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Abstract: This paper introduces new improvements to the modified version of the BIRECT (BIsecting
RECTangles) algorithm referred to as BIRECTv. We explore various approaches, by first including
a grouping strategy for hyper-rectangles having almost the same sizes by categorizing them into
different classes. Therefore constraining them not to exceed a certain pre-defined threshold (a small
positive value to define the tolerance level). This approach allows for more efficient computation
and can be particularly useful when dealing with a large number of hyper-rectangles with varying
sizes. To avoid over-sampling, and preventing redundant or excessive sampling, at some shared
vertices in descendant subregions, a particular vertex database is used to limit the number of samples
taken within each subregion to two. The experimental investigation shows that these improvements
have a positive impact on the performance of the BIRECTv(imp.) algorithm and the proposal
is a promising global optimization algorithm compared to the original BIRECTv algorithm and
its variants. Additionally, the BIRECTv(imp.) algorithm showed particular efficacy in solving
high-dimensional problems.

Keywords: global optimization; derivative-free global optimization; diagonal partitioning scheme;
DIRECT-type algorithms; potentially optimal hyper-rectangles

MSC: 90C56; 90C26

1. Introduction

In scientific and engineering domains, optimization problems frequently involve objective
functions that can only be obtained through "black-box" methods or simulations, and they often lack
explicit derivative information. In black-box optimization cases, the development of derivative-free
global optimization methods (DFGO) has been forced by the need to optimize various and often
increasingly complex problems in practice because the analytic information about the objective function
is unavailable [10,15,33–37]. The absence of derivative information requires the use of derivative-free
global optimization (DFGO) methods. DFGO techniques are specifically designed to optimize functions
when derivatives are unavailable or unreliable. These methods explore the function’s behavior by
sampling it at various points in the input space.

This paper considers a global optimization problem

min
x∈D

f (x), (1)

that require only the availability of objective function values but no derivative information, therefore
numerical methods using gradient information can not be used to solve problem (1). The objective
function is supposed to be Lipschitz-continuous with some fixed but unknown Lipschitz constant,
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and the feasible domain is an n-dimensional hyper-rectangle D = [l, u] = {x ∈ R
n : lj ≤ xj ≤ uj, j =

1, . . . , n}.
Global optimization approaches can be categorized into two main types: deterministic [1,5,6,26,28]

and stochastic methods [12,42]. These methods address optimization problem (1) using various domain
partition schemes, often involving hyper-rectangles [5,25,42]. While many DIRECT-type techniques
employ hyper-rectangular partitions, other alternative approaches use simplicial partitioning [18,19]
(as DISIMPL-C [16] and DISIMPL--V [17]) or diagonal sampling schemes (see [22,23,25], as adaptive
diagonal curves [24]).

DIRECT-type algorithms, such as the DIRECT (DIvide RECTangles) algorithm [7–9] are the most
widely used partitioning-based algorithms for global optimization problems. One of the challenges
faced by these algorithms is the selection of potentially optimal rectangles (the most promising),
which can lead to inefficiencies and increased computational costs. In this paper, we provide a
comprehensive review of techniques and strategies aimed at reducing the set of selected potential
optimal hyper-rectangles in DIRECT-type algorithms. We explore various approaches, including a novel
grouping strategy which simplify the identification of hyper-rectangles in the selection procedure.
This strategy consists in rounding or approximating the measurements (sizes) of hyper-rectangles, that
are extremely small in size, by grouping them together into classes. This simplification can help in
various computational or analytical tasks, making the problem more manageable without significantly
compromising the accuracy of the analysis or optimization process.

Our review highlights the importance of reducing the number of function evaluations while
maintaining the algorithm’s convergence properties. The recent papers by [29,38,39] provides a good
and a comprehensive overview of techniques aimed at reducing the set of potentially optimal rectangles
in DIRECT-type algorithms. It significantly contributes to the field of derivative-free global optimization
and serves as a valuable resource for researchers and practitioners seeking to enhance the efficiency
and effectiveness of such algorithms. Some suggested methods are summarized in [9,21,29,36,38].

In the context of Optimization Methods in Engineering Mathematics, the size of a hyper-rectangle
often incorporate constraints imposed by the engineering problem. These constraints ensure that the
optimization process adheres to real-world limitations, such as physical boundaries, safety margins, or
resource constraints. For example, in structural engineering, the size of a hyper-rectangle could
represent the permissible ranges for material properties, dimensions, or loads. In engineering
optimization, reducing the size of a hyper-rectangle can represent the imposition of stricter constraints.
This ensures that the optimized solution adheres to more stringent requirements, such as safety limits
or design specifications.

We also use an additional assumption to improve this version allowing to evaluate the objective
function only once at each vertex of each hyper-rectangle. The objective function values at vertices
could be stored in a special vertex database, and then the result is directly retrieved from this database
when required. In addition, an update to the modified optimization domain is applied for some test
problems as used in the previous version [3].

The original DIRECT algorithm faces challenges when it comes to sampling points at the edges
of the feasible region, which can slow down its convergence, particularly in cases where the best
solution is located at the boundary. This limitation is especially pronounced in constrained problems.
Recent research [13,32,38] has emphasized the importance of addressing this issue, showing that it’s
possible to achieve faster convergence by employing strategies that sample points at the vertices of
hyper-rectangles, especially when solutions are near the boundary.

Taking these insights into account, we’ve integrated one of the latest versions of DIRECT-type
algorithms into our approach, a new diagonal partitioning and sampling scheme called BIRECTv

(BIsection of RECTangles with Vertices) based on the BIRECT algorithm. In the BIRECTv framework,
the objective function is evaluated at specific points within the initial hyper-rectangle. Instead of
evaluating the objective function only at the vertices, as done in most DIRECT-type algorithms, BIRECTv
samples two points along the main diagonal of the initial hyper-rectangle, located at 1/3 and 1 of the
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way along the diagonal. This approach provides more comprehensive information about the objective
function, and helps to improve convergence, particularly near boundaries.

The contributions of the paper can be summarized as follows:

1. A review of techniques and strategies aiming to reduce the set of selected potential optimally
hyper-rectangles in DIRECT-type algorithms.

2. Introduction of a novel grouping strategy which simplify the identification of hyper-rectangles in
the selection procedure in DIRECT-type algorithms.

3. The new approach incorporates a particular vertex database to avoid more than two samples in
descendant subregions.

4. The improvements of BIRECTv algorithm positively impacted the performance of the BIRECTv

algorithm.

The rest of this paper is organized as follows. In Sect. 2.1, a review of the original BIRECT algorithm is
provided, while in Sect. 2.2 a brief description of the new sampling and partitioning scheme called
BIRECTv algorithm is also discussed. In Sect. 2.3, we incorporate a novel scheme for grouping and
selecting potential optimal hyper-rectangles in BIRECT-type algorithms. Numerical investigation and
discussion of the results is given in Sect. 3. Finally, in Sect. 4, we conclude the paper and outline
potential directions for future prospects.

2. Materials and Methods

This section provides an overview of the original BIRECT algorithm and its modifications.

2.1. The original BIRECT

The BIRECT (BIsection of RECTangles) algorithm, developed in [20], employs a diagonal
space-partitioning approach and involves two primary procedures: sampling on diagonals and
bisection of hyper-rectangles.

In the initialization step, the algorithm begins by evaluating the objective function at two initial
points, "lower" l = (l1, . . . , ln) = (1/3, . . . , 1/3)T and "upper" u = (u1, . . . , un) = (2/3, . . . , 2/3)T ,
positioned along the main diagonal of the normalized domain, considered as the first unit hyper-cube,
D̄ = D̄1

0 = [l̄, ū] = {x̄ ∈ R
n : 0 ≤ l̄j ≤ x̄ ≤ ūj ≤ 1, j = 1, . . . , n}. The hyper-cube representing the

search space is then divided into a set of smaller hyper-rectangles obeying a specific sampling and
partitioning scheme using the following critera (see Algorithm 1).

