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Abstract: This paper introduces new improvements to the modified version of the BIRECT (Blsecting
RECTangles) algorithm referred to as BIRECTv. We explore various approaches, by first including
a grouping strategy for hyper-rectangles having almost the same sizes by categorizing them into
different classes. Therefore constraining them not to exceed a certain pre-defined threshold (a small
positive value to define the tolerance level). This approach allows for more efficient computation
and can be particularly useful when dealing with a large number of hyper-rectangles with varying
sizes. To avoid over-sampling, and preventing redundant or excessive sampling, at some shared
vertices in descendant subregions, a particular vertex database is used to limit the number of samples
taken within each subregion to two. The experimental investigation shows that these improvements
have a positive impact on the performance of the BIRECTv(imp.) algorithm and the proposal
is a promising global optimization algorithm compared to the original BIRECTv algorithm and
its variants. Additionally, the BIRECTv(imp.) algorithm showed particular efficacy in solving
high-dimensional problems.
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1. Introduction

In scientific and engineering domains, optimization problems frequently involve objective
functions that can only be obtained through "black-box" methods or simulations, and they often lack
explicit derivative information. In black-box optimization cases, the development of derivative-free
global optimization methods (DFGO) has been forced by the need to optimize various and often
increasingly complex problems in practice because the analytic information about the objective function
is unavailable [10,15,33-37]. The absence of derivative information requires the use of derivative-free
global optimization (DFGO) methods. DFGO techniques are specifically designed to optimize functions
when derivatives are unavailable or unreliable. These methods explore the function’s behavior by
sampling it at various points in the input space.

This paper considers a global optimization problem

E(réilr}f(x), @

that require only the availability of objective function values but no derivative information, therefore
numerical methods using gradient information can not be used to solve problem (1). The objective
function is supposed to be Lipschitz-continuous with some fixed but unknown Lipschitz constant,
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and the feasible domain is an n-dimensional hyper-rectangle D = [L,u] = {x e R" : [; < x; < uj,j =
1,...,n}.

Global optimization approaches can be categorized into two main types: deterministic [1,5,6,26,28]
and stochastic methods [12,42]. These methods address optimization problem (1) using various domain
partition schemes, often involving hyper-rectangles [5,25,42]. While many DIRECT-type techniques
employ hyper-rectangular partitions, other alternative approaches use simplicial partitioning [18,19]
(as DISIMPL-C [16] and DISIMPL--V [17]) or diagonal sampling schemes (see [22,23,25], as adaptive
diagonal curves [24]).

DIRECT-type algorithms, such as the DIRECT (DIvide RECTangles) algorithm [7-9] are the most
widely used partitioning-based algorithms for global optimization problems. One of the challenges
faced by these algorithms is the selection of potentially optimal rectangles (the most promising),
which can lead to inefficiencies and increased computational costs. In this paper, we provide a
comprehensive review of techniques and strategies aimed at reducing the set of selected potential
optimal hyper-rectangles in DIRECT-type algorithms. We explore various approaches, including a novel
grouping strategy which simplify the identification of hyper-rectangles in the selection procedure.
This strategy consists in rounding or approximating the measurements (sizes) of hyper-rectangles, that
are extremely small in size, by grouping them together into classes. This simplification can help in
various computational or analytical tasks, making the problem more manageable without significantly
compromising the accuracy of the analysis or optimization process.

Our review highlights the importance of reducing the number of function evaluations while
maintaining the algorithm’s convergence properties. The recent papers by [29,38,39] provides a good
and a comprehensive overview of techniques aimed at reducing the set of potentially optimal rectangles
in DIRECT-type algorithms. It significantly contributes to the field of derivative-free global optimization
and serves as a valuable resource for researchers and practitioners seeking to enhance the efficiency
and effectiveness of such algorithms. Some suggested methods are summarized in [9,21,29,36,38].

In the context of Optimization Methods in Engineering Mathematics, the size of a hyper-rectangle
often incorporate constraints imposed by the engineering problem. These constraints ensure that the
optimization process adheres to real-world limitations, such as physical boundaries, safety margins, or
resource constraints. For example, in structural engineering, the size of a hyper-rectangle could
represent the permissible ranges for material properties, dimensions, or loads. In engineering
optimization, reducing the size of a hyper-rectangle can represent the imposition of stricter constraints.
This ensures that the optimized solution adheres to more stringent requirements, such as safety limits
or design specifications.

We also use an additional assumption to improve this version allowing to evaluate the objective
function only once at each vertex of each hyper-rectangle. The objective function values at vertices
could be stored in a special vertex database, and then the result is directly retrieved from this database
when required. In addition, an update to the modified optimization domain is applied for some test
problems as used in the previous version [3].

The original DIRECT algorithm faces challenges when it comes to sampling points at the edges
of the feasible region, which can slow down its convergence, particularly in cases where the best
solution is located at the boundary. This limitation is especially pronounced in constrained problems.
Recent research [13,32,38] has emphasized the importance of addressing this issue, showing that it’s
possible to achieve faster convergence by employing strategies that sample points at the vertices of
hyper-rectangles, especially when solutions are near the boundary.

Taking these insights into account, we’ve integrated one of the latest versions of DIRECT-type
algorithms into our approach, a new diagonal partitioning and sampling scheme called BIRECTv
(BIsection of RECTangles with Vertices) based on the BIRECT algorithm. In the BIRECTv framework,
the objective function is evaluated at specific points within the initial hyper-rectangle. Instead of
evaluating the objective function only at the vertices, as done in most DIRECT-type algorithms, BIRECTv
samples two points along the main diagonal of the initial hyper-rectangle, located at 1/3 and 1 of the
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way along the diagonal. This approach provides more comprehensive information about the objective
function, and helps to improve convergence, particularly near boundaries.
The contributions of the paper can be summarized as follows:

1. A review of techniques and strategies aiming to reduce the set of selected potential optimally
hyper-rectangles in DIRECT-type algorithms.

2. Introduction of a novel grouping strategy which simplify the identification of hyper-rectangles in
the selection procedure in DIRECT-type algorithms.

3. The new approach incorporates a particular vertex database to avoid more than two samples in
descendant subregions.

4. The improvements of BIRECTv algorithm positively impacted the performance of the BIRECTv
algorithm.

The rest of this paper is organized as follows. In Sect. 2.1, a review of the original BIRECT algorithm is
provided, while in Sect. 2.2 a brief description of the new sampling and partitioning scheme called
BIRECTv algorithm is also discussed. In Sect. 2.3, we incorporate a novel scheme for grouping and
selecting potential optimal hyper-rectangles in BIRECT-type algorithms. Numerical investigation and
discussion of the results is given in Sect. 3. Finally, in Sect. 4, we conclude the paper and outline
potential directions for future prospects.

2. Materials and Methods

This section provides an overview of the original BIRECT algorithm and its modifications.

2.1. The original BIRECT

The BIRECT (Blsection of RECTangles) algorithm, developed in [20], employs a diagonal
space-partitioning approach and involves two primary procedures: sampling on diagonals and
bisection of hyper-rectangles.

In the initialization step, the algorithm begins by evaluating the objective function at two initial
points, "lower" 1 = (I4,...,1,) = (1/3,. ..,1/3)T and "upper" u = (uq,...,uy) = (2/3,...,2/3)T,
positioned along the main diagonal of the normalized domain, considered as the first unit hyper-cube,
D=D}=[La={xeR":0<I[<x<u <1,j=1,...,n}. The hyper-cube representing the
search space is then divided into a set of smaller hyper-rectangles obeying a specific sampling and
partitioning scheme using the following critera (see Algorithm 1).

2.1.1. Selection criteria

*  Ateach iteration (kth iteration), starting from the current partition
Pr={D} :i €},

where I is the index set identifying the current partition, a new partition P is created by
bisecting a set of potentially optimal hyper-rectangles from the previous partition.

¢  The identification of a potentially optimal hyper-rectangle is based on lower bound estimates of
the objective function over each hyper-rectangle, with a fixed rate of change L > 0 (analogous to
a Lipschitz constant).

e Ahyper-rectangle D, j € T is considered potentially optimal if specific inequalities involving e
(a positive constant) and the current best-known function value fp, are satisfied.

min {f(lf),f(uf)} ~Lsf < min {f(li),f(uf)} — L&k, Viel )
min { f(1), f(o)} =L&F < fouin = el finl, )

IN
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where the measure (distance, size) of the hyper-rectangle is given by
2
5= 2 — 5§ 4

A hyper-rectangle D{; is potentially optimal if the lower bound for f computed by the left-hand
side of (2) is optimal for some fixed rate of change L among the hyper-rectangles of the current partition
Pk. Inequality (3) helps prevent excessive emphasis on local search [7].

