F(R)], torsion [F(T)], as well as non-metricity [F(Q)] of different extended

theories of gravity in view of a viable radiation dominated era.

In the following section 2, we briefly review the above-mentioned three pilers of gravity theory. In

section 3, we follow the reconstruction program as mentioned, to explore the forms of F(R), and F(T)

gravity theories, primarily in view of a viable Friedmann-like radiation dominated era. Form of F(T)

is also known from Noether symmetry consideration, which is different from the form so obtained

here. We therefore have studied the energy conditions and inflation taking into account different forms

of F(T), so obtained. Since, F(Q) gravity in coincident gauge is no different from F(T) in the present

context, so all the results obtained for F(T) theory holds. Finally we conclude in section 4.

2. Three pilers of Gravitation:

The building block of gravitation is the general affine connection Γ
α

µν, which is constructed from

the Levi-Civita connection ({µ
α

ν}), the contorsion tensor (Kα
µν) and the disformation tensor (Lα

µν) as,

Γ
α

µν = {µ
α

ν}+ Kα
µν + Lα

µν, (1)

where,

{µ
α

ν} =
1

2
gαλ

(

gµλ,ν + gνλ,µ − gµν,λ

)

,

Kα
µν =

1

2
gαλ

(

Tλµν − Tµλν − Tνλµ

)

,

Lα
µν =

1

2
gαλ

(

Qλµν − Qµλν − Qνλµ

)

.

(2)
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While, the Levi-Civita connection is formed from the derivatives of the metric, the contorsion tensor,

being the difference between the connections with and without torsion, is again equivalent to

the difference between the Weitzenböck (Γλ
aµ = eaλ∂µeaν, where ea

µ are the components of the

orthonormal basis vectors of the tetrad field, commonly called the vielbein, or vierbein field, to be

more specific. Here Latin indices stands for Lorentz indices, while Greek indices stand for space time.

Since both run from 0 − 3, we shall omit using Latin indices in the following.)1 and the Levi-Civita

connections, and is formed from the torsion tensor as,

Tα
µν = ∂µeα

ν − ∂νeα
µ = Γ

α
[µ,ν] = Γ

α
µν − Γ

α
νµ, (3)

and finally, the disformation tensor is constructed from the non-metricity tensor Qαµν = ∇αgµν 6= 0 as,

Qαµν = ∇αgµν = gµν,α − Γ
λ

µαgλν − Γ
λ

ναgµλ. (4)

Einstein’s GTR is built from the non-vanishing Riemann tensor formed from the Levi-Civita connection,

Rα
βµν = ∂µ{ν

α
β} − ∂ν{µ

α
β}+ {µ

α
λ}{ν

λ
β} − {ν

α
λ}{µ

λ
β}. (5)

The simple reason being, the Levi-Civita connections are the unique affine torsion-free connections

on the tangent bundle of a manifold that preserves Riemannian metric gµν
;ν = 0. So once a metric is

specified, the unique non-vanishing components of Riemann tensor are found from the Levi-Civita

connections or Christoffel symbols to be specific2 (5). The above relation (5) is contracted to find the

Ricci tensor (Rµν) and under further contraction Ricci scalar (R) results in. While, the Einstein-Hilbert

action for GTR is constructed from the Ricci scalar, the so called modified theory of gravity is

constructed from F(R) as,

A =
∫

[

F(R)
√

−g d4x
]

+ Sm, (6)

Sm being the matter action. The field equations corresponding to the action (6) may be expressed as,

F′(R)Rµν −
1

2
F(R)gµν −∇µ∇νF′(R) + gµν�F′(R) = κTµν. (7)

In the above, �F′(R) = F;µ
;µ = 1√−g

∂µ(
√−g gµν∂νF′), where the semicolon stands for the covariant

derivative, and κ = 8πG. It is noteworthy that F(R) theory of gravity, under weak field approximation

leads to the ‘GTR’ [6,7].

However, once flatness is assumed the curvature vanishes and the orientation of vectors remain

unaltered under parallel transport along a curve, and the geometry is teleparallel. The condition for

torsion based teleparallelism is R̄α
βµν = 0 = R̃α

βµν, where over-bar and over-tilde stand for the Riemann

curvature formed from the Weitzenböck connections and connections associated with the non-metricity

tensor respectively. The role of R is played by the torsion scalar T, and generalized gravity theory with

torsion [8], the action may be expressed as,

A =
∫

|e|F(T)d4x + Sm, (8)

where, |e| = det ei
µ =

√−g, ei
µ being the components of the vierbien field ei(xµ) = e

µ
i ∂µ. The metric

tensor is obtained from the dual vierbein as gµν(x) = ηije
i
µ(x)e

j
ν(x). The role of the Ricci scalar (R) in

1 It may be mentioned that the curvature tensor constructed out of Weitzenböck connection vanishes identically, while a
theory of gravity constructed in view of tetrad fields admits both the Weitzenböck and the Riemannian geometry and
therefore is more general.

2 Under the choice of local coordinates and coordinate basis xµ and ∂µ respectively, the affine Levi-Civita connection (∇) is
called the Christoffel symbol {µ

α
ν} so that ∇µ∂ν = {µ

α
ν}.
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the Einstein-Hilbert action is played in metric teleparallel theory by the torsion scalar (T), which is

found from the torsion tensor

Tρ
µν ≡ eρ

i[∂µei
ν − ∂νei

µ], (9)

as,

T = Sρ
µνTρ

µν, where, Sρ
µν =

1

2

(

Kρ
µν + ∂

µ
ρ Tα

αν − ∂ν
ρTα

αµ
)

, (10)

is called the super-potential, and the affine connection takes the Weitzenböck form,

Γ
α

µν = eα
λ∂νeλ

µ. (11)

The above action (8) leads to the following field equations for F(T) gravity,

e−1∂µ(eS
µν
i )F,T − eλ

i T
ρ
µλS

νµ
ρ F,T + S

µν
i ∂µ(F(T))F,TT +

1

4
eν

i F(T) =
1

4
e

ρ
i Tν

ρ , (12)

where Sµν
i = eρ

iS
µν

ρ and F,T denotes differentiation with respect to T.

In symmetric teleparallel gravity on the contrary, the role of Ricci scalar is played by the

non-metricity scalar (Q), and again the generalized action is given by,

A =
∫

F(Q)
√

−gd4x + Sm, (13)

where,

Qαµν =
∂gµν

∂xα
− Γ

β
αµgβν − Γ

β
ανgµα;

Qα = gµνQαµν = Qαν
ν; Q̂α = gµνQµαν = Qνα

ν;

Q = −1

4
QαµνQαµν +

1

2
QαµνQµνα +

1

4
QµQµ − 1

2
QµQ̂µ.

(14)

Varying the above action (13) with respect to the metric tensor gµν and the connection the following

field equations are obtained,

2√−g
∇λ(

√

−gFQPλ
µν) +

1

2
Fgµν + FQ(PνρσQµ

ρσ − 2PρσµQρσ
ν) = −κTµν, (15)

∇µ∇ν

(√

−gF,QPµν
λ

)

= 0, (16)

where,

Pα
µν =

1

2
Q α

(µ ν) −
1

4
Qα

µν +
1

4
(Qα − Q̂α)gµν −

1

4
δλ

(µQν) (17)

is called the non-metricity conjugate tensor. In the above, we have used first bracket in the suffix to

denote symmetrization of indices. The covariant formulation [9] of the field equation (15) is

F,QGµν +
1

2
gµν(QF,Q − F(Q)) + 2F,QQ∇λQPλ

µν = −κTµν (18)

where, Gµν = Rµν − 1
2 gµνR, corresponds to the Levi-Civita connection, and F,Q stands for derivative

of F(Q) with respect to Q.