2.1.1. Selection criteria

• At each iteration (kth iteration), starting from the current partition

Pk = {D̄i
k : i ∈ Ik},

where Ik is the index set identifying the current partition, a new partition Pk+1 is created by
bisecting a set of potentially optimal hyper-rectangles from the previous partition.

• The identification of a potentially optimal hyper-rectangle is based on lower bound estimates of
the objective function over each hyper-rectangle, with a fixed rate of change L̃ > 0 (analogous to
a Lipschitz constant).

• A hyper-rectangle D̄
j
k, j ∈ Ik is considered potentially optimal if specific inequalities involving ε

(a positive constant) and the current best-known function value fmin are satisfied.

min
{

f (lj), f (uj)
}

− L̃δ
k
j ≤ min

{

f (li), f (ui)
}

− L̃δ
k
i , ∀i ∈ Ik (2)

min
{

f (lj), f (uj)
}

− L̃δ
k
j ≤ fmin − ε| fmin|, (3)
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where the measure (distance, size) of the hyper-rectangle is given by

δ̄
i
k =

2
3
‖b̄i − āi‖, (4)

A hyper-rectangle D̄
j
k is potentially optimal if the lower bound for f computed by the left-hand

side of (2) is optimal for some fixed rate of change L̃ among the hyper-rectangles of the current partition
Pk. Inequality (3) helps prevent excessive emphasis on local search [7].

2.1.2. Division and sampling criteria

• After the initial partitioning, BIRECT proceeds to future iterations by partitioning potentially
optimal hyper-rectangles and evaluating the objective function f (x) at new sampling points.

• New sampling points are generated by adding and subtracting a distance equal to half the side
length of the branching coordinate from the previous points. This approach allows for the reuse
of old sampled points in descendant subregions.

• An important aspect of the algorithm is how the selected hyper-rectangles are divided. For each
potentially optimal hyper-rectangle, the set of maximum coordinates (edges) is computed, and
the hyper-rectangle is bisected along the coordinate (branching variable xbr, 1 ≤ br ≤ n) with
the largest side length. The selection of the coordinate direction is based on the lowest index j,
prioritizing directions with more promising function values.

br = min

{

arg max
1≤j≤n

=
{

di
j =

∣

∣

∣
bi

j − ai
j

∣

∣

∣

}

}

, (5)

The partitioning process continues until a predefined number of function evaluations has been
performed, or a stopping criterion is satisfied. The algorithm keeps track of the best (smallest) objective
function value f (x̄) found over all sampled points in the final partition. The corresponding generated
point x̄ at which this value was achieved provides an approximate solution to the optimization
problem. The main steps of the BIRECT algorithm are outlined in Algorithm 1 (see [20] for a detailed
pseudo-code).

The BIRECT algorithm is a robust optimization technique that efficiently explores the search space,
combines global and local search strategies, and strives to find the optimal or near-optimal solution
for multidimensional optimization problems. For a more comprehensive understanding, additional
details can be found in the original paper [20].
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Algorithm 1 Main steps of BIRECT algorithm

1: Input : Objective function: f , search-space: D, tolerance: ǫpe, the maximal number of function

evaluations: Mmax, and the maximal number of iterations: Kmax;
2: Output : The best objective function value: fmin, global minimizer: xmin, and algorithmic

performance measures: m, k and pe (if needed);
3: Normalize the search space D to the unit hyper-cube D̄;
4: Initialize l1 = (1/3, . . . , 1/3) and u1 = (2/3, . . . , 2/3), evaluate f (l1) and f (u1), and set fmin =

min
{

f (l1), f (u1)
}

, xmin = argmin
x∈{li ,ui}

f (x), m = 2, k = 1, Ik = {1};

5: while pe > εpe and m < Mmax and k < Kmax do
6: Identify the index set Pk ⊆ Ik of potentially optimal hyper-rectangles (POHs);
7: Set Ik = Ik\{Pk};
8: for i ∈ Pk do
9: Select the branching variable br (coordinate index) Eq. (5);

10: Divide D̄i into a two new hyper-rectangles D̄m+1 and D̄m+2. Update δm+1 and δm+2;
11: Create the new sampling points lm+1 and um+2;
12: Update the partition set: Pk = Pk\D̄

j
k ∪ D̄m+1

k ∪ D̄m+2
k ;

13: if f m+1
min ≤ fmin or f m+1

min ≤ fmin then
14: Update fmin and xmin;
15: end if
16: Update performance measures: k, m and pe;
17: end for
18: end while
19: Return : fmin, xmin and algorithmic performance measures: m, k and pe.

2.2. Description of the BIRECTv Algorithm

In this subsection, we return back to one of the most recent versions of DIRECT-type algorithms
(called BIRECTv) developed in [3]. One effective strategy is to sample points at the vertices of the
hyper-rectangles. This approach ensures that points near the boundaries are explored, increasing the
chances of finding solutions located there. Sampling at vertices can significantly improve convergence
when the optimal solution is at or near the boundary, see [32]. A description of two different
partitioning schemes used in DIRECT-type algorithms is shown in Figure 1. The original DIRECT
algorithm primarily focuses on sampling within the interior of the feasible region, which means it may
miss exploring points near the boundary. Therefore, it may require a large number of iterations
to converge to the optimal solution. This slow convergence is because it relies on subdividing
hyper-rectangles within the interior, and it may take many iterations before a hyper-rectangle boundary
coincides with the solution. The studies conducted in [33,40] have indeed highlighted the significant
impact of the limitation in convergence when the optimal solution lies at the boundary of the feasible
region. This issue is particularly prevalent in constrained optimization problems, where solutions
often lie at the boundary due to the constraints imposed on the variables.

However, a challenge arises when the newly created sampling points coincide with previously
evaluated points at shared vertices. This leads to additional evaluations of the objective function,
increasing the number of function evaluations per iteration. To address this issue, the paper suggested
modifying the original optimization domain to obtain a good approximation of the global solution.

This approach was presented as an alternative to locate solutions that are situated near the
boundary. The results of the experiments demonstrated that the proposed modification to the
optimization domain positively impacted the performance of the BIRECTv algorithm. It outperformed
the original BIRECT algorithm and the two popular DIRECT-type algorithms on the test problems.
Additionally, the BIRECTv algorithm showed particular efficacy in solving high-dimensional problems.
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Figure 1. Description of the initialization and the first two iterations used in two different sampling
and partitioning schemes ( BIRECT: upper figure), and (BIRECTv: lower figure) on a two-dimensional
example.

2.3. Integrating Scheme for Identification of Potentially Optimal Hyper-rectangles in DIRECT-based Framework

In this section, we introduce an innovative grouping technique that streamlines the
hyper-rectangle identification process during selection. This approach involves the rounding
or approximation of measurements (sizes) for hyper-rectangles of exceedingly small dimensions.
These are then organized into classes, yielding simplification that enhances the manageability of
computational and analytical tasks. Importantly, this simplification doesn’t substantially impact the
precision of the analysis or optimization process. The selection of the most promising hyper-rectangles
in DIRECT-type algorithms is a crucial aspect of optimization.

Various strategies have been developed to enhance this selection process, resulting in different
versions of the algorithm. In the DIRECT-l variant [2,9], the size of a hyper-rectangle is measured by the
length of its longest side, which corresponds to the infinity-norm. This approach allows DIRECT-l to
group more hyper-rectangles with the same measure, resulting in fewer distinct measures. Moreover,
in DIRECT-l, only one hyper-rectangle from each group is selected, even if there are multiple potentially
optimal hyper-rectangles in the same group. This reduces the number of divisions within a group.
DIRECT-l is found to perform well for lower-dimensional problems that do not have an excessive
number of local and global minima.