2.1.2. Division and sampling criteria

e  After the initial partitioning, BIRECT proceeds to future iterations by partitioning potentially
optimal hyper-rectangles and evaluating the objective function f (x) at new sampling points.

*  New sampling points are generated by adding and subtracting a distance equal to half the side
length of the branching coordinate from the previous points. This approach allows for the reuse
of old sampled points in descendant subregions.

*  Animportant aspect of the algorithm is how the selected hyper-rectangles are divided. For each
potentially optimal hyper-rectangle, the set of maximum coordinates (edges) is computed, and
the hyper-rectangle is bisected along the coordinate (branching variable x3,, 1 < br < n) with
the largest side length. The selection of the coordinate direction is based on the lowest index j,
prioritizing directions with more promising function values.

i gl
bj — a]

br = min {argmax = {d} =

1<j<n

}}, )

The partitioning process continues until a predefined number of function evaluations has been
performed, or a stopping criterion is satisfied. The algorithm keeps track of the best (smallest) objective
function value f(x) found over all sampled points in the final partition. The corresponding generated
point X at which this value was achieved provides an approximate solution to the optimization
problem. The main steps of the BIRECT algorithm are outlined in Algorithm 1 (see [20] for a detailed
pseudo-code).

The BIRECT algorithm is a robust optimization technique that efficiently explores the search space,
combines global and local search strategies, and strives to find the optimal or near-optimal solution
for multidimensional optimization problems. For a more comprehensive understanding, additional
details can be found in the original paper [20].
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Algorithm 1 Main steps of BIRECT algorithm

1: Input : Objective function: f, search-space: D, tolerance: €y, the maximal number of function

evaluations: M,,;;¢, and the maximal number of iterations: Kj;;x;
2: Output : The best objective function value: f,;,, global minimizer: x,;,, and algorithmic

performance measures: m, k and pe (if needed); .
3: Normalize the search space D to the unit hyper-cube D;
. Initialize 1' = (1/3,...,1/3) and u! = (2/3,...,2/3), evaluate f(1') and f(u'), and set f,.;, =

min {f(1'), f(u')}, xpin = argminf (x), m =2,k =1,I; = {1};
: while pe > ¢pe and m < Mrfj;la{lrll}d k < Kpmax do

'S

5
6: Identify the index set P, C I of potentially optimal hyper-rectangles (POHs);
7: Setl} = Hk\{]pk};
8: fori € P, do
9: Select the branching variable br (coordinate index) Eq. (5);
10: Divide D' into a two new hyper-rectangles D"*! and D"*+2. Update 6,11 and 6,4 2;
11: Create the new sampling points 1! and u”*2;
12: Update the partition set: Py = P;\D, U D}t U DI"+2;
13: if 741 < fig or f101 < £, then
14: Update f,i, and x5,
15: end if
16: Update performance measures: k, m and pe;
17: end for

18: end while
19: Return : f,i,, Xy, and algorithmic performance measures: m, k and pe.

2.2. Description of the BIRECTv Algorithm

In this subsection, we return back to one of the most recent versions of DIRECT-type algorithms
(called BIRECTv) developed in [3]. One effective strategy is to sample points at the vertices of the
hyper-rectangles. This approach ensures that points near the boundaries are explored, increasing the
chances of finding solutions located there. Sampling at vertices can significantly improve convergence
when the optimal solution is at or near the boundary, see [32]. A description of two different
partitioning schemes used in DIRECT-type algorithms is shown in Figure 1. The original DIRECT
algorithm primarily focuses on sampling within the interior of the feasible region, which means it may
miss exploring points near the boundary. Therefore, it may require a large number of iterations
to converge to the optimal solution. This slow convergence is because it relies on subdividing
hyper-rectangles within the interior, and it may take many iterations before a hyper-rectangle boundary
coincides with the solution. The studies conducted in [33,40] have indeed highlighted the significant
impact of the limitation in convergence when the optimal solution lies at the boundary of the feasible
region. This issue is particularly prevalent in constrained optimization problems, where solutions
often lie at the boundary due to the constraints imposed on the variables.

However, a challenge arises when the newly created sampling points coincide with previously
evaluated points at shared vertices. This leads to additional evaluations of the objective function,
increasing the number of function evaluations per iteration. To address this issue, the paper suggested
modifying the original optimization domain to obtain a good approximation of the global solution.

This approach was presented as an alternative to locate solutions that are situated near the
boundary. The results of the experiments demonstrated that the proposed modification to the
optimization domain positively impacted the performance of the BIRECTv algorithm. It outperformed
the original BIRECT algorithm and the two popular DIRECT-type algorithms on the test problems.
Additionally, the BIRECTv algorithm showed particular efficacy in solving high-dimensional problems.


https://doi.org/10.20944/preprints202311.1873.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 November 2023 doi:10.20944/preprints202311.1873.v1

6 of 18

Initialization Iteration | Iteration 2

BIRECT

L e e

Initialization Iteration 1
‘‘‘‘‘‘ T

‘‘‘‘‘‘‘

BIRECT-V

— T
u,

\\\\\\

\\\\\\

o old sampling points e new sampling points —— selected POHs ———1 unselected areas

Figure 1. Description of the initialization and the first two iterations used in two different sampling
and partitioning schemes ( BIRECT: upper figure), and (BIRECTv: lower figure) on a two-dimensional
example.

2.3. Integrating Scheme for Identification of Potentially Optimal Hyper-rectangles in DIRECT-based Framework

In this section, we introduce an innovative grouping technique that streamlines the
hyper-rectangle identification process during selection. This approach involves the rounding
or approximation of measurements (sizes) for hyper-rectangles of exceedingly small dimensions.
These are then organized into classes, yielding simplification that enhances the manageability of
computational and analytical tasks. Importantly, this simplification doesn’t substantially impact the
precision of the analysis or optimization process. The selection of the most promising hyper-rectangles
in DIRECT-type algorithms is a crucial aspect of optimization.

Various strategies have been developed to enhance this selection process, resulting in different
versions of the algorithm. In the DIRECT-1 variant [2,9], the size of a hyper-rectangle is measured by the
length of its longest side, which corresponds to the infinity-norm. This approach allows DIRECT-I to
group more hyper-rectangles with the same measure, resulting in fewer distinct measures. Moreover,
in DIRECT-], only one hyper-rectangle from each group is selected, even if there are multiple potentially
optimal hyper-rectangles in the same group. This reduces the number of divisions within a group.
DIRECT-1 is found to perform well for lower-dimensional problems that do not have an excessive
number of local and global minima.

The aggressive version of DIRECT takes a different approach by selecting and dividing a
hyper-rectangle of every measure in each iteration. While this strategy requires more function
evaluations compared to other versions of DIRECT, it may be advantageous for solving more complex
problems. The PLOR algorithm simplifies the set of potentially optimal hyper-rectangles to just two:
the maximal and the minimal Lipschitz constants. This reduction allows the PLOR approach to be
independent of user-defined parameters. It strikes a balance between local and global search during
the optimization process by considering only these two extreme cases.

In two-phase globally and locally biased algorithms, the selection procedure during one of the
phases operates similarly to the original DIRECT algorithm, considering all hyper-rectangles from the
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current partition. However, in the second phase, the selection of potentially optimal hyper-rectangles
is constrained based on their measures. Globally-biased versions [17,24] focus on larger subregions,
addressing the algorithm’s first weakness, while locally-biased versions [2,14] concentrate on smaller
subregions, addressing the second weakness of DIRECT-type algorithms. These adaptations and
strategies aim to improve the efficiency and effectiveness of DIRECT-type algorithms in addressing
optimization challenges, particularly in scenarios with complex landscapes and varying dimensions
[32,33].

The authors in [29] introduced an improved scheme by extending the set of potentially optimal
hyper-rectangles for DIRECT-GL algorithm. These enhanced criteria are designed to reduce the
computational cost of the algorithm by focusing on the most promising regions of the search space.
By implementing the improved selection criteria, the algorithm becomes more efficient in identifying
regions of interest within the optimization landscape. This leads to a reduction in the number of
hyper-rectangles that need to be explored, saving computational resources and time. The enhancements
introduced in this work are not limited to a specific type of problem or application. They can be applied
to a wide range of optimization scenarios where DIRECT-type algorithms are utilized [30,31,34,39].

Let the partition of D} at iteration k be defined as

Pk = {Dllc i€ Hk}r
Let I is the set of indices identifying the subsets defining the current partition Py. Let 5}; a measure of
D! defined by )
5= Z||b’ —a'||, 6
k=3l | (6)
Let It C I, represents a subset of indices that correspond to elements of Py with measue 5,i

having almost the same measure as 5}; within a certain tolerance (threshold=A), ranging from 107 to

1072, i.e., such that A = {1077,107¢,107°,107%,1073,1072}.

aite = |5 —of| <8, i€l @)

The purpose is to identify potentially optimal hyper-rectangles. It looks for hyper-rectangles
(indexed by I) where the norm value (5}’;) is very close (within the defined tolerance) to the normalized
norm value ().