Having briefly discussed the three different ways attributed to the gravity, sometimes dubbed as

the ‘geometrical trinity of gravity’, we now proceed in the following section to find the specific forms

of F(R), F(T) and F(Q).
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3. Reconstruction from the radiation era:

As mentioned, standard FLRW model of cosmology fits best in the radiation and early matter

dominated era. In particular, a Friedmann-like radiation dominated era expedites the standard

Big-Bang-Nucleosynthesis (BBN). Therefore, exploring suitable forms of different theories of gravity,

in view of early Friedmann-like radiation era, is supposed to be the best option. Therefore, in this

article we restrict ourself to the cosmological principle, considering the isotropic and homogeneous

Robertson-Walker (RW) space-time,

ds2 = −dt2 + a2(t)

[

dr2

1 − kr2
+ r2(dθ2 + r2sin2θdφ2)

]

, (19)

and explore the relevant forms of modified gravity theories comprised with the curvature [F(R)],

torsion [F(T)], as well as non-metricity [F(Q)].

3.1. F(R) gravity:

The Ricci scalar corresponding to the RW metric (19) is,

R = 6

(

ä

a
+

ȧ2

a2
+

k

a2

)

. (20)

The point Lagrangian corresponding to the action (6) is given by [10]

LR = −6aȧ2F′ − 6a2 ȧṘF′′ + a3(F − RF′) + 6kaF′ + Lm, (21)

Lm being the matter Lagrangian, comprised of a barotropic fluid associated with the thermodynamic

pressure (p) and energy density (ρ), along with the cold darl matter (CDM). The field equations are,

(

2
ä

a
+

ȧ2

a2
+

k

a2

)

F′ +
(

R̈ + 2
ȧ

a
Ṙ

)

F′′ + Ṙ2F′′′ +
1

2
(F − RF′) = −p,

(

ȧ2

a2
+

k

a2

)

F′ +
ȧ

a
ṘF′′ +

1

6
(F − RF′) =

ρ

3
,

(22)

Adding the above pair of equations, one obtains,

2

(

ä

a
+

ȧ2

a2
+

k

a2

)

F′ +
(

3
ȧ

a
Ṙ + R̈

)

F′′ ++Ṙ2F′′′ +
2

3
(F − RF′) =

ρ

3
− p. (23)

Clearly, the radiation era (p = 1
3 ρ) does not evolve like standard (FLRW) model (a ∝

√
t), for the

spatially flat (k = 0) universe, and as such a viable form of F(R) remains obscure. For k 6= 0, on

the other hand, the differential equation cannot be solved, either in the radiation or in the vacuum

dominated (ρ = 0 = p) era, other than the fact that, for k = 0 vacuum era admits a de-Sitter solution.

On the contrary, it may be mentioned that different forms of F(R) emerge in different eras, in view of

Noether symmetry [11].

Nonetheless, interesting result emerge from a generalized four-dimensional string effective action

associated with higher order curvature invariant terms, being expressed in the following form [12],

A =
∫

[

f (φ)R + BF(R)− ω(φ)

φ
φ,µφ

,µ − V(φ)− κLm

]

√

−gd4x, (24)

where B is the coupling constant, f (φ) is the coupling parameter, ω(φ) is the variable Brans-Dicke

parameter and Lm is the matter Lagrangian density. It had been revealed [12] that the above action

admits a conserved current Jµ = (3 f ′2 + 2 f ω
φ )

1
2 under the condition,
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B
[

RF,R + 3(F,R)
;α
;α − 2 f

]

=
κ

2
T

µ
µ , provided V = λ f 2, (25)

where λ is a constant. To perceive the very important role of such a conserved current, a particular

case was also studied [12]. For example, considering F(R) = R2, the condition for the existence of

conserved current (25) reads as,

R;µ
;µ = �R =

(

R̈ + 3
ȧ

a
R

)

=
κ

12B
T

µ
µ . (26)

Now if the scalar field (φ) is completely used up in the process of driving inflation and reheating

under particle creation, then since in the radiation-dominated era Tµ
µ = T = ρ − 3p = 0, therefore in

view of (26) �R =
(

R̈ + 3 ȧ
a R
)

= 0. Further, since in the very early vacuum dominated era sufficient

inflation makes the universe spatially flat, i.e. k = 0, so the above equation (26) admits a Friedmann

like solution, a = a0

√
t in the radiation dominated era as demonstrated in [12]. This is a unique result,

since even in the presence of higher order curvature invariant term Friedmann-like radiation era is

admissible.

Finally, we consider pure curvature induced gravity theory, a yet another generalized form of

F(R) action, considered in [13] being expressed as,

A =
∫

[

αR + BR
3
2 + γR2 −Lm

]

√

−gd4x. (27)

The above action was found more suitable to explain cosmic evolution right from the very early stage

till date, since it satisfies all the strong conditions necessary for a viable F(R) theory of gravity. It

may be mentioned that R
3
2 term appeared as a consequence of Noether symmetry in R-W metric both

in vacuum as well as in the matter dominated eras [14–18]. At the initial stage, R2 term dominates

and a de-Sitter solution is realizable. This leads to the inflationary epoch and reheating following

the mechanism of particle production via scalaron decay, exploiting gravity only without invoking

phase transition [19,20]. After the reheating is over, the universe evolves as Friedmann-like radiation

(a ∝
√

t) and early matter (a ∝ t
2
3 ) dominated eras, and finally accelerated expansion is realized due

to the presence of the combination of linear term R and non-linear term R
3
2 [16]. Further, following

numerical analysis [13] taking deceleration parameter q as a function of the red-shift parameter z, three

distinct cases were analyzed to establish the fact that, within a particular range of β and γ, q versus z

depicts that the universe was in pure radiation era at z > 3200. Thereafter, deceleration parameter falls

off from the matter-radiation equality epoch to the decoupling epoch. It falls even sharply afterwards

and a Friedmann type (q ≈ 0.5) matter dominated era is reached at around z ≈ 200. The deceleration

parameter then starts increasing slowly and it is peaked to (q = 1), explaining re-ionization of the

inter galactic medium (IGM). Thereafter, late time accelerated expansion is initiated and the phantom

divide line is crossed, to make a second transition out of it at z ≈ 0.5.

In a nutshell, higher order gravity theory is a viable option to explain cosmological evolution, from

the early vacuum dominated era till date via a Friedmann-like radiation and early matter dominated

eras. Additionally, re-ionization of the IGM may also be explained in the process. Inflation in the

Starobinski model [19,20] with R2 term is widely explored in the literature, and therefore we leave it.

3.2. Torsion-based Metric F(T) Teleparallel gravity:

Although, F(R) seems to produce a viable theory of gravity, the fact that it sometimes suffer

from Ostrogradsky’s instability led to consider alternative telleparallel theories of gravity, as already

discussed. Here, we shall consider generalized metric telleparallel gravity theory.