The aggressive version of DIRECT takes a different approach by selecting and dividing a
hyper-rectangle of every measure in each iteration. While this strategy requires more function
evaluations compared to other versions of DIRECT, it may be advantageous for solving more complex
problems. The PLOR algorithm simplifies the set of potentially optimal hyper-rectangles to just two:
the maximal and the minimal Lipschitz constants. This reduction allows the PLOR approach to be
independent of user-defined parameters. It strikes a balance between local and global search during
the optimization process by considering only these two extreme cases.

In two-phase globally and locally biased algorithms, the selection procedure during one of the
phases operates similarly to the original DIRECT algorithm, considering all hyper-rectangles from the
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current partition. However, in the second phase, the selection of potentially optimal hyper-rectangles
is constrained based on their measures. Globally-biased versions [17,24] focus on larger subregions,
addressing the algorithm’s first weakness, while locally-biased versions [2,14] concentrate on smaller
subregions, addressing the second weakness of DIRECT-type algorithms. These adaptations and
strategies aim to improve the efficiency and effectiveness of DIRECT-type algorithms in addressing
optimization challenges, particularly in scenarios with complex landscapes and varying dimensions
[32,33].

The authors in [29] introduced an improved scheme by extending the set of potentially optimal
hyper-rectangles for DIRECT-GL algorithm. These enhanced criteria are designed to reduce the
computational cost of the algorithm by focusing on the most promising regions of the search space.
By implementing the improved selection criteria, the algorithm becomes more efficient in identifying
regions of interest within the optimization landscape. This leads to a reduction in the number of
hyper-rectangles that need to be explored, saving computational resources and time. The enhancements
introduced in this work are not limited to a specific type of problem or application. They can be applied
to a wide range of optimization scenarios where DIRECT-type algorithms are utilized [30,31,34,39].

Let the partition of D̄i
k at iteration k be defined as

Pk = {D̄i
k : i ∈ Ik},

Let Ik is the set of indices identifying the subsets defining the current partition Pk. Let δ̄
i
k a measure of

D̄i
k defined by

δ̄
i
k =

2
3
‖b̄i − āi‖, (6)

Let Ii
k ⊆ Ik, represents a subset of indices that correspond to elements of Pk with measue δ

i
k

having almost the same measure as δ̄
i
k within a certain tolerance (threshold=∆), ranging from 10−7 to

10−2, i.e., such that ∆ =
{

10−7, 10−6, 10−5, 10−4, 10−3, 10−2}.

diff =
∣

∣

∣
δ̄

i
k − δ

i
k

∣

∣

∣
≤ ∆, i ∈ I

i
k. (7)

The purpose is to identify potentially optimal hyper-rectangles. It looks for hyper-rectangles
(indexed by I) where the norm value (δi

k) is very close (within the defined tolerance) to the normalized
norm value (δ̄i

k).
The line 11 is used to reduce the set of potentially optimal hyper-rectangles. The code filters the

hyper-rectangles and selects only those that meet a specific condition, which is having their norm
value (δi

k) close to the normalized norm value (δ̄i
k) within a tolerance of 0.0001.

In summary, this line of code helps to focus on potentially more promising hyper-rectangles,
discarding those that are not as close to the desired normalized norm value. It’s a way to efficiently
narrow down the search space and improve the efficiency of the algorithm. An illustrative example for
two different tolerance levels is given in Figure 2.

The difference between the tolerance 10−2 and 10−7 lies in the level of precision used when
comparing the δ

i
k and δ̄

i
k values to filter the potentially optimal hyper-rectangles.

1. Tolerance 10−2 :

• A tolerance of 10−2 (0.01) means that the algorithm will consider hyper-rectangles whose δ
i
k and

δ̄
i
k values are within 0.01 of each other.

• It allows for a relatively larger difference between δ
i
k and δ̄

i
k, meaning the algorithm will be more

lenient in selecting potentially optimal hyper-rectangles.
• This might result in a larger set of potentially optimal hyper-rectangles, including some with

relatively larger differences in their norm values.
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Figure 2. Grouping strategy using two different tolerance levels in the BIRECT algorithm applied to the
Ackley test problem 1 at iteration 36. Small tolerance (left side), large tolerance (right side).

2. Tolerance 10−7 :

• A tolerance of 10−7 (0.0000001) means that the algorithm will consider hyper-rectangles whose δ
i
k

and δ̄
i
k values are within 0.0000001 of each other.

• It uses a much smaller tolerance, making the algorithm much stricter in selecting potentially
optimal hyper-rectangles.

• This will result in a smaller set of potentially optimal hyper-rectangles, only including those with
extremely close norm values.

The choice of tolerance depends on the specific problem and the desired level of precision
in the algorithm. A larger tolerance may lead to faster execution, but it might also include some
hyper-rectangles that are not truly optimal. On the other hand, a smaller tolerance will be more accurate
but may require more computational effort to identify the potentially optimal hyper-rectangles. It’s a
trade-off between efficiency and precision in the algorithm’s behavior.

Note: The algorithm assumes a zero-based index for the array elements, and the first index found
satisfying the condition is returned. If no element satisfies the condition, the algorithm returns -1.

The algorithm essentially performs a linear search through the δ
i
k array and stops as soon as it

finds the first element within the specified tolerance level. It’s important to choose an appropriate
tolerance level depending on the application and the expected values in the array.

3. Results and Discussion

3.1. Implementation

In this section we provide an overview of the methodology and objectives of our study, which
involves benchmarking the new enhanced BIRECTv against the previous version of BIRECTv [3], the
original BIRECT [20,21], and other DIRECT-type algorithms on a set of test problems. In our study,
the size of the hyper-rectangle in BIRECTv is measured using the same measure as in the original
BIRECT algorithm, while in DIRECT-l, it corresponds to the infinity norm, which allows it to collect
more hyper-rectangles of the same size. This is in contrast to the Euclidean distance measure used in
the original DIRECT algorithm. Our implementation uses the same set of 54 global optimization test
problems from [4]. The Hedar test set is a popular benchmark for testing optimization algorithms.
These problems are described in Table A1, which includes attributes like problem number, problem
name, dimension, feasible domain, number of local minima, and known minimum. Some test problems
have multiple variants, and the algorithm is tested for different dimensionalities. In some cases, during
the initial steps of the algorithm, sampling is performed near the global minimizer. The feasible
domain is modified by increasing the upper bound in these situations. these modified test problems
are marked with a star. All computations were performed with MATLAB R2017b on a computer with
an Intel Core i5-6300U CPU @ 3.5 GHz Processor, 8GB memory and running on Windows 10 operating
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system. The output values are rounded up to 10 decimals. All algorithms were tested using a limit of
Mmax = 500, 000 function evaluations in each run. For the 54 analytical test cases with a priori known
global optima f ∗, the used stopping criterion is based on the percent error:

pe =







f (x̄)− f ∗

| f ∗ |
≤ 10−4, f ∗ 6= 0,

f (x̄) ≤ 10−4, f ∗ = 0,
(8)

The value of εpe was set to 10−4 as a default value. This value likely represents a tolerance
threshold used during the optimization process such that pe ≤ εpe .