The line 11 is used to reduce the set of potentially optimal hyper-rectangles. The code filters the
hyper-rectangles and selects only those that meet a specific condition, which is having their norm
value (5};) close to the normalized norm value (5,i) within a tolerance of 0.0001.

In summary, this line of code helps to focus on potentially more promising hyper-rectangles,
discarding those that are not as close to the desired normalized norm value. It’s a way to efficiently
narrow down the search space and improve the efficiency of the algorithm. An illustrative example for
two different tolerance levels is given in Figure 2.

The difference between the tolerance 1072 and 1077 lies in the level of precision used when
comparing the (5;'( and (ﬁc values to filter the potentially optimal hyper-rectangles.

1. Tolerance 1072

e A tolerance of 1072 (0.01) means that the algorithm will consider hyper-rectangles whose 4. and
5,i values are within 0.01 of each other. ' ‘

e Itallows for a relatively larger difference between é; and ¢;, meaning the algorithm will be more
lenient in selecting potentially optimal hyper-rectangles.

®  This might result in a larger set of potentially optimal hyper-rectangles, including some with
relatively larger differences in their norm values.
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Figure 2. Grouping strategy using two different tolerance levels in the BIRECT algorithm applied to the
Ackley test problem 1 at iteration 36. Small tolerance (left side), large tolerance (right side).

2. Tolerance 107 :

e A tolerance of 1077 (0.0000001) means that the algorithm will consider hyper-rectangles whose 4

and 8! values are within 0.0000001 of each other.

e It uses a much smaller tolerance, making the algorithm much stricter in selecting potentially
optimal hyper-rectangles.

¢  This will result in a smaller set of potentially optimal hyper-rectangles, only including those with
extremely close norm values.

The choice of tolerance depends on the specific problem and the desired level of precision
in the algorithm. A larger tolerance may lead to faster execution, but it might also include some
hyper-rectangles that are not truly optimal. On the other hand, a smaller tolerance will be more accurate
but may require more computational effort to identify the potentially optimal hyper-rectangles. It's a
trade-off between efficiency and precision in the algorithm’s behavior.

Note: The algorithm assumes a zero-based index for the array elements, and the first index found
satisfying the condition is returned. If no element satisfies the condition, the algorithm returns -1.

The algorithm essentially performs a linear search through the §! array and stops as soon as it
finds the first element within the specified tolerance level. It’s important to choose an appropriate
tolerance level depending on the application and the expected values in the array.

3. Results and Discussion

3.1. Implementation

In this section we provide an overview of the methodology and objectives of our study, which
involves benchmarking the new enhanced BIRECTv against the previous version of BIRECTv [3], the
original BIRECT [20,21], and other DIRECT-type algorithms on a set of test problems. In our study,
the size of the hyper-rectangle in BIRECTv is measured using the same measure as in the original
BIRECT algorithm, while in DIRECT-, it corresponds to the infinity norm, which allows it to collect
more hyper-rectangles of the same size. This is in contrast to the Euclidean distance measure used in
the original DIRECT algorithm. Our implementation uses the same set of 54 global optimization test
problems from [4]. The Hedar test set is a popular benchmark for testing optimization algorithms.
These problems are described in Table A1, which includes attributes like problem number, problem
name, dimension, feasible domain, number of local minima, and known minimum. Some test problems
have multiple variants, and the algorithm is tested for different dimensionalities. In some cases, during
the initial steps of the algorithm, sampling is performed near the global minimizer. The feasible
domain is modified by increasing the upper bound in these situations. these modified test problems
are marked with a star. All computations were performed with MATLAB R2017b on a computer with
an Intel Core i5-6300U CPU @ 3.5 GHz Processor, 8GB memory and running on Windows 10 operating
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system. The output values are rounded up to 10 decimals. All algorithms were tested using a limit of
Mmax = 500, 000 function evaluations in each run. For the 54 analytical test cases with a priori known
global optima f*, the used stopping criterion is based on the percent error:

pe— f("—‘}:lf* < 1074, f* 7& 0, (8)
fx) <1074, fr=0,

The value of epe was set to 107* as a default value. This value likely represents a tolerance
threshold used during the optimization process such that pe < ¢pe .

The comparison is based on two primary criteria: the best-found function value f(x) and the
number of function evaluations (f.eval.). These criteria help evaluate the performance of the algorithms
on each test problem. The study provides statistical measures, such as averages and medians, for the
number of function evaluations. The average performance provides an overall assessment of each
algorithm’s performance across all problems, while the median performance is less influenced by
outliers and represents the middle point in the data. In the tables labeled "comparison,” the best number
of function evaluations is highlighted in bold font to emphasize the most efficient results. Additionally,
the study includes information about the number of iterations and the execution time in seconds, these
details are specifically reported on GitHub and Zenodo repositories (see Data Availability Statement
below). The results of all six algorithms are reported in Table 1, where the same arguments were used:
a specific domain modifications, and a grouping scheme from Algorithm 2 with a tolerence level of
10~%. Note that,in our results, a correction was made during the current experiments to the minimum
value acheived for the Perm test function 27 from [3]. The potentially optimal hyper-rectangles
are those that have their norm values close to the normalized norm value, which means they are
potentially interesting candidates for further evaluation. By filtering out the hyper-rectangles that don’t
satisfy this condition, the set of potentially optimal hyper-rectangles (I) is reduced to a smaller subset.
These reduced hyper-rectangles are considered more interesting candidates for further evaluation or
processing in the algorithm. Additionally, BIRECTv-1(imp.) and BIRECTv(imp.) are improved versions
by using a special vertex database to prevent redundant sampling. Note that this assumption is not
applied to the BIRECT algorithm, since the algorithm itself is designed to enable reuse of objective
function values in descendant subregions. An illustrative example in Figure 3 demonstrates the
corresponding version of the BIRECTv algorithm when the introduced vertex database is applied. The
total number of function evaluations is 490 for BIRECTv and 370 for the improved version.

Algorithm 2 Find First Index within Tolerance

Require:

1: Input:

2: 6;: An array of numerical values, }

3: 0;: A scalar numerical value (The normalized norm value: measure of the hyper-rectangle D});
Ensure:

4: Output: ' ‘

5. index: The index of the first occurrence in 4, where the absolute difference with 6; is within the

tolerance level; o
6: procedure FIND INDEX WITHIN TOLERANCE(J;, ;)
7: Set the tolerance level threshold to 0.0001 (or any desired value);

8: Initialize the variable index to-1;

9: for each element at index i in the 4} array do .
10: Calculate the absolute difference diff between element and J;;
11: if diff < threshold then
12: Set index to i;

13: break
14: end if

15: end for

16: return index;

17: end procedure
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Table 1. Comparison between BIRECTv-1(imp.), BIRECTv(imp.), BIRECTv-1[3], BIRECTv[3], BIRECT-1(new), and BIRECT(new) algorithms.

Problem BIRECTv-1 (imp.) BIRECTv (imp.) BIRECTv-1 [3] BIRECTv [3] BIRECT-1 (new) BIRECT (new)