In the recent years, a generalized version of the ‘teleparallel gravity’ with torsion, namely the

F(T) theory of gravity (where, T stands for the torsion scalar), also dubbed as generalized ‘gravity

with torsion’ has been proposed as an alternative to both the dark energy theories and the modified

theories of gravity. Primarily F(T) theory of gravity was proposed to drive inflation. Later, it was
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applied to drive the current accelerated expansion of the present universe without considering dark

energy [21,22]. It is worth mentioning that ‘teleparallel equivalent of general relativity’ (TEGR) is

established for F(T) ∝ T, since dynamically it leads to GTR. Further as demonstrated in [13] the trace

of electro-magnetic radiation field tensor (T = ρ − 3p) being zero, the contracted GTR equation R ∝ T,

enforces Ricci scalar to vanish (R = 0) and the Friedmann-like decelerated expansion [a(t) ∝
√

t]

results in automatically, in the radiation dominated era. This is true also in the case of modified theory

of gravity, as demonstrated above. However, in the case of torsion, although F(T) ∝ T leads to GTR,

the trace of the energy-momentum tensor T = 0, does not lead to the static solution T = 0. Therefore,

even though all the results of GTR hold, the pathology of discontinuous evolution of the Ricci scalar

(large initially, vanishing in the middle and small at present) is averted. However unlike GTR and F(R)

theories, gravity with torsion is not generally covariant by default. Nonetheless, it has been argued

that it may be made so by introducing a new variable, viz, a spin-connection [8,23]. The reason being,

the spin-connection enters the teleparallel action only as a surface term, and does not contribute to the

field equations.

Now, the components of vierbein field for the RW metric (19) are expressed in terms of the

cosmological scale factor a(t) as,

ei
µ = diag(1, a(t), a(t), a(t)), (28)

and the torsion scalar reads as [24],

T = −6H2 +
6k

a2
, (29)

where, H = ȧ
a is the Hubble parameter. Thus the field equations (12) for RW metric are,

12H2F,T + F(T) = ρ, (30)

4

(

k

a2
+ Ḣ

)

[

12H2F,TT + F,T

]

− F(T)− 4F,T[2Ḣ + 3H2] = p, (31)

where ρ and p are the energy density and thermodynamic pressure of a barotropic fluid (inclusive of

dark matter component) respectively and F,T stands for derivative of F(T) with respect to T. Bianchi

identity does not hold naturally in teleparallel gravity theories. However, in the RW metric under

consideration, it holds even for extended models such as F(T) [24]. For example, taking the time

derivative of the first equation (30), and also adding the the two (30) and (52), one gets,

ρ̇ = 12H2ṪF,TT + 24HḢF,T + ṪF,T = −144H3ḢF,TT − 144kH3F,TT

a2
+ 12HḢF,T − 12kHF,T

a2
, and

(ρ + p) = 48ḢH2F,TT − 4ḢF,T +
48k

a2
H2F,TT +

4k

a2
F,T.

(32)

Combining the above two one finds

ρ̇ + 3H(ρ + p) = 0, (33)

which is the Bianchi identity. Thus, one may also write

ρ = ρ0a−3(1+ω), (34)

for the barotropic equation of state p = ωρ, as usual.

Let us now proceed to find the form of F(T) for flat space (k = 0), already obtained earlier [25], in

view of cosmological evolution. First, combining equations (30) and (52), for flat space k = 0, one finds

for the vacuum era (p = 0 = ρ),
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Ḣ
[

12H2F,TT − F,T

]

= 0. (35)

Clearly, two possibilities emerge from the equation (35): i) F = F0

√
T, where F0 is a constant of

integration. In view of this form of F(T) either of the field equations (30) or (52) yields simply the

definition, and hence, no dynamics results. Indeed it is expected, since the above form of F(T), only

results in a divergent term in the action. ii) H = λ, (where λ is a constant) leading to the de-Sitter

solution, a = a0 exp(λt), while F(T) = F0 exp(− t
12Λ2 ) emerges as an exponentially decaying function,

which is not much promising.

Since vacuum dominated era does not yield a reasonably viable form of F(T), so let us now

advance further to study the radiation-dominated era. Starting from the action (8), if a solution in

the form a = a0tn is sought in the radiation dominated era (p = 1
3 ρ), for which the Bianchi identity

yields ρa4 = ρr0, where a0, n and ρr0 are constants, then the following form of F(T) (suffix r stands for

radiation dominated era) is found [11],

F(T)r = 2 f1

√
−6T +

ρr0

6a4
0(4n − 1)n4n(−6)2n−1

T2n, (36)

where f1 is a constant. Note that the first term of the above equation is essentially a divergent term in

the RW metric under consideration. Thus, only the second term is left and hence,

F(T)r =
ρr0

6a4
0(4n − 1)n4n(−6)2n−1

T2n. (37)

It is quite apparent that under the choice n = 1
2 , the radiation era evolves exactly like the standard

(FLRW) model, however the action too reduces to that of GTR since [F(T) ∝ T] (apart from a total

derivative term), which is TEGR, as already mentioned. Of-course, n = 3
4 also leads to decelerated

expansion, but such a slow deceleration tells upon the formation of CMBR at latter times than observed.

Let us next, focus on the matter dominated era (p = 0), for which Bianchi identity yields ρa3 = ρm0,

(where ρm0 is a constant, and suffix m stands for the matter dominated era). Proceeding in the similar

manner as before, one finds,

F(T)m =
ρm0

3a3
0(3n − 1)n3n(−6)

3n
2 −1

T
3n
2 , (38)

where the suffix m stands for the matter dominated era. Thus, for n = 2
3 , the matter dominated

era evolves (a ∝ t
2
3 ) in the same manner as the standard (FLRW) model of cosmology, and GTR is

recovered through TEGR. Whatsoever, it was also discussed in [11] that when torsion is attributed to

gravity, usually a form such as F(T) = f0T + f1T2 + · · · is chosen to combat early deceleration in the

Friedmann form [a(t) ∝ t
2
3 ] followed by late-time cosmic acceleration in the matter (pressure-less dust)

dominated era. In view of (36) and (38), it is clear that F(T) ∝ T gives exactly Friedmann-like radiation

dominated era [a(t) ∝ t
1
2 ], and early pressure-less dust dominated era [a(t) ∝ t

2
3 ] respectively. Thus,

following generalized form of F(T),

F(T) = f0T + f1(−T)
3
2 + f2(T

2) + · · · , (39)

might be useful to study cosmic evolution. On the contrary, Noether symmetry analysis [11] demands

that instead of T2, one should associate T3 and higher odd integral powers in the action. That is, a viable

form that might explain the cosmic evolutionary history may be in the form, F(T) = f0T + f1T3 + · · · .

It may be mentioned that the current analysis also reveals the fact that pure F(T) gravity in vacuum

(ρ = p = 0) does not give rise to any dynamics. Therefore to drive inflation, and also to avert

the pathological behaviour of pure F(T) gravity in the very early vacuum-dominated era, either
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unimodular F(T) gravity has to be considered [26], or a scalar field should be associated with F(T)

gravity theory [25] and the action may be proposed as,

A =
∫

[

f0T + f1T3 + · · · − 1

2
φ,µφ,µ − V(φ)

]

√

−gd4x, (40)

where, the scalar field drives inflation at the very early stage and decayed to an insignificant value in the

process of particle creation. Therefore, once the inflation is over, the universe enters the radiation and

thereafter the matter dominated eras, whence T dominates to envisage the standard model. Now since

T = −6H2
< 0 by definition, therefore as the Hubble parameter decreases further, the odd-integral

higher degree terms start dominating, and become responsible for late-time cosmic acceleration. The

great conceptual advantage over modified theories of gravity is that, unlike the Ricci scalar, T 6= 0, at

any stage of evolution in the middle.

3.2.1. Energy conditions:

Before we proceed further, it is necessary to fix the signature of the coefficients

( f0, f1and f2) associated with the two different forms of F(T), so obtained above, viz., i)

F(T) = f0T + f1(−T)
3
2 + f2(T

2) + · · · and ii) F(T) = f0T + f1T3 + f2T5 + · · · , in view of the

energy condition. For perfect fluid Tµν = (ρ + p)uµuν + pgµν, the energy conditions are:

1. Null energy condition: ρ + p ≥ 0.

2. Weak energy condition: ρ + p ≥ 0 and ρ ≥ 0.

3. Dominant energy condition:ρ ≥ |p|.
4. Strong energy condition:ρ + p ≥ 0 and ρ + 3p ≥ 0.

Note that, there is no restriction on the thermodynamic pressure, i.e., p < 0 is allowed, nonetheless, if

both ρ > 0, and p > 0, all energy conditions are satisfied simultaneously.