The comparison is based on two primary criteria: the best-found function value f (x̄) and the
number of function evaluations (f.eval.). These criteria help evaluate the performance of the algorithms
on each test problem. The study provides statistical measures, such as averages and medians, for the
number of function evaluations. The average performance provides an overall assessment of each
algorithm’s performance across all problems, while the median performance is less influenced by
outliers and represents the middle point in the data. In the tables labeled "comparison," the best number
of function evaluations is highlighted in bold font to emphasize the most efficient results. Additionally,
the study includes information about the number of iterations and the execution time in seconds, these
details are specifically reported on GitHub and Zenodo repositories (see Data Availability Statement
below). The results of all six algorithms are reported in Table 1, where the same arguments were used:
a specific domain modifications, and a grouping scheme from Algorithm 2 with a tolerence level of
10−4. Note that,in our results, a correction was made during the current experiments to the minimum
value acheived for the Perm test function 27 from [3]. The potentially optimal hyper-rectangles
are those that have their norm values close to the normalized norm value, which means they are
potentially interesting candidates for further evaluation. By filtering out the hyper-rectangles that don’t
satisfy this condition, the set of potentially optimal hyper-rectangles (I) is reduced to a smaller subset.
These reduced hyper-rectangles are considered more interesting candidates for further evaluation or
processing in the algorithm. Additionally, BIRECTv-l(imp.) and BIRECTv(imp.) are improved versions
by using a special vertex database to prevent redundant sampling. Note that this assumption is not
applied to the BIRECT algorithm, since the algorithm itself is designed to enable reuse of objective
function values in descendant subregions. An illustrative example in Figure 3 demonstrates the
corresponding version of the BIRECTv algorithm when the introduced vertex database is applied. The
total number of function evaluations is 490 for BIRECTv and 370 for the improved version.

Algorithm 2 Find First Index within Tolerance

Require:
1: Input:
2: δ

i
k: An array of numerical values,

3: δ̄
i
k: A scalar numerical value (The normalized norm value: measure of the hyper-rectangle D̄i

k);
Ensure:

4: Output:
5: index: The index of the first occurrence in δ

i
k where the absolute difference with δ̄

i
k is within the

tolerance level;
6: procedure FIND INDEX WITHIN TOLERANCE(δi

k, δ̄
i
k)

7: Set the tolerance level threshold to 0.0001 (or any desired value);
8: Initialize the variable index to -1;
9: for each element at index i in the δ

i
k array do

10: Calculate the absolute difference diff between element and δ̄
i
k;

11: if diff ≤ threshold then
12: Set index to i;
13: break
14: end if
15: end for
16: return index;
17: end procedure
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Table 1. Comparison between BIRECTv-l(imp.), BIRECTv(imp.), BIRECTv-l[3], BIRECTv[3], BIRECT-l(new), and BIRECT(new) algorithms.

Problem BIRECTv-l (imp.) BIRECTv (imp.) BIRECTv-l [3] BIRECTv [3] BIRECT-l (new) BIRECT (new)

No. f (x̄) f.eval. f (x̄) f.eval. f (x̄) f.eval. f (x̄) f.eval. f (x̄) f.eval. f (x̄) f.eval.

1 1.22 × 10−5 129 1.22 × 10−5 153 1.22 × 10−5 156 1.22 × 10−5 192 1.22 × 10−5 134 1.22 × 10−5 158
2 1.22 × 10−5 387 1.22 × 10−5 1135 1.22 × 10−5 422 1.22 × 10−5 1578 1.22 × 10−5 358 1.22 × 10−5 1062
3 1.22 × 10−5 1000 1.22 × 10−5 47311 1.22 × 10−5 1000 1.22 × 10−5 72804 1.22 × 10−5 766 1.22 × 10−5 41654
4 8.77 × 10−5 474 8.77 × 10−5 742 8.77 × 10−5 638 8.77 × 10−5 1034 9.17 × 10−5 434 9.17 × 10−5 434

5 1.83 × 10−6 192 1.83 × 10−6 209 1.83 × 10−6 254 1.83 × 10−6 284 3.68 × 10−5 496 3.68 × 10−5 496
6 1.53 × 10−6 189 1.53 × 10−6 211 1.53 × 10−6 252 1.53 × 10−6 284 3.07 × 10−5 682 3.07 × 10−5 682
7 2.88 × 10−6 186 2.88 × 10−6 209 2.88 × 10−6 248 2.88 × 10−6 282 4.03 × 10−5 852 4.03 × 10−5 849
8 2.99 × 10−6 228 2.99 × 10−6 249 2.99 × 10−6 300 2.99 × 10−6 334 2.99 × 10−6 330 2.99 × 10−6 330
9 0.39791 480 0.39791 370 0.39791 652 0.39791 490 0.39790 242 0.39790 242

10 9.82 × 10−5 1614 9.82 × 10−5 1337 9.82 × 10−5 2318 9.82 × 10−5 1868 9.82 × 10−5 794 9.82 × 10−5 794

11 4.41 × 10−5 263 3.18 × 10−5 431 4.41 × 10−5 346 3.18 × 10−5 578 4.41 × 10−5 234 4.41 × 10−5 234

12 7.35 × 10−5 1932 7.35 × 10−5 2087 7.35 × 10−5 2652 7.35 × 10−5 2912 6.59 × 10−5 6103 6.59 × 10−5 6125
13 9.55 × 10−5 28871 8.17 × 10−5 19418 9.55 × 10−5 38460 9.55 × 10−5 44114 8.83 × 10−5 8202 8.83 × 10−5 8282
14 −0.99999 138 −0.99999 716 −0.99999 180 −0.99999 1082 −0.99999 110 −0.99999 558
15 3.00000 25 3.00000 25 3.00000 28 3.00000 28 3.00019 274 3.00019 274
16 4.61 × 10−7 3440 3.697 × 10−7 4700 4.61 × 10−7 5192 3.697 × 10−7 5756 7.76 × 10−7 3236 9.86 × 10−3

> 500000
17 −3.86245 162 −3.86245 169 −3.86245 200 −3.86245 208 −3.86243 352 3.86243 352
18 −3.32214 490 −3.32214 490 −3.32214 542 −3.32214 542 −3.32207 764 3.32207 764
19 −1.03154 162 −1.03154 254 −1.03154 202 −1.03154 334 −1.03154 190 1.03154 196
20 9.03 × 10−6 103 9.03 × 10−6 116 9.03 × 10−6 136 9.03 × 10−6 154 9.03 × 10−5 80 9.03 × 10−6 80

21 1.83 × 10−5 388 1.83 × 10−5 459 1.83 × 10−5 454 1.83 × 10−5 558 1.83 × 10−5 264 1.83 × 10−5 354
22 3.54 × 10−5 1133 3.54 × 10−5 6246 3.54 × 10−5 1182 3.54 × 10−5 7440 3.54 × 10−5 766 3.54 × 10−5 2302
23 2.71 × 10−5 119 2.71 × 10−5 163 2.71 × 10−5 148 2.71 × 10−5 208 2.71 × 10−5 90 2.71 × 10−5 90
24 −1.80130 142 −1.80130 231 −1.80130 184 −1.80130 314 −1.80120 136 −1.80120 126
25 −4.68744 5654 −4.68744 5051 −4.68766 8484 −4.68766 7526 −4.68757 49160 −4.68752 47196
26 −8.60559 > 500000 −7.55576 > 500000 −8.60559 > 500000 −7.55576 > 500000 −7.32708 > 500000 −7.32708 > 500000
27 0.00000 43889 0.0521989805 > 500000 0.00000 65536 0.00000 48724 0.00203 > 500000 0.00203 > 500000
28 4.59 × 10−5 1837 4.59 × 10−5 1223 4.59 × 10−5 2518 4.59 × 10−5 1624 8.34 × 10−5 1814 4.86 × 10−5 2108
29 9.75 × 10−5 2583 9.75 × 10−5 2867 9.75 × 10−5 3058 9.75 × 10−5 3400 9.12 × 10−5 20672 9.12 × 10−5 21260
30 0.00000 159 0.00000 159 0.00000 204 9.97 × 10−5 40788 9.00 × 10−5 4932 9.00 × 10−5 5623
31 4.81 × 10−5 523 4.81 × 10−5 809 4.81 × 10−5 688 4.81 × 10−5 820 4.81 × 10−5 154 4.81 × 10−5 178
32 1.29 × 10−5 5237 1.29 × 10−5 6511 1.29 × 10−5 8512 1.29 × 10−5 10978 1.29 × 10−5 66462 1.29 × 10−5 82546
33 1.98 × 10−5 124 1.98 × 10−5 1439 1.98 × 10−5 124 1.98 × 10−5 1454 2.36 × 10−5 1240 2.36 × 10−5 15544
34 9.65 × 10−5 540 9.65 × 10−5 544 9.65 × 10−5 700 9.65 × 10−5 716 9.65 × 10−5 242 9.65 × 10−5 242