No. f(x) f.eval. f(x) f.eval. f(x) feval. f(x) f.eval. f(x) feval. f(x) f.eval.
1 122 %1072 129 1.22 x 1079 153 122 x 1075 156 122 %1072 192 1.22x107° 134 1.22x 1075 158
2 122 x1075 387 122 x 1075 1135 122 x 1079 422 122 x1075 1578 122 x107° 358 122 x1075 1062
3 122 x1075 1000 122 x 1075 47311 1.22 x 1079 1000 122 x1075 72804 122 x 1075 766 122 x 1075 41654
4 877 x 1073 474 877 x 1073 742 877 x 1073 638 877 x 1073 1034 917 x 1073 434 917 x 1073 434
5 183 x107°° 192 1.83 x 1070 209 1.83 x 1070 254 183 x10°° 284 3.68x 1072 496 3.68 x 1072 496
6 153 x107° 189 153 x 1070 211 1.53 x 1070 252 153 x107° 284 3.07 %1072 682 307 x 107> 682
7 288 %1076 186 288 %107 209 288 %107 248 288 %106 282 403x 1072 852 403x1073 849
8 299 x 106 228 299 %106 249 299 %106 300 299 x 1076 334 299 %107 330 299 x 1076 330
9 039791 480 039791 370 039791 652 039791 490 0.39790 242 0.39790 242
10 9.82x 107 1614 9.82x 107> 1337 9.82x 107> 2318 9.82 107 1868 9.82x 107> 794 9.82x 107 794
1 441 x 1070 263 318 x 1073 431 441 %1073 346 318 x 1072 578 441 x1073 234 441 %1073 234
12 7.35x 1072 1932 735% 107> 2087 735% 107> 2652 735 %1072 2912 659 x 107> 6103 659 x 107> 6125
13 955 x 107> 28871 817 x 107> 19418 9.55x 107> 38460 955 x 107> 44114 8.83x 1072 8202 883 x 107> 8282
14 ~0.99999 138 ~0.99999 716 ~099999 180 ~0.99999 1082 ~0.99999 110 ~0.99999 558
15 3.00000 25 3.00000 25 3.00000 28 3.00000 28 3.00019 274 3.00019 274
16 4611077 3440 3.697 x 1077 4700 461x1077 5192 3.697 x 1077 5756 7.76 x 107 3236 986x1073 > 500000
17 —3.86245 162 —3.86245 169 —3.86245 200 —3.86245 208 ~3.86243 352 3.86243 352
18 —332214 490 ~332214 490 —332214 542 —332214 542 ~3.32207 764 332207 764
19 ~1.03154 162 ~1.03154 254 ~1.03154 202 ~1.03154 334 ~1.03154 190 1.03154 19
20 9.03x 1076 103 9.03 %107 116 9.03x107° 136 9.03x 1076 154 9.03% 107> 80 9.03x 1076 80
21 183 x 1072 388 1.83 x 1079 459 1.83 x 1079 454 183 x 1072 558 183 x 1070 264 183 x 1072 354
22 354% 107 1133 354x 1072 6246 354 %1072 1182 354 x 1072 7440 354x 1072 766 354% 107 2302
23 2711075 119 271 %1073 163 2711075 148 271x 1075 208 271 %1073 90 2711075 90
24 —1.80130 142 —1.80130 231 —1.80130 184 —1.80130 314 —1.80120 136 ~1.80120 126
25 —4.68744 5654 —4.68744 5051 —4.68766 8484 —4.68766 7526 —4.68757 49160 —4.68752 4719
26 —8.60559 > 500000 ~755576 > 500000 —8.60559 > 500000 ~7.55576 > 500000 ~732708 > 500000 ~7.32708 > 500000
27 0.00000 43889 00521989805 > 500000 0.00000 65536 0.00000 48724 000203 > 500000 000203 > 500000
28 459 %1073 1837 459 %1072 1223 459 %1072 2518 459 %1073 1624 834x 1072 1814 486107 2108
29 9.75 x 1075 2583 9.75x 1075 2867 9.75x 1075 3058 9.75 % 1073 3400 9.12x 1072 20672 9.12x 1073 21260
30 0.00000 159 0.00000 159 0.00000 204 997 x 1073 40788 9.00 x 1073 4932 9.00 x 1073 5623
31 481 %1072 523 481 %107 809 481 % 107> 688 481 %107 820 481 %107 154 481 %1073 178
32 129 x 1072 5237 1.29 x 1075 6511 1.29 x 1079 8512 129 x 1072 10978 129 x 107° 66462 129 x 107> 82546
33 198 x 1072 124 1.98 x 1079 1439 1.98 x 1079 124 198 x 1072 1454 2361072 1240 236 x 1072 15544
34 9.65 x 1073 540 9.65x 107> 544 9.65x 107> 700 9.65x 107 716 9.65x 1072 242 9.65x 107 242
35 241 %1073 1950 241 %1073 2231 241 %1073 2528 241 %1073 3058 241 %1073 1494 241 %1075 1692
36 3.05x 1073 17176 305 x 1073 27256 305 x 1073 18922 3.05x 1075 31756 7.61 %1075 6104 7.61 %1073 10766
37 256 x 1072 384 1.37 x 1079 413 137 x 1077 486 137 x 1077 564 256 x 107> 214 256 x 1072 268
38 6398 x 1075 17061 6398 x 1075 10362 342x 1077 25904 342x 1077 16754 63981 x 1072 704 6398 x 1075 3780
39 177 x 108 1366 1.77 x 1078 55701 1.77 x 1078 1366 177 x 108 84784 414% 1075 2248 414%1075 265002
40 ~10.15234 4002 ~10.15234 3665 ~10.15234 6146 ~10.15234 5604 ~10.15307 1254 ~10.15307 1220
41 ~10.40201 1536 ~10.40201 1655 ~10.40201 2256 ~10.40201 2456 ~10.402696 1186 ~10.402696 1184
2 ~10.53545 1740 ~10.53545 2238 ~10.53545 2476 ~10.53545 3332 ~10.53618 1138 ~10.53618 1108
43 ~186.72139 432 ~186.72139 181 ~186.72139 570 ~186.72139 26 ~186.72102 766 ~186.72102 642
44 115 x 1072 92 115 x 1079 143 115 x 1079 112 115 x 1072 190 115 x 1070 106 115 x 1072 118
45 2.87 %1073 364 287 %1072 987 287 x 1072 392 2.87 %1073 1400 2.87 %1072 294 2.87 %1073 602
46 574x 107 1043 574 %107 19418 574 %1072 1054 574% 1075 27566 574x 1072 784 574x 1075 8742
47 3.89 x 1076 348 3.89 %1070 328 3.89 %1070 494 3.89 x 1076 460 389 x 1076 226 3.89 x 1076 214
48 894 x 107 880 894 %1077 1141 894 %107 1102 894 x 107 1484 3.04% 1072 1006 3.04x 1073 1134
49 328106 2147 328106 5331 328106 2452 328 x 106 6066 0062500 > 500000 0062500 > 500000
50 —49.99979 1164 —49.99979 1414 —49.99979 1312 —49.99979 1662 —49.99864 1322 —49.99864 1462
51 ~209.98779 2965 ~209.98779 10470 ~209.98779 3114 ~209.98779 11880 ~209.98627 2300 ~209.98627 3122
52 2.88x 107> 122 288 % 107> 125 288 %107 156 2.88x 107> 162 288 %1072 118 2.88 %1072 118
53 643 x 1072 2805 643 %1072 2948 643 x 1072 3710 643 %1072 3958 9.62x 1072 1858 9.62x 1073 1920
54 1.79278 > 500000 179278 > 500000 2607286 > 500000 2607286 > 500000 1762154 > 500000 1762154 > 500000

Average 21488.333 32445.204 226022595 27088333 40623.833 56374.611

Median 531.500 1138.000 694.000 1531.000 766.000 1085.000



https://doi.org/10.20944/preprints202311.1873.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 November 2023 doi:10.20944/preprints202311.1873.v1

110f18

iteration: 1 fmin: 17.5082995158 f evals: 2 Iteration: 1 fmin: 17.5082995158 f evals: 2
iteration: 20 fmin: 0.4093044620 fevals: 10 Iteration: 20 fmin: 0.4093044620 fevals: 9
iteration: 24 fmin: 0.3994884267 fevals: 16 Iteration: 24 fmin: 0.3994884267 fevals: 13
iteration: 25 fmin: 0.3994884267 fevals: 26 Iteration: 25 fmin: 0.3994884267 fevals: 20
iteration: 26 fmin: 0.3980837400 fevals: 16 Iteration: 26 fmin: 0.3980837400 fevals: 12
iteration: 27 fmin: 0.3980837400 fevals: 14 Iteration: 27 fmin: 0.3980837400 fevals: 11
iteration: 31 fmin: 0.3980250409 fevals: 18 Iteration: 31 fmin: 0.3980250409 fevals: 14
iteration: 32 fmin: 0.3980250409 fevals: 14 Iteration: 32 fmin: 0.3980250409 fevals: 10
iteration: 33 fmin: 0.3979818763 fevals: 24 Iteration: 33 fmin: 0.3979818763 fevals: 20
iteration: 34 fmin: 0.3979818763 fevals: 28 Iteration: 34 fmin: 0.3979818763 fevals: 18
iteration: 35 fmin: 0.3979818763 fevals: 12 Iteration: 35 fmin: 0.3979818763 fevals: 8
iteration: 36 fmin: 0.3979818763 fevals: 12 Iteration: 36 fmin: 0.3979818763 fevals: 8
iteration: 37 fmin: 0.3979818763 fevals: 22 Iteration: 37 fmin: 0.3979818763 fevals: 15
iteration: 38 fmin: 0.3979067737 fevals: 24 Iteration: 38 fmin: 0.3979067737 fevals: 15

Figure 3. An example of the iteration progress using the BIRECTv algorithm on the left-hand side from
[3], and BIRECTv(imp.) on the right-hand side, while solving Branin test problem (No. 3 from Table 1).