Case1: Fixing coefficients of F(T) = f0T + f1(−T)
3
2 + f2(T

2) + · · · .

To expatiate the signature associated with the coefficients of F(T), let us analyse the form of for each

individual term separately.

1. For, F(T) = f0T, the field equations (30) and (52) read as,

6 f0H2 = ρ, and − 6 f0H2 − 4 f0Ḣ = p, (41)

respectively. Therefore, f0 has to be positive so that ρ > 0. Consequently, ρ + p = −4 f0Ḣ > 0 is also

satisfied, because Ḣ < 0, in the expanding model.

2. Again for, F(T) = f1(−T)
3
2 , the field equation (30) are,

24 f1

√
6H3 = ρ, and − 9

2
f1

√
6ḢH − 24 f1

√
6H3 = p, (42)

so to keep ρ positive, f1 has to be positive and ρ + p = − 9
2 f1

√
6ḢH > 0 is also satisfied since, Ḣ < 0.

3. Finally for, F(T) = f2T2, the field equations (30) and (52) may be cast as,

− 108 f2H4 = ρ, and 144 f2ḢH2 + 108 f2H4 = p, (43)

respectively. Therefore, ρ > 0, is ensured provided f2 < 0 and finally to satisfy weak energy condition,

ρ + p = 144 f2ḢH2
> 0, also ensures f2 < 0, since Ḣ < 0, in the expanding model.

Thus all the energy conditions are satisfied provided F(T) has the form

F(T) = f0T + f1(−T)
3
2 − f2(T

2), (44)

in which all the coefficients are positive, i.e., f0 > 0, f1 > 0, and f2 > 0, and we terminate after the

third term
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Case2: Fixing coefficients of F(T) = f0T + f1(T
3) + f2(T

5) + · · · .

Likewise, let us fix the signature of the coefficients ( f0, f1 and f2) appearing in the second form of F(T),

considering each term separately.

1. For, F(T) = f0T, the field equations (30) and (52) are expressed as,

6 f0H2 = ρ, and − 6 f0H2 − 4 f0Ḣ = p, (45)

respectively. Therefore, to ensure ρ > 0, f0 must be positive and thus ρ + p = −4 f0Ḣ > 0 is also

satisfied as Ḣ < 0 in an expanding model.

2. Again for, F(T) = f1(T)
3, the field equation (30)and (52) are,

1512 f1H6 = ρ, and − 2160 f1ḢH4 − 1512 f1H6 = p. (46)

Therefore, ρ > 0 is ensured provided f1 > 0 and also ρ + p = −2160 f1ḢH4
> 0 is ensures if f1 > 0 as

Ḣ < 0, and as a result the weak energy condition is also satisfied.

3. Finally for, F(T) = f2T5, the field equation (30) take the form,

69984 f2H10 = ρ, and 181440 f2ḢH8 − 69984 f2H10 = p. (47)

Hence, ρ > 0 together with ρ + p = 181440 f2ḢH8
> 0, provided f2 > 0 as Ḣ < 0, and so the weak

energy condition is also satisfied.

Thus, all the energy condition are satisfied, provided the form of F(T) is

F(T) = f0T + f1(T)
3 + f2(T

5), (48)

where, all the coefficients f0, f1, f2 are positive, considering no additional terms.

3.2.2. Slow roll Inflation:

We have seen that both the forms F(T) of generalized metric teleparallel gravity theory presented

in (44) and (48) admit FLRW type radiation and early matter dominated eras, and can trigger

accelerated expansion in the late stage of cosmological evolution. Further, both the forms are validated

by energy conditions. To explore their behaviour in the very early universe, let us consider slow roll

inflation for both the models find the inflationary parameters and compare with the currently observed

ones.

Cosmological inflation, that occurred sometimes between 10−42s and 10−32±6s, not only can solve

the horizon, flatness and monopole problems but also generates the seeds of perturbation required to

trigger the structure formation at a latter epoch. Although, it is a quantum theory of perturbation,

where gravity is treated as classical, while all other fields remain quantized, classical field equations

are well suited to study inflation. The recently released data sets [27,28] imposed tighter constraint

on the inflationary parameters ns (0.9631 ≤ ns ≤ 0.9705), as well as on the tensor to scalar ratio

(r < 0.055). More recently, combination of Planck PR4 data with ground-based experiments such as,

BICEP/Keck 2018 (BK18), BAO and CMB lensing data, tightens the tensor to scalar to scalar ratio even

further to r < 0.032 [29]. Nonetheless in recent years r has been constrained staring from r < 0.14 to

the above mentioned value, and therefore we presume that r might be restricted to even less value in

more precise future experiments, such as polarized CMB space missions (including LiteBIRD) [30]. To

study inflation, we incorporate a scalar field φ along with a potential V(φ) in the action, which drives

the inflation, as already mentioned in (40). As an example, let us choose a special form of potential

V = V0 − V1
φ , such that when φ becomes large enough, then V ≈ V0, representing a flat potential.

Form-1: F(T) = f0T + f1(−T)
3
2 − f2(T

2) + · · · ,
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As the energy condition ensures all the coefficients are positive, so in the vacuum era, the field equation

(30), and the φ variation equation are expressed as,

6 f0H2 + 24
√

6 f1H3 + 108 f2H4 = V(φ) +
1

2
φ̇2, φ̈ + 3H|φ̇|+ V′ = 0. (49)

Let us now consider the standard slow-roll conditions φ̇2 ≪ V(φ) and |φ̈| ≪ 3H|φ̇|, on the pair of

equations (49), which therefore finally reduce to,

108 f2H4 + 24
√

6 f1H3 + 6 f0H2 − V(φ) = 0, 3Hφ̇ + V′ = 0, (50)

Clearly, the first quartic equation (50) has four roots, each of which are exorbitantly large and

complicated including cubic roots. Hence, these three terms together in F(T) cannot be handled.

Therefore in the following, we consider the combination of i) the first term (T) and the third term (T2)

ii) the first two terms i.e., T and (−T)
3
2 .

Case-1: F(T) = f0T − f2T2:

Earlier, slow roll inflation considering the form F(T) = f0T + f2T2, where both f0 > 0 and f2 > 0

has been studied extensively and wonderful agreement with the observed data was found [25].

Nonetheless, the energy condition suggests that T2 term must appear with a negative sign. Hence it is

required to look over if the inflationary parameters are still at par with the observational data. The

field equations are now,

6 f0H2 + 108 f2H4 =
1

2
φ̇2 + V(φ), φ̈ + 3H|φ̇|+ V′(φ) = 0, (51)

upon which we apply the standard slow-roll conditions φ̇2 ≪ V(φ) and |φ̈| ≪ 3H|φ̇| to finally obtain,

γH4 + 6 f0H2 − V(φ) = 0, 3Hφ̇ + V′(φ) = 0, (52)

where γ = 108 f2. Now for the above choice of the potential V = V0 − V1
φ , the slow roll parameters are

expressed as,

ǫ =
γ2V1

2

12φ4

(
√

9 f 2
0 + γV1

(

V0
V1

− 1
φ

)

) [

−3 f0 +

√

9 f 2
0 + γV1

(

V0
V1

− 1
φ

)

]2
; η = − 2M2

P

φ2(V0
V1

φ − 1)
,

N =
∫ φi

φ f

3φ2

[

−3 f0 +

√

9 f 2
0 + γV1

(

V0
V1

− 1
φ

)

]

γV1
dφ,

(53)

where N is the number of e-folds. In yet another paper (under preparation) we have found excellent

agreement of the inflationary parameters with the observational data. While N = 50 is sufficient to

solve the horizon and flatness problems, the oscillatory behaviour of the scalar field has also been

explored. As an example, we present a set of data in the following Table-1.