35 2.41 × 10−5 1950 2.41 × 10−5 2231 2.41 × 10−5 2528 2.41 × 10−5 3058 2.41 × 10−5 1494 2.41 × 10−5 1692
36 3.05 × 10−5 17176 3.05 × 10−5 27256 3.05 × 10−5 18922 3.05 × 10−5 31756 7.61 × 10−5 6104 7.61 × 10−5 10766
37 2.56 × 10−5 384 1.37 × 10−5 413 1.37 × 10−7 486 1.37 × 10−7 564 2.56 × 10−5 214 2.56 × 10−5 268
38 6.398 × 10−5 17061 6.398 × 10−5 10362 3.42 × 10−7 25904 3.42 × 10−7 16754 6.3981 × 10−5 704 6.398 × 10−5 3780
39 1.77 × 10−8 1366 1.77 × 10−8 55701 1.77 × 10−8 1366 1.77 × 10−8 84784 4.14 × 10−5 2248 4.14 × 10−5 265002
40 −10.15234 4002 −10.15234 3665 −10.15234 6146 −10.15234 5604 −10.15307 1254 −10.15307 1220
41 −10.40201 1536 −10.40201 1655 −10.40201 2256 −10.40201 2456 −10.402696 1186 −10.402696 1184
42 −10.53545 1740 −10.53545 2238 −10.53545 2476 −10.53545 3332 −10.53618 1138 −10.53618 1108
43 −186.72139 432 −186.72139 181 −186.72139 570 −186.72139 226 −186.72102 766 −186.72102 642
44 1.15 × 10−5 92 1.15 × 10−5 143 1.15 × 10−5 112 1.15 × 10−5 190 1.15 × 10−5 106 1.15 × 10−5 118
45 2.87 × 10−5 364 2.87 × 10−5 987 2.87 × 10−5 392 2.87 × 10−5 1400 2.87 × 10−5 294 2.87 × 10−5 602
46 5.74 × 10−5 1043 5.74 × 10−5 19418 5.74 × 10−5 1054 5.74 × 10−5 27566 5.74 × 10−5 784 5.74 × 10−5 8742
47 3.89 × 10−6 348 3.89 × 10−6 328 3.89 × 10−6 494 3.89 × 10−6 460 3.89 × 10−6 226 3.89 × 10−6 214

48 8.94 × 10−7 880 8.94 × 10−7 1141 8.94 × 10−7 1102 8.94 × 10−7 1484 3.04 × 10−5 1006 3.04 × 10−5 1134
49 3.28 × 10−6 2147 3.28 × 10−6 5331 3.28 × 10−6 2452 3.28 × 106 6066 0.062500 > 500000 0.062500 > 500000
50 −49.99979 1164 −49.99979 1414 −49.99979 1312 −49.99979 1662 −49.99864 1322 −49.99864 1462
51 −209.98779 2965 −209.98779 10470 −209.98779 3114 −209.98779 11880 −209.98627 2300 −209.98627 3122
52 2.88 × 10−5 122 2.88 × 10−5 125 2.88 × 10−5 156 2.88 × 10−5 162 2.88 × 10−5 118 2.88 × 10−5 118
53 6.43 × 10−5 2805 6.43 × 10−5 2948 6.43 × 10−5 3710 6.43 × 10−5 3958 9.62 × 10−5 1858 9.62 × 10−5 1920
54 1.79278 > 500000 1.79278 > 500000 2.607286 > 500000 2.607286 > 500000 17.62154 > 500000 17.62154 > 500000

Average 21488.333 32445.204 22602.2595 27088.333 40623.833 56374.611
Median 531.500 1138.000 694.000 1531.000 766.000 1085.000
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iteration:    1   fmin:   17.5082995158    f evals:        2 

.   .   . 

iteration:   20   fmin:    0.4093044620    f evals:       10 

.   .   . 

iteration:   24   fmin:    0.3994884267    f evals:       16 

iteration:   25   fmin:    0.3994884267    f evals:       26 

iteration:   26   fmin:    0.3980837400    f evals:       16 

iteration:   27   fmin:    0.3980837400    f evals:       14 

.   .   . 

iteration:   31   fmin:    0.3980250409    f evals:       18 

iteration:   32   fmin:    0.3980250409    f evals:       14 

iteration:   33   fmin:    0.3979818763    f evals:       24 

iteration:   34   fmin:    0.3979818763    f evals:       28 

iteration:   35   fmin:    0.3979818763    f evals:       12 

iteration:   36   fmin:    0.3979818763    f evals:       12 

iteration:   37   fmin:    0.3979818763    f evals:       22 

iteration:   38   fmin:    0.3979067737    f evals:       24 

Iteration:    1   fmin:   17.5082995158    f evals:        2 

.   .   . 

Iteration:   20   fmin:    0.4093044620    f evals:        9 

.   .   . 

Iteration:   24   fmin:    0.3994884267    f evals:       13 

Iteration:   25   fmin:    0.3994884267    f evals:       20 

Iteration:   26   fmin:    0.3980837400    f evals:       12 

Iteration:   27   fmin:    0.3980837400    f evals:       11 

.   .   . 

Iteration:   31   fmin:    0.3980250409    f evals:       14 

Iteration:   32   fmin:    0.3980250409    f evals:       10 

Iteration:   33   fmin:    0.3979818763    f evals:       20 

Iteration:   34   fmin:    0.3979818763    f evals:       18 

Iteration:   35   fmin:    0.3979818763    f evals:        8 

Iteration:   36   fmin:    0.3979818763    f evals:        8 

Iteration:   37   fmin:    0.3979818763    f evals:       15 

Iteration:   38   fmin:    0.3979067737    f evals:       15 

Figure 3. An example of the iteration progress using the BIRECTv algorithm on the left-hand side from
[3], and BIRECTv(imp.) on the right-hand side, while solving Branin test problem (No. 3 from Table 1).