3.2. Discussion

In this subsection, we discuss the performance evaluation of three optimization algorithms and
their variants of the DIRECT-type that are designed for solving global optimization problems using
Hedar test set [4]. All six algorithms are variations of the original BIRECT algorithm [20]. The improved
versions (with "imp.") are modifications of the original BIRECTv and BIRECTv-1 algorithms from [3].
Two new variations of the algorithm, "BIRECT-1 (new)" and "BIRECT" (new), are also introduced. The
improved version of BIRECTv-l(imp.) consistently outperform their previously published counterparts
(BIRECTv-l and BIRECTv, respectively), achieving the lowest average objective function value among
all six algorithms. This improvement is evident in terms of both objective function value and the
number of function evaluations. This suggests that the algorithm enhancements have been successful
in optimizing the problems more efficiently. However, BIRECTv-1(imp.) have the same comparable
performance to BIRECTv-1 in some cases, indicating that the modification of the optimization domain
may not always be necessary. Similar to BIRECTv-1(imp.), the algorithm BIRECTv(imp.) generally
performs well on some problems (often requires fewer function evaluations), but may not be as
efficient on others as shown for problem 27. For this problem, the algorithm fails to reach a conceivable
objective function contrary to BIRECTv and BIRECTv-1 algorithms. The versions of BIRECTv-1 and
BIRECTv are evaluated based on results from [3], but with a tolerance level of 10~%. For the first
algorithm, both metrics (average-median) show that the algorithm is the second best algorithm.
Particularly, it outperforms the BIRECTv(imp.), and dominates across all other problems. The new
versions of BIRECT-1(new) and BIRECT(new) introduced in Table 2 show competitive performance
compared to their predecessors [20,21], especially in terms of the number of function evaluations
required. The average value is smallest using BIRECT-1(new) and BIRECT(new) from Table 2, (37230.593
and 40529.259 respectively), compared to the same algorithms from Table 1, ( 40623.833 and 56374.611
respectively). Even more, the average is smaller for BIRECT-1(new) (36641, 963) from Table 3 without
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the domain modification than from Table 1 with the same tolerance 10~*. This means that the
modification of the optimization domain is not necessary for the BIRECT algorithm. While they may not
always achieve the best objective function value, they often achieve a good balance between solution
quality and computational effort. The mention failed in Table 3 means that there no improvement in the
objective function value during many succesive iterations, or if an increasing number of evaluations per
iteration is observed. In both cases, the number of function evaluations is > 500.000. The performance
of each algorithm varies across different optimization problems. Some algorithms may perform
exceptionally well on certain problems but less effectively on others. This demonstrates the importance
of algorithm selection based on the specific characteristics of the optimization task.

e  The improved versions of BIRECTv-1 and BIRECT (imp.) appear to be reliable choices for
optimization tasks, as they consistently outperform the previously published versions and
demonstrate competitive performance in terms of both objective value and computational effort.

®  The new algorithms, BIRECT-1 (new) and BIRECT (new), show promise and are particularly
efficient in terms of the number of function evaluations. However, their objective function values
may vary depending on the problem.

¢ The choice of algorithm should be problem-dependent. Some algorithms may be more suitable
for specific problem characteristics, such as unimodal or multimodal objective functions, and
global or local optimization.

*  These informations provide a comprehensive assessment of the algorithms’ performance across
various aspects, including solution quality and computational efficiency.
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Table 2. Comparison between BIRECT-(new), BIRECT from [20,21], BIRECT-1-(new), and BIRECT-1 from

[21]
Problem BIRECT-(new) BIRECT [20,21] BIRECT-l-(new) BIRECT-1 [21]
No. f(x) feval. f(x) feval. ‘ f(x) f.eval. f(x) f.eval.
1 2.54 x 1073 202 2.54 x 1073 202 2.54 x 1073 176 2.54 x 1073 176
2 2.54 x 1073 1256 2.54 x 1073 1268 2.54 x 1075 454 2.54 x 1075 454
3 2.54 x 1075 45128 254 x 1073 47792 254 x 1075 874 2.54 x 1073 874
4 9.17 x 107> 436 9.17 x 107> 436 9.17 x 107> 436 9.17 x 10> 436
5 402 x 1075 468 4.02 x 1075 476 402 x 1075 468 402 x 1075 468
6 3.35x 107> 472 3.35x 107> 478 3.35x 107> 472 3.35x 107> 472
7 3.67 x 1073 474 3.67 x 1073 480 3.67 x 107> 474 3.67 x 1075 474
8 6.10 x 107> 188 6.10 x 107> 194 6.10 x 107> 188 6.10 x 10~° 188
9 0.39790 242 0.39790 242 0.39790 242 0.39790 242
10 9.82 x 1073 794 9.82 x 1073 794 9.82 x 107 794 9.82 x 1073 794
11 4.84 x 107> 722 4.84 x 107> 722 484 x10°° 722 484 x10°° 722
12 7.15x107° 4060 7.15x107° 4060 7.15 x 107> 4060 7.15 x 107> 4060
13 9.52 x 10> 161928 9.52 x 107> 164826 9.52 x 107> 158880 9.52 x 107> 1628682
14 —0.99999 558 —0.99999 16420 —0.99999 110 —0.99999 480
15 3.00019 274 3.00019 274 3.00019 274 3.00019 274
16 7.76 x 1077 4982 7.76 x 107 5106 7.76 x 1077 4982 7.76 x 1077 5106
17 —3.86242 352 —3.86242 352 —3.86242 352 —3.86242 352
18 —3.32206 764 —3.32206 764 —3.32206 764 —3.32206 764
19 —1.03154 196 —1.03154 334 —1.03154 190 —1.03154 190
20 9.09 x 10~> 152 9.09 x 10~ 152 9.09 x 10~ 152 9.09 x 10~ 152
21 1.83 x107° 968 1.83 x107° 1024 1.83 x 1075 656 1.83 x 1075 660
22 3.55 x 1073 6402 3.55 x 10~° 7904 3.55 x 107 1698 3.55 x 1072 1698
23 271 x 1073 920 2.71 x 1073 94 271 x 1073 90 2.71 x 1075 90
24 —1.80118 126 —1.80118 126 —1.80118 126 —1.80118 126
25 —4.68736 82562 —4.68736 73866 —4.68736 101900 —4.68736 101942
26 —7.32591 > 500000 —7.32591 > 500000 —7.32591 > 500000 —7.32591 > 500000
27 0.00203 > 500000 0.00203 > 500000 0.00203 > 500000 0.00203 > 500000
28 4.86 x 1075 2114 4.86 x 1075 2114 4.86 x 1075 1820 4.86 x 1075 1832
29 9.87 x 107> 44950 9.71 x 10~> 99514 9.87 x 10~ 91954 9.71 x 107> 92884
30 9.00 x 1073 5664 9.00 x 1073 10856 9.00 x 1075 4994 9.00 x 1075 1718
31 481 x10°° 180 481 %1075 180 481 x10°° 156 481 x10°° 154
32 1.18 x 107 1162 1.18 x 107 1394 1.18 x 1075 474 1.18 x 1075 472
33 2.36 x 107 15658 2.36 x 1073 40254 2.36 x 1072 1250 2.36 x 107> 1250
34 9.65 x 1073 242 9.65 x 1073 242 9.65 x 1075 242 9.65 x 1075 242
35 241 %1075 1690 241 %1073 1700 241 %1075 1496 241 %1073 1494
36 542 x 107> 9100 542 x 107> 10910 542 x 1072 4620 542 x 107> 4590
37 3.09 x 1073 236 5.64 x 1073 236 3.09 x 1075 214 5.64 x 1075 210
38 7.73 x 107° 3730 6.41 x 107> 7210 7.73 x 107> 1074 6.41 x 107° 1422
39 1.02 x 10~° 208670 1.30 x 10~° 315960 1.02 x 10~ 58000 1.30 x 10~ 58058
40 —10.15307 1272 —10.15307 1200 —10.15307 1248 —10.15307 1286
41 —10.40269 1204 —10.40269 1180 —10.40269 1224 —10.40269 1224
42 —10.53618 1140 —10.53618 1140 —10.53618 1162 —10.53618 1158
43 —186.72441 1780 —186.72441 1780 —186.72441 2114 —186.72441 2114
44 1.15x 107° 118 1.15x 107° 118 1.15 x 1075 106 1.15 x 1075 108
45 2.87 x 1072 602 2.87 x 107> 712 2.87 x 107 294 2.87 x 107> 288
46 5.74 x 1073 8742 5.74 x 1073 16974 5.74 x 1075 784 5.74 x 1075 784
47 7.94 x 107° 226 7.94 x 10~° 244 7.94 x 107° 226 7.94 x 10~° 226
48 3.97 x 1073 1000 3.97 x 1073 1034 3.97 x 107> 836 397 x 1075 836
49 9.11 x 107© 5538 9.11 x 1076 7688 9.11 x 10 3366 9.11 x 107 3366
50 —49.99512 1170 —49.99512 1506 —49.99512 992 —49.99512 1138
51 —209.98007 32170 —209.98007 30100 —209.98007 24704 —209.98007 24716
52 2.88 x 1072 338 2.88 x 107> 502 2.88 x 107 338 2.88 x 107 338
53 6.44 x 1073 26088 6.44 x 1073 20974 6.44 x 107> 27230 6.44 x 107> 27364
54 9.41133 > 500000 9.41133 > 500000 9.41133 > 500000 9.41133 > 500000
Average 40529.259 44520.52 37230.593 37283.85
Median 1151.000 1190.00 789.000 789.00
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Table 3. Number of function evaluations using BIRECT-1(new) for different values of A