Table 1. Data set for the inflationary parameters for F(T) = f0T − f2T2.

φi MP
V0
V1

M−1
P γV1 M5

P f0 M2
P φ f MP ns r N

3.0 6.5 0.1 0.5 0.69599 0.96425 0.03128 50

It is also important to mention that one may fix the value of γ, which is arbitrary, to set the energy

scale of inflation H∗ at sub-Planckian scale.
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Case-2: F(T) = f0T + f1(−T)
3
2 :

This case has never been studied earlier. So, for the above form of F(T), we apply the standard slow-roll

conditions φ̇2 ≪ V(φ) and |φ̈| ≪ 3H|φ̇| and as such the field equations reduce to,

6 f0H2 + 24
√

6 f1H3 − V(φ) = 0, 3Hφ̇ + V′ = 0. (54)

Now, the first cubic equation of (54) can be solved for H as,

H =
1

γ









−2 f0 +
6.35 f 2

0 +
(

V(φ)γ2 − 16 f 3
0 +

√

V(φ)2γ4 − 32V(φ)γ2 f 3
0

)
2
3

1.26
(

Vγ2 − 16 f 3
0 +

√

V(φ)2γ4 − 32V(φ)γ2 f 3
0

)
1
3









, (55)

where γ = 24
√

6 f1. Now combining equations (54), one can identify the ‘potential slow roll parameter’

ǫ with the ‘Hubble slow roll parameter’ (ǫ1) and also can express η and the number of e-folds

respectively as,

ǫ ≡ Ḣ

H2
=

V′(φ)2

3H4[12 f0 + 3γH]
, η = 2 f0

[

V′′(φ)
V(φ)

]

N(φ) ≃
∫ t f

ti

Hdt =
∫ φ f

φi

H

φ̇
dφ =

∫ φi

φ f

3






−2 f0 +

6.35 f 2
0 +

(

V(φ)γ2−16 f 3
0 +

√
V(φ)2γ4−32V(φ)γ2 f 3

0

)
2
3

1.26
(

Vγ2−16 f 3
0 +

√
V(φ)2γ4−32V(φ)γ2 f 3

0

)
1
3







2

[γ2V′]
dφ.

(56)

Now for this potential V = V0 − V1
φ under consideration, the expression for ǫ takes a extortionate form

such as,

ǫ =

3.18V2
1 γ4

[

V1γ2(
V0
V1

− 1
φ )− 16 f 3

0 +

√

V2
1

( V0
V1

− 1
φ

)2γ4 − 32V1(
V0
V1

− 1
φ )γ2 f 3

0

]

5
3

9φ4

[

− 2.52 f0
[

V1γ2(
V0
V1

− 1
φ )− 16 f 3

0 +

√

V2
1

( V0
V1

− 1
φ

)2γ4 − 32V1(
V0
V1

− 1
φ )γ2 f 3

0

]

1
3 + 6.35 f 2

0 +
[

V1γ2(
V0
V1

− 1
φ )− 16 f 3

0 +

√

V2
1

( V0
V1

− 1
φ

)2γ4 − 32V1(
V0
V1

− 1
φ )γ2 f 3

0

]

2
3

]4

× 1
[

2.52 f0
[

V1γ2(
V0
V1

− 1
φ )− 16 f 3

0 +

√

V2
1

( V0
V1

− 1
φ

)2γ4 − 32V1(
V0
V1

− 1
φ )γ2 f 3

0

]

1
3 + 6.35 f 2

0 +
[

V1γ2(
V0
V1

− 1
φ )− 16 f 3

0 +

√

V2
1

( V0
V1

− 1
φ

)2γ4 − 32V1(
V0
V1

− 1
φ )γ2 f 3

0

]

2
3

] ,

(57)

while, η and N may be expressed respectively as,

η = − 4 f0

φ2(V0
V1

φ − 1)
; N(φ) ≃

∫ t f

ti

Hdt =
∫ φ f

φi

H

φ̇
dφ

=
∫ φi

φ f

[

3φ2

1.588V1γ2

(

√

V2
1 γ4

(

V0
V1

− 1
φ

)2
− 32V1γ2 f 3

0

(

V0
V1

− 1
φ

)

+ V1γ2
(

V0
V1

− 1
φ

)

− 16 f 3

)2/3
×

{

− 2.52 f0

[

√

√

√

√V2
1 γ4

(

V0

V1
− 1

φ

)2

− 32V1γ2 f 3
0

(

V0

V1
− 1

φ

)

+ V1γ2

(

V0

V1
− 1

φ

)

− 16 f 3
0

]

1
3

+

(

√

V2
1 γ4

(

V0

V1
− 1

φ

)2

− 32V1γ2 f 3
0

(

V0

V1
− 1

φ

)

+ V1γ2

(

V0

V1
− 1

φ

)

− 16 f 3
0

)2/3

+ 6.35 f 2
0

}2]

dφ.

(58)

Despite such huge structures of the parameters, it is still possible to handle these expressions and we

present a table of data-set for the expressions (57) and (58) in Table-2. In this table, we have varied φi

within the range 2.80 MP ≤ φi ≤ 3.40 MP, so that r and ns lie more-or-less within the experimental

limit. However, restrictions on ns and r, restricts the number of e-folds within the range 24 ≤ N ≤ 44,

which still might solve the horizon and flatness problems.
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Table 2. Data set for the inflationary parameters taking into account V0
V1

= 6 M−1
P , V1γ2 = 3.4 M7

P,

f0 = 0.5 M2
P and varying φ within the range 2.8 MP < φi < 3.4 MP, so that φ f ≈ 0.460794 MP at the

end of inflation.

φi in MP ns r N

2.80 0.9656 0.00566 24
2.85 0.9674 0.00520 26
2.90 0.9692 0.00490 27
2.95 0.9707 0.00456 28
3.00 0.9723 0.00426 30
3.10 0.9750 0.00372 33
3.20 0.9773 0.00327 37
3.30 0.9794 0.00288 40
3.40 0.9812 0.00255 44

Let us now compute the energy scale of inflation in view of the relation (55), considering the data:

(N = 40, for which φi = 3.3 MP, f0 = 0.5 M2
p, V0

V1
= 6.0 M−1

P , V1γ2 = 3.4 M7
P), as depicted in Table-2.