3.2. Discussion

In this subsection, we discuss the performance evaluation of three optimization algorithms and
their variants of the DIRECT-type that are designed for solving global optimization problems using
Hedar test set [4]. All six algorithms are variations of the original BIRECT algorithm [20]. The improved
versions (with "imp.") are modifications of the original BIRECTv and BIRECTv-l algorithms from [3].
Two new variations of the algorithm, "BIRECT-l (new)" and "BIRECT" (new), are also introduced. The
improved version of BIRECTv-l(imp.) consistently outperform their previously published counterparts
(BIRECTv-l and BIRECTv, respectively), achieving the lowest average objective function value among
all six algorithms. This improvement is evident in terms of both objective function value and the
number of function evaluations. This suggests that the algorithm enhancements have been successful
in optimizing the problems more efficiently. However, BIRECTv-l(imp.) have the same comparable
performance to BIRECTv-l in some cases, indicating that the modification of the optimization domain
may not always be necessary. Similar to BIRECTv-l(imp.), the algorithm BIRECTv(imp.) generally
performs well on some problems (often requires fewer function evaluations), but may not be as
efficient on others as shown for problem 27. For this problem, the algorithm fails to reach a conceivable
objective function contrary to BIRECTv and BIRECTv-l algorithms. The versions of BIRECTv-l and
BIRECTv are evaluated based on results from [3], but with a tolerance level of 10−4. For the first
algorithm, both metrics (average-median) show that the algorithm is the second best algorithm.
Particularly, it outperforms the BIRECTv(imp.), and dominates across all other problems. The new
versions of BIRECT-l(new) and BIRECT(new) introduced in Table 2 show competitive performance
compared to their predecessors [20,21], especially in terms of the number of function evaluations
required. The average value is smallest using BIRECT-l(new) and BIRECT(new) from Table 2, (37230.593
and 40529.259 respectively), compared to the same algorithms from Table 1, ( 40623.833 and 56374.611
respectively). Even more, the average is smaller for BIRECT-l(new) (36641, 963) from Table 3 without
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the domain modification than from Table 1 with the same tolerance 10−4. This means that the
modification of the optimization domain is not necessary for the BIRECT algorithm. While they may not
always achieve the best objective function value, they often achieve a good balance between solution
quality and computational effort. The mention f ailed in Table 3 means that there no improvement in the
objective function value during many succesive iterations, or if an increasing number of evaluations per
iteration is observed. In both cases, the number of function evaluations is > 500.000. The performance
of each algorithm varies across different optimization problems. Some algorithms may perform
exceptionally well on certain problems but less effectively on others. This demonstrates the importance
of algorithm selection based on the specific characteristics of the optimization task.

• The improved versions of BIRECTv-l and BIRECT (imp.) appear to be reliable choices for
optimization tasks, as they consistently outperform the previously published versions and
demonstrate competitive performance in terms of both objective value and computational effort.

• The new algorithms, BIRECT-l (new) and BIRECT (new), show promise and are particularly
efficient in terms of the number of function evaluations. However, their objective function values
may vary depending on the problem.

• The choice of algorithm should be problem-dependent. Some algorithms may be more suitable
for specific problem characteristics, such as unimodal or multimodal objective functions, and
global or local optimization.

• These informations provide a comprehensive assessment of the algorithms’ performance across
various aspects, including solution quality and computational efficiency.
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Table 2. Comparison between BIRECT-(new), BIRECT from [20,21], BIRECT-l-(new), and BIRECT-l from
[21]

Problem BIRECT-(new) BIRECT [20,21] BIRECT-l-(new) BIRECT-l [21]

No. f (x̄) f .eval. f (x̄) f .eval. f (x̄) f .eval. f (x̄) f .eval.

1 2.54 × 10−5 202 2.54 × 10−5 202 2.54 × 10−5 176 2.54 × 10−5 176
2 2.54 × 10−5 1256 2.54 × 10−5 1268 2.54 × 10−5 454 2.54 × 10−5 454
3 2.54 × 10−5 45128 2.54 × 10−5 47792 2.54 × 10−5 874 2.54 × 10−5 874
4 9.17 × 10−5 436 9.17 × 10−5 436 9.17 × 10−5 436 9.17 × 10−5 436
5 4.02 × 10−5 468 4.02 × 10−5 476 4.02 × 10−5 468 4.02 × 10−5 468
6 3.35 × 10−5 472 3.35 × 10−5 478 3.35 × 10−5 472 3.35 × 10−5 472
7 3.67 × 10−5 474 3.67 × 10−5 480 3.67 × 10−5 474 3.67 × 10−5 474
8 6.10 × 10−5 188 6.10 × 10−5 194 6.10 × 10−5 188 6.10 × 10−5 188
9 0.39790 242 0.39790 242 0.39790 242 0.39790 242

10 9.82 × 10−5 794 9.82 × 10−5 794 9.82 × 10−5 794 9.82 × 10−5 794
11 4.84 × 10−5 722 4.84 × 10−5 722 4.84 × 10−5 722 4.84 × 10−5 722
12 7.15 × 10−5 4060 7.15 × 10−5 4060 7.15 × 10−5 4060 7.15 × 10−5 4060
13 9.52 × 10−5 161928 9.52 × 10−5 164826 9.52 × 10−5 158880 9.52 × 10−5 1628682
14 −0.99999 558 −0.99999 16420 −0.99999 110 −0.99999 480
15 3.00019 274 3.00019 274 3.00019 274 3.00019 274
16 7.76 × 10−7 4982 7.76 × 10−7 5106 7.76 × 10−7 4982 7.76 × 10−7 5106
17 −3.86242 352 −3.86242 352 −3.86242 352 −3.86242 352
18 −3.32206 764 −3.32206 764 −3.32206 764 −3.32206 764
19 −1.03154 196 −1.03154 334 −1.03154 190 −1.03154 190
20 9.09 × 10−5 152 9.09 × 10−5 152 9.09 × 10−5 152 9.09 × 10−5 152
21 1.83 × 10−5 968 1.83 × 10−5 1024 1.83 × 10−5 656 1.83 × 10−5 660
22 3.55 × 10−5 6402 3.55 × 10−5 7904 3.55 × 10−5 1698 3.55 × 10−5 1698
23 2.71 × 10−5 90 2.71 × 10−5 94 2.71 × 10−5 90 2.71 × 10−5 90
24 −1.80118 126 −1.80118 126 −1.80118 126 −1.80118 126
25 −4.68736 82562 −4.68736 73866 −4.68736 101900 −4.68736 101942
26 −7.32591 > 500000 −7.32591 > 500000 −7.32591 > 500000 −7.32591 > 500000
27 0.00203 > 500000 0.00203 > 500000 0.00203 > 500000 0.00203 > 500000
28 4.86 × 10−5 2114 4.86 × 10−5 2114 4.86 × 10−5 1820 4.86 × 10−5 1832
29 9.87 × 10−5 44950 9.71 × 10−5 99514 9.87 × 10−5 91954 9.71 × 10−5 92884
30 9.00 × 10−5 5664 9.00 × 10−5 10856 9.00 × 10−5 4994 9.00 × 10−5 1718

31 4.81 × 10−5 180 4.81 × 10−5 180 4.81 × 10−5 156 4.81 × 10−5 154

32 1.18 × 10−5 1162 1.18 × 10−5 1394 1.18 × 10−5 474 1.18 × 10−5 472

33 2.36 × 10−5 15658 2.36 × 10−5 40254 2.36 × 10−5 1250 2.36 × 10−5 1250
34 9.65 × 10−5 242 9.65 × 10−5 242 9.65 × 10−5 242 9.65 × 10−5 242
35 2.41 × 10−5 1690 2.41 × 10−5 1700 2.41 × 10−5 1496 2.41 × 10−5 1494

36 5.42 × 10−5 9100 5.42 × 10−5 10910 5.42 × 10−5 4620 5.42 × 10−5 4590

37 3.09 × 10−5 236 5.64 × 10−5 236 3.09 × 10−5 214 5.64 × 10−5 210

38 7.73 × 10−5 3730 6.41 × 10−5 7210 7.73 × 10−5 1074 6.41 × 10−5 1422
39 1.02 × 10−6 208670 1.30 × 10−6 315960 1.02 × 10−6 58000 1.30 × 10−6 58058
40 −10.15307 1272 −10.15307 1200 −10.15307 1248 −10.15307 1286
41 −10.40269 1204 −10.40269 1180 −10.40269 1224 −10.40269 1224
42 −10.53618 1140 −10.53618 1140 −10.53618 1162 −10.53618 1158