Problem  BIRECT-1

No./A 102 103 104 105 1076 1077
1 168 166 182 178 174 176
2 530 448 484 448 454 454
3 840 842 852 874 872 874
4 370 424 434 436 436 436
5 328 424 456 468 468 468
6 328 432 462 472 472 472
7 failed failed 942 474 474 474
8 172 188 188 188 188 188
9 256 242 242 242 242 242
10 722 790 794 790 794 794
11 failed 732 718 722 722 722
12 failed 5352 4038 4060 4060 4060
13 failed 186694 144268 152402 156448 158880
14 110 110 110 110 110 110
15 236 272 274 274 274 274
16 failed 2480 3236 3452 4148 4982
17 346 354 352 352 352 352
18 752 764 764 764 764 764
19 188 190 190 190 190 190
20 136 152 152 152 152 152
21 608 644 656 656 656 656
22 1590 1698 1698 1698 1698 1698
23 88 90 90 90 90 90
24 110 126 126 126 126 126
25 38282 49488 90504 101900 101900 101900
26 failed failed failed failed failed failed
27 failed failed failed failed failed failed
28 2440 2102 1814 1820 1820 1820
29 failed 39584 87502 90162 92028 91954
30 failed 4810 5024 5014 5002 4994
31 146 152 154 156 156 156
32 338 436 474 474 474 474
33 940 1166 1240 1250 1250 1250
34 236 242 242 242 242 242
35 1390 1470 1498 1496 1496 1496
36 4196 4510 4612 4620 4620 4620
37 172 204 214 214 214 214
38 1148 1280 1400 1434 1434 1074
39 41502 49516 57452 57994 58000 58000
40 666 810 1254 1248 1248 1248
41 636 818 1186 1224 1224 1224
42 632 766 1138 1162 1162 1162
43 1748 1880 2044 2086 2114 2114
44 104 106 106 106 106 106
45 286 294 294 294 294 294
46 786 784 784 784 784 784
47 202 226 226 226 226 226
48 728 826 836 836 836 836
49 2712 3162 3332 3366 3366 3366
50 1152 988 992 992 992 992
51 failed 28268 24578 24704 24704 24704
52 260 320 338 338 338 338
53 failed 25522 27720 27286 27230 27230
54 failed failed failed failed failed failed
Average  13121.852  44876.741 36641,963  37056.407 37178.222  37230.593

Median 725.000 787.000 815,000 787.000 789.000 789.000
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4. Conclusions and Future Prospects

The paper introduced a new DIRECT-type algorithm called BIRECTv. The algorithm incorporates
the most recent partitioning and selection techniques, which are essential for enhancing its performance
in tackling the global optimization problems. The improvements have showed that BIRECTv
outperforms existing DIRECT-type algorithms. It is more efficient and performs better in terms of
convergence rates and the number of function evaluations required. Existing DIRECT-type algorithms,
in contrast, tend to have slower convergence rates and often require a significantly higher number of
function evaluations. They face notable difficulties when the optimal solution lies at the boundaries of
feasibility. Through experimentation, the results demonstrate the algorithm’s superior performance,
particularly in cases where solutions are located at the boundary of feasible regions. This research
has opened up new possibilities for addressing global optimization problems, which suggests that
BIRECTv has the potential to make significant contributions in this field. The new algorithm is expected
to have an important place among all other DIRECT-type algorithms. This implies that it could become
a standard choice for solving global optimization problems with the mentioned characteristics. In
conclusion, this paper sets the stage for future research by suggesting that this algorithm opens up
new possibilities, which could lead to further advancements in the field.

Appendix A
Table A1. Key characteristics of the Hedar test problems [4]