Correspondingly we find,

H∗ =
8.114

γ
. (59)

Now, the energy scale of inflation in a single scalar field model in GTR [31] is given by the following

expression,

H∗ = 8 × 1013

√

r

0.2
GeV = 0.96 × 1013GeV ≈ 3.918 × 10−6MP, (60)

whose numerical value is computed taking into account the value of the tensor-to-scalar ratio r =

0.00288 from the data set of Table-2. Thus, in order to match the scale of inflation (59) with the single

field scale of inflation (60) we are required to constrain γ, such as γ ≈ 2.074 × 106MP. Requirement

of the sub-Planckian scale for inflation is the physical ground upon which the parameter γ has been

constrained and consequently, the values of V1 and V0 are fixed as well,

V1 = 7.90 × 10−11M5
P, V0 = 6V1 ≈ 4.74 × 10−10M4

P. (61)

Finally, to handle the issue of graceful exit from inflation, we recall the first equation of (54), which in

view of the above form of the potential, V(φ) = V0 − V1
φ , is expressed as,

−γH3

V1
− 6 f0H2

V1
+

[

φ̇2

2V1
+

(

V0

V1
− 1

φ

)]

= 0. (62)

During inflation, H2 and V1 are of the same order of magnitude, while the Hubble parameter varies

slowly. But, at the end of inflation, the Hubble rate usually decreases sharply and γH3 falls much

below V1. Hence, one can neglect both the terms γH3

V1
and

f0 H2

V1
without any loss of generality. In the

process one finds,

φ̇2 = −2

[

V0 −
V1

φ

]

. (63)

Taking into account, φ f = 0.460794 MP, V0 = 4.74 × 10−10 M4
P and V1 = 7.90 × 10−11 M5

P from

computation, the above equation clearly exhibits oscillatory behavior of the scalar field φ,

φ = exp(iωt), (64)

provided, ω ≈ 5.335 × 10−5MP.
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In a nutshell, although, we have not been able to handle all the three terms together, nonetheless

both the pairs exhibit excellent agreement with the observational data.

Form-2: F(T) = f0T + f1(T)
3 + f2(T

5) + · · · ,

Here too it is impossible to handle all the three terms together, we therefore consider only the first two

terms F(T) = f0T + f1(T)
3 and focus to study the slow roll inflation. The field equation (30) and the φ

variation equation are now expressed as,

6 f0H2 + 1080 f1H6 = V(φ) +
1

2
φ̇2, φ̈ + 3H|φ̇|+ V′ = 0. (65)

Applying the standard slow-roll conditions φ̇2 ≪ V(φ) and |φ̈| ≪ 3H|φ̇|, the pair of equations (65)

finally reduce to,

γH6 + 6 f0H2 − V = 0, 3Hφ̇ + V′ = 0, (66)

where 1080 f1 = γ. Solving for H2 in view of (66), we readily obtain,

H2 =

[

(

Vγ2 +
√

V2γ4 + 32γ3 f 3
0

)

2
3 − 3.175γ f0

]

1.26γ
(

Vγ2 +
√

V2γ4 + 32γ3 f 3
0

)

1
3

. (67)

Further, combining equations (66), one can show that the ‘potential slow roll parameter’ ǫ is equal to

the ‘Hubble slow roll parameter’ (ǫ1) under the condition,

ǫ ≡ − Ḣ

H2
=

2.52γ4V′2
(

Vγ2 +
√

V2γ4 + 32γ3 f 3
0

)

4
3
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[

(

Vγ2 +
√

V2γ4 + 32γ3 f 3
0

)

2
3 − 3.175γ f0

]2

× 1


γ

[

(

Vγ2 +
√

V2γ4 + 32γ3 f 3
0

)

2
3 − 3.175γ f0

]2

+ 3.175γ2 f0

(

Vγ2 +
√

V2γ4 + 32γ3 f 3
0

)

2
3





; η = 2 f0

(

V′′(φ)
V(φ)

)

(68)

Further, one can compute the number of e-folds as,

N(φ) ≃
∫ t f

ti

Hdt =
∫ φ f

φi

H

φ̇
dφ =

∫ φi

φ f

3

[

(

Vγ2 +
√

V2γ4 + 32γ3 f 3
0

)

2
3 − 3.175γ f0

]

[

1.26γV′
(

Vγ2 +
√

V2γ4 + 32γ3 f 3
0

)

1
3

] dφ. (69)

Now under the same choice of the potential as above, viz., V(φ) = V0 − V1
φ , the expressions of ǫ, η (68)

and N (69) are found as,

ǫ =

2.52γ4V2
1

(

V1γ2(
V0
V1

− 1
φ ) +

√

V2
1

γ4(
V0
V1

− 1
φ )2 + 32γ3 f 3

0

)

4
3

18φ2





(

V1γ2(
V0
V1

− 1
φ ) +

√

V2
1

γ4(
V0
V1

− 1
φ )2 + 32γ3 f 3

0

)

2
3 − 3.175γ f0





2

× 1


γ

[

(

V1γ2(
V0
V1

− 1
φ ) +

√

V2
1

γ4(
V0
V1

− 1
φ )2 + 32γ3 f 3

0

)

2
3 − 3.175γ f0

]2

+ 3.175γ2 f0

{

V1γ2(
V0
V1

− 1
φ ) +

√

V2
1

γ4(
V0
V1

− 1
φ )2 + 32γ3 f 3

0

}
2
3





η = − 4 f0

φ2(
V0
V1

φ − 1)
, N(φ) =

∫ φi

φ f
3φ2





(

V1γ2(
V0
V1

− 1
φ ) +

√

V2
1

γ4(
V0
V1

− 1
φ )2 + 32γ3 f 3

0

)

2
3 − 3.175γ f0





1.26γV1

[

V1γ2(
V0
V1

− 1
φ ) +

√

V2
1

γ4(
V0
V1

− 1
φ )2 + 32γ3 f 3

0

]
1
3

dφ.

(70)

Again despite such huge structure of equations, we are able to present a table of data set for the

expressions (70). In Table-3, we have varied V1 between 4.5 M5
P ≤ V1 ≤ 5.0 M5

P, so that r and ns lie
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within the experimental limit. Further, the number of e-folds for Table-3 is found to vary with in

the range 40 ≤ N ≤ 45, which is more-or-less sufficient to solve the horizon and flatness problems.

Clearly, the agreement with the observational data is outstanding, since the tensor to scalar ratio is

able to sustain further constraints, which might appear from future analysis.

Table 3. Data set for the inflationary parameters with φi = 4.0 MP, V0 = 2.0 M4
P, γ = 5 × 107 M−2

P ,

f0 = 0.5 M2
P varying V1 between 4.5 × 10−6 to 5.0 × 10−6 M5

P .

φ f in MP V1 in ×10−6 M5
P ns r N H∗2 in ×10−6 M2

P

0.75450 4.5 0.96656 0.005836 40 1.33
0.74478 4.6 0.96742 0.005593 41 1.37
0.73540 4.7 0.96823 0.005364 42 1.40
0.72637 4.8 0.96899 0.005149 43 1.43
0.71750 4.9 0.96974 0.004947 44 1.47
0.70900 5.0 0.97044 0.004756 45 1.50

The energy scale of inflation (H∗) is shown in the last column of Table-3, which is of the order

10−3 MP i.e. in the sub-Planckian scale, while the energy scale of inflation in a single scalar field model

corresponding to GTR [31] is given by the following expression,

H∗ = 8 × 1013

√

r

0.2
GeV = 1.28 × 1013GeV ≈ 5.25 × 10−6MP, (71)

whose numerical value is computed taking into account the value of the tensor-to-scalar ratio r =

0.005149 from the data set of Table-3.

Finally, to handle the issue of gracefully exit from inflation, we recall equation (65), which in view

of the above form of the potential, V(φ) = V0 − V1
φ , is expressed as,

γH6

V1
+

6 f0H2

V1
+

[

φ̇2

2V1
−
(

V0

V1
− 1

φ

)]

= 0. (72)

During inflation, H2 and V1 are of the same order of magnitude, while the Hubble parameter varies

slowly. But, at the end of inflation, the Hubble rate decreases sharply, and γH6 falls much below V1.