43 −186.72441 1780 −186.72441 1780 −186.72441 2114 −186.72441 2114
44 1.15 × 10−5 118 1.15 × 10−5 118 1.15 × 10−5 106 1.15 × 10−5 108
45 2.87 × 10−5 602 2.87 × 10−5 712 2.87 × 10−5 294 2.87 × 10−5 288

46 5.74 × 10−5 8742 5.74 × 10−5 16974 5.74 × 10−5 784 5.74 × 10−5 784
47 7.94 × 10−6 226 7.94 × 10−6 244 7.94 × 10−6 226 7.94 × 10−6 226
48 3.97 × 10−5 1000 3.97 × 10−5 1034 3.97 × 10−5 836 3.97 × 10−5 836
49 9.11 × 10−6 5538 9.11 × 10−6 7688 9.11 × 10−6 3366 9.11 × 10−6 3366
50 −49.99512 1170 −49.99512 1506 −49.99512 992 −49.99512 1138
51 −209.98007 32170 −209.98007 30100 −209.98007 24704 −209.98007 24716
52 2.88 × 10−5 338 2.88 × 10−5 502 2.88 × 10−5 338 2.88 × 10−5 338
53 6.44 × 10−5 26088 6.44 × 10−5 20974 6.44 × 10−5 27230 6.44 × 10−5 27364
54 9.41133 > 500000 9.41133 > 500000 9.41133 > 500000 9.41133 > 500000

Average 40529.259 44520.52 37230.593 37283.85
Median 1151.000 1190.00 789.000 789.00

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 November 2023                   doi:10.20944/preprints202311.1873.v1

https://doi.org/10.20944/preprints202311.1873.v1


14 of 18

Table 3. Number of function evaluations using BIRECT-l(new) for different values of ∆

Problem BIRECT-l

No./∆ 10−2 10−3 10−4 10−5 10−6 10−7

1 168 166 182 178 174 176
2 530 448 484 448 454 454
3 840 842 852 874 872 874
4 370 424 434 436 436 436
5 328 424 456 468 468 468
6 328 432 462 472 472 472
7 f ailed f ailed 942 474 474 474

8 172 188 188 188 188 188
9 256 242 242 242 242 242

10 722 790 794 790 794 794
11 f ailed 732 718 722 722 722
12 f ailed 5352 4038 4060 4060 4060
13 f ailed 186694 144268 152402 156448 158880
14 110 110 110 110 110 110

15 236 272 274 274 274 274
16 f ailed 2480 3236 3452 4148 4982
17 346 354 352 352 352 352
18 752 764 764 764 764 764
19 188 190 190 190 190 190
20 136 152 152 152 152 152
21 608 644 656 656 656 656
22 1590 1698 1698 1698 1698 1698
23 88 90 90 90 90 90
24 110 126 126 126 126 126
25 38282 49488 90504 101900 101900 101900
26 f ailed f ailed f ailed f ailed f ailed f ailed

27 f ailed f ailed f ailed f ailed f ailed f ailed

28 2440 2102 1814 1820 1820 1820
29 f ailed 39584 87502 90162 92028 91954
30 f ailed 4810 5024 5014 5002 4994
31 146 152 154 156 156 156
32 338 436 474 474 474 474
33 940 1166 1240 1250 1250 1250
34 236 242 242 242 242 242
35 1390 1470 1498 1496 1496 1496
36 4196 4510 4612 4620 4620 4620
37 172 204 214 214 214 214
38 1148 1280 1400 1434 1434 1074

39 41502 49516 57452 57994 58000 58000
40 666 810 1254 1248 1248 1248
41 636 818 1186 1224 1224 1224
42 632 766 1138 1162 1162 1162
43 1748 1880 2044 2086 2114 2114
44 104 106 106 106 106 106
45 286 294 294 294 294 294
46 786 784 784 784 784 784

47 202 226 226 226 226 226
48 728 826 836 836 836 836
49 2712 3162 3332 3366 3366 3366
50 1152 988 992 992 992 992
51 f ailed 28268 24578 24704 24704 24704
52 260 320 338 338 338 338
53 f ailed 25522 27720 27286 27230 27230
54 f ailed f ailed f ailed f ailed f ailed f ailed

Average 13121.852 44876.741 36641, 963 37056.407 37178.222 37230.593
Median 725.000 787.000 815, 000 787.000 789.000 789.000
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4. Conclusions and Future Prospects

The paper introduced a new DIRECT-type algorithm called BIRECTv. The algorithm incorporates
the most recent partitioning and selection techniques, which are essential for enhancing its performance
in tackling the global optimization problems. The improvements have showed that BIRECTv

outperforms existing DIRECT-type algorithms. It is more efficient and performs better in terms of
convergence rates and the number of function evaluations required. Existing DIRECT-type algorithms,
in contrast, tend to have slower convergence rates and often require a significantly higher number of
function evaluations. They face notable difficulties when the optimal solution lies at the boundaries of
feasibility. Through experimentation, the results demonstrate the algorithm’s superior performance,
particularly in cases where solutions are located at the boundary of feasible regions. This research
has opened up new possibilities for addressing global optimization problems, which suggests that
BIRECTv has the potential to make significant contributions in this field. The new algorithm is expected
to have an important place among all other DIRECT-type algorithms. This implies that it could become
a standard choice for solving global optimization problems with the mentioned characteristics. In
conclusion, this paper sets the stage for future research by suggesting that this algorithm opens up
new possibilities, which could lead to further advancements in the field.

Appendix A

Table A1. Key characteristics of the Hedar test problems [4]

Problem Problem Dimension Feasible region No. of local Optimum
No. name n D = ([aj, bj], j = 1, . . . , n) minima f ∗

1∗, 2∗, 3∗ Ackley 2, 5, 10 [−15, 35]n multimodal 0.0
4 Beale 2 [−4.5, 4.5]2 multimodal 0.0
5∗ Bohachevsky 1 2 [−100, 110]2 multimodal 0.0
6∗ Bohachevsky 2 2 [−100, 110]2 multimodal 0.0
7∗ Bohachevsky 3 2 [−100, 110]2 multimodal 0.0
8 Booth 2 [−10, 10]2 unimodal 0.0
9 Branin 2 [−5, 10]× [10, 15] 3 0.39789
10 Colville 4 [−10, 10]4 multimodal 0.0
11, 12, 13 Dixon & Price 2, 5, 10 [−10, 10]n unimodal 0.0
14 Easom 2 [−100, 100]2 multimodal −1.0
15 Goldstein & Price 2 [−2, 2]2 4 3.0
16∗ Griewank 2 [−600, 700]2 multimodal 0.0
17 Hartman 3 [0, 1]3 4 −3.86278
18 Hartman 6 [0, 1]6 4 −3.32237
19 Hump 2 [−5, 5]2 6 −1.03163
20, 21, 22 Levy 2, 5, 10 [−10, 10]n multimodal 0.0
23∗ Matyas 2 [−10, 15]2 unimodal 0.0
24 Michalewics 2 [0, π]2 2! −1.80130
25 Michalewics 5 [0, π]5 5! −4.68765
26 Michalewics 10 [0, π]10 10! −9.66015
27 Perm 4 [−4, 4]4 multimodal 0.0
28, 29 Powell 4, 8 [−4, 5]n multimodal 0.0
30 Power Sum 4 [0, 4]4 multimodal 0.0
31∗, 32∗, 33∗ Rastrigin 2, 5, 10 [−5.12, 6.12]n multimodal 0.0
34, 35, 36 Rosenbrock 2, 5, 10 [−5, 10]n unimodal 0.0
37, 38, 39∗ Schwefel 2, 5, 10 [−500, 500]n unimodal 0.0
40 Shekel, m = 5 4 [0, 10]4 5 −10.15320
41 Shekel, m = 7 4 [0, 10]4 7 −10.40294
42 Shekel, m = 10 4 [0, 10]4 10 −10.53641
43 Shubert 2 [−10, 10]2 760 −186.73091
44∗, 45∗, 46∗ Sphere 2, 5, 10 [−5.12, 6.12]n multimodal 0.0
47∗, 48∗, 49∗ Sum squares 2, 5, 10 [−10, 15]n unimodal 0.0
50 Trid 6 [−36, 36]6 multimodal −50.0
51 Trid 10 [−100, 100]10 multimodal −210.0
52∗, 53∗, 54∗ Zakharov 2, 5, 10 [−5, 11]n multimodal 0.0
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Table A2. Comparison between BIRECT-(new), BIRECT, DIRECT-l, and DIRECT

Problem BIRECT-(new) BIRECT DIRECT-l DIRECT

No. f (x̄) f .eval. f (x̄) f .eval. f (x̄) f .eval. f (x̄) f .eval.