Problem Problem Dimension  Feasible region No. of local ~ Optimum
No. name n D = ([aj,bj],j=1,...,n) minima f*
1*,2*,3* Ackley 2,5,10 [-15,35]" multimodal 0.0
4 Beale 2 [—4.5,4.5]2 multimodal 0.0
5* Bohachevsky 1 2 [~100,110]? multimodal 0.0
6* Bohachevsky 2 2 [~100,110]? multimodal 0.0
7* Bohachevsky 3 2 [~100,110]? multimodal 0.0
8 Booth 2 [—10,10)? unimodal 0.0
9 Branin 2 [~5,10] x [10,15] 3 0.39789
10 Colville 4 [—10,10]* multimodal 0.0
11,12,13 Dixon & Price 2,5,10 [-10,10]" unimodal 0.0
14 Easom 2 [~100, 100]? multimodal 1.0
15 Goldstein & Price 2 [-2,2]2 4 3.0
16* Griewank 2 [—600, 700)? multimodal 0.0
17 Hartman 3 0,1 4 —3.86278
18 Hartman 6 [0,1]6 4 —3.32237
19 Hump 2 [-5,5] 6 ~1.03163
20,21,22 Levy 2,5,10 [-10,10]" multimodal 0.0
23* Matyas 2 [~10,15)? unimodal 0.0
24 Michalewics 2 [0, 7)? 2! —1.80130
25 Michalewics 5 o, 7> 5! —4.68765
26 Michalewics 10 [0, m]10 10! —9.66015
27 Perm 4 [—4,4]* multimodal 0.0
28,29 Powell 4,8 [—4,5]" multimodal 0.0
30 Power Sum 4 [0,4]* multimodal 0.0
31*%,32%,33*  Rastrigin 2,5,10 [-5.12,6.12)" multimodal 0.0
34,35,36 Rosenbrock 2,5,10 [-5,10]" unimodal 0.0
37,38,39* Schwefel 2,5,10 [—500, 500]" unimodal 0.0
40 Shekel, m = 5 4 [0, 10]* 5 ~10.15320
41 Shekel, m = 7 4 [0,10]4 7 ~10.40294
42 Shekel, m = 10 4 [0,10]* 10 —10.53641
43 Shubert 2 [~10,10]? 760 —186.73091
44*,45*,46*  Sphere 2,5,10 [-5.12,6.12)" multimodal 0.0
47*,48%,49*  Sum squares 2,5,10 [-10,15]" unimodal 0.0
50 Trid 6 [—36,36]° multimodal ~ —50.0
51 Trid 10 [—100, 100]° multimodal ~ —210.0
52*,53*%,54*  Zakharov 2,5,10 [=5,11]" multimodal 0.0
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Table A2. Comparison between BIRECT-(new), BIRECT, DIRECT-1, and DIRECT
Problem BIRECT-(new) BIRECT DIRECT-1 DIRECT
No. f(x) f.eval. f(x) f.eval. f(x) f.eval. f(%) f.eval.
1 2.54 x 1075 202 254 x 1075 202 7.53 x 107° 135 7.53%x107° 255
2 254 x10°° 1256 254 %x107° 1268 7.53 x 1072 1777 7.53 x 1072 8845
3 2.54 x 1075 45128 254 x 1075 47792 3.57445 > 500000 7.53%x107° 80927
4 9.17 x 10~° 436 9.17 x 10~° 436 9.29 x 107> 247 9.29 x 10~° 655
5 402 x10°° 468 4.02x10°° 476 3.09 x 107 205 3.09 x 1075 327
6 3.35 x 1075 472 3.35 x 10° 478 2.58 x 107© 233 2.58 x 1075 345
7 3.67 x 107° 474 3.67 x 107° 480 821 x107° 573 821 x107° 693
8 6.10 x 1072 188 6.10 x 105 194 6.58 x 10° 215 6.58 x 107° 295
9 0.39790 242 0.39790 242 0.39789 159 0.39789 195
10 9.82 x 1075 794 9.82 x 1075 794 3.83x 107° 3379 6.08 x 107° 6585
11 484 x10°° 722 484 %10°° 722 532 %107 485 6.25x 107° 513
12 7.15%x107° 4060 7.15%x107° 4060 6.45 x 107° 54843 6.45 x 107° 19661
13 9.52 x 105 161928 9.52 x 10° 164826 0.66667 > 500000 5.79 x 105 372619
14 —0.99999 558 —0.99999 16420 —0.99999 6851 —0.99999 32845
15 3.00019 274 3.00019 274 3.00009 115 3.00009 191
16 7.76 x 1077 4982 7.76 x 1077 5106 4.84 x 1076 8379 4.84 x 1076 9215
17 —3.86242 352 —3.86242 352 —3.86245 111 —3.86245 199
18 —3.32206 764 —3.32206 764 —3.32207 295 —3.32207 571
19 —1.03154 196 —1.03154 334 —1.03162 137 —1.03162 321
20 9.09 x 105 152 9.09 x 1075 152 2.10 x 10~° 77 2.10 x 105 105
21 1.83 x 10~° 968 1.83 x 10~° 1024 3.65 x 102 359 3.65 x 10~° 705
22 3.55 x 1075 6402 3.55 x 1075 7904 3.55x 107° 5297 6.23 x107° 5589
23 271 x107° 90 271 x107° 94 3.81 x107° 71 381 x10°° 107
24 —1.80118 126 —1.80118 126 —1.80127 45 —1.80127 69
25 —4.68736 82562 —4.68736 73866 —4.68721 26341 —4.68721 13537
26 —7.32591 > 500000 —7.32591 > 500000 —7.84588 > 500000 —7.87910 > 500000
27 0.00203 > 500000 0.00203 > 500000 0.04054 > 500000 0.04355 > 500000
28 486 x107° 2114 486 x107° 2114 652 %107 32331 9.02 x 107 14209
29 9.87 x 1075 44950 9.71 x 1075 99514 0.02488 > 500000 0.02142 > 500000
30 9.00 x 105 5664 9.00 x 10~° 10856 0.03524 > 500000 0.00215 > 500000
31 4.81 x107° 180 4.81 x 1075 180 2.30 x 107° 1727 2.30 x 1075 987
32 1.18 x 105 1162 1.18 x 107> 1394 497479 > 500000 497479 > 500000
33 2.36 x 1075 15658 2.36 x 1075 40254 5.01600 > 500000 9.94967 > 500000
34 9.65 x 105 242 9.65 x 102 242 9.65 x 102 285 9.65 x 10° 1621
35 241 x 1075 1690 241 x107° 1700 5.75 x 107° 2703 8.80 x 107° 20025
36 5.42 x 1075 9100 542 x 107° 10910 829 x 1072 74071 8.29 x 1072 174529
37 3.09 x 105 236 5.64 x 1075 236 2.88 x 107° 341 2.88 x 105 255
38 7.73 x 1072 3730 641 x107° 7210 721 x107° 322039 7.21 x 1072 31999
39 1.02 x 106 208670 1.30 x 10°° 315960 1269.34444 > 500000 1187.63199 > 500000
40 —10.15307 1272 —10.15307 1200 —10.15234 147 —10.15234 155
41 —10.40269 1204 —10.40269 1180 —10.40196 141 —10.40196 145
42 —10.53618 1140 —10.53618 1140 —10.53539 139 —10.53539 145
43 —186.72441 1780 —186.72441 1780 —186.72153 2043 —186.72153 2967
44 1.15%x107° 118 1.15x 1073 118 8.74 x 107° 91 8.74 x 107° 209
45 2.87 x 107° 602 2.87 x 107 712 7.49 x 1072 465 9.39 x 10° 4653
46 5.74 x 1075 8742 5.74 x 1075 16974 9.63 x 107° 2057 6.32 x 107° 99123
47 7.94 x 107° 226 7.94 x 107° 244 353 x107° 77 352 % 10°° 107
48 3.97 x 1075 1000 3.97 x 10° 1034 7.19 x 107° 411 719 x 107° 833
49 9.11 x 107 5538 9.11 x 107 7688 7.76 x 107¢ 1809 7.76 x 107° 8133
50 —49.99512 1170 —49.99512 1506 —49.99525 8731 —49.99525 5693
51 —209.98007 32170 —209.98007 30100 —209.92644 > 500000 —209.98085 90375
52 2.88 x 1075 338 2.88 x 105 502 7.95 % 107° 209 7.95%x 107° 237
53 6.44 x 1073 26088 6.44 x 1075 20974 0.11921 > 500000 9.71 x 1075 316827
54 9.41133 > 500000 9.41133 > 500000 16.47703 > 500000 28.96394 > 500000
Average 40529.26 44520.52 121484.19 98677.70
Median 1151.00 1190.00 1752.00 3810.00
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Data Availability Statement: The data underlying this article are available on GitHub repository from BIRECTv
v1.1.0 - https:/ / github.com /Ichiter / Algorithm-BIRECTv /releases (accessed on 20 September 2023), and used
under the MIT license, or at Zenodo: https://zenodo.org/record /7416231 (accessed on 20 July 2023). The first
codes for the algorithms BIRECT(new) and BIRECT-1(new) are made available from https://data.mendeley.com/
datasets/t6vv9yknbc/1.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Floudas, C.A.: Deterministic Global Optimization: Theory, Methods and Applications. Nonconvex
Optimization and Its Applications, vol. 37. Springer, Boston, MA (1999). https://doi.org/10.1007/978-
1-4757-4949-6

2. Gablonsky, ].M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. J. of Glob. Optim. (2001), 21(1),
27-37. DOI:10.1023/ A:1017930332101

3. Guessoum, N., Chiter, L.: Diagonal Partitioning Strategy Using Bisection of Rectangles and a Novel Sampling
Scheme. MENDEL.(2023), 29, 2 131-146. :https:/ /doi.org/10.13164/mendel.2023.2.131.

4. Hedar, A.: Test functions for unconstrained global optimization. http:/ /www-optima.amp.i.kyotou.ac.jp/
member/student/hedar/Hedar_files/TestGO.htm (2005). (accessed on 23 August 2006)

5. Horst, R., Pardalos, PM., Thoai, N.V.: Introduction to Global Optimization. Nonconvex Optimization and Its
Application. Kluwer Academic Publishers (1995)

6. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin (1996)

7. Jones, D.R,, Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. of
Optim. Theory and Appl. (1993), 79(1), 157-181. DOI:10.1007 /BF00941892

8.  Jones, D.R.: The Direct global optimization algorithm. In: C.A. Floudas, P.M. Pardalos (eds.) The Encyclopedia
of Optimization, pp. (2001), 431-440. Kluwer Academic Publishers, Dordrect (2001)

9. Jones, D.R.,, Martins, ] RR.A.: The DIRECT algorithm: 25 years later. J. Glob. Optim. 79, 521-566 (2021).
https://doi.org/10.1007 /s10898-020-00952-6

10. Ma, K,, Rios, L. M., Bhosekar, A., Sahinidis, N., V., Rajagopalan, S.: Branch-and-Model: a derivative-free
global optimization algorithm. Computational Optimization and Applications. (2023), https://doi.org/10.1007 /
s10589-023-00466-3

11.  Kvasov, D.E., Sergeyev, Y.D.: Lipschitz gradients for global optimization in a one-point-based partitioning
scheme. Journal of Computational and Applied Mathematics. (2012), 236(16), 4042-4054. DOI:10.1016/j.cam.
2012.02.020

12.  Liberti, L., Kucherenko, S.: Comparison of deterministic and stochastic approaches to global optimization.
International Transactions in Operational Research 12(3), 263-285 (2005) https:/ /onlinelibrary.wiley.com/
doi/pdf/10.1111/}.1475-3995.2005.00503.x.https:/ /doi.org /10.1111/j.1475-3995.2005.00503.x

13. Liu, H, Xu, S.,,Wang, X.,Wu, J., Song, Y.: A global optimization algorithm for simulation-based problems via
the extended DIRECT scheme. Eng. Optim. (2015), 47(11), 1441-1458. DOI:10.1080/0305215X.2014.971777

14. Liu, Q., Zeng, J., Yang, G.: MrDIRECT: a multilevel robust DIRECT algorithm for global optimization
problems. Journal of Global Optimization. (2015), 62(2), 205-227. DOI:10.1007 /s10898-014-0241-8

15. Liuzzi, G., Lucidi, S., Piccialli, V.: Exploiting derivative-free local searches in direct-type algorithms for
global optimization. Computational Optimization and Applications pp. (2014), 1-27. DOI:10.1007 /s10589-
015-9741-9

16. Paulavicius, R., Zilinskas, J., Grothey, A.: Parallel branch and bound for global optimization with combination
of Lipschitz bounds. Optimization Methods and Software. (2011), 26(3), 487-498. DOI:10.1080/10556788.2010.
551537

17.  Paulavitius, R., Zilinskas, J.: Simplicial Global Optimization. SpringerBriefs in Optimization. Springer New
York, New York, NY (2014). DOI:10.1007 /978-1-4614-9093-7

18. Paulavi¢ius, R., Sergeyev, Y.D., Kvasov, D.E., Zilinskas, J.: Globally-biased DISIMPL algorithm for expensive
global optimization. J. Glob. Optim. (2014) 59, 545-567. DOI:10.1007 /s10898-014-0180-4