Hence, one can neglect both the terms γH6

V1
and

f0 H2

V1
without any loss of generality. In the process one

obtains,

φ̇2 = −2

[

V0 −
V1

φ

]

. (73)

Taking into account the values: φ f = 0.70900MP, V0 = 5.0 × 10−6M4
P and V1 = 2.0 × 10−6M5

P from

Table-3, it is possible to show that the above equation exhibits oscillatory behavior

φ = exp(iωt), (74)

provided, ω ≈ 1.476 × 10−3MP. Hence graceful exit is also exhibited. In a nutshell, both the forms

F(T) of the generalized metric teleparallel gravity are found quite suitable to explain the cosmological

evolutionary history, right from the very early inflationary era till date.

3.3. Symmetric Teleparallel F(Q) theory of gravity:

The models based on F(T) gravity suffer from severe coupling problems, and additionally

non-trivial F(T) theories are also not locally Lorentz invariant and possess extra degrees of freedom

[32] not present in GTR. In fact, the lack of locally Lorentz invariance requires to deal with 16 equations,

instead of the 10 associated with GTR. Einstein suggested to identify these extra degrees of freedom

with the electromagnetic fields. However, he failed to find a consistent tensor-like description of the
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electromagnetic field equations in this approach. Therefore F(Q) gravity is currently in the lime-light,

since these problems do not arise in F(Q) theory of gravity, as already mentioned. This led people

to consider generalized symmetric teleparallel F(Q) gravity theory. Recently F(Q) theory has been

studied largely in different perspectives [32–41]. Further, the field equations in view of the variational

principle have also been derived [42]. In the F(Q) theory, one may use the special FLRW metric in

Cartesian coordinates and the coincident gauge in this setting, which makes the calculation easier

by reducing the covariant derivative to merely a partial derivative. In the coincidence gauge, all

the connections are made to vanish globally in a set of local Lorentz frame. As a result, the affine

connection vanishes everywhere in a manifold and also both the Riemann-tensor R̃α
βµν as well as

the torsion-tensor Tαµν vanish globally. In the coincidence gauge the non metricity scalar reads as

Q = − 6ȧ2

a2 N2 = −6H2, under the gauge choice N = 1. Consequently, the Friedmann equations become

identical to those of the F(T) gravity theory, and all the results found in connection with F(T) gravity

theory holds, averting the problems associated with F(T) gravity theory.

Unfortunately, it has been exhibited that the coincident general relativity also runs from some

serious pathologies. For example, there is a strong coupling problem with the scalar perturbations

around maximally symmetric backgrounds and also there might be a potentially strong coupling

problem in the vector sector for flat cosmology [5]. Further, the generic pathological character of

these theories, including the presence of a ghost has also been discussed [43] and explicitly worked

out recently [44]. Nonetheless, The isotropic and homogeneous Robertson-Walker metric (19) under

present consideration also admits three non-trivial connections [42,45], apart from the coincidence

gauge. Study of the other three connections have been initiated recently [46,47]. More recently, it has

been shown that all these three connections can also explain the cosmic evolutionary history, for a

linear form of F(Q) = f0Q, without further modification [48].

4. Concluding remarks:

In this article we have reviewed some earlier works with suitable modification focussing on the

reconstruction program of the forms of modified and generalized teleparallel gravity theories. The

importance of the work is, all the forms presented here admit a viable radiation and early matter

dominated eras, which are at par with the standard (FLRW) model of cosmology. Further, these models

can also explain the late-time cosmic accelerated expansion. Since inflation in the context of modified

F(R) theory of gravity has been studied widely, we have not considered it here. However, for the two

possible forms of the teleparallel F(T) gravity, we have studied inflation and found that the inflatioanry

parameters are in agreement with recently released observational data. Also since symmetric telepallel

F(Q) gravity theory in coincidence gauge, produces identical field equation as those for F(T) gravity

theory, so all the results obtained for F(T) gravity holds for coincidence general relativity also.

While, the results obtained here are quite encouraging, nonetheless, all these theories suffer

from some sort of unavoidable pathologies, as discussed in the literature. In this context, it may

be mentioned that in the RW metric (19) under consideration, symmetric teleparallel gravity theory

admits four different connections. Apart from the coincidence gauge, the other three involve an

additional non-vanishing function of time γ(t), and as a result some difficulty arises in studying

these connections. Nonetheless, very recently, we have prepared a detailed study with other three

connections (communicated), which exhibit cosmic evolution without any modification. It should also

be mentioned that, Bianchi identity, which is an outcome of the invariance of curvature by isometries of

the metric tensor holds automatically for GTR (Gµν
;µ = 0), and is also true for F(R) gravity, resulting

in classical conservation of the energy momentum tensor. Nonetheless, this does not hold in general

for teleparallel gravity theories. Even so, in the isotropic and homogeneous Robertson-Walker metric,

Bianchi identity holds for F(T) gravity uniquely. In the case of F(Q) theory of gravity, coincidence

gauge (Q = −6H2) is usually taken into consideration, in which case also Bianchi identity holds

automatically. Nevertheless, for other connections it was not known with certainty. It has been

exhibited [48] that apart from one single situation, it holds in general for all the connections.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 November 2023                   doi:10.20944/preprints202311.1924.v1

https://doi.org/10.20944/preprints202311.1924.v1


17 of 18

References

1. Sabulsky D.O., Dutta I., Hinds E.A., Elder B., Burrage C. and Copeland E.J., Experiment to detect dark energy

forces using atom interferometry, Phys. Rev. Lett. 123, 061102 (2019), arXiv: 1812.08244 [Phys.atom-ph].

2. Motohashi H., Suyama T., Third order equations of motion and the Ostrogradsky instability, Phys. Rev. D 91,

085009 (2015), arXiv:1411.3721 [Physics.class-ph].

3. Golovnev A. and Koivisto T., Cosmological perturbations in modified teleparallel gravity models, JCAP

1811, 012 (2018), arXiv:1808.05565 [gr-qc].

4. Golovnev A. and Koivisto T., Cosmological perturbations in modified teleparallel gravity models, JCAP

1811, 012 (2018), arXiv:1808.05565 [gr-qc].

5. Jiménez J.B., Heisenberg L., Koivisto T. and Pekar S., Cosmology in f(Q) geometry, Phys. Rev. D 101, 103507

(2020), arXiv:1906.10027v2 [gr-qc].

6. Capozziello S., De Laurentis M., Extended theories of gravity, Phys. Rep. 509, 167 (2011), arXiv:1108.6266

[gr-qc].

7. Nojiri S., Odintsov S.D., Unified cosmic history in modified gravity:from F(R) theory to Lorentz

non-invariant models, Phys. Rep. 505, 59, arXiv:1011.0544 [gr-qc]

8. Cai Y-F., Capozziello S., De Laurentis M. and Saridakis E.N., f(T) teleparallel gravity and cosmology, Rep. on

prog. in phys. 76(10), 106901 (2016), arXiv:1511.07586 [gr-qc].

9. Zhao D., Covariant formulation of f(Q) theory, Eur. Phys. J. C 82, 303 (2022), arXiv:2104.02483 [gr-qc].

10. Sarkar K., Sk N., Ruz S., Debnath S., Sanyal A.K., Why Noether Symmetry of F(R) Theory Yields Three-Half

Power Law? Int. J. Theor. Phys. 52, 1515 (2013), arXiv:1201.2987 [astro-ph.CO].

11. Chakrabortty M., SK N., Sanyal A.K., A viable form of teleparallel F(T) theory of gravity, Eur. Phys. J. C

(2023) 83:557, arXiv:2304.04180v2 [gr-qc].

12. Sanyal A.K., Study of symmetry in F(R) theory of gravity, Mod. Phys. Lett. A Vol. 25, 31 2667-2668 (2010),

arXiv:0910.2385 [astro-ph.CO].