1 2.54 × 10−5 202 2.54 × 10−5 202 7.53 × 10−5 135 7.53 × 10−5 255
2 2.54 × 10−5 1256 2.54 × 10−5 1268 7.53 × 10−5 1777 7.53 × 10−5 8845
3 2.54 × 10−5 45128 2.54 × 10−5 47792 3.57445 > 500000 7.53 × 10−5 80927
4 9.17 × 10−5 436 9.17 × 10−5 436 9.29 × 10−5 247 9.29 × 10−5 655
5 4.02 × 10−5 468 4.02 × 10−5 476 3.09 × 10−6 205 3.09 × 10−5 327
6 3.35 × 10−5 472 3.35 × 10−5 478 2.58 × 10−6 233 2.58 × 10−5 345
7 3.67 × 10−5 474 3.67 × 10−5 480 8.21 × 10−5 573 8.21 × 10−5 693
8 6.10 × 10−5 188 6.10 × 10−5 194 6.58 × 10−5 215 6.58 × 10−5 295
9 0.39790 242 0.39790 242 0.39789 159 0.39789 195
10 9.82 × 10−5 794 9.82 × 10−5 794 3.83 × 10−5 3379 6.08 × 10−5 6585
11 4.84 × 10−5 722 4.84 × 10−5 722 5.32 × 10−5 485 6.25 × 10−5 513
12 7.15 × 10−5 4060 7.15 × 10−5 4060 6.45 × 10−5 54843 6.45 × 10−5 19661
13 9.52 × 10−5 161928 9.52 × 10−5 164826 0.66667 > 500000 5.79 × 10−5 372619
14 −0.99999 558 −0.99999 16420 −0.99999 6851 −0.99999 32845
15 3.00019 274 3.00019 274 3.00009 115 3.00009 191
16 7.76 × 10−7 4982 7.76 × 10−7 5106 4.84 × 10−6 8379 4.84 × 10−6 9215
17 −3.86242 352 −3.86242 352 −3.86245 111 −3.86245 199
18 −3.32206 764 −3.32206 764 −3.32207 295 −3.32207 571
19 −1.03154 196 −1.03154 334 −1.03162 137 −1.03162 321
20 9.09 × 10−5 152 9.09 × 10−5 152 2.10 × 10−5 77 2.10 × 10−5 105
21 1.83 × 10−5 968 1.83 × 10−5 1024 3.65 × 10−5 359 3.65 × 10−5 705
22 3.55 × 10−5 6402 3.55 × 10−5 7904 3.55 × 10−5 5297 6.23 × 10−5 5589
23 2.71 × 10−5 90 2.71 × 10−5 94 3.81 × 10−5 71 3.81 × 10−5 107
24 −1.80118 126 −1.80118 126 −1.80127 45 −1.80127 69
25 −4.68736 82562 −4.68736 73866 −4.68721 26341 −4.68721 13537

26 −7.32591 > 500000 −7.32591 > 500000 −7.84588 > 500000 −7.87910 > 500000
27 0.00203 > 500000 0.00203 > 500000 0.04054 > 500000 0.04355 > 500000
28 4.86 × 10−5 2114 4.86 × 10−5 2114 6.52 × 10−5 32331 9.02 × 10−5 14209
29 9.87 × 10−5 44950 9.71 × 10−5 99514 0.02488 > 500000 0.02142 > 500000
30 9.00 × 10−5 5664 9.00 × 10−5 10856 0.03524 > 500000 0.00215 > 500000
31 4.81 × 10−5 180 4.81 × 10−5 180 2.30 × 10−5 1727 2.30 × 10−5 987
32 1.18 × 10−5 1162 1.18 × 10−5 1394 4.97479 > 500000 4.97479 > 500000
33 2.36 × 10−5 15658 2.36 × 10−5 40254 5.01600 > 500000 9.94967 > 500000
34 9.65 × 10−5 242 9.65 × 10−5 242 9.65 × 10−5 285 9.65 × 10−5 1621
35 2.41 × 10−5 1690 2.41 × 10−5 1700 5.75 × 10−5 2703 8.80 × 10−5 20025
36 5.42 × 10−5 9100 5.42 × 10−5 10910 8.29 × 10−5 74071 8.29 × 10−5 174529
37 3.09 × 10−5 236 5.64 × 10−5 236 2.88 × 10−5 341 2.88 × 10−5 255
38 7.73 × 10−5 3730 6.41 × 10−5 7210 7.21 × 10−5 322039 7.21 × 10−5 31999
39 1.02 × 10−6 208670 1.30 × 10−6 315960 1269.34444 > 500000 1187.63199 > 500000
40 −10.15307 1272 −10.15307 1200 −10.15234 147 −10.15234 155
41 −10.40269 1204 −10.40269 1180 −10.40196 141 −10.40196 145
42 −10.53618 1140 −10.53618 1140 −10.53539 139 −10.53539 145
43 −186.72441 1780 −186.72441 1780 −186.72153 2043 −186.72153 2967
44 1.15 × 10−5 118 1.15 × 10−5 118 8.74 × 10−5 91 8.74 × 10−5 209
45 2.87 × 10−5 602 2.87 × 10−5 712 7.49 × 10−5 465 9.39 × 10−5 4653
46 5.74 × 10−5 8742 5.74 × 10−5 16974 9.63 × 10−5 2057 6.32 × 10−5 99123
47 7.94 × 10−6 226 7.94 × 10−6 244 3.53 × 10−5 77 3.52 × 10−5 107
48 3.97 × 10−5 1000 3.97 × 10−5 1034 7.19 × 10−5 411 7.19 × 10−5 833
49 9.11 × 10−6 5538 9.11 × 10−6 7688 7.76 × 10−6 1809 7.76 × 10−5 8133
50 −49.99512 1170 −49.99512 1506 −49.99525 8731 −49.99525 5693
51 −209.98007 32170 −209.98007 30100 −209.92644 > 500000 −209.98085 90375
52 2.88 × 10−5 338 2.88 × 10−5 502 7.95 × 10−5 209 7.95 × 10−5 237
53 6.44 × 10−5 26088 6.44 × 10−5 20974 0.11921 > 500000 9.71 × 10−5 316827
54 9.41133 > 500000 9.41133 > 500000 16.47703 > 500000 28.96394 > 500000

Average 40529.26 44520.52 121484.19 98677.70
Median 1151.00 1190.00 1752.00 3810.00
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Data Availability Statement: The data underlying this article are available on GitHub repository from BIRECTv

v1.1.0 - https://github.com/lchiter/Algorithm-BIRECTv/releases (accessed on 20 September 2023), and used
under the MIT license, or at Zenodo: https://zenodo.org/record/7416231 (accessed on 20 July 2023). The first
codes for the algorithms BIRECT(new) and BIRECT-l(new) are made available from https://data.mendeley.com/
datasets/t6vv9yknbc/1.
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