19. Paulavi¢ius, R.; Zilinskas, J. Simplicial Lipschitz optimization without the Lipschitz constant. J. Glob. Optim.
2014, 59, 23-40. doi:10.1007 /s10898-013-0089-3

20. Paulavitius, R., Chiter, L., Zilinskas, J.: Global optimization based on bisection of rectangles, function values


https://github.com/lchiter/Algorithm-BIRECTv/releases
https://zenodo.org/record/7416231
https://data.mendeley.com/datasets/t6vv9yknbc/1
https://data.mendeley.com/datasets/t6vv9yknbc/1
https://doi.org/10.1007/978-1-4757-4949-6
https://doi.org/10.1007/978-1-4757-4949-6
10.1023/A:1017930332101
:https://doi.org/10.13164/mendel.2023.2.131
http://www-optima.amp.i.kyotou.ac.jp/member/student/hedar/Hedar_files/TestGO.htm
http://www-optima.amp.i.kyotou.ac.jp/member/student/hedar/Hedar_files/TestGO.htm
10.1007/BF00941892
https://doi.org/10.1007/s10898-020-00952-6
https://doi.org/10.1007/s10589-023-00466-3
https://doi.org/10.1007/s10589-023-00466-3
10.1016/j.cam.2012.02.020
10.1016/j.cam.2012.02.020
https:// onlinelibrary.wiley.com/doi/pdf/10.1111/j.1475-3995.2005.00503.x.https://doi.org/10.1111/j.1475-3995.2005.00503.x
https:// onlinelibrary.wiley.com/doi/pdf/10.1111/j.1475-3995.2005.00503.x.https://doi.org/10.1111/j.1475-3995.2005.00503.x
10.1080/0305215X.2014.971777
10.1007/s10898-014-0241-8
10.1007/s10589-015-9741-9
10.1007/s10589-015-9741-9
10.1080/10556788.2010.551537
10.1080/10556788.2010.551537
10.1007/978-1-4614-9093-7
10.1007/s10898-014-0180-4
doi:10.1007/s10898-013-0089-3
https://doi.org/10.20944/preprints202311.1873.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 November 2023 doi:10.20944/preprints202311.1873.v1

18 of 18

at diagonals, and a set of Lipschitz constants. J. Glob. Optim. (2018), 71(1), 5-20. DOI:10.1007 /s10898-016-
0485-6

21. Paulavidius, R., Sergeyev, Y.D., Globally-biased BIRECT algorithm with local accelerators for expensive
global optimization, Expert Systems with Applications. November 2019.

22.  Sergeyev, Y.D.: An efficient strategy for adaptive partition of N-dimensional intervals in the framework of
diagonal algorithms. Journal of Optimization Theory and Applications. (2000), 107(1), 145-168. DOI:10.1023/
A:1004613001755

23.  Sergeyev, Y.D.: Efficient partition of n-dimensional intervals in the framework of one-point-based algorithms.
Journal of optimization theory and applications. (2005), 124(2), 503-510. DOI:10.1007 /s10957-004-0948-7

24. Sergeyev, Y.D., Kvasov, D.E.: Global search based on diagonal partitions and a set of Lipschitz constants.
SIAM Journal on Optimization. (2006), 16(3), 910-937. DOI:10.1137 /040621132

25. Sergeyev, Y.D., Kvasov, D.E.: Diagonal Global Optimization Methods. FizMatLit, Moscow (2008). In Russian

26. Sergeyev, Y.D., Kvasov, D.E.: On deterministic diagonal methods for solving global optimization problems
with Lipschitz gradients. In: Optimization, Control, and Applications in the Information Age, 130, pp .
Springer International Publishing Switzerland. (2015), 315-334. DOI:10.1007 /978-3-319-18567-5-16

27.  Sergeyev, Y.D., Kvasov, D.E.: Lipschitz global optimization. In: Cochran, J.J., Cox, L.A., Keskinocak, P,
Kharoufeh, ].P., Smith, J.C. (eds.) Wiley Encyclopedia of Operations Research and Management Science (in 8
Volumes) vol. 4, pp. 2812-2828. John Wiley and Sons, New York, NY, USA (2011)

28. Sergeyev, Y.D.; Kvasov, D.E. Deterministic Global Optimization: An Introduction to the Diagonal Approach;
SpringerBriefs in Optimization; Springer: Berlin, Germany, 2017. https:/ /doi.org/10.1007 /978-1-4939-7199-
2.

29. Stripinis, L., Paulavi¢ius, R., Zilinskas, J.. Improved scheme for selection of potentially optimal
hyperrectangles in DIRECT. Optim. Lett. (2018), 12(7), 1699-1712. DOI:10.1007 /s11590-017-1228-4

30. Stripinis, L., Paulavi¢ius, R.: DIRECTGOLIib - DIRECT Global Optimization test problems Library, v1.1.
Zenodo (2022). https://doi.org/10.5281/zenodo.6491951

31. Stripinis, L., Ktdela, J., Paulavi¢ius, R.: Directgolib - direct global optimization test problems library (2023).
https:/ /github.com/blockchain-group /DIRECTGOLIib.Pre-releasev2.0

32. Stripinis, L., Paulavi¢ius, R. Novel Algorithm for Linearly Constrained Derivative Free Global Optimization
of Lipschitz Functions; Mathematics , 11(13), (2023), 2920. https://doi.org/10.3390/math11132920.

33. Stripinis, L., Paulavi¢ius, R. GENDIRECT: a GENeralized DIRECT-type algorithmic framework for
derivative-free global optimization. https:/ /doi.org/10.48550/arXiv.2309.00835.

34. Stripinis, L., Paulavi¢ius, R.: DIRECTGO: A new DIRECT-type MATLAB toolbox for derivative free global
optimization. GitHub (2022). https://github.com /blockchain-group/DIRECTGO

35. Stripinis, L., Paulavi¢iuss, R.: DIRECTGO: A new DIRECT-type MATLAB toolbox for derivative free global
optimization. arXiv (2022). https:/ /arxiv.org/abs/2107.0220

36. Stripinis, L., Paulavi¢ius, R.: Lipschitz-inspired HALRECT Algorithm for Derivative-free Global
Optimization. https://doi.org/10.48550/arXiv.2205.03015

37. Stripinis, L.; Paulavi¢ius, R. An extensive numerical benchmark study of deterministic vs. stochastic
derivative-free global optimization algorithms. https:/ /doi.org/10.48550/ ARXIV.2209.05759.

38. Stripinis, L.; Paulavi¢ius, R. An empirical study of various candidate selection and partitioning techniques
in the DIRECT framework. J. Glob. Optim. 2022, 1-31. https://doi.org/10.1007/s10898-022-01185-5

39. Stripinis, L. Improvement, development and implementation of derivative-free global optimization
algorithms. DOCTORAL DISSERTATION, VILNIUS UNIVERSITY, 2001, https://doi.org/10.15388/vu.
thesis.138

40. Tsvetkov, E.A., Krymov, R.A. Pure Random Search with Virtual Extension of Feasible Region. J Optim
Theory Appl 195, 575—595 (2022). https://doi.org/10.1007 /s10957-022-02097-w

41. Tuy, H. Convex Analysis and Global Optimization. Springer Science & Business Media (2013)

42.  Zhigljavsky, A., Zilinskas, A. Stochastic Global Optimization. Springer, New York (2008)

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


10.1007/s10898-016-0485-6
10.1007/s10898-016-0485-6
10.1023/A:1004613001755
10.1023/A:1004613001755
10.1007/s10957-004-0948-7
10.1137/040621132
10.1007/978-3-319-18567-5-16
https://doi.org/10.1007/978-1-4939-7199-2
https://doi.org/10.1007/978-1-4939-7199-2
10.1007/s11590-017-1228-4
https://doi.org/10.5281/zenodo.6491951
https://github.com/blockchain-group/DIRECTGOLib. Pre-release v2.0
 https://doi.org/10.3390/math11132920
https://doi.org/10.48550/arXiv.2309.00835
https://github.com/blockchain-group/DIRECTGO
https://arxiv.org/abs/2107.0220
https://doi.org/10.48550/arXiv.2205.03015
https://doi.org/10.48550/ARXIV.2209.05759
https://doi.org/10.1007/s10898-022-01185-5
https://doi.org/10.15388/vu.thesis.138
https://doi.org/10.15388/vu.thesis.138
https://doi.org/10.1007/s10957-022-02097-w
https://doi.org/10.20944/preprints202311.1873.v1

	Introduction
	Materials and Methods
	The original BIRECT
	Selection criteria
	Division and sampling criteria

	Description of the BIRECTv Algorithm
	Integrating Scheme for Identification of Potentially Optimal Hyper-rectangles in DIRECT-based Framework

	Results and Discussion
	Implementation
	Discussion

	Conclusions and Future Prospects
	
	References