13. Modak B., Sarkar K. and Sanyal A.K., Modified theory of gravity and the history of cosmic evolution,

Astrophys. Space Sci. 353, 707 (2014), arXiv:1408.1524 [astro-ph].

14. Capozziello S., Francaviglia M., Extended theories of gravity and their cosmological and astrophysical

applications, Gen. Relativ. Gravit. 40, 357 (2008), arXiv:0706.1146 [astro-ph].

15. Vakili B., Noether symmetric f (R) quantum cosmology and its classical correlations, Phys. Lett. B 669, 206

(2008), arXiv:0809.4591 [gr-qc].

16. Sarkar K., Sk N., Debnath S., Sanyal A.K., Viability of Noether Symmetry of F(R) theory of Gravity, Int. J.

Theor. Phys. 52, 1194 (2013), arXiv:1207.3219 [astro-ph.CO].

17. Sk N., Sanyal A.K., Revisiting Noether gauge symmetry for F(R) theory of gravity, Astrophys. Space Sci.

342, 549 (2012), arXiv:1208.2306 [astro-ph.CO].

18. Sk N., Sanyal A.K., Field Independent Cosmic Evolution, J. Astrophys. 2013(12), 590171 (2013),

arXiv:1208.3603 [astro-ph.CO].

19. Starobinsky A.A., A new type of isotropic cosmological models without singularity, Phys. Lett. B 91(1), 99

(1980).

20. Maeda K., Inflation as a transient attractor in R2 cosmology, Phys. Rev. D 37, 858 (1988).

21. Bengochea G.R., Ferraro R., Dark torsion as the cosmic speed-up, Phys. Rev. D 79, 124019 (2009),

arXiv:0812.1205 [astro-ph]

22. Linder E.V., Einstein’s other gravity and the acceleration of the universe, Phys. Rev. D 81, 127301 (2010),

arXiv:1005.3039 [astroph.CO]

23. Krs̆s̆ák M. and Saridakis E. N., The covariant formulation of f(T) gravity, Class. Quant. Grav., 33, 115009,

(2016).

24. Ferraro R. and Fiorini F., Non-trivial frames for f (T) theories of gravity and beyond, Phys. Lett. B 702, 75

(2011), arXiv:1103.0824 [gr-qc].

25. Chakrabortty M., Sk N., Sanyal S., Sanyal A.K., Inflation with F(T) teleparallel gravity, Eur. Phys. J. Plus

(2021) 136:1213, arXiv:2112.09609 [astro-ph.CO].

26. Bamba K., Odintsov S.D., Saridakis E.N., Inflationary cosmology in unimodular F(T) gravity. Mod.

Phys.Lett.A 32, 1750114 (2017). arXiv:1605.02461 [gr-qc].

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 November 2023                   doi:10.20944/preprints202311.1924.v1

https://doi.org/10.20944/preprints202311.1924.v1


18 of 18

27. Akrami Y. et al. (Planck Collaboration), Planck 2018 results. X. Constraints on inflation, Astronomy &

Astrophysics, 641, A10 (2020), arXiv:1807.06211 [astro-ph.CO].

28. Aghanim N. et al, Planck 2018 Results. VI. Cosmological Parameters, (Planck Collaboration), Astronomy &

Astrophys., 641, A6 (2020), arXiv:1807.06209.

29. Tristram M. et al, Improved limits on the tensor-to-scalar ratio using BICEP and Planck, Phys. Rev. D 105,

083524 (2022), arXiv:2112.07961.

30. Hazumi M. et al. LiteBIRD: JAXA’s new strategic L-class mission for all-sky surveys of cosmic microwave

background polarization, Proc. of SPIE, Vol. 11443, 114432F (2020), arXiv:2101.12449.

31. Enqvist K., Hardwick R.J., Tenkanen T., Venninb V. and Wands D., A novel way to determine the scale of

inflation, JCAP, 02, 006 (2018), arXiv:1711.07344 [astro-ph.CO].

32. Ambrosio F.D’, Fell S.D.B., Heisenberg L. and Kuhn S., Black holes in f(Q) gravity, Phys. Rev. D 105, 024042

(2022).

33. Miao Li., Miao Rong-Xin and Yan-Gang Miao, Degrees of freedom of f(T) gravity, JHEP 1107:108,2011,

arXiv:1105.5934 [hep-th].

34. Chen S., Gibbons G.W., Li Y. and Yang Y., Friedmann’s equations and Chebyshev’s theorem, JCAP, 12, 035

(2014), arXiv:1409.3352 [astro-ph.CO].

35. D’ Ambrosio F., Heisenberg L. and Kuhn S., Revisiting Cosmologies in Teleparallelism, Class. Quantum

Grav., 39, 025013 (2022), arXiv:2109.04209 [gr-qc].

36. Capozziello S. and D’Agostino R., Model-independent reconstruction of f(Q) non-metric gravity, Physics

Letters B, 137229 (2022), arXiv:2204.01015 [gr-qc].

37. Atayde L. and Frusciante N., Can f(Q) gravity challenge ΛCDM?, Phys. Rev. D 104, 064052 (2021),

arXiv:2108.10832 [astro-ph.CO].

38. Esposito F., Carloni S., Cianci R. and Vignolo S., Reconstructing isotropic and anisotropic f(Q) cosmologies,

Phys. Rev. D 105, 084061 (2022) arXiv:2107.14522v1 [gr-qc]

39. Nester J.M., Yo H-J., Symmetric teleparallel general relativity. Chin. J. Phys. 37, 113 (1999),

arXiv:gr-qc/9809049.

40. Jimenez J.B., Heisenberg L., Koivisto T., Coincident general relativity, Phys. Rev. D 98, 044048 (2018),

arXiv:1710.03116 [gr-qc].

41. Bahamonde S. and Järv L., Coincident gauge for static spherical field configurations in symmetric teleparallel

gravity, Eur. Phys. J. C 82, 963 (2022), arXiv:2208.01872 [gr-qc]

42. Zhao D., Covariant formulation of f(Q) theory, Eur. Phys. J. C 82, 303 (2022), arXiv:2104.02483 [gr-qc].

43. Jiménez J.B. and Koivisto T.S., Accidental gauge symmetries of Minkowski spacetime in Teleparallel theories,

arXiv:2104.05566v2 [gr-qc].

44. Gomes D.A., Jiménez J.B., Cano A.J. and Koivisto T.S., On the pathological character of modifications to

Coincident General Relativity: Cosmological strong coupling and ghosts in f(Q) theories, arXiv:2311.04201v1

[gr-qc].

45. Hohmann M., General covariant symmetric teleparallel cosmology, Phys. Rev. D 104, 124077 (2021),

arXiv:2109.01525 [gr-qc].

46. Dimakis N., Paliathanasis A., Roumeliotis M. and Christodoulakis T., FLRW solutions in f(Q) theory: the

effect of using different connections, Phys. Rev. D 106, 043509 (2022), arXiv:2205.04680v2 [gr-qc].

47. De Avik and Loo Tee-How, On the viability of f(Q) gravity models, Class. Quan. Grav. 40 115007 (2023),

arXiv:2212.08304v2 [gr-qc].

48. Saha D. and Sanyal A.K., Cosmological evolution for all the connections in symmetric teleparallel gravity

theory, (Communicated).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 November 2023                   doi:10.20944/preprints202311.1924.v1

https://doi.org/10.20944/preprints202311.1924.v1

	Introduction:
	Three pilers of Gravitation:
	Reconstruction from the radiation era:
	F(R) gravity:
	Torsion-based Metric F(T) Teleparallel gravity:
	Energy conditions:
	Slow roll Inflation:

	Symmetric Teleparallel F(Q) theory of gravity:

	Concluding remarks:
	References